Διαστήματα Εμπιστοσύνης και Στατιστικοί Έλεγχοι Υποθέσεων Προβλήματα και Ασκήσεις

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Διαστήματα Εμπιστοσύνης και Στατιστικοί Έλεγχοι Υποθέσεων Προβλήματα και Ασκήσεις"

Transcript

1 Διαστήματα Εμπιστοσύνης και Στατιστικοί Έλεγχοι Υποθέσεων Προβλήματα και Ασκήσεις. Μια μηχανή εμφιάλωσης κρασιού γεμίζει φιάλες του μισού κιλού με ποσότητα κρασιού η οποία είναι κανονική τυχαία μεταβλητή με γνωστή τυπική απόκλιση ίση με 5gr. Επιλέξαμε 5 φιάλες του μισού κιλού που είχαν γεμίσει από τη συγκεκριμένη μηχανή και μετρήσαμε την ποσότητα κρασιού που περιείχαν. Η μέση ποσότητα κρασιού σε αυτές τις 5 φιάλες βρέθηκε ίση με 485gr. α) Βρείτε ένα 95% και ένα 99% διάστημα εμπιστοσύνης για τη μέση ποσότητα κρασιού που περιέχεται στις φιάλες του μισού κιλού που γεμίζει η συγκεκριμένη μηχανή. β) Μετρήσαμε την ποσότητα κρασιού σε 5 άλλες φιάλες του μισού κιλού που είχαν γεμίσει επίσης από τη συγκεκριμένη μηχανή και βρήκαμε μέση ποσότητα κρασιού 48gr. Να απαντήσετε στο ερώτημα (α) χρησιμοποιώντας τα ευρήματα από το νέο δείγμα. γ) Μετρήσαμε την ποσότητα κρασιού σε 4 ακόμη φιάλες του μισού κιλού που είχαν γεμίσει από τη συγκεκριμένη μηχανή και βρήκαμε μέση ποσότητα κρασιού, σε αυτές, 48gr. Να απαντήσετε και πάλι στο ερώτημα (α) χρησιμοποιώντας τα νέα ευρήματα. δ) Πώς σχολιάζετε και πώς ερμηνεύετε (συγκριτικά) τα πλάτη των έξι διαστημάτων που υπολογίσατε στα (α), (β) και (γ); ε) Τι μεγέθους δείγμα πρέπει να πάρουμε προκειμένου, με πιθανότητα 95% το περιθώριο σφάλματος για την εκτίμηση της μέσης ποσότητας κρασιού που περιέχεται στις φιάλες μισού κιλού που γεμίζει η συγκεκριμένη μηχανή, να είναι.5gr; στ) Τι υποθέσεις χρειάσθηκε να κάνετε για να απαντήσετε στα ερωτήματα (α), (β) και (γ);. Είναι γνωστό ότι η πετρελαϊκή ρύπανση των θαλασσών προκαλεί, μεταξύ άλλων, την ανάπτυξη ενός συγκεκριμένου τύπου βακτηρίων. Μια ομάδα ερευνητών, προκειμένου να μελετήσει αυτό το φαινόμενο σε μια θαλάσσια περιοχή που έχει πληγεί από πετρελαϊκή ρύπανση, πήρε νερό από διαφορετικά σημεία αυτής της περιοχής και έκανε σχετικές μετρήσεις. Συγκεκριμένα, μέτρησε τον αριθμό, έστω Χ, αυτών των βακτηρίων ανά milliliters νερού. Οι τιμές, x, x,..., x, της μεταβλητής, Χ, στα δέκα σημεία ήταν: 49, 7, 54, 67, 59, 4, 6, 69, 7, 5. α) Βρείτε ένα 95% διάστημα εμπιστοσύνης για το μέσο αριθμό βακτηρίων ανά milliliters νερού στην υπό μελέτη θαλάσσια περιοχή. β) Τι υποθέσεις χρειάσθηκε να κάνετε για να απαντήσετε στο ερώτημα (α); γ) Εξηγείστε πώς αντιλαμβάνεσθε (πώς ερμηνεύετε) το 95% διάστημα εμπιστοσύνης που βρήκατε στο (α). δ) Αν ερευνητικές ομάδες πάρουν, η κάθε μία, από ένα τυχαίο δείγμα μεγέθους από την υπό μελέτη περιοχή, και υπολογίσουν (με την ίδια διαδικασία) από ένα 95% διάστημα εμπιστοσύνης για το μέσο αριθμό βακτηρίων ανά milliliters νερού η κάθε μία, πόσα από αυτά τα διαστήματα εμπιστοσύνης περιμένετε να περιέχουν το μέσο αριθμό βακτηρίων ανά milliliters νερού στην υπό μελέτη θαλάσσια περιοχή; ε) Βρείτε ένα 99% διάστημα εμπιστοσύνης για το μέσο αριθμό βακτηρίων ανά milliliters νερού στην υπό μελέτη θαλάσσια περιοχή. στ) Ποια εκτίμηση είναι πιο ακριβής, του ερωτήματος (α) ή του (ε); Για ποια έχουμε μεγαλύτερη εμπιστοσύνη; 3. Ένας φοιτητής του Τμήματος Επιστήμης και Τεχνολογίας Τροφίμων του Γεωπονικού Πανεπιστημίου Αθηνών, στο πλαίσιο της πτυχιακής του εργασίας, μελέτησε μεταξύ άλλων, την ποσότητα νατρίου, έστω Χ, που περιέχεται στο κασέρι συνήθους τύπου (όχι light) που παράγει μια γνωστή γαλακτοβιομηχανία. Τα αποτελέσματα εννέα σχετικών μετρήσεων που έκανε ο φοιτητής σε κασέρι που επέλεξε τυχαία από την παραγωγή της γαλακτοβιομηχανίας, ήταν (σε milligrams/gr): 34, 3, 34, 3, 3, 9, 33, 3, 3. Εργαστήριο Μαθηματικών & Στατιστικής / Γ. Παπαδόπουλος (www.aua.gr/gpapaopoulos) 6

2 α) Βρείτε ένα 95% διάστημα εμπιστοσύνης για τη μέση ποσότητα νατρίου που περιέχεται στο κασέρι συνήθους τύπου που παράγει η συγκεκριμένη γαλακτοβιομηχανία. β) Τι υποθέσεις χρειάσθηκε να κάνετε για να απαντήσετε στο ερώτημα (α); γ) Σύμφωνα με τις προδιαγραφές τις γαλακτοβιομηχανίας, η μέση ποσότητα νατρίου στο κασέρι συνήθους τύπου που παράγει είναι 3mgr/gr. Με βάση το δείγμα που πήρε ο φοιτητής, να ελέγξετε σε επίπεδο σημαντικότητας 5%, αν ο ισχυρισμός της γαλακτοβιομηχανίας ευσταθεί. δ) Τι υποθέσεις χρειάσθηκε να κάνετε για να απαντήσετε στο ερώτημα (γ); 4. (Συνέχεια της άσκησης-3): Ο φοιτητής, επίσης μελέτησε, την ποσότητα νατρίου στο κασέρι τύπου light της ίδιας γαλακτοβιομηχανίας. Τα αποτελέσματα οκτώ σχετικών μετρήσεων ήταν: 3, 3, 3, 9, 8, 8, 85, 75. α) Βρείτε ένα 95% διάστημα εμπιστοσύνης για τη μέση ποσότητα νατρίου που περιέχεται στο κασέρι τύπου light που παράγει η συγκεκριμένη γαλακτοβιομηχανία. β) Βρείτε ένα 95% διάστημα εμπιστοσύνης για τη διαφορά της μέσης ποσότητας νατρίου στο κασέρι τύπου light που παράγει η συγκεκριμένη γαλακτοβιομηχανία από τη μέση ποσότητα νατρίου στο κασέρι συνήθους τύπου (που παράγει η ίδια γαλακτοβιομηχανία). γ) Με βάση το 95% διάστημα εμπιστοσύνης που υπολογίσατε στο ερώτημα (β), μπορείτε να συμπεράνετε αν οι δύο πληθυσμιακοί μέσοι διαφέρουν ή όχι και αν ναι με τι πιθανότητα το συμπέρασμά σας μπορεί να είναι λάθος; δ) Να διατυπώσετε και να κάνετε, σε επίπεδο σημαντικότητας 5%, κατάλληλο στατιστικό έλεγχο για να ελέγξετε αν η μέση ποσότητα νατρίου που περιέχεται στο κασέρι που παράγει η συγκεκριμένη γαλακτοβιομηχανία είναι ίδια ή όχι στους δύο τύπους κασεριού. Συμφωνεί το συμπέρασμά σας με αυτό του ερωτήματος (γ); ε) Με βάση το συμπέρασμά σας στο (δ), μπορείτε να αποφασίσετε, σε επίπεδο σημαντικότητας 5%, αν η μέση ποσότητα νατρίου που περιέχεται στο κασέρι συνήθους τύπου που παράγει η συγκεκριμένη γαλακτοβιομηχανία είναι μεγαλύτερη από τη μέση ποσότητα νατρίου που περιέχεται στο κασέρι τύπου light (που παράγει η ίδια γαλακτοβιομηχανία); στ) Να διατυπώσετε και να κάνετε, σε επίπεδο σημαντικότητας 5%, κατάλληλο στατιστικό έλεγχο για να ελέγξετε αν η μέση ποσότητα νατρίου που περιέχεται στο κασέρι συνήθους τύπου είναι μεγαλύτερη από τη μέση ποσότητα νατρίου που περιέχεται στο κασέρι τύπου light περισσότερο από 5mgr/gr. ζ) Για να απαντήσετε στα ερωτήματα (β), (δ) και (στ) χρειάσθηκε να κάνετε κάποιες υποθέσεις; 5. Ένας φοιτητής του Τμήματος Φυτικής Παραγωγής του Γεωπονικού Πανεπιστημίου Αθηνών, στο πλαίσιο της πτυχιακής του εργασίας, μέτρησε σε 5 άνθη της ίδιας οικογένειας, τον αριθμό των πετάλων τους, έστω Χ. Τα αποτελέσματα, x, x,..., x5, αυτών των μετρήσεων ήταν τα εξής: α) Βρείτε ένα 99% διάστημα εμπιστοσύνης για το μέσο αριθμό πετάλων ανά άνθος της συγκεκριμένης οικογένειας. β) Τι υποθέσεις χρειάσθηκε να κάνετε για να απαντήσετε στο ερώτημα (α); γ) Στη βιβλιογραφία αναφέρεται ότι ο μέσος αριθμός πετάλων της συγκεκριμένης οικογένειας είναι 6 πέταλα ανά άνθος. Να διατυπώσετε και να κάνετε, σε επίπεδο σημαντικότητας %, κατάλληλο Εργαστήριο Μαθηματικών & Στατιστικής / Γ. Παπαδόπουλος (www.aua.gr/gpapaopoulos) 6

3 στατιστικό έλεγχο για να ελέγξετε αν τα ευρήματα στο δείγμα που πήρε ο φοιτητής συμφωνούν ή όχι με τη βιβλιογραφία. δ) Μπορείτε να υπολογίσετε την πιθανότητα το συμπέρασμά σας στο (γ) να είναι λάθος; Εξηγείστε. 6. Στον πίνακα που ακολουθεί φαίνεται το ποσοστό (%) οξειδίου του αργιλίου (aluminum oxie) σε καθένα από 4 κεραμικά αγγεία που βρέθηκαν σε αρχαιολογικές ανασκαφές που έγιναν σε δύο διαφορετικές περιοχές (Α και Β). Α Β α) Βρείτε ένα 95% διάστημα εμπιστοσύνης για τη μέση περιεκτικότητα σε αργίλιο των κεραμικών της περιοχής Α (της χρονολογικής περιόδου που αντιστοιχούν τα ευρήματα). β) Βρείτε ένα 95% διάστημα εμπιστοσύνης για τη μέση περιεκτικότητα σε αργίλιο των κεραμικών της περιοχής Β (της χρονολογικής περιόδου που αντιστοιχούν τα ευρήματα). γ) Βρείτε ένα 95% διάστημα εμπιστοσύνης για τη διαφορά της μέσης περιεκτικότητας σε αργίλιο των κεραμικών της περιοχής Β από τη μέση περιεκτικότητα σε αργίλιο των κεραμικών της περιοχής Α. δ) Με βάση το 95% διάστημα εμπιστοσύνης που υπολογίσατε στο ερώτημα (γ), μπορείτε να συμπεράνετε αν οι δύο πληθυσμιακοί μέσοι διαφέρουν ή όχι και αν ναι με τι πιθανότητα το συμπέρασμά σας μπορεί να είναι λάθος; ε) Να διατυπώσετε και να κάνετε, σε επίπεδο σημαντικότητας 5%, κατάλληλο στατιστικό έλεγχο για να ελέγξετε αν η μέση περιεκτικότητα σε αργίλιο των κεραμικών είναι ίδια ή όχι στις δύο περιοχές. Συμφωνεί το συμπέρασμά σας με αυτό του ερωτήματος (δ); στ) Τι υποθέσεις χρειάσθηκε να κάνετε για να απαντήσετε στα ερωτήματα (α), (β), (γ) και (ε); ζ) Το συμπέρασμά σας στο (ε), συμφωνεί με το συμπέρασμά σας στο αντίστοιχο πρόβλημα περιγραφικής στατιστικής; (πρόβλημα- περιγραφικής στατιστικής). 7. Η αποτελεσματικότητα του φυτοφαρμάκου που (δυστυχώς ) χρησιμοποιεί ένας αγρότης για την αντιμετώπιση κάποιας συγκεκριμένης ασθένειας είναι γνωστό ότι είναι 6%, δηλαδή το 6% των άρρωστων φυτών στα οποία χορηγείται το εν λόγω φάρμακο θεραπεύονται. Για να ελέγξει την αποτελεσματικότητα ενός νέου φαρμάκου, που αντιμετωπίζει την ίδια ασθένεια, ο αγρότης χορήγησε αυτό το νέο φάρμακο σε 5 άρρωστα φυτά, και από αυτά θεραπεύθηκαν τα. α) Σε επίπεδο σημαντικότητας 5%, υποστηρίζουν αυτά τα πειραματικά δεδομένα ότι το νέο φάρμακο είναι πιο αποτελεσματικό από αυτό που ήδη χρησιμοποιεί; β) Αν ο αγρότης είχε εκτελέσει το πείραμα με 5 άρρωστα φυτά και είχε βρει ότι θεραπεύτηκαν από αυτά, τι έπρεπε να έχει συμπεράνει; γ) Βρείτε ένα 99% διάστημα εμπιστοσύνης για την αποτελεσματικότητα του νέου φαρμάκου, με τα δεδομένα από τα 5 φυτά και τα δεδομένα από τα 5 φυτά. Σχολιάστε τα πλάτη των δύο διαστημάτων. δ) Πόσα φυτά πρέπει να χρησιμοποιηθούν στο πείραμα ώστε με πιθανότητα 99% το περιθώριο σφάλματος της εκτίμησης του ποσοστού των φυτών που θεραπεύονται με το νέο φυτοφάρμακο να είναι. (%); 8. Για να συγκριθεί η ευαισθησία δύο διαφορετικών ποικιλιών καλαμποκιού σε κάποια ασθένεια, έγινε κατάλληλο πείραμα, στο οποίο χρησιμοποιήθηκαν 5 φυτά της ποικιλίας Α και 5 φυτά της ποικιλίας Β. Βρέθηκε ότι από τα 5 φυτά της ποικιλίας Α προσβλήθηκαν από την ασθένεια τα 74 και από τα 5 φυτά της ποικιλίας Β τα 9. α) Βρείτε ένα 95% διάστημα εμπιστοσύνης για τη διαφορά στην ευαισθησία στη συγκεκριμένη ασθένεια μεταξύ των δύο ποικιλιών καλαμποκιού. β) Σε επίπεδο σημαντικότητας 5%, μπορούμε να ισχυρισθούμε ότι Εργαστήριο Μαθηματικών & Στατιστικής / Γ. Παπαδόπουλος (www.aua.gr/gpapaopoulos) 6

4 υπάρχει διαφορά στην ευαισθησία στη συγκεκριμένη ασθένεια μεταξύ των δύο ποικιλιών καλαμποκιού; Σε επίπεδο σημαντικότητας %; γ)τι υποθέσεις κάνατε για να απαντήσετε στα ερωτήματα (α) και (β). 9. Τα φυτά σιταριού με ύψος μικρότερο από 9.44cm (συμπεριλαμβανομένης και της ταξιανθίας) χαρακτηρίζονται «κοντά». Ένα τυχαίο δείγμα 5 φυτών σιταριού από μια αγροτική περιοχή έδωσε μέσο ύψος 89.cm με τυπική απόκλιση 4.58cm. α) Βρείτε ένα 95% διάστημα εμπιστοσύνης για το μέσος ύψος των φυτών σιταριού της συγκεκριμένης αγροτικής περιοχής. β) Τα ευρήματα στο τυχαίο δείγμα, υποστηρίζουν, σε επίπεδο σημαντικότητας 5%, ότι τα φυτά σιταριού στη συγκεκριμένη αγροτική περιοχή, με βάση το μέσο ύψος τους, είναι κοντά;. Στο περιοδικό journal of Biology δημοσιεύθηκαν τα αποτελέσματα μιας έρευνας για τα ποσοστό ψαριών στη Μεσόγειο και το ποσοστό ψαριών στον Ατλαντικό που έχουν προσβληθεί από παράσιτα. Στη Μεσόγειο, από 588 ψάρια που εξετάσθηκαν βρέθηκαν μολυσμένα από παράσιτα τα ενώ στον Ατλαντικό, από 3 ψάρια που εξετάσθηκαν, βρέθηκαν μολυσμένα από παράσιτα τα 6. α) Τα ευρήματα στα δύο δείγματα υποστηρίζουν, σε επίπεδο σημαντικότητας %, ότι το ποσοστό μολυσμένων ψαριών από παράσιτα στη Μεσόγειο διαφέρει από το αντίστοιχο ποσοστό στον Ατλαντικό; Σε επίπεδο σημαντικότητας 5%; β) Για να αναδείξετε τη σημαντικότητα των ευρημάτων, ποιο συμπέρασμα θα παρουσιάζατε, για % ή για 5% επίπεδο σημαντικότητας; Εξηγείστε.. Ένας φοιτητής του Τμήματος Περιβάλλοντος του Πανεπιστημίου Αιγαίου, στο πλαίσιο μιας εργαστηριακής άσκησης, πήρε 5 μετρήσεις συγκέντρωσης οξυγόνου στα νερά μέσα στο λιμάνι της Μυτιλήνης και άλλες μετρήσεις στα νερά παρακείμενης θαλάσσιας περιοχής έξω από το λιμάνι. Οι μετρήσεις στα νερά που ελήφθησαν μέσα από το λιμάνι έδωσαν μέση συγκέντρωση οξυγόνου 3.8mg/lt με τυπική απόκλιση.9mg/lt, ενώ οι μετρήσεις στα νερά που ελήφθησαν έξω από το λιμάνι έδωσαν μέση συγκέντρωση οξυγόνου3.388mg/lt με τυπική απόκλιση.mg/lt. α) Σε επίπεδο σημαντικότητας %, υποστηρίζουν τα δεδομένα αυτά μειωμένη συγκέντρωση οξυγόνου στα νερά μέσα στο λιμάνι της Μυτιλήνης σε σχέση με τη συγκέντρωση οξυγόνου στα νερά έξω από το λιμάνι; Σε επίπεδο σημαντικότητας 5%; β) Ο καθηγητής έδωσε τη συγκεκριμένη άσκηση σε 3 φοιτητές, δηλαδή, από κάθε φοιτητή ζητήθηκε να ληφθούν από 5 και μετρήσεις συγκέντρωσης οξυγόνου από νερά μέσα και έξω από το λιμάνι της Μυτιλήνης αντίστοιχα, και στη συνέχεια να κάνει κατάλληλο στατιστικό έλεγχο υποθέσεων σε επίπεδο σημαντικότητας 5%. Αν ο καθηγητής γνωρίζει ότι η μέση συγκέντρωση οξυγόνου στα νερά μέσα στο λιμάνι δεν είναι μικρότερη από ότι στα νερά έξω από το λιμάνι, πόσοι από τους 3 φοιτητές (περίπου) αναμένετε να βρήκαν ότι η μέση συγκέντρωση οξυγόνου στα νερά μέσα στο λιμάνι είναι μικρότερη από ότι στα νερά έξω από το λιμάνι; (υποθέστε ότι όλοι οι φοιτητές εκτέλεσαν την άσκηση σωστά). Οι κάτοικοι μιας περιοχής στο Θριάσιο, ανησυχούν για τη συγκέντρωση μονοξειδίου του άνθρακα στην ατμόσφαιρα κατά τις μεσημεριανές ώρες. Η αρμόδια κρατική υπηρεσία, μετά από διαμαρτυρία των κατοίκων, επέλεξε σύμφωνα με ένα σχέδιο τυχαίας δειγματοληψίας, 6 σημεία της περιοχής και έκανε σχετικές μετρήσεις. Οι μετρήσεις αυτές έδωσαν μέση συγκέντρωση μονοξειδίου του άνθρακα 55.9mg/m 3 με τυπική απόκλιση 6.5mg/m 3. Το επιτρεπτό για την υγεία των κατοίκων όριο μονοξειδίου του άνθρακα είναι 55mg/m 3. α) Με βάση τα ευρήματα στο δείγμα, και σε επίπεδο σημαντικότητας 5%, τι πρέπει να ανακοινώσει η κρατική υπηρεσία στους κατοίκους; β) Μια Εργαστήριο Μαθηματικών & Στατιστικής / Γ. Παπαδόπουλος (www.aua.gr/gpapaopoulos) 63

5 περιβαλλοντική οργάνωση πίεσε την κρατική υπηρεσία να επαναλάβει τον έλεγχο με μεγαλύτερο δείγμα. Η κρατική υπηρεσία δέχθηκε και ένα νέο τυχαίο δείγμα μεγέθους 6 που πήρε, έδωσε μέση συγκέντρωση μονοξειδίου του άνθρακα 56.mg/m 3 με τυπική απόκλιση 5.mg/m 3. Τι πρέπει να ανακοινώσει η κρατική υπηρεσία στους κατοίκους με βάση τα ευρήματα στο νέο δείγμα (σε επίπεδο σημαντικότητας και πάλι 5%); γ) Σχολιάστε τα συμπεράσματα στα (α) και (β) συγκριτικά. δ) Τι υποθέσεις χρειάσθηκε να γίνουν για να απαντηθούν τα (α) και (β); 3. Ένας ερευνητής, έκανε 34 μετρήσεις για το PH ενός χημικού διαλύματος Α και 4 μετρήσεις για το PH ενός άλλου χημικού διαλύματος Β. Οι 34 μετρήσεις για το διάλυμα Α έδωσαν μέσο PH 7.5 με τυπική απόκλιση.5 και οι 4 μετρήσεις για το διάλυμα Β έδωσαν μέσο PH 7.76 με τυπική απόκλιση.9. α) Σε επίπεδο σημαντικότητας 5%, η διαφορά που παρατηρείται στους δύο δειγματικούς μέσους, είναι άραγε στατιστικά σημαντική; Σε επίπεδο σημαντικότητας %; β) Τι πρέπει να υπολογίσουμε για να διαπιστώσουμε πόσο στατιστικά σημαντική είναι αυτή η διαφορά; γ) Να απαντήσετε στο ερώτημα (α) αν γνωρίζετε ότι P τιμ ή. 3. Εξηγείστε τι εκφράζει η P-τιμή και πώς χρησιμοποιείται στο στατιστικό έλεγχο υποθέσεων. δ) Βρείτε ένα 99% διάστημα εμπιστοσύνης για τη μέση διαφορά του PH στα δύο διαλύματα. 4. Για να συγκρίνουμε δυο αντιδιαβρωτικά επιστρώματα σωλήνων, έστω Α και Β, κάναμε το εξής πείραμα. Σε τυχαία επιλεγμένες περιοχές τοποθετήσαμε μέσα στο έδαφος δύο σωλήνες, τον ένα δίπλα στον άλλο, στο ίδιο βάθος και για ίδιο χρονικό διάστημα. Ο ένας σωλήνας από τους δύο που τοποθετήθηκαν σε κάθε περιοχή, είχε επιστρωθεί με το αντιδιαβρωτικό Α και ο άλλος με το αντιδιαβρωτικό Β. Στον πίνακα που ακολουθεί φαίνεται ο βαθμός διάβρωσης 3 κάθε σωλήνα (σε in ) στις δέκα περιοχές. Βαθμός διάβρωσης με 3 επίστρωμα Α (σε in ) Βαθμός διάβρωσης με 3 επίστρωμα Β (σε in ) Περιοχή α) Βρείτε ένα 95% διάστημα εμπιστοσύνης για τη μέση διαφορά του βαθμού διάβρωσης μεταξύ σωλήνων με αντιδιαβρωτικό επίστρωμα Α και σωλήνων με αντιδιαβρωτικό επίστρωμα Β. β) Σε επίπεδο σημαντικότητας 5%, υποστηρίζουν τα πειραματικά δεδομένα ότι τα δύο αντιδιαβρωτικά δεν έχουν την ίδια αποτελεσματικότητα; γ) Με βάση το συμπέρασμά σας στο (β), μπορείτε να συμπεράνετε σε επίπεδο σημαντικότητας 5%, αν τα πειραματικά δεδομένα υποστηρίζουν ότι το αντιδιαβρωτικό Β είναι πιο αποτελεσματικό από το αντιδιαβρωτικό Α; δ) Για να απαντήσετε στα προηγούμενα ερωτήματα, χρειάσθηκε να κάνετε κάποιες υποθέσεις; 5. Ένας ερευνητής μέτρησε τη συγκέντρωση γλυκόζης (σε mg/li) στο αριστερό και το δεξί μάτι 35, τυχαία επιλεγμένων, υγιών σκυλιών συγκεκριμένης ράτσας. Ας συμβολίσουμε με Χ και Υ αντίστοιχα, τη συγκέντρωση γλυκόζης στο αριστερό και το δεξί μάτι υγιών σκύλων της συγκεκριμένης ράτσας. Για τις 35 μετρήσεις, x, x,..., x35, στο αριστερό μάτι και τις 35 μετρήσεις, y, y,..., y35, στο δεξί, ο ερευνητής υπολόγισε τη μέση τιμή και την τυπική απόκλισή τους, Εργαστήριο Μαθηματικών & Στατιστικής / Γ. Παπαδόπουλος (www.aua.gr/gpapaopoulos) 64

6 x = 84.6 mg/li, s x =. 64 mg/li, y = mg/li, s y =. 7 mg/li, αντίστοιχα. Υπολόγισε επίσης την τυπική απόκλιση των διαφορών, i = xi yi, i =,,...,35, μεταξύ αριστερού και δεξιού ματιού, s =.6 mg/li. Χρησιμοποιείστε όσα και όποια από αυτά τα στατιστικά κρίνετε, για να απαντήσετε στα επόμενα. α) Βρείτε 95% διάστημα εμπιστοσύνης για τη μέση διαφορά της συγκέντρωσης γλυκόζης μεταξύ των δύο ματιών υγιών σκύλων της συγκεκριμένης ράτσας. β) Σε επίπεδο σημαντικότητας 5%, υποστηρίζουν οι μετρήσεις που έκανε ο ερευνητής ότι υπάρχει στατιστικά σημαντική διαφορά στη μέση συγκέντρωση γλυκόζης μεταξύ των δύο ματιών υγιών σκύλων της συγκεκριμένης ράτσας; γ) Για να απαντήσετε στα (α) και (β), χρειάσθηκε να κάνετε κάποιες υποθέσεις; 6. Πέντε μονάδες εμφιάλωσης αναψυκτικών δέχτηκαν να εφαρμόσουν μια νέα μέθοδο στη διαδικασία παραγωγής προκειμένου να ελεγχθεί (από μια ερευνητική ομάδα) αν η νέα μέθοδος αυξάνει την παραγωγικότητα. Στον πίνακα που ακολουθεί φαίνεται, για κάθε μια από της πέντε παραγωγικές μονάδες, ο αριθμός μπουκαλιών που παρήχθησαν ανά ώρα πριν και μετά την εφαρμογή της νέας διαδικασίας παραγωγής. Παραγωγικότητα Παραγωγική Μονάδα (σε αριθμό μπουκαλιών ανά ώρα) Πριν Μετά Με βάση αυτά τα πειραματικά δεδομένα, α) να ελέγξετε σε επίπεδο σημαντικότητας 5% αν η νέα μέθοδος αυξάνει την παραγωγικότητα των μονάδων παραγωγής, β) βρείτε ένα 95% διάστημα εμπιστοσύνης για τη μέση διαφορά της παραγωγικότητας των μονάδων παραγωγής, πριν και μετά την εφαρμογή της νέας διαδικασίας παραγωγής, γ) χρειάσθηκε να κάνετε κάποιες υποθέσεις για να απαντήσετε στα (α) και (β); Ερωτήσεις κατανόησης. Από έναν πληθυσμό επιλέξατε ένα τυχαίο δείγμα μεγέθους n και κατασκευάσατε ένα 95% διάστημα εμπιστοσύνης για την άγνωστη μέση τιμή του. Αν από το ίδιο δείγμα κατασκευάσετε για τη μέση τιμή του πληθυσμού ένα άλλο διάστημα εμπιστοσύνης με μεγαλύτερο συντελεστή εμπιστοσύνης, το περιθώριο σφάλματος της εκτίμησης θα αυξηθεί, θα μειωθεί ή μήπως θα παραμείνει ίδιο;. Κατασκευάσατε ένα διάστημα εμπιστοσύνης για έναν άγνωστο πληθυσμιακό μέσο και διαπιστώσατε ότι ουσιαστικά δεν είναι ιδιαίτερα χρήσιμο γιατί είναι πολύ πλατύ. Τι από τα παρακάτω θα κάνατε για να αντιμετωπίσετε αυτό το πρόβλημα: α) αύξηση του συντελεστή εμπιστοσύνης, β) επανάληψη της δειγματοληψίας με μεγαλύτερο μέγεθος δείγματος, γ) επανάληψη της δειγματοληψίας με μικρότερο μέγεθος δείγματος. 3. Κατασκευάσατε ένα 95% διάστημα εμπιστοσύνης για έναν άγνωστο πληθυσμιακό μέσο. Αυτό σημαίνει ότι δώσατε για τον άγνωστο πληθυσμιακό μέσο α) μια σημειακή εκτίμηση με ακρίβεια 95%, β) μια εκτίμηση με διάστημα και με ακρίβεια 95%, γ) μια εκτίμηση με διάστημα και περιθώριο σφάλματος 5%, δ) όλα τα προηγούμενα, ε) τίποτε από τα προηγούμενα. 4. Ένας ερευνητής πήρε από έναν πληθυσμό ένα τυχαίο δείγμα μεγέθους n και κατασκεύασε ένα 95% διάστημα εμπιστοσύνης για την άγνωστη μέση τιμή Εργαστήριο Μαθηματικών & Στατιστικής / Γ. Παπαδόπουλος (www.aua.gr/gpapaopoulos) 65

7 του πληθυσμού. Αυτό σημαίνει ότι, α) το διάστημα αυτό έχει 95% πιθανότητα να περιέχει την τιμή της άγνωστης μέσης τιμής του πληθυσμού, β) η άγνωστη μέση τιμή του πληθυσμού έχει 95% πιθανότητα να βρίσκεται μέσα σε αυτό το διάστημα, γ) αν από τον πληθυσμό πάρουμε διαφορετικά τυχαία δείγματα μεγέθους n (το καθένα) και από κάθε δείγμα κατασκευάσουμε (με την ίδια διαδικασία) ένα 95% διάστημα εμπιστοσύνης για τη μέση τιμή του πληθυσμού τότε ποσοστό 95% αυτών των δειγμάτων θα δώσουν διάστημα που θα περιέχει τη μέση τιμή του πληθυσμού, δ) τίποτε από τα προηγούμενα ε) όλα τα προηγούμενα, στ) τα (α) και (β), ζ) τα (α) και (γ), η) τα (β) και (γ). 5. Από έναν πληθυσμό πήρατε ένα τυχαίο δείγμα μεγέθους n και κατασκευάσατε για την άγνωστη μέση τιμή του ένα 95% διάστημα εμπιστοσύνης. Από τον ίδιο πληθυσμό, πήρατε ένα ακόμη τυχαίο δείγμα μεγέθους n > n και κατασκευάσατε ένα επίσης 95% διάστημα εμπιστοσύνης για τη μέση τιμή του πληθυσμού. Ποιο από τα δύο διαστήματα δίνει ακριβέστερη εκτίμηση της άγνωστης μέσης τιμής του πληθυσμού; Μήπως οι δύο εκτιμήσεις είναι το ίδιο ακριβείς (με 95% ακρίβεια); 6. Σε ένα στατιστικό έλεγχο υποθέσεων για το ποσοστό (αναλογία) p σε έναν πληθυσμό, βρέθηκε P τιμ ή =. 38. Αν για τον έλεγχο έχουμε επιλέξει επίπεδο σημαντικότητα 5%, η μηδενική υπόθεση απορρίπτεται ή όχι; 7. Αν σε ένα στατιστικό έλεγχο υποθέσεων η μηδενική υπόθεση απορρίπτεται για επίπεδο σημαντικότητας 5%, τότε α) απορρίπτεται για οποιοδήποτε επίπεδο σημαντικότητας, β) για οποιοδήποτε άλλο επίπεδο σημαντικότητας δεν απορρίπτεται, γ) για επίπεδο σημαντικότητας % απορρίπτεται, δ) για επίπεδο σημαντικότητας % δεν απορρίπτεται ε) για επίπεδο σημαντικότητας % μπορεί να απορρίπτεται ή να μην απορρίπτεται. Ποια (ή ποιες) από τις πέντε εκδοχές είναι σωστή (σωστές); 8. Σε ένα στατιστικό έλεγχο υποθέσεων, για να υπολογίσουμε την P-τιμή είναι αναγκαίο να έχουμε ορίσει το επίπεδο σημαντικότητας του ελέγχου. Αυτό είναι σωστό ή λάθος; 9. Μια γαλλική εισαγωγική εταιρεία νωπών λαχανικών, εισάγει στη Γαλλία νωπά λαχανικά από έναν ελληνικό αγροτικό συνεταιρισμό. Από κάθε παρτίδα νωπών λαχανικών που φθάνει στις εγκαταστάσεις της από το συνεταιρισμό, παίρνει ένα τυχαίο δείγμα και κάνει ποιοτικό έλεγχο. Η εταιρεία επιστρέφει την παρτίδα αν με βάση το δείγμα συμπεράνει ότι το ποσοστό των λαχανικών που είναι εκτός προδιαγραφών υπερβαίνει το 5%, αλλιώς αποδέχεται την παρτίδα. α) Ποια μηδενική υπόθεση και έναντι ποιας εναλλακτικής πρέπει να ελέγχει η εισαγωγική εταιρεία; β) Διατυπώστε με όρους του προβλήματος το σφάλμα τύπου Ι και το σφάλμα τύπου ΙΙ του ελέγχου που κάνει η εταιρεία. γ) Από τη σκοπιά της εταιρείας, ποιο σφάλμα είναι πιο σοβαρό; Αντίστοιχα, από τη σκοπιά του συνεταιρισμού; Εξηγείστε. Εργαστήριο Μαθηματικών & Στατιστικής / Γ. Παπαδόπουλος (www.aua.gr/gpapaopoulos) 66

8 ΑΠΑΝΤΗΣΕΙΣ. α) [483.6, ] και [48.4, ], αντίστοιχα. β) [478.4, 48.96] και [477.4, ], αντίστοιχα. γ) [48.45, ] και [479.97, 484.4], αντίστοιχα. δ)... ε) n=43. στ) ότι τα δείγματα είναι τυχαία. α) [5.78, 66.6] β) ότι το δείγμα έχει ληφθεί από κανονικό πληθυσμό γ) το διάστημα [5.78, 66.6] έχει 95% πιθανότητα να περιέχει τον άγνωστο πληθυσμιακό μέσο δ).95 = 9 ε) [48.54, 69.86] στ) του (α) πιο ακριβής, του (ε) μεγαλύτερη εμπιστοσύνη.. 3. α) [35.89, 33.89] β) ότι το δείγμα έχει ληφθεί από κανονικό πληθυσμό γ) H : μ = 3, H : μ 3, δεν απορρίπτεται ο ισχυρισμός t =. 969 δ) ότι το δείγμα έχει ληφθεί από κανονικό πληθυσμό 4. α) [79.76, 3.4] β) [3.44, 44.34] γ) διαφέρουν με πιθανότητα λάθους το πολύ 5% δ) H : μ =, H : μ, ναι t = ε) ναι αφού απορρίπτεται στον αμφίπλευρο στ) H : μ = 5, H : μ > 5, ναι t =.99 ζ) ότι τα δείγματα έχουν ληφθεί από κανονικούς πληθυσμούς με ίσες διασπορές 5. α) [5.48, 6.37] β) ότι το δείγμα είναι τυχαίο γ) H : μ = 6, H : μ 6, ναι z =.755 δ) όχι, δε γνωρίζουμε την πραγματική τιμή 6. α) [.77, 3.36] β) [6.55, 8.95] γ) [-6.48, -3.89] δ) διαφέρουν, με πιθανότητα το συμπέρασμα αυτό να είναι λάθος το πολύ 5% ε) H : μ =, H : μ, όχι t = 8. 38, συμφωνεί στ) στα (α) και (β) ότι τα δείγματα είναι τυχαία και ότι οι πληθυσμοί είναι κανονικοί, στα (γ) και (ε) ότι τα δείγματα είναι τυχαία, και ότι έχουν ληφθεί από κανονικούς πληθυσμούς με ίσες διασπορές ζ) ναι 7. α) H : p =. 6, H : p >. 6, όχι z =. 587 β) ναι z = 5 γ) [.534,.66] και [.75,.855] αντίστοιχα. Το μεγαλύτερο δείγμα έδωσε, για τον ίδιο συντελεστή εμπιστοσύνης, ακριβέστερη εκτίμηση δ) n = α) [-.543,.3] β) H : p p =, H : p p, όχι z =. 7. Όχι αφού δεν απορρίπτεται σε 5%. γ) καμία 9. α) [85.6, 93.4] β) H : μ = 9. 44, H : μ < 9. 44, όχι z =. 86. α) H : p p =, H : p p, ναι z = Ναι αφού απορρίπτεται σε % β) προφανώς για % αφού δηλώνει ισχυρότερη μαρτυρία. α) H : μ =, H : μ <, ναι t = Ναι αφού απορρίπτεται για % β).5 3 =. 5, δηλ. ένας ή δύο περίπου. H : μ = 55, H : μ > 55, t =. 554, δεν αποδεικνύουν οι μετρήσεις ότι η συγκέντρωση έχει ξεπεράσει το επιτρεπτό όριο β) z =. 7875, οι μετρήσεις υποστηρίζουν ότι η συγκέντρωση έχει ξεπεράσει το επιτρεπτό όριο (με πιθανότητα αυτό το συμπέρασμα να είναι λάθος το πολύ 5%) γ) το μεγαλύτερο δείγμα αύξησε την ισχύ του ελέγχου δ) στο (α) ότι το δείγμα προέρχεται από κανονικό πληθυσμό ενώ στο (β) καμία. 3. α) H : μ =, H : μ, ναι z = Ναι και σε % β) την P τιμή γ) επειδή P τιμ ή =.3 <. 5 η μηδενική σε επίπεδο σημαντικότητας 5% απορρίπτεται, ομοίως, επειδή P τιμ ή =.3 <., απορρίπτεται και σε %. Εκφράζει το πόσο ισχυρές είναι οι αποδείξεις που προκύπτουν από το δείγμα εναντίον της μηδενικής δ) [-.4, -.8] Εργαστήριο Μαθηματικών & Στατιστικής / Γ. Παπαδόπουλος (www.aua.gr/gpapaopoulos) 67

9 4. α) [.9,.] β) H : μ =, H : μ, ναι t = 3. 3 γ) H : μ =, H : μ >, ναι αφού απορρίπτεται στον αμφίπλευρο δ) ναι, ότι το δείγμα των διαφορών προέρχεται από κανονικό πληθυσμό 5. α) [-.95,.49] β) H : μ =, H : μ, όχι z =. 63 γ) καμία 6. α) H : μ =, H : μ < (πριν-μετά), ναι t =. 8 β) [-9.3, -.7] γ) ναι, ότι το δείγμα των διαφορών είναι τυχαίο και ότι προέρχεται από κανονικό πληθυσμό Εργαστήριο Μαθηματικών & Στατιστικής / Γ. Παπαδόπουλος (www.aua.gr/gpapaopoulos) 68

10 Η Συνάρτηση Κατανομής της Τυποποιημένης Κανονικής Κατανομής Εργαστήριο Μαθηματικών & Στατιστικής / Γ. Παπαδόπουλος (www.aua.gr/gpapaopoulos) 69

11 Τιμές t ; της κατανομής t n n a n α =. α =.5 α =.5 α =. α = Εργαστήριο Μαθηματικών & Στατιστικής / Γ. Παπαδόπουλος (www.aua.gr/gpapaopoulos) 7

Διαστήματα Εμπιστοσύνης και Στατιστικοί Έλεγχοι Υποθέσεων Προβλήματα και Ασκήσεις

Διαστήματα Εμπιστοσύνης και Στατιστικοί Έλεγχοι Υποθέσεων Προβλήματα και Ασκήσεις Διαστήματα Εμπιστοσύνης και Στατιστικοί Έλεγχοι Υποθέσεων Προβλήματα και Ασκήσεις Για κάθε πρόβλημα που ακολουθεί, εκτός των ερωτημάτων που διατυπώνονται, να γίνουν (με τη βοήθεια κάποιου στατιστικού πακέτου)

Διαβάστε περισσότερα

Έλεγχος Χ 2 (καλής προσαρμογής, ανεξαρτησίας και ομογένειας) Προβλήματα και Ασκήσεις

Έλεγχος Χ 2 (καλής προσαρμογής, ανεξαρτησίας και ομογένειας) Προβλήματα και Ασκήσεις Έλεγχος Χ -Προβλήματα και Ασκήσεις Έλεγχος Χ (καλής προσαρμογής, ανεξαρτησίας και ομογένειας) Προβλήματα και Ασκήσεις 1. Στη βιβλιογραφία αναφέρεται ότι τα ποσοστά των ομάδων αίματος Α, Β, ΑΒ και Ο σε

Διαβάστε περισσότερα

Ανάλυση Διασποράς Προβλήματα και Ασκήσεις

Ανάλυση Διασποράς Προβλήματα και Ασκήσεις Ανάλυση Διασποράς Προβλήματα και Ασκήσεις 1. Ένας ερευνητής προκειμένου να συγκρίνει τρία σιτηρέσια εκτροφής κοτόπουλων (Σ1, Σ2 και Σ3, αντίστοιχα), σχεδίασε και εκτέλεσε το εξής πείραμα. Επέλεξε 15 νεογέννητα

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Σεπτεμβρίου 2008 στο Μάθημα Στατιστική Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ 29.9.2008

Γραπτή Εξέταση Περιόδου Σεπτεμβρίου 2008 στο Μάθημα Στατιστική Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ 29.9.2008 Γραπτή Εξέταση Περιόδου Σεπτεμβρίου 8 στο Μάθημα Στατιστική Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ 9.9.8. [] Μια βιομηχανία τροφίμων προμηθεύεται νωπά κοτόπουλα από τρεις διαφορετικούς παραγωγούς Α, Β, Γ. Το % των κοτόπουλων

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα

Διαβάστε περισσότερα

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua. Μέρος Β /Στατιστική Μέρος Β Στατιστική Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) Από τις Πιθανότητες στη Στατιστική Στα προηγούμενα, στο

Διαβάστε περισσότερα

2. ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

2. ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ Εργαστήριο Μαθηματικών & Στατιστικής 2. ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ. Ας θεωρήσουμε ότι είναι γνωστό από στοιχεία της Παγκόσμιας Οργάνωσης Υγείας ότι οι τιμές χοληστερίνης στον πληθυσμό έχουν

Διαβάστε περισσότερα

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21 ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 3-4 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 5] 3η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να φθάσουν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 3η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Πέτρος Ρούσσος, Τμήμα Ψυχολογίας, ΕΚΠΑ Η λογική της διαδικασίας Ο σάκος περιέχει έναν μεγάλο αλλά άγνωστο αριθμό (αρκετές χιλιάδες) λευκών και μαύρων βόλων: 1 Το

Διαβάστε περισσότερα

cv = κατάλληλη κριτική (κρίσιμη) τιμή από τους πίνακες της Ζ ή t κατανομής

cv = κατάλληλη κριτική (κρίσιμη) τιμή από τους πίνακες της Ζ ή t κατανομής ΕΚΤΙΜΗΣΗ ΔΙΑΣΤΗΜΑΤΟΣ Δ.Ε. της παραμέτρου θ: ˆ θ cv σ < θ < ˆ θ + cv σ ˆ θ ˆ θ θ = η παράμετρος που θέλουμε να εκτιμήσουμε, ˆ θ = η εκτίμηση της θ που προκύπτει από το τ.δ. cv = κατάλληλη κριτική (κρίσιμη)

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία 4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε

Διαβάστε περισσότερα

Εισαγωγή στην Εκτιμητική

Εισαγωγή στην Εκτιμητική Εισαγωγή στην Εκτιμητική Πληθυσμός Εκτίμηση παραμέτρου πληθυσμού μ, σ 2, σ, p Δείγμα Υπολογισμός στατιστικού Ερώτηματα: Πόσο κοντά στην πραγματική τιμή της παραμέτρου του πληθυσμού βρίσκεται η εκτίμηση

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Όπως θα δούμε αργότερα στη Στατιστική Συμπερασματολογία, λέγοντας ότι «από έναν πληθυσμό παίρνουμε ένα τυχαίο δείγμα μεγέθους» εννοούμε ανεξάρτητες τυχαίες μεταβλητές,,..., που

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 7. Στατιστικός έλεγχος υποθέσεων

Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 7. Στατιστικός έλεγχος υποθέσεων (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη 7 Στατιστικός έλεγχος υποθέσεων ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες)

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες) Εργαστήριο Μαθηματικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθημα Στατιστική //7 ο Θέμα α) Περιγράψτε τη σχέση Θεωρίας Πιθανοτήτων και Στατιστικής. β) Αν Α, Β ενδεχόμενα του δειγματικού χώρου Ω

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για την Μέση Τιμή ενός Δείγματος (One Sample t-test) Το κριτήριο One sample t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε τον αριθμητικό

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Κατανομές Τυχαίων Μεταβλητών Προβλήματα και Ασκήσεις

Κατανομές Τυχαίων Μεταβλητών Προβλήματα και Ασκήσεις Κατανομές Τυχαίων Μεταβλητών Προβλήματα και Ασκήσεις 1. Μια διακριτή τυχαία μεταβλητή Χ έχει συνάρτηση πιθανότητας 0 1 2 3 4 f () 1/16 4/16 6/16 c 1/16 Να βρεθούν α) η τιμή της σταθεράς c β) η πιθανότητα

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ Στα πλαίσια της ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑΣ προσπαθούµε να προσεγγίσουµε τα χαρακτηριστικά ενός συνόλου (πληθυσµός) δια της µελέτης των χαρακτηριστικών αυτών επί ενός µικρού

Διαβάστε περισσότερα

4.3.3 Ο Έλεγχος των Shapiro-Wilk για την Κανονική Κατανομή

4.3.3 Ο Έλεγχος των Shapiro-Wilk για την Κανονική Κατανομή 4.3.3 Ο Έλεγχος των Shapro-Wlk για την Κανονική Κατανομή Ένας άλλος πολύ γνωστός έλεγχος καλής προσαρμογής για την κανονική κατανομή, ο οποίος μπορεί να χρησιμοποιηθεί στην θέση του ελέγχου Lllefors, είναι

Διαβάστε περισσότερα

Στατιστικοί έλεγχοι για διακριτά δεδομένα

Στατιστικοί έλεγχοι για διακριτά δεδομένα Στατιστικοί έλεγχοι για διακριτά δεδομένα Διαστρωμάτωση Mantel-Haenszel test Γεωργία Σαλαντή Λέκτορας επιδημιολογίας Λεπτοσπείρωση Πιο πολλά κρούσματα στις αγροτικές περιοχές; Πόσο επί τις εκατό του πληθυσμού

Διαβάστε περισσότερα

Διάλεξη 1 Βασικές έννοιες

Διάλεξη 1 Βασικές έννοιες Εργαστήριο SPSS Ψ-4201 (ΕΡΓ) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις αναρτημένες στο: Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες Πινάκες συνάφειας εξερεύνηση σχέσεων μεταξύ τυχαίων μεταβλητών. Είναι λογικό λοιπόν, στην ανάλυση των κατηγορικών δεδομένων να μας ενδιαφέρει η σχέση μεταξύ δύο ή περισσότερων κατηγορικών μεταβλητών. Έστω

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 4o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ

2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ .4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ Η μέθοδος για τον προσδιορισμό ενός διαστήματος εμπιστοσύνης για την άγνωστη πιθανότητα =P(A) ενός ενδεχομένου A συνδέεται στενά με τον διωνυμικό έλεγχο. Ένα

Διαβάστε περισσότερα

Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Έλεγχοι Υποθέσεων

Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Έλεγχοι Υποθέσεων Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Έλεγχοι Υποθέσεων Ένα Ερευνητικό Παράδειγμα Σκοπός της έρευνας ήταν να διαπιστωθεί εάν ο τρόπος αντίδρασης μιας γυναίκας απέναντι σε φαινόμενα

Διαβάστε περισσότερα

Δειγματικές Κατανομές

Δειγματικές Κατανομές Δειγματικές Κατανομές Στατιστική συνάρτηση ή στατιστική Δειγματική κατανομή - Εκτιμητής Τα άγνωστα στοιχεία του πληθυσμού λέγονται παράμετροι. Τα συμπεράσματα για μια παράμετρο εξάγονται με τη βοήθεια

Διαβάστε περισσότερα

6.2 Ο ΜΟΝΟΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ

6.2 Ο ΜΟΝΟΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ 6.2 Ο ΜΟΝΟΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ Ο έλεγχος της ενότητας αυτής αποτελεί μία επέκταση του μονόπλευρου ελέγχου Smirnov στην περίπτωση περισσοτέρων από δύο δειγμάτων. Ο έλεγχος αυτός

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΕΝΟΤΗΤΕΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ (One-Way Analyss of Varance) Η ανάλυση

Διαβάστε περισσότερα

Α. Αναλυτικές δοκιμές 1. Δοκιμές διάκρισης. 2. Περιγραφικές δοκιμές. Β. Δοκιμές προτίμησης και αποδοχής

Α. Αναλυτικές δοκιμές 1. Δοκιμές διάκρισης. 2. Περιγραφικές δοκιμές. Β. Δοκιμές προτίμησης και αποδοχής Α. Αναλυτικές δοκιμές 1. Δοκιμές διάκρισης α) δοκιμές διαφοράς β) δοκιμές ευαισθησίας 2. Περιγραφικές δοκιμές Β. Δοκιμές προτίμησης και αποδοχής Ο οργανοληπτικός έλεγχος εφαρμόζεται στη βιομηχανία τροφίμων,

Διαβάστε περισσότερα

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall 3..2 Ο Συντελεστής Συσχέτισης τ Του Kendall Ο συντελεστής συχέτισης τ του Kendall μοιάζει με τον συντελεστή ρ του Spearman ως προς το ότι υπολογίζεται με βάση την τάξη μεγέθους των παρατηρήσεων και όχι

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ. Θεωρία - Πείραμα Μετρήσεις - Σφάλματα

ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ. Θεωρία - Πείραμα Μετρήσεις - Σφάλματα ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ Θεωρία - Πείραμα Μετρήσεις - Σφάλματα ΟΜΑΔΑ:RADIOACTIVITY Τα μέλη της ομάδας μας: Γιώργος Παπαδόγιαννης Γεράσιμος Κουτσοτόλης Νώντας Καμαρίδης Κωνσταντίνος Πούτος Παναγιώτης Ξανθάκος

Διαβάστε περισσότερα

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος Έλεγχοι Υποθέσεων 1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος µ = 100 Κάθε υπόθεση συνοδεύεται από µια εναλλακτική: Ο

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

Κεφάλαιο 5 Δείκτες Διασποράς

Κεφάλαιο 5 Δείκτες Διασποράς Πανεπιστήµιο Κρήτης Σχολή Επιστηµών Αγωγής Παιδαγωγικό Τµήµα Δηµοτικής Εκπαίδευσης Β06 03. Στατιστική περιγραφική εφαρµοσµένη στην Ψυχοπαιδαγωγική Διδάσκων: Κωνσταντίνος Π. Χρήστου Κεφάλαιο 5 Δείκτες Διασποράς

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Έστω t, t,..., t ν οι παρατηρήσεις µιας ποσοτικής µεταβλητής Χ ενός δείγµατος µεγέθους ν, που έχουν µέση τιµή x. Σχηµατίζουµε

Διαβάστε περισσότερα

6.3 Ο ΑΜΦΙΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ

6.3 Ο ΑΜΦΙΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ 6.3 Ο ΑΜΦΙΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ Το 1965, από τον Conover και πάλι προτάθηκε ένας άλλος έλεγχος τύπου Smirnov για k ανεξάρτητα δείγματα. Ο έλεγχος αυτός διαφέρει από τον προηγούμενο

Διαβάστε περισσότερα

ΆΣΚΗΣΗ 1 Η διάμεσος τιμή της ηλικίας των Ελλήνων το 1990 ήταν 30 έτη. Το 2001, η διάμεσος τιμή ήταν 33,1 (Πηγή:Ε.Σ.Υ.Ε.).

ΆΣΚΗΣΗ 1 Η διάμεσος τιμή της ηλικίας των Ελλήνων το 1990 ήταν 30 έτη. Το 2001, η διάμεσος τιμή ήταν 33,1 (Πηγή:Ε.Σ.Υ.Ε.). ΛΥΜΕΝΕΣ ΣΚΗΣΕΙΣ ΆΣΚΗΣΗ 1 Η διάμεσος τιμή της ηλικίας των Ελλήνων το 1990 ήταν 30 έτη. Το 2001, η διάμεσος τιμή ήταν 33,1 (Πηγή:Ε.Σ.Υ.Ε.). a. Τι μπορεί να συνέβη όταν η διάμεσος αυξήθηκε; Το γεγονός ότι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 00 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΘΕΜΑ Α Α. Έστω t,t,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν,

Διαβάστε περισσότερα

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n.. Μέτρα Κινδύνου για Δίτιμα Κατηγορικά Δεδομένα Σε αυτή την ενότητα θα ορίσουμε δείκτες μέτρησης του κινδύνου εμφάνισης μίας νόσου όταν έχουμε δίτιμες κατηγορικές μεταβλητές. Στην πιο απλή περίπτωση μας

Διαβάστε περισσότερα

γ. Η διακύμανση είναι μέτρο διασποράς και είναι καθαρός αριθμός, δηλαδή δεν έχει μονάδες. Μονάδες 9

γ. Η διακύμανση είναι μέτρο διασποράς και είναι καθαρός αριθμός, δηλαδή δεν έχει μονάδες. Μονάδες 9 ΟΝΟΜΑΤΕΠΩΝΥΜΟ:........................................... ΤΜΗΜΑ:....... ΗΜΕΡΟΜΗΝΙΑ:.... / 0 / 20 ΘΕΜΑ A. Έστω μεταβλητή Χ, με τιμές x, x 2,...., x k, που αφορά τα άτομα ενός δείγματος μεγέθους ν, με k,

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για τους Μέσους - Εξαρτημένα Δείγματα (Paired samples t-test) Το κριτήριο Paired samples t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΕΦΑΛΑΙΟ 19 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ Όταν ενδιαφερόμαστε να συγκρίνουμε δύο πληθυσμούς, η φυσιολογική προσέγγιση είναι να προσπαθήσουμε να συγκρίνουμε

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΙΙ ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ, ΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΙΙ ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ, ΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΙΙ ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ, ΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΣΙΜΟΣ ΜΕΙΝΤΑΝΗΣ, Αναπληρωτής Καθηγητής Τμήμα Οικονομικών Επιστημών, ΕΚΠΑ ΓΙΑΝΝΗΣ Κ. ΜΠΑΣΙΑΚΟΣ, Επίκουρος Καθηγητής Τμήμα Οικονομικών

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2015-2016 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Θέμα εξετάσεων 2000 Εξετάσαμε 50 μαθητές ως προς τα βιβλία που έχουν διαβάσει και διαπιστώσαμε ότι: 5 μαθητές δεν έχουν διαβάσει κανένα βιβλίο, 15 μαθητές έχουν

Διαβάστε περισσότερα

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΙΟΛΟΓΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΙΟΛΟΓΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΙΟΛΟΓΙΑ Εξάμηνο Υ/Ε Ώρες Θεωρίας Ώρες Ασκήσης Διδακτικές μονάδες ECTS A Υ 3 3 4 6 Διδάσκουσα Μ. Αλεξίου Χατζάκη, Επίκ. Καθηγήτρια Γεν. Βιολογίας. Aντικειμενικοί στόχοι του μαθήματος Οι στόχοι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ A A. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι f g f g,. Μονάδες 7 Α. Σε ένα πείραμα με ισοπίθανα αποτελέσματα

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΕΛΕΓΧΟΥΣ ΥΠΟΘΕΣΕΩΝ

ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΕΛΕΓΧΟΥΣ ΥΠΟΘΕΣΕΩΝ .Φουσκάκης- Ασκήσεις στους Ελέγχους Υποθέσεων ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΕΛΕΓΧΟΥΣ ΥΠΟΘΕΣΕΩΝ ) Με µια νέα µέθοδο προσδιορισµού του σηµείου τήξης (σ.τ.) µετάλλων προέκυψαν οι παρακάτω µετρήσεις για το µαγγάνιο: 67,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο, να αποδείξετε ότι (f() + g ()) f () + g (),. Μονάδες 7 Α. Σε ένα πείραµα µε ισοπίθανα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

Στατιστικοί Έλεγχοι Υποθέσεων. Σαλαντή Γεωργία Εργαστήριο Υγιεινής και Επιδημιολογίας Ιατρική Σχολή

Στατιστικοί Έλεγχοι Υποθέσεων. Σαλαντή Γεωργία Εργαστήριο Υγιεινής και Επιδημιολογίας Ιατρική Σχολή Στατιστικοί Έλεγχοι Υποθέσεων Σαλαντή Γεωργία Εργαστήριο Υγιεινής και Επιδημιολογίας Ιατρική Σχολή Τι θέλουμε να συγκρίνουμε; Δύο δείγματα Μέση αρτηριακή πίεση σε δύο ομάδες Πιθανότητα θανάτου με δύο διαφορετικά

Διαβάστε περισσότερα

ΜΕΤΑ-ΑΝΑΛΥΣΗ (Meta-Analysis)

ΜΕΤΑ-ΑΝΑΛΥΣΗ (Meta-Analysis) ΚΕΦΑΛΑΙΟ 23 ΜΕΤΑ-ΑΝΑΛΥΣΗ (Meta-Analysis) ΕΙΣΑΓΩΓΗ Έχοντας παρουσιάσει τις βασικές έννοιες των ελέγχων υποθέσεων, θα ήταν, ίσως, χρήσιμο να αναφερθούμε σε μια άλλη περιοχή στατιστικής συμπερασματολογίας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 006 ΕΚΦΩΝΗΣΕΙΣ A. Η συνάρτηση f είναι παραγωγίσιµη στο ΙR. και c πραγµατική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR. Μονάδες

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ - ΘΕΜΑ Ο Έστω η συνάρτηση f( ) =, 0 ) Να αποδείξετε ότι f ( ). f( ) =. ) Να υπολογίσετε το όριο lm f ( )+ 4. ) Να βρείτε την εξίσωση της εφαπτομένης

Διαβάστε περισσότερα

Π Α Ρ Α Ρ Τ Η Μ Α. Πίνακας 9. p ποσοστιαία Σημεία της Ελεγχοσυνάρτησης των. Προσημασμένων Τάξεων Μεγέθους του Wilcoxon

Π Α Ρ Α Ρ Τ Η Μ Α. Πίνακας 9. p ποσοστιαία Σημεία της Ελεγχοσυνάρτησης των. Προσημασμένων Τάξεων Μεγέθους του Wilcoxon ΠΙΝΑΚΕΣ Π Α Ρ Α Ρ Τ Η Μ Α Πίνακας 1. Διωνυμική Κατανομή Πίνακας 2. Τυποποιημένη Κανονική Κατανομή Πίνακας 3. Oρια Εμπιστοσύνης για την Πιθανότητα p της Διωνυμικής Κατανομής Πίνακας 4. Ποσοστιαία Σημεία

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για 2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για τον καθορισμό του καλύτερου υποσυνόλου από ένα σύνολο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1o ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι (c f()) =c f (), ΙR. B.α. Πότε δύο ενδεχόμενα

Διαβάστε περισσότερα

Κεφάλαιο 7. Έλεγχος Υποθέσεων. Ένα παράδειγµα

Κεφάλαιο 7. Έλεγχος Υποθέσεων. Ένα παράδειγµα Κεφάλαιο 7 Έλεγχος Υποθέσεων 1 Ένα παράδειγµα Ένας ερευνητής θέλησε να διαπιστώσει κατά πόσο η από απόσταση εκπαίδευση είναι καλύτερη από τη δια ζώσης εκπαίδευση. Για το σκοπό αυτό, επέλεξε δύο οµάδες

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Ονοματεπώνυμα Σπουδαστριών: Μποτονάκη Ειρήνη (5422), Καραλή Μαρία (5601) Μάθημα: Β06Σ03 Στατιστική

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8 ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5. 5.8 5. Ένας υγειονοµικός σταθµός θέλει να ελέγξει αν ο µέσος αριθµός βακτηριδίων ανά µονάδα όγκου θαλασσινού νερού σε µια παραλία υπερβαίνει το επίπεδο ασφαλείας των 9 µονάδων. ώδεκα

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ. 1 12 2 3 24 40 5 0,05 Σύνολο. x i v i f i % N i F i -1 4 0,1 0 30 2 3 6 Άθροισμα 40

ΣΤΑΤΙΣΤΙΚΗ. 1 12 2 3 24 40 5 0,05 Σύνολο. x i v i f i % N i F i -1 4 0,1 0 30 2 3 6 Άθροισμα 40 ΣΤΑΤΙΣΤΙΚΗ 1.Να συμπληρωθούν οι πίνακες x i v i f i f i % x 1 7 x 2 5 x 3 15 x 4 14 x 5 9 Άθροισμα 50 x i v i f i f i % 1 12 2 3 24 40 5 0,05 Σύνολο x i v i f i % N i F i -1 4 0,1 0 30 2 3 6 Άθροισμα 40

Διαβάστε περισσότερα

Μέθοδος μέγιστης πιθανοφάνειας

Μέθοδος μέγιστης πιθανοφάνειας Μέθοδος μέγιστης πιθανοφάνειας Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σ.κ. της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα

Διαβάστε περισσότερα

3. ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratified Random Sampling)

3. ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratified Random Sampling) 3 ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratfed Radom Samplg) Είναι προφανές από τα τυπικά σφάλματα των εκτιμητριών των προηγούμενων παραγράφων, ότι ένας τρόπος να αυξηθεί η ακρίβεια τους είναι να αυξηθεί

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

Kruskal-Wallis H... 176

Kruskal-Wallis H... 176 Περιεχόμενα KΕΦΑΛΑΙΟ 1: Περιγραφή, παρουσίαση και σύνοψη δεδομένων................. 15 1.1 Τύποι μεταβλητών..................................................... 16 1.2 Κλίμακες μέτρησης....................................................

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-122) Διάλεξη 1 Εισαγωγή

Στατιστική Ι (ΨΥΧ-122) Διάλεξη 1 Εισαγωγή (ΨΥΧ-122) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις αναρτημένες στο: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη 1 Εισαγωγή ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ Άσκηση 1 Οι βαθμοί 5 φοιτητών που πέρασαν το μάθημα της Στατιστικής ήταν: 6 5 7 5 9 5 6 6 8 10 8 5 6 7 5 6 5 7 8 9 5 6 7 5 8 i. Να κάνετε πίνακα κατανομής

Διαβάστε περισσότερα

Εισαγωγή στην Κανονική Κατανομή. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη

Εισαγωγή στην Κανονική Κατανομή. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη Εισαγωγή στην Κανονική Κατανομή Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη Ένα πρόβλημα Πρόβλημα: Ένας μαθητής είχε επίδοση στο τεστ Μαθηματικών 18 και στο τεστ

Διαβάστε περισσότερα

1) ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ - ΑΤΑΞΙΝΟΜΗΤΑ ΔΕΔΟΜΕΝΑ

1) ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ - ΑΤΑΞΙΝΟΜΗΤΑ ΔΕΔΟΜΕΝΑ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 205-206 ΔΙΔΑΣΚΟΝΤΕΣ ΔΗΜΗΤΡΗΣ ΚΑΛΛΙΒΩΚΑΣ, ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ ) ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ - ΑΤΑΞΙΝΟΜΗΤΑ ΔΕΔΟΜΕΝΑ ΑΣΚΗΣΗ Τα παρακάτω δεδομένα αναφέρονται στη

Διαβάστε περισσότερα

Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Μ ΑΪΟΥ 2002 2004 Δ ΕΥΤΕΡΟ ΜΕΡΟΣ Π ΕΡΙΛΗΨΗ: Η μελέτη αυτή έχει σκοπό να παρουσιάσει και να ερμηνεύσει τα ευρήματα που προέκυψαν από τη στατιστική

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑ.Λ. (ΟΜΑ Α Β ) ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΔΕΥΤΕΡΑ, 22 ΑΠΡΙΛΙΟΥ 201 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Εργαστήριο 3 Νόμος του Ohm, Κυκλώματα σε Σειρά και Παράλληλα Λευκωσία, 2010 Εργαστήριο 3 Νόμος

Διαβάστε περισσότερα

ΘΕΜΑ Α. α) Αν x>0, τότε ( x ) = x

ΘΕΜΑ Α. α) Αν x>0, τότε ( x ) = x ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 4 ΙΟΥΝΙΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

Διαβάστε περισσότερα

3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ

3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ 3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ Πρόβλημα: Ένας ραδιοφωνικός σταθμός ενδιαφέρεται να κάνει μια ανάλυση για τους πελάτες του που διαφημίζονται σ αυτόν για να εξετάσει την ποσοστιαία μεταβολή των πωλήσεων

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες ΕΙΣΑΓΩΓΗ Βασικές έννοιες Σε ένα ερωτηματολόγιο έχουμε ένα σύνολο ερωτήσεων. Μπορούμε να πούμε ότι σε κάθε ερώτηση αντιστοιχεί μία μεταβλητή. Αν θεωρήσουμε μια ερώτηση, τα άτομα δίνουν κάποιες απαντήσεις

Διαβάστε περισσότερα

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. 7 ο ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκοπός Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. Προσδοκώμενα αποτελέσματα Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο R, να αποδείξετε ότι (f() + g() )=f ()+g (), R Μονάδες 7 Α. Σε

Διαβάστε περισσότερα

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ Αναλυτική Μέθοδος- Αναλυτικό Πρόβλημα. Ανάλυση, Προσδιορισμός και Μέτρηση. Πρωτόκολλο. Ευαισθησία Μεθόδου. Εκλεκτικότητα. Όριο ανίχνευσης (limit of detection, LOD).

Διαβάστε περισσότερα

Η Κανονική Κατανομή κανονική κατανομή (normal distribution) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem) συνδέει οποιαδήποτε άλλη κατανομή

Η Κανονική Κατανομή κανονική κατανομή (normal distribution) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem) συνδέει οποιαδήποτε άλλη κατανομή Η Κανονική Κατανομή H κανονική κατανομή (ormal dstrbuto) θεωρείται η σπουδαιότερη κατανομή της Θεωρίας Πιθανοτήτων και της Στατιστικής. Οι λόγοι που εξηγούν την εξέχουσα θέση της, είναι βασικά δύο: ) Πολλές

Διαβάστε περισσότερα

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ .3 Ασκήσεις σχ. βιβλίου σελίδας 00 04 Α ΟΜΑ ΑΣ. Έξι διαδοχικοί άρτιοι αριθµοί έχουν µέση τιµή. Να βρείτε τους αριθµούς και τη διάµεσό τους. Αν είναι ο ποιο µικρός άρτιος τότε οι ζητούµενοι αριθµοί θα είναι

Διαβάστε περισσότερα

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος.

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ Άσκηση 1 (Προτάθηκε από Χρήστο Κανάβη) Έστω CV 0.4 όπου CV ο συντελεστής μεταβολής, και η τυπική απόκλιση s = 0. ενός δείγματος που έχει την ίδια

Διαβάστε περισσότερα

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α1 Αν οι συναρτήσεις f,g

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 4

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 4 (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com ιαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ ιάλεξη 4 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Ρέθυμνο,

Διαβάστε περισσότερα