Ανάλυση Διασποράς Προβλήματα και Ασκήσεις

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ανάλυση Διασποράς Προβλήματα και Ασκήσεις"

Transcript

1 Ανάλυση Διασποράς Προβλήματα και Ασκήσεις 1. Ένας ερευνητής προκειμένου να συγκρίνει τρία σιτηρέσια εκτροφής κοτόπουλων (Σ1, Σ2 και Σ3, αντίστοιχα), σχεδίασε και εκτέλεσε το εξής πείραμα. Επέλεξε 15 νεογέννητα κοτόπουλα και με μια τυχαία διαδικασία αντιστοίχησε σε 5 από αυτά το σιτηρέσιο Σ1, σε 5 άλλα το σιτηρέσιο Σ2 και σε 5 άλλα το σιτηρέσιο Σ3. Δημιούργησε έτσι τρεις ομάδες των πέντε κοτόπουλων η κάθε μία. Αφού χορήγησε στα κοτόπουλα κάθε ομάδας το αντίστοιχο σιτηρέσιο (για συγκεκριμένο χρονικό διάστημα από τη γέννησή τους), μέτρησε το (μικτό) βάρος τους (σε kgr). Οι μετρήσεις που πήρε δίνονται στον πίνακα που ακολουθεί. Σιτηρέσιο Μικτό Βάρος (σε kgr) Σ Σ Σ α) Τι τύπου πειραματικό σχέδιο επέλεξε να εφαρμόσει ο ερευνητής; β) Με βάση αυτά τα πειραματικά δεδομένα και σε επίπεδο σημαντικότητας 5%, υπάρχουν στατιστικά σημαντικές διαφορές στη μέση αύξηση του βάρους των κοτόπουλων που να οφείλονται στα τρία σιτηρέσια; γ) Ποιες υποθέσεις χρειάσθηκε να κάνετε για να απαντήσετε στο ερώτημα (β); 2. Ένας φοιτητής του Τμήματος Επιστήμης και Τεχνολογίας Τροφίμων του Γ.Π.Α., στο πλαίσιο της πτυχιακής του εργασίας, συνέκρινε τις ποσότητες χοληστερίνης που περιέχουν τέσσερα διαφορετικά είδη τροφίμων διαίτης, Α1, Α2, Α3 και Α4, αντίστοιχα. Από κάθε είδος πήρε ένα τυχαίο δείγμα μεγέθους 3 και μέτρησε την ποσότητα χοληστερίνης (σε milligrams ανά 170gr). Οι μετρήσεις που πήρε δίνονται στον πίνακα που ακολουθεί. Είδος Ποσότητα Χοληστερίνης (σε milligrams/170gr) Α Α Α Α α) Σε επίπεδο σημαντικότητας 5%, υποστηρίζουν αυτά τα δεδομένα ότι υπάρχουν στατιστικά σημαντικές διαφορές μεταξύ των μέσων ποσοτήτων χοληστερίνης στα τέσσερα είδη τροφίμων; β) Εξηγείστε τι έλεγχο, γιατί και με ποιες παραδοχές κάνατε για να απαντήσετε στο ερώτημα (α). 3. Ένας μεταπτυχιακός φοιτητής του Τμήματος Γεωπονικής Βιοτεχνολογίας του Γ.Π.Α., στο πλαίσιο μιας εργαστηριακής άσκησης, διερεύνησε την περιεκτικότητα σε σωματιδιακές προσμείξεις ενός υγρού φαρμακευτικού σκευάσματος που χορηγείται ενδοφλεβίως σε ταύρους και παράγεται από τρεις διαφορετικές εταιρείες Α1, Α2 και Α3. Συγκεκριμένα, έλεγξε 6 σκευάσματα από κάθε εταιρεία (τυχαία επιλεγμένα) και κατέγραψε τον αριθμό σωματιδίων με διάμετρο μεγαλύτερη των 5 microns ανά λίτρο. Οι μετρήσεις που πήρε δίνονται στον πίνακα που ακολουθεί. Αριθμός σωματιδίων (ανά λίτρο) Α Εταιρεία Α Α Εργαστήριο Μαθηματικών & Στατιστικής / Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) 77

2 α) Σε επίπεδο σημαντικότητας 5%, δίνουν αυτά τα δεδομένα αποδείξεις ότι υπάρχουν στατιστικά σημαντικές διαφορές μεταξύ των σκευασμάτων των τριών εταιρειών ως προς τη μέση περιεκτικότητά τους σε σωματιδιακές προσμείξεις; β) Εξηγείστε τι έλεγχο, γιατί και με ποιες παραδοχές κάνατε για να απαντήσετε στο ερώτημα (α). 4. Μια ομάδα ερευνητών μελέτησε τη μόλυνση των νερών ενός ποταμού από βιομηχανικά απόβλητα. Ως μέρος αυτής της μελέτης, συνέκρινε τη συγκέντρωση διαλυμένου οξυγόνου στα νερά του ποταμού σε 4 περιοχές της κοίτης του, Κ1, Κ2, Κ3 και Κ4. Η περιοχή Κ1 βρίσκεται στις εκβολές του ποταμού ενώ κοντά στην Κ3 ρίχνονται απόβλητα από παρακείμενη βιομηχανία. Από κάθε περιοχή οι ερευνητές πήραν, με βάση ένα σχέδιο τυχαίας δειγματοληψίας, πέντε δείγματα νερού. Στον πίνακα που ακολουθεί δίνονται οι συγκεντρώσεις διαλυμένου οξυγόνου (σε ppm) στις τέσσερις περιοχές (το ένα από τα πέντε δείγματα νερού που ελήφθησαν από την περιοχή Κ4 χάθηκε). Περιοχή Συγκέντρωση διαλυμένου οξυγόνου (σε ppm) Κ Κ Κ Κ α) Σε επίπεδο σημαντικότητας 5%, υποστηρίζουν αυτά τα δεδομένα ότι μεταξύ των τεσσάρων περιοχών υπάρχουν στατιστικά σημαντικές διαφορές στη μέση συγκέντρωση διαλυμένου οξυγόνου; β) Εξηγείστε τι έλεγχο, γιατί και με ποιες παραδοχές κάνατε για να απαντήσετε στο ερώτημα (α). 5. Στο πλαίσιο μιας περιβαλλοντικής μελέτης, μια ερευνητική ομάδα του Τμήματος Γεωπονικής Βιοτεχνολογίας του Γ.Π.Α., μελέτησε την ανάπτυξη της βλάστησης σε τέσσερις ελώδεις περιοχές της χώρας στις οποίες δεν είχε γίνει ανθρώπινη παρέμβαση (καλλιέργειες, προσχώσεις, κ.τλ.). Ειδικότερα, και ως μέρος της μελέτης, μια προκαθορισμένη ημέρα του Μαΐου η ερευνητική ομάδα επέλεξε τυχαία 6 φυτά ενός συγκεκριμένου είδους από κάθε περιοχή και μέτρησε το μήκος των φύλλων κάθε φυτού (σε cm). Στον πίνακα που ακολουθεί δίνεται το μέσο μήκος είκοσι τυχαία επιλεγμένων φύλλων κάθε φυτού που επελέγη για να χρησιμοποιηθεί στην έρευνα. Περιοχή Μέσο μήκoς 20 φύλλων κάθε φυτού (σε cm) α) Σε επίπεδο σημαντικότητας 5%, δίνουν αυτά τα δεδομένα αποδείξεις ότι υπάρχουν στατιστικά σημαντικές διαφορές στο μέσο μήκος των φύλλων των φυτών του συγκεκριμένου είδους μεταξύ των τεσσάρων περιοχών; β) Εξηγείστε τι έλεγχο, γιατί και με ποιες παραδοχές κάνατε για να απαντήσετε στο ερώτημα (α); γ) Ποια παραδοχή από αυτές που χρειάσθηκε να κάνετε για να απαντήσετε Εργαστήριο Μαθηματικών & Στατιστικής / Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) 78

3 στο ερώτημα (α) είναι εύλογο να θεωρήσετε ότι πράγματι ισχύει (κατά προσέγγιση). 6. Να συμπληρώσετε τον πίνακα ANOVA που ακολουθεί. Πηγή μεταβλητότητας Β.Ε. Άθροισμα τετραγώνων SS Μέσο άθροισμα τετραγώνων MS Κριτήριο F Επεμβάσεις Σφάλμα Ολική Ο παράγοντας του οποίου η επίδραση μελετάται, είναι σε επίπεδο σημαντικότητας 5% στατιστικά σημαντικός; 7. Ένας ερευνητής προκειμένου να συγκρίνει τέσσερα είδη (Α1, Α2, Α3 και Α4, αντίστοιχα) πρόσθετης ύλης ζωοτροφών (feed additives) για αύξηση του βάρους χοίρων, σχεδίασε το εξής πείραμα. Από πέντε διαφορετικές γέννες επέλεξε τυχαία 4 χοίρους από την κάθε μία. Δημιούργησε έτσι, 5 τετράδες χοίρων (Γ1, Γ2, Γ3, Γ4 και Γ5, αντίστοιχα) και στους χοίρους κάθε τετράδας αντιστοίχησε, με μια τυχαία διαδικασία, από μία πρόσθετη ύλη ζωοτροφών. Στη συνέχεια, εκτέλεσε το πείραμα και κατέγραψε την αύξηση του βάρους κάθε χοίρου (σε pounds). Στον πίνακα που ακολουθεί δίνoνται οι μετρήσεις που πήρε ο ερευνητής. Πρόσθετη ύλη ζωοτροφών Α1 Α2 Α3 Α4 Γ Γ Γέννα Γ Γ Γ α) Εξηγείστε τι τύπου πειραματικό σχέδιο επέλεξε να εφαρμόσει ο ερευνητής. Κρίνετε εύλογη αυτή την επιλογή; β) Σε επίπεδο σημαντικότητας 5%, υποστηρίζουν αυτά τα πειραματικά δεδομένα ότι υπάρχουν στατιστικά σημαντικές διαφορές στη μέση αύξηση του βάρους των χοίρων που να οφείλονται στα τέσσερα είδη πρόσθετης ύλης ζωοτροφών; γ) Αν στο πλαίσιο της πτυχιακής σας εργασίας πρέπει να σχεδιάσετε και να εκτελέσετε ένα πείραμα για να απαντήσετε στο ερευνητικό ερώτημα που απάντησε ο ερευνητής, ως πειραματικό σχέδιο θα επιλέγατε αυτό που επέλεξε ο ερευνητής; 8. Μια ομάδα ερευνητών προκειμένου να συγκρίνει την επίδραση τριών μεθόδων προετοιμασίας του εδάφους στην ανάπτυξη ενός είδους πεύκης κατά το πρώτο έτος από τη φύτευση, σχεδίασε το εξής πείραμα. Επέλεξε τέσσερις εκτάσεις (ίδιου εμβαδού) σε τέσσερις διαφορετικές δασικές περιοχές και κάθε μια τη διαίρεσε σε τρία πειραματικά τεμάχια ίδιου εμβαδού. Σε καθένα από τα τρία πειραματικά τεμάχια κάθε έκτασης αντιστοίχησε, με μια τυχαία διαδικασία, μια από τις τρεις μεθόδους προετοιμασίας του εδάφους. Στη συνέχεια, σε κάθε πειραματικό τεμάχιο, αφού προετοίμασε το έδαφος με την αντίστοιχη μέθοδο, φύτεψε τον ίδιο αριθμό δενδρυλλίων πεύκης. Στον πίνακα που ακολουθεί δίνεται, για κάθε πειραματικό τεμάχιο, η μέση ανάπτυξη (κατά το πρώτο έτος) των δενδρυλλίων που φυτεύθηκαν σε αυτό (σε cm). Εργαστήριο Μαθηματικών & Στατιστικής / Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) 79

4 Μέθοδος Τοποθεσία Ε1 Ε2 Ε3 Ε4 Μ Μ Μ α) Εξηγείστε τι τύπου πειραματικό σχέδιο επέλεξαν να εφαρμόσουν οι ερευνητές. Ποια παραδοχή υποθέτετε ότι έκαναν και επέλεξαν το συγκεκριμένο πειραματικό σχέδιο; β) Σε επίπεδο σημαντικότητας 5%, υποστηρίζουν αυτά τα πειραματικά δεδομένα ότι υπάρχουν στατιστικά σημαντικές διαφορές στη μέση ανάπτυξη των δενδρυλλίων που να οφείλονται στη μέθοδο προετοιμασίας του εδάφους; γ) Από το αποτέλεσμα της ανάλυσης που κάνατε, κρίνετε ότι «δικαιώθηκε» η σχεδιαστική επιλογή των ερευνητών; 9. Ο Οργανισμός Ελληνικών Γεωργικών Ασφαλίσεων (ΕΛ.Γ.Α.) θέλει να ελέγξει αν οι εκτιμήσεις των ζημιών στις γεωργικές καλλιέργειες που κάνουν οι τρεις γεωπόνοι (Γ1, Γ2 και Γ3, αντίστοιχα) που χρησιμοποιεί ως εκτιμητές στο νομό Λάρισας, διαφέρουν μεταξύ τους. Για το σκοπό αυτό, επέλεξε από το νομό Λάρισας τέσσερις διαφορετικές καλλιέργειες (Κ1, Κ2, Κ3 και Κ4, αντίστοιχα) που υπέστησαν ζημιά από δυσμενή καιρικά φαινόμενα και ζήτησε από τους τρεις εκτιμητές να εκτιμήσουν, ο καθένας ανεξάρτητα από τους άλλους, τη ζημιά σε κάθε μία από τις τέσσερις καλλιέργειες. Οι εκτιμήσεις που έκαναν οι τρεις γεωπόνοι/εκτιμητές (σε /στρέμμα) δίνονται στον πίνακα που ακολουθεί. Εκτιμητής Καλλιέργεια Κ1 Κ2 Κ3 Κ4 Γ Γ Γ α) Εξηγείστε τι τύπου πειραματικό σχέδιο επέλεξε να εφαρμόσει ο ΕΛ.Γ.Α. β) Σε επίπεδο σημαντικότητας 5%, υποστηρίζουν αυτά τα δεδομένα ότι υπάρχουν στατιστικά σημαντικές διαφορές στις μέσες εκτιμήσεις των ζημιών μεταξύ των τριών γεωπόνων/εκτιμητών; γ) Από το αποτέλεσμα της ανάλυσης που κάνατε, κρίνετε ότι επιβεβαιώθηκε η σχεδιαστική επιλογή του ΕΛ.Γ.Α. ή μήπως όχι; 10. Ο πίνακας ANOVA που ακολουθεί προέκυψε από τις παρατηρήσεις που πήραμε από ένα πείραμα τυχαιοποιημένων πλήρων ομάδων. Πηγή μεταβλητότητας Β.Ε. Άθροισμα τετραγώνων SS Επεμβάσεις Blocks 18.9 Σφάλμα 24 Ολική Μέσο άθροισμα τετραγώνων MS Κριτήριο F α) Πόσα blocks δημιουργήθηκαν; β) Πόσες παρατηρήσεις ελήφθησαν για κάθε στάθμη των επεμβάσεων; γ) Πόσες παρατηρήσεις ελήφθησαν από κάθε block; δ) Να συμπληρώσετε τον πίνακα και ε) Σε επίπεδο σημαντικότητας 5%, υποστηρίζουν αυτά τα δεδομένα ότι υπάρχουν στατιστικά σημαντικές διαφορές μεταξύ των μέσων των επεμβάσεων; Μεταξύ των μέσων των blocks; Εργαστήριο Μαθηματικών & Στατιστικής / Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) 80

5 11. Ένας ερευνητής προκειμένου να συγκρίνει τέσσερις χημικές ουσίες (Α1, Α2, Α3 και Α4, αντίστοιχα) που χρησιμοποιούνται για τη μείωση της συγκράτησης/απορρόφησης νερού από νήματα, σχεδίασε το εξής πείραμα. Από καθένα από τρία διαφορετικά είδη νήματος, έκοψε τυχαία ένα κομμάτι ορισμένου μήκους, και στη συνέχεια, κάθε κομμάτι το έκοψε σε τέσσερα ίσα κομμάτια. Δημιούργησε έτσι, 3 ομάδες των τεσσάρων κομματιών νήματος η κάθε μια (Κ1, Κ2 και Κ3, αντίστοιχα). Τέλος, στα κομμάτια κάθε ομάδας αντιστοίχησε, με μια τυχαία διαδικασία, από μία χημική ουσία και εκτέλεσε το πείραμα. Στον πίνακα που ακολουθεί φαίνονται το πειραματικό σχέδιο και οι μετρήσεις που πήρε ο ερευνητής (μικρότερη τιμή σημαίνει συγκράτηση λιγότερης υγρασίας). Κ1 Κ2 Κ3 Α3 9.9 Α Α Α Α Α Α2 Α1 Α Α Α Α α) Εξηγείστε τι τύπου πειραματικό σχέδιο επέλεξε να εφαρμόσει ο ερευνητής. β) Σε επίπεδο σημαντικότητας 5%, υποστηρίζουν αυτά τα πειραματικά δεδομένα ότι υπάρχουν στατιστικά σημαντικές διαφορές στη μέση συγκράτηση υγρασίας μεταξύ των τεσσάρων επεμβάσεων; γ) Από το αποτέλεσμα της ανάλυσης που κάνατε, κρίνετε ότι «δικαιώθηκε» η σχεδιαστική επιλογή του ερευνητή; 12. Για να συγκρίνουμε δυο αντιδιαβρωτικά επιστρώματα σωλήνων, έστω Α και Β, κάναμε το εξής πείραμα. Σε κάθε μία από 10 τυχαία επιλεγμένες περιοχές τοποθετήσαμε μέσα στο έδαφος δύο σωλήνες, τον ένα δίπλα στον άλλο, στο ίδιο βάθος και για ίδιο χρονικό διάστημα. Ο ένας σωλήνας από τους δύο που τοποθετήθηκαν σε κάθε περιοχή, είχε επιστρωθεί με το αντιδιαβρωτικό Α και ο άλλος με το αντιδιαβρωτικό Β. Στον πίνακα που ακολουθεί φαίνεται ο βαθμός 3 διάβρωσης κάθε σωλήνα (σε 10 in ) στις δέκα περιοχές. Περιοχή Βαθμός διάβρωσης με επίστρωμα Α (σε 10 in ) Βαθμός διάβρωσης με επίστρωμα Β (σε 10 in ) Σε επίπεδο σημαντικότητας 5%, υποστηρίζουν τα πειραματικά δεδομένα ότι τα δύο αντιδιαβρωτικά δεν έχουν την ίδια αποτελεσματικότητα; Στο ερώτημα αυτό απαντήσαμε σε προηγούμενη ενότητα κάνοντας κατάλληλο t- test. Μπορείτε να απαντήσετε στο ίδιο ερώτημα εφαρμόζοντας άλλη μέθοδο στατιστικής ανάλυσης; Πώς συγκρίνετε τις δύο μεθόδους; 13. Ένας ερευνητής, για να μελετήσει πώς επηρεάζεται η βλάστηση των φασολιών από το είδος μυκητοκτόνων που χρησιμοποιούνται και την ποικιλία των φασολιών, σχεδίασε ένα 3x3 παραγοντικό πείραμα εντελώς τυχαιοποιημένο με τέσσερις επαναλήψεις για κάθε συνδυασμό μυκητοκτόνου-ποικιλίας. Στον πίνακα που ακολουθεί δίνονται οι μετρήσεις που πήρε ο ερευνητής μετά την εκτέλεση του πειράματος (ως ποσοστό βλάστησης, %). Εργαστήριο Μαθηματικών & Στατιστικής / Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) 81

6 Ποικιλία Α Β Γ Μυκητοκτόνο Μ1 Μ2 Μ α) Σε επίπεδο σημαντικότητας 5%, υποστηρίζουν αυτά τα πειραματικά δεδομένα ότι υπάρχει στατιστικά σημαντική επίδραση στη βλάστηση των φασολιών που να οφείλεται i) στην αλληλεπίδραση μεταξύ ποικιλιών και μυκητοκτόνων ii) στην ποικιλία των φασολιών iii) στο είδος μυκητοκτόνου β) Ποιες υποθέσεις χρειάσθηκε να κάνετε για να απαντήσετε στο ερώτημα (α); 14. Στο πλαίσιο μιας έρευνας για τη διερεύνηση του βαθμού ικανοποίησης των ασθενών από τις προσφερόμενες υπηρεσίες περίθαλψης σε νοσοκομεία του Ε.Σ.Υ, επελέγησαν τυχαία 5 ασθενείς από κάθε μία από 3 κλινικές (Καρδιολογική, Παθολογική και Ορθοπεδική, αντίστοιχα) δύο νοσοκομείων του Ε.Σ.Υ. (έστω Α και Β). Στον πίνακα που ακολουθεί δίνεται ο βαθμός ικανοποίησης κάθε ασθενούς σε μια κλίμακα από 0 (ελάχιστη ικανοποίηση) έως 10 (μέγιστη ικανοποίηση). Νοσοκομείο Α Β Καρδ Κλινική Παθ. Ορθ α) Τι τύπου πειραματικό σχέδιο εφαρμόσθηκε; β) Να κάνετε κατάλληλη στατιστική ανάλυση των δεδομένων που προέκυψαν από την έρευνα αφού προηγουμένως ελέγξετε αν ικανοποιούνται οι απαιτούμενες προϋποθέσεις. γ) Να διατυπώσετε τα συμπεράσματά σας σε μια μικρή παράγραφο. 15. Στο πλαίσιο της πτυχιακής εργασίας σας, μεταξύ άλλων, σχεδιάσατε ένα 3x4 παραγοντικό πείραμα για να διερευνήσετε πώς επηρεάζεται το αποτέλεσμα ενός χημικού πειράματος από τη διαφοροποίηση του καταλύτη και της θερμοκρασίας. Για κάθε συνδυασμό καταλύτη-θερμοκρασίας εκτελέσατε το πείραμα μία φορά. Τα αποτελέσματα των πειραμάτων που πήρατε δίνονται στον πίνακα που ακολουθεί (σε ppm). Καταλύτης Α Β Γ Δ Τ Θερμοκρασία Τ Τ α) Να κάνετε κατάλληλη στατιστική ανάλυση των αποτελεσμάτων των πειραμάτων. β) Μπορείτε να ελέγξετε αν υπάρχει στατιστικά σημαντική επίδραση στο αποτέλεσμα του χημικού πειράματος που να οφείλεται στην αλληλεπίδραση μεταξύ καταλύτη και θερμοκρασίας; γ) Να γράψετε μια μικρή παράγραφο στην οποία να διατυπώνετε τα συμπεράσματά σας από τη στατιστική ανάλυση που κάνατε καθώς και τις παραδοχές που χρειάσθηκε να κάνετε. Εργαστήριο Μαθηματικών & Στατιστικής / Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) 82

7 ΑΠΑΝΤΗΣΕΙΣ 1. α) Εντελώς τυχαιοποιημένο σχέδιο β) Όχι, αφού F = ενώ F 2 ;12;0.05 = γ) Τα δείγματα προέρχονται από κανονικούς πληθυσμούς με ίσες διασπορές. 2. α) Όχι, αφού F = ενώ F 3 ;8;0.05 = β) Πρόκειται για εντελώς τυχαιοποιημένο σχέδιο με τέσσερις επεμβάσεις επομένως ελέγχουμε τους μέσους τεσσάρων πληθυσμών με τέσσερα ανεξάρτητα δείγματα. Με την υπόθεση ότι τα δείγματα προέρχονται από κανονικούς πληθυσμούς με ίσες διασπορές κάνουμε ANOVA με έναν παράγοντα. 3. α) Ναι, αφού F = 5.81 > F2 ;15;0. 05 = β) Πρόκειται για εντελώς τυχαιοποιημένο σχέδιο με τρεις επεμβάσεις επομένως ελέγχουμε τους μέσους τριών πληθυσμών με τρία ανεξάρτητα δείγματα. Με την υπόθεση ότι τα δείγματα προέρχονται από κανονικούς πληθυσμούς με ίσες διασπορές κάνουμε ANOVA με έναν παράγοντα. 4. α) Ναι, αφού F = > F3 ;15;0. 05 = β) βλ. ερώτημα (β) της άσκησης α) Ναι, αφού F = > F3 ;20;0. 05 = β) βλ. ερώτημα (β) της άσκησης 2 γ) Η υπόθεση της κανονικότητας των πληθυσμών γιατί από κάθε φυτό, ως παρατήρηση, παίρνουμε ένα δειγματικό μέσο (το μέσο μήκος 20 φύλλων). 6. Ναι, αφού F = 6.40 > F4 ;10;0. 05 = α) Τυχαιοποιημένων πλήρων ομάδων. Ναι γιατί υποθέτει ότι η αύξηση του βάρους επηρεάζεται και από γενετικούς παράγοντες και επιδιώκει να απομονώσει από τη συνολική μεταβλητότητα της αύξησης τους βάρους αυτή που οφείλεται σε αυτούς τους παράγοντες β) Όχι, αφού F = ενώ F 3 ;12;0.05 = 3.49 γ) Ναι, γιατί βρέθηκαν στατιστικά σημαντικές διαφορές στη μέση αύξηση του βάρους που οφείλονται στις γέννες (δηλ. μεταξύ των blocks) ( F = 7.55 > F4 ;22;0. 05 = ). 8. α) Τυχαιοποιημένων πλήρων ομάδων. Ότι η ανάπτυξη επηρεάζεται και από την τοποθεσία β) Ναι, αφού F = > F2 ;6;0. 05 = γ) Ναι, γιατί βρέθηκαν στατιστικά σημαντικές διαφορές στη μέση ανάπτυξη που οφείλονται στις τοποθεσίες (δηλ. μεταξύ των blocks) ( F = > F3 ;6;0. 05 = ). 9. α) Τυχαιοποιημένων πλήρων ομάδων με 4 blocks (καλλιέργειες) και 3 επεμβάσεις (εκτιμητές) σε κάθε block β) Ναι, αφού F = 6.46 > F2 ;6;0. 05 = γ) Όχι, γιατί δε βρέθηκαν στατιστικά σημαντικές διαφορές στις μέσες εκτιμήσεις που να οφείλονται στις καλλιέργειες (μεταξύ των blocks) ( F = ενώ F 3 ;6;0.05 = 4.76 ). 10. a) 7 β) 7 γ) 5 ε) Ναι, F = 9.68 > F4 ;24;0. 05 = Ναι, F = 8.59 > F6 ;24;0. 05 = α) Τυχαιοποιημένων πλήρων ομάδων με 3 blocks (κομμάτια νήματος) και 4 επεμβάσεις (χημικές ουσίες) σε κάθε block β) Ναι, αφού F = > F3 ;6;0. 05 = 4.76 γ)ναι, γιατί βρέθηκαν στατιστικά σημαντικές διαφορές στη μέση συγκέντρωση υγρασίας που οφείλονται στα κομμάτια νήματος (δηλ. μεταξύ των blocks) ( F = > F2 ;6;0. 05 = 5. 14). 12. Με ANOVA (για τυχαιοποιημένες πλήρεις ομάδες με 10 blocks και 2 επεμβάσεις σε κάθε block) προκύπτει το ίδιο συμπέρασμα αφού F =.95 > F Οι δυο έλεγχοι είναι ισοδύναμοι. Παρατηρείστε ότι 10 1 ;9;0. 05 = F = = t = 3.3 και 1;9;0.05 = 5.12 = ( t9;0.025 ) = F. Εργαστήριο Μαθηματικών & Στατιστικής / Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) 83

8 13. α) i. Όχι, αφού F = ενώ F ;27;0.05 = ii. Ναι, αφού F = > F2 ;27;0. 05 = iii. Ναι, αφού F = > F2 ;27;0. 05 = β) Για κάθε συνδυασμό ποικιλίας-μυκητοκτόνου, τα αντίστοιχα δείγματα προέρχονται από κανονικούς πληθυσμούς με ίσες διασπορές. 14. α) 3x2 παραγοντικό πείραμα εντελώς τυχαιοποιημένο με πέντε επαναλήψεις για κάθε συνδυασμό κλινικής-νοσοκομείου. β) Υπάρχει στατιστικά σημαντική αλληλεπίδραση των δύο παραγόντων στη μέση ικανοποίηση των ασθενών (αφού F = 4.25 > F2 ;24;0. 05 = 3.40 ) και επομένως υπάρχει επίδραση και του κάθε παράγοντα ξεχωριστά. 15. α) Ο παράγοντας θερμοκρασία έχει στατιστικά σημαντική επίδραση στο αποτέλεσμα του πειράματος αφού F = > F καθώς και ο 12 2 ;6;0. 05 = 11 > 3 ;6;0. 05 = 4. παράγοντας καταλύτης αφού F = F 76 β) Όχι γιατί για κάθε συνδυασμό θερμοκρασίας-καταλύτη έχουμε μια μόνο παρατήρηση. Εργαστήριο Μαθηματικών & Στατιστικής / Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) 84

Μάθημα: Στατιστική ανάλυση δεδομένων με χρήση Η/Υ (του 8 ου Εξαμήνου Σπουδών του Τμήματος Βιοτεχνολογίας) Διδάσκων: Γιώργος Κ.

Μάθημα: Στατιστική ανάλυση δεδομένων με χρήση Η/Υ (του 8 ου Εξαμήνου Σπουδών του Τμήματος Βιοτεχνολογίας) Διδάσκων: Γιώργος Κ. Μάθημα: Στατιστική ανάλυση δεδομένων με χρήση Η/Υ (του 8 ου Εξαμήνου Σπουδών του Τμήματος Βιοτεχνολογίας) Διδάσκων: Γιώργος Κ. Παπαδόπουλος 3. Ανάλυση Διακύμανσης Σύντομη ανασκόπηση βασικών εννοιών, προτάσεων

Διαβάστε περισσότερα

Ανάλυση διακύμανσης (Μέρος 2 ο ) 31/3/2017

Ανάλυση διακύμανσης (Μέρος 2 ο ) 31/3/2017 Ανάλυση διακύμανσης (Μέρος 2 ο ) 31/3/2017 2 Σχέδιο τυχαιοποιημένων πλήρων ομάδων (1) Αποτελεί ευθεία γενίκευση του σχεδίου που γνωρίσαμε όταν μιλήσαμε για τη σύγκριση κατά ζεύγη δύο μέσων μ 1 και μ 2

Διαβάστε περισσότερα

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 2 Γιατί ανάλυση διακύμανσης; (1) Ας θεωρήσουμε k πληθυσμούς με μέσες τιμές μ 1, μ 2,, μ k, αντίστοιχα Πως μπορούμε να συγκρίνουμε τις μέσες τιμές k πληθυσμών

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2011 για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 25/02/2011

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2011 για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 25/02/2011 Εργαστήριο Μαθηματικών & Στατιστικής Γραπτή Εξέταση Περιόδου Φεβρουαρίου για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 5//. [] Η ποσότητα, έστω Χ, ενός συντηρητικού που περιέχεται σε φιάλες αναψυκτικού

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις 26/5/2017

Επαναληπτικές Ασκήσεις 26/5/2017 Επαναληπτικές Ασκήσεις 2 Άσκηση 1 η (1) Ένας ερευνητής μέτρησε τη συγκέντρωση γλυκόζης (σε mg/dl) στο αριστερό και το δεξί μάτι 35 τυχαία επιλεγμένων υγιών σκύλων συγκεκριμένης ράτσας Έστω ότι με Χ και

Διαβάστε περισσότερα

Διαστήματα Εμπιστοσύνης και Στατιστικοί Έλεγχοι Υποθέσεων Προβλήματα και Ασκήσεις

Διαστήματα Εμπιστοσύνης και Στατιστικοί Έλεγχοι Υποθέσεων Προβλήματα και Ασκήσεις Διαστήματα Εμπιστοσύνης και Στατιστικοί Έλεγχοι Υποθέσεων Προβλήματα και Ασκήσεις Για κάθε πρόβλημα που ακολουθεί, εκτός των ερωτημάτων που διατυπώνονται, να γίνουν (με τη βοήθεια κάποιου στατιστικού πακέτου)

Διαβάστε περισσότερα

Ανάλυση διακύμανσης (Μέρος 3 ο ) 7/4/2017

Ανάλυση διακύμανσης (Μέρος 3 ο ) 7/4/2017 Ανάλυση διακύμανσης (Μέρος 3 ο ) 7/4/2017 2 α x b Παραγοντικό Πείραμα (1) Όταν θέλουμε να μελετήσουμε την επίδραση (στη μεταβλητή απόφασης) δύο παραγόντων, έστω Α και Β, με α στάθμες ο Α και b στάθμες

Διαβάστε περισσότερα

Για το δείγμα από την παραγωγή της εταιρείας τροφίμων δίνεται επίσης ότι, = 1.3 και για το δείγμα από το συνεταιρισμό ότι, x

Για το δείγμα από την παραγωγή της εταιρείας τροφίμων δίνεται επίσης ότι, = 1.3 και για το δείγμα από το συνεταιρισμό ότι, x Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική // (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [] Επιλέξαμε φακελάκια (της μισής ουγκιάς) που περιέχουν σταφίδες από την παραγωγή μιας εταιρείας

Διαβάστε περισσότερα

Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40]

Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40] Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική 8// (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [4] Τα τελευταία χρόνια παρατηρείται συνεχώς αυξανόμενο ενδιαφέρον για τη μελέτη της συγκέντρωσης

Διαβάστε περισσότερα

Ερωτήσεις κατανόησης

Ερωτήσεις κατανόησης Έλεγχος Υποθέσεων Ερωτήσεις κατανόησης 1. Αν σε ένα στατιστικό έλεγχο υποθέσεων η μηδενική υπόθεση απορρίπτεται για επίπεδο σημαντικότητας 5%, τότε α) απορρίπτεται για οποιοδήποτε επίπεδο σημαντικότητας,

Διαβάστε περισσότερα

Διαστήματα Εμπιστοσύνης και Στατιστικοί Έλεγχοι Υποθέσεων Προβλήματα και Ασκήσεις

Διαστήματα Εμπιστοσύνης και Στατιστικοί Έλεγχοι Υποθέσεων Προβλήματα και Ασκήσεις Διαστήματα Εμπιστοσύνης και Στατιστικοί Έλεγχοι Υποθέσεων Προβλήματα και Ασκήσεις. Μια μηχανή εμφιάλωσης κρασιού γεμίζει φιάλες του μισού κιλού με ποσότητα κρασιού η οποία είναι κανονική τυχαία μεταβλητή

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2013 στη Στατιστική

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2013 στη Στατιστική Εργαστήριο Μαθηματικών & Στατιστικής ΣΕΙΡΑ Α Γραπτή Εξέταση Περιόδου Φεβρουαρίου 013 στη Στατιστική για τα Τμήματα Ε.Τ.Τ., Γ.Β., Α.Ο.Α. και Ε.Ζ.Π.&Υ. 08/0/013 1. [0] Η ποσότητα, έστω Χ, καλίου που περιέχεται

Διαβάστε περισσότερα

Έλεγχος Χ 2 (καλής προσαρμογής, ανεξαρτησίας και ομογένειας) Προβλήματα και Ασκήσεις

Έλεγχος Χ 2 (καλής προσαρμογής, ανεξαρτησίας και ομογένειας) Προβλήματα και Ασκήσεις Έλεγχος Χ -Προβλήματα και Ασκήσεις Έλεγχος Χ (καλής προσαρμογής, ανεξαρτησίας και ομογένειας) Προβλήματα και Ασκήσεις 1. Στη βιβλιογραφία αναφέρεται ότι τα ποσοστά των ομάδων αίματος Α, Β, ΑΒ και Ο σε

Διαβάστε περισσότερα

την τιμή της μέσης τιμής, μ, ή της διασποράς, σ, ενός πληθυσμού και σε στατιστικούς ελέγχους υποθέσεων για τη σύγκριση των μέσων τιμών, μ

την τιμή της μέσης τιμής, μ, ή της διασποράς, σ, ενός πληθυσμού και σε στατιστικούς ελέγχους υποθέσεων για τη σύγκριση των μέσων τιμών, μ Ανάλυση Διασποράς Ανάλυση Διασποράς (Analysis of Variance, ANOVA) είναι μέθοδος στατιστικού ελέγχου υποθέσεων που αναφέρονται σε περισσότερους από δύο πληθυσμούς. Στην προηγούμενη ενότητα αναφερθήκαμε

Διαβάστε περισσότερα

συγκέντρωση της ουσίας στον παραπόταμο είναι αυξημένη σε σχέση με τον ίδιο τον ποταμό;

συγκέντρωση της ουσίας στον παραπόταμο είναι αυξημένη σε σχέση με τον ίδιο τον ποταμό; Γραπτή Εξέταση Περιόδου Ιουνίου 008 στο Μάθημα Στατιστική /07/08. Η πιθανότητα να υπάρχει στο υπέδαφος μιας συγκεκριμένης περιοχής εκμεταλλεύσιμο κοίτασμα πετρελαίου είναι 50%. Μια εταιρεία, που πρόκειται

Διαβάστε περισσότερα

13. Ανάλυση Διακύμανσης

13. Ανάλυση Διακύμανσης . Ανάλυση Διακύμανσης Ανάλυση Διακύμανσης Ανάλυση Διακύμανσης (Analysis of Variance, ANOVA) είναι μέθοδος στατιστικού ελέγχου υποθέσεων που αναφέρονται σε περισσότερους από δύο πληθυσμούς. Στην προηγούμενη

Διαβάστε περισσότερα

2. ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

2. ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ Εργαστήριο Μαθηματικών & Στατιστικής 2. ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ. Ας θεωρήσουμε ότι είναι γνωστό από στοιχεία της Παγκόσμιας Οργάνωσης Υγείας ότι οι τιμές χοληστερίνης στον πληθυσμό έχουν

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 015 Ανάλυση Διακύμανσης Η Ανάλυση Διακύμανσης είναι μία τεχνική που

Διαβάστε περισσότερα

Στατιστικός έλεγχος υποθέσεων (Μέρος 3 ο ) 10/3/2017

Στατιστικός έλεγχος υποθέσεων (Μέρος 3 ο ) 10/3/2017 Στατιστικός έλεγχος υποθέσεων (Μέρος 3 ο ) 10/3/017 Στατιστικός έλεγχος υποθέσεων σε επίπεδο σημαντικότητας α για τη διακύμανση σ ενός κανονικού πληθυσμού με ένα τυχαίο δείγμα μεγέθους n Η 0 : σ = σ 0

Διαβάστε περισσότερα

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua. Μέρος Β /Στατιστική Μέρος Β Στατιστική Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) Από τις Πιθανότητες στη Στατιστική Στα προηγούμενα, στο

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Όπως θα δούμε αργότερα στη Στατιστική Συμπερασματολογία, λέγοντας ότι «από έναν πληθυσμό παίρνουμε ένα τυχαίο δείγμα μεγέθους» εννοούμε ανεξάρτητες τυχαίες μεταβλητές,,..., που

Διαβάστε περισσότερα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Στα προηγούμενα (σελ. 7), δώσαμε μια πρώτη, γενική, διατύπωση του Κεντρικού Οριακού Θεωρήματος (Κ.Ο.Θ.) και τη γενική ιδέα για το πώς το Κ.Ο.Θ. εξηγεί το μεγάλο εύρος εφαρμογής

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΕΝΟΤΗΤΕΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ (One-Way Analyss of Varance) Η ανάλυση

Διαβάστε περισσότερα

Γ. Πειραματισμός Βιομετρία

Γ. Πειραματισμός Βιομετρία Γενικά Πειραματικό σχέδιο και ANOVA Η βασική διαφορά μεταξύ των πειραματικών σχεδίων είναι ο τρόπος με τον οποίο ταξινομούνται ή κατατάσσονται οι πειραματικές μονάδες (πειραματικά τεμάχια) Σε όλα τα σχέδια

Διαβάστε περισσότερα

Γ. Πειραματισμός Βιομετρία

Γ. Πειραματισμός Βιομετρία ANOVA με δειγματοληψία Το Γραμμικό Πρότυπο = µ τ ε i ij δ όπου = το k-στό δείγμα της j-στής παρατήρησης της i-στής επέμβασης µ = ο μέσος όρος του πληθυσμού τ i = η επίδραση της i-στής επέμβασης ε ij =

Διαβάστε περισσότερα

Η ΕΠΙΔΡΑΣΗ ΤΟΥ ΒΙΟΕΝΕΡΓΟΠΟΙΗΤΗ RHIZOACTIVE ΣΤΗΝ ΚΑΛΛΙΕΡΓΕΙΑ ΤΟΥ ΜΑΡΟΥΛΙΟΥ ΓΙΑ ΤΗΝ ΑΝΑΠΤΥΞΗ ΤΟΥ ΡΙΖΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΑΝΤΩΝΙΑΔΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ

Η ΕΠΙΔΡΑΣΗ ΤΟΥ ΒΙΟΕΝΕΡΓΟΠΟΙΗΤΗ RHIZOACTIVE ΣΤΗΝ ΚΑΛΛΙΕΡΓΕΙΑ ΤΟΥ ΜΑΡΟΥΛΙΟΥ ΓΙΑ ΤΗΝ ΑΝΑΠΤΥΞΗ ΤΟΥ ΡΙΖΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΑΝΤΩΝΙΑΔΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ NATURE Α.Β.Ε.Ε. ΕΙΔΙΚΑ ΛΙΠΑΣΜΑΤΑ ΤΜΗΜΑ ΕΡΕΥΝΑΣ ΚΑΙ ΑΝΑΠΤΥΞΗΣ Η ΕΠΙΔΡΑΣΗ ΤΟΥ ΒΙΟΕΝΕΡΓΟΠΟΙΗΤΗ RHIZOACTIVE ΣΤΗΝ ΚΑΛΛΙΕΡΓΕΙΑ ΤΟΥ ΜΑΡΟΥΛΙΟΥ ΓΙΑ ΤΗΝ ΑΝΑΠΤΥΞΗ ΤΟΥ ΡΙΖΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΑΝΤΩΝΙΑΔΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΓΕΩΠΟΝΟΣ

Διαβάστε περισσότερα

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Πέτρος Ρούσσος, Τμήμα Ψυχολογίας, ΕΚΠΑ Η λογική της διαδικασίας Ο σάκος περιέχει έναν μεγάλο αλλά άγνωστο αριθμό (αρκετές χιλιάδες) λευκών και μαύρων βόλων: 1 Το

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Στα προηγούμενα (σελ. 7), δώσαμε μια πρώτη, γενική, διατύπωση του Κεντρικού Οριακού Θεωρήματος (Κ.Ο.Θ.) και τη γενική ιδέα για το πώς το Κ.Ο.Θ. εξηγεί το μεγάλο εύρος εφαρμογής

Διαβάστε περισσότερα

8. Ανάλυση Διασποράς ως προς. δύο παράγοντες

8. Ανάλυση Διασποράς ως προς. δύο παράγοντες 8. Ανάλυση Διασποράς ως προς δύο παράγοντες Ανάλυση Διασποράς ως προς δύο παράγοντες Παραγοντική Ανάλυση διασποράς-factorial Analsis of Variance Α, Β δύο παράγοντες κ: στάθμες (επίπεδα) του παράγοντα Α

Διαβάστε περισσότερα

, µπορεί να είναι η συνάρτηση. αλλού. πλησιάζουν προς την τιµή 1, η διασπορά της αυξάνεται ή ελαττώνεται; (Εξηγείστε γιατί).

, µπορεί να είναι η συνάρτηση. αλλού. πλησιάζουν προς την τιµή 1, η διασπορά της αυξάνεται ή ελαττώνεται; (Εξηγείστε γιατί). Εργαστήριο Μαθηµατικών & Στατιστικής Γραπτή Εξέταση Περιόδου Φεβρουαρίου 009 στη Στατιστική 0/0/09 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ. [0] Οι ακαθάριστες εβδοµαδιαίες εισπράξεις µιας κτηνοτροφικής µονάδας, από την πώληση

Διαβάστε περισσότερα

8. Ανάλυση Διασποράς ως προς. δύο παράγοντες

8. Ανάλυση Διασποράς ως προς. δύο παράγοντες 8. Ανάλυση Διασποράς ως προς δύο παράγοντες Ανάλυση Διασποράς ως προς δύο παράγοντες Α, Β δύο παράγοντες κ: στάθμες (επίπεδα) του παράγοντα Α λ: στάθμες (επίπεδα) του παράγοντα Β κ λ : πειραματικές συνθήκες

Διαβάστε περισσότερα

Στατιστικός έλεγχος υποθέσεων (Μέρος 2 ο ) 3/3/2017

Στατιστικός έλεγχος υποθέσεων (Μέρος 2 ο ) 3/3/2017 Στατιστικός έλεγχος υποθέσεων (Μέρος ο ) 3/3/017 Στατιστικός έλεγχος υποθέσεων σε επίπεδο σημαντικότητας α για τη διακύμανση σ ενός κανονικού πληθυσμού με ένα τυχαίο δείγμα μεγέθους n Η 0 : σ = σ 0 Περιοχή

Διαβάστε περισσότερα

Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 24/2/2017

Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 24/2/2017 Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 24/2/2017 2 Η γενική ιδέα της διαδικασίας στατιστικού ελέγχου υποθέσεων Πρόκειται για μια διαδικασία απόφασης μεταξύ δύο υποθέσεων Η μια υπόθεση ονομάζεται μηδενική

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 05 Πολλαπλές συγκρίσεις Στην ανάλυση διακύμανσης ελέγχουμε την ισότητα

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ (Analyss of Varance for two factor Experments) (Two-Way Analyss of Varance) Ο πειραματικός σχεδιασμός για τον οποίο θα μιλήσουμε είναι μια επέκταση της μεθοδολογίας

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 5 Έστω για την σύγκριση δειγμάτων συλλέγουμε παρατηρήσεις Υ =,,, από

Διαβάστε περισσότερα

Η Διωνυμική Κατανομή. μαθηματικών. 2 Ο γονότυπος μπορεί να είναι ΑΑ, Αα ή αα.

Η Διωνυμική Κατανομή. μαθηματικών. 2 Ο γονότυπος μπορεί να είναι ΑΑ, Αα ή αα. Η Διωνυμική Κατανομή Η Διωνυμική κατανομή συνδέεται με ένα πολύ απλό πείραμα τύχης. Ίσως το απλούστερο! Πρόκειται για τη δοκιμή Bernoulli, ένα πείραμα τύχης με μόνο δύο, αμοιβαίως αποκλειόμενα, δυνατά

Διαβάστε περισσότερα

& 4/12/09 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ

& 4/12/09 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική //9 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ ο Θέμα Μονάδες Από τα ασθενή ζώα μιας κτηνοτροφικής μονάδας, ποσοστό % έχει προσβληθεί από την ασθένεια Α, % από

Διαβάστε περισσότερα

α) t-test µε ίσες διακυµάνσεις β) ανάλυση διακύµανσης µε έναν παράγοντα Έλεγχος t δύο δειγμάτων με υποτιθέμενες ίσες διακυμάνσεις

α) t-test µε ίσες διακυµάνσεις β) ανάλυση διακύµανσης µε έναν παράγοντα Έλεγχος t δύο δειγμάτων με υποτιθέμενες ίσες διακυμάνσεις ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΙΕΘΝΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΣΧΕΣΕΩΝ ΚΑΙ ΑΝΑΠΤΥΞΗΣ ΜΑΘΗΜΑ: ΣΤΑΤΙΣΤΙΚΗ IΙ ΕΙΣΗΓΗΤΡΙΑ: ΣΑΒΒΑΣ ΠΑΠΑ ΟΠΟΥΛΟΣ ΠΑΛΑΙΑ ΘΕΜΑΤΑ ********************************************************************

Διαβάστε περισσότερα

και τυπική απόκλιση σ = 40mg ανά μπανάνα. α) Ποια είναι η πιθανότητα μια μπανάνα να περιέχει i)

και τυπική απόκλιση σ = 40mg ανά μπανάνα. α) Ποια είναι η πιθανότητα μια μπανάνα να περιέχει i) Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ Γραπτή Εξέταση Περιόδου Ιανουαρίου 8 στο Μάθημα Στατιστική 7..8. [] Ο ανθρώπινος οργανισμός χρειάζεται καθημερινά από έως 6 mg (mllgrams) καλίου. Η ποσότητα καλίου που περιέχεται στα τρόφιμα

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 7. Στατιστικός έλεγχος υποθέσεων

Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 7. Στατιστικός έλεγχος υποθέσεων (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη 7 Στατιστικός έλεγχος υποθέσεων ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

Γ. Πειραματισμός Βιομετρία

Γ. Πειραματισμός Βιομετρία Περιγραφή του σχεδίου Είναι πιθανώς το ευρύτερα χρησιμοποιούμενο και πλέον χρήσιμο πειραματικό σχέδιο Εκμεταλλεύεται την συγκέντρωση των επεμβάσεων σε ομάδες. Κάθε ομάδα (που ονομάζεται και επανάληψη)

Διαβάστε περισσότερα

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης 1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από

Διαβάστε περισσότερα

Ενότητα 3. Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών

Ενότητα 3. Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών Ενότητα 3 Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών Εκτός από τις μέσες τιμές, τυπικές αποκλίσεις κλπ, θέλουμε να βρούμε κατά πόσον αυτές οι παρατηρούμενες τάσεις εξαρτώνται από συγκεκριμένες συνθήκες ή προϋποθέσεις.

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 05 Έλεγχος διακυμάνσεων Μας ενδιαφέρει να εξετάσουμε 5 δίαιτες που δίνονται

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 4A: Έλεγχοι Υποθέσεων και Διαστήματα Εμπιστοσύνης Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Σεπτεμβρίου 2008 στο Μάθημα Στατιστική Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ 29.9.2008

Γραπτή Εξέταση Περιόδου Σεπτεμβρίου 2008 στο Μάθημα Στατιστική Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ 29.9.2008 Γραπτή Εξέταση Περιόδου Σεπτεμβρίου 8 στο Μάθημα Στατιστική Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ 9.9.8. [] Μια βιομηχανία τροφίμων προμηθεύεται νωπά κοτόπουλα από τρεις διαφορετικούς παραγωγούς Α, Β, Γ. Το % των κοτόπουλων

Διαβάστε περισσότερα

χ 2 = με β.ε =1 και a=0.05 το κρίσιμο χ 2 =3.841

χ 2 = με β.ε =1 και a=0.05 το κρίσιμο χ 2 =3.841 Έστω, ότι ένα δείγμα ελέγχου χρησιμοποιήθηκε σε ένα πείραμα ελέγχου ποιότητας μιας μεθόδου για 30 συνεχόμενες ημέρες. Η θεωρητική (ισχυριζόμενη) συγκέντρωση της γλυκόζης στο δείγμα αυτό είναι 0 mg/l. Ο

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα

Διαβάστε περισσότερα

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα

Διαβάστε περισσότερα

Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων

Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων 1 Μονοπαραγοντική Ανάλυση Διακύμανσης Παραμετρικό στατιστικό κριτήριο για τη μελέτη της επίδρασης μιας ανεξάρτητης μεταβλητής στην εξαρτημένη Λογική

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 9. Κατανομές Δειγματοληψίας

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 9. Κατανομές Δειγματοληψίας ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

7. Ανάλυση Διασποράς-ANOVA

7. Ανάλυση Διασποράς-ANOVA 7. Ανάλυση Διασποράς-ANOVA Παράδειγμα Μετρήσεις της συγκέντρωσης του strodum (mg/ml) σε πέντε υδάτινες περιοχές (Α,Β,C,D,Ε). Α Β C D Ε 8, 39,6 46,3 4,0 56,3 33, 40,8 4, 44, 54, 36,4 37,9 43,5 46,4 59,4

Διαβάστε περισσότερα

Γ. Πειραματισμός Βιομετρία

Γ. Πειραματισμός Βιομετρία Γενικά Συσχέτιση και Συμμεταβολή Όταν σε ένα πείραμα παραλλάσουν ταυτόχρονα δύο μεταβλητές, τότε ενδιαφέρει να διερευνηθεί εάν και πως οι αλλαγές στη μία μεταβλητή σχετίζονται με τις αλλαγές στην άλλη.

Διαβάστε περισσότερα

ΠΟΣΟΤΙΚΗ ΓΕΝΕΤΙΚΗ 03. ΜΕΣΗ ΤΙΜΗ & ΔΙΑΚΥΜΑΝΣΗ

ΠΟΣΟΤΙΚΗ ΓΕΝΕΤΙΚΗ 03. ΜΕΣΗ ΤΙΜΗ & ΔΙΑΚΥΜΑΝΣΗ ΠΟΣΟΤΙΚΗ ΓΕΝΕΤΙΚΗ 03. ΜΕΣΗ ΤΙΜΗ & ΔΙΑΚΥΜΑΝΣΗ 1 ΠΟΣΟΤΙΚΟ ΓΝΩΡΙΣΜΑ ΑΑββΓΓδδεεΖΖ αριθμός φυτών 50 00 150 100 50 0 10 5 184 119 17 87 40 1 5 0-10 10-0 0-30 30-40 40-50 50-60 60-70 70-80 80-90 απόδοση/φ υτό

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ. Μέθοδος 1 Μέθοδος 2 Μέθοδος 3 Μέθοδος

ΑΣΚΗΣΕΙΣ. Μέθοδος 1 Μέθοδος 2 Μέθοδος 3 Μέθοδος ΑΣΚΗΣΕΙΣ 1. Προκειμένου να συγκριθούν τέσσερις διαφορετικές μέθοδοι καλλιέργειας καλαμποκιού, χρησιμοποιήθηκε ένας μεγάλος αριθμός αγροτεμαχίων. Κάθε μια από τις μεθόδους καλλιέργειας καλαμποκιού αντιστοιχήθηκε

Διαβάστε περισσότερα

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες)

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες) Εργαστήριο Μαθηματικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθημα Στατιστική //7 ο Θέμα α) Περιγράψτε τη σχέση Θεωρίας Πιθανοτήτων και Στατιστικής. β) Αν Α, Β ενδεχόμενα του δειγματικού χώρου Ω

Διαβάστε περισσότερα

Εργάτης Μηχάνηµα τύπου Α Μηχάνηµα τύπου Β

Εργάτης Μηχάνηµα τύπου Α Μηχάνηµα τύπου Β Εργαστήριο Μαθηµατικών & Στατιστικής Γραπτή Εξέταση Περιόδου Σεπτεµβρίου 2009 στη Στατιστική 30/09/09 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ [20] Μια καπνοβιοµηχανία ισχυρίζεται ότι στα νέα τσιγάρα που διαφηµίζει, η ποσότητα

Διαβάστε περισσότερα

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6.1 Το Πρόβλημα του Ελέγχου Υποθέσεων Ενός υποθέσουμε ότι μία φαρμακευτική εταιρεία πειραματίζεται πάνω σε ένα νέο φάρμακο για κάποια ασθένεια έχοντας ως στόχο, τα πρώτα θετικά

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 0. Απλή Γραμμική Παλινδρόμηση. Ένα Πρόβλημα. Η επιδιωκόμενη ιδιότητα. Ένα χρήσιμο γράφημα. Οι υπολογισμοί. Η μέθοδος ελαχίστων τετραγώνων ...

ΚΕΦΑΛΑΙΟ 0. Απλή Γραμμική Παλινδρόμηση. Ένα Πρόβλημα. Η επιδιωκόμενη ιδιότητα. Ένα χρήσιμο γράφημα. Οι υπολογισμοί. Η μέθοδος ελαχίστων τετραγώνων ... ΚΕΦΑΛΑΙΟ 0 Ένα Πρόβλημα Δεδομένα.6 3. 3.8 4. 4.4 5.8 6.0 6.7 7. 7.8 5.6 7.9 8.0 8. 8. 9. 9.5 9.4 9.6 9.9 Απλή Γραμμική Παλινδρόμηση Μωυσιάδης Χρόνης 6 o Εξάμηνο Μαθηματικών Έχει σχέση το με το ; Ειδικότερα

Διαβάστε περισσότερα

Επίπεδο Τιμές 12

Επίπεδο Τιμές 12 Άσκηση 1 (τοποθετήθηκε 26/10/2012) Οι παρακάτω μετρήσεις είναι χωρισμένες σε διαφορετικά επίπεδα ενός παράγοντα, προέρχονται από κανονική κατανομή με ίδια διακύμανση και είναι ανεξάρτητες μεταξύ τους.

Διαβάστε περισσότερα

Περιπτώσεις που η στατιστική συνάρτηση ελέγχου είναι η Ζ: 1. Η σ είναι γνωστή και ο πληθυσμός κανονικός.

Περιπτώσεις που η στατιστική συνάρτηση ελέγχου είναι η Ζ: 1. Η σ είναι γνωστή και ο πληθυσμός κανονικός. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου 1, 263 34 ΠΑΤΡΑ Τηλ.: 2610 369051, Φαξ: 2610 396184, email: mitro@teipat.gr Καθ η γη

Διαβάστε περισσότερα

Στατιστική. 8 ο Μάθημα: Εφαρμογές Στατιστικής Ι: Διαστήματα Εμπιστοσύνης. Γεώργιος Μενεξές Τμήμα Γεωπονίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Στατιστική. 8 ο Μάθημα: Εφαρμογές Στατιστικής Ι: Διαστήματα Εμπιστοσύνης. Γεώργιος Μενεξές Τμήμα Γεωπονίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Στατιστική 8 ο Μάθημα: Εφαρμογές Στατιστικής Ι: Διαστήματα Εμπιστοσύνης Γεώργιος Μενεξές Τμήμα Γεωπονίας Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Προσοχή: Για κάθε λανθασµένη απάντηση δεν θα λαµβάνεται υπόψη µία σωστή

Προσοχή: Για κάθε λανθασµένη απάντηση δεν θα λαµβάνεται υπόψη µία σωστή Σειρά Α σ1 Επώνυµο Όνοµα Αρ. Μητρώου Ζήτηµα 1 ο (3 µονάδες) Εξετάσεις Φεβρουαρίου (2011/12) στο Μάθηµα: Στατιστική Θεσσαλονίκη: 03/03/2012 Προσοχή: Για κάθε λανθασµένη απάντηση δεν θα λαµβάνεται υπόψη

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΔΙΑΣΤΗΜΑΤΩΝ ΕΜΠΙΣΤΟΣΥΝΗΣ. Άσκηση 1. Βρείτε δ/μα εμπιστοσύνης για τη μέση τιμή μ κανονικού πληθυσμού όταν n=20,

ΑΣΚΗΣΕΙΣ ΔΙΑΣΤΗΜΑΤΩΝ ΕΜΠΙΣΤΟΣΥΝΗΣ. Άσκηση 1. Βρείτε δ/μα εμπιστοσύνης για τη μέση τιμή μ κανονικού πληθυσμού όταν n=20, ΜΕΜ64: Εφαρμοσμένη Στατιστική 1 ΑΣΚΗΣΕΙΣ ΔΙΑΣΤΗΜΑΤΩΝ ΕΜΠΙΣΤΟΣΥΝΗΣ Άσκηση 1. Βρείτε δ/μα εμπιστοσύνης για τη μέση τιμή μ κανονικού πληθυσμού όταν n=0, X = 7.5, σ = 16, α = 5%. Πως αλλάζει το διάστημα αν

Διαβάστε περισσότερα

Οξέα (Π. ΤΟΦΗ) Ποια υγρά επηρεάζουν μέρη του σώματος;

Οξέα (Π. ΤΟΦΗ) Ποια υγρά επηρεάζουν μέρη του σώματος; Σύντομη Περιγραφή Διερεύνησης Οξέα (Π. ΤΟΦΗ) Ποια υγρά επηρεάζουν μέρη του σώματος; Στόχος της διερεύνησης ήταν να διαφανεί το αν κάποια υγρά επηρεάζουν μέρη του σώματός μας. Αρχικά, θελήσαμε να διερευνήσουμε

Διαβάστε περισσότερα

Γεωργικός Πειραµατικός Σχεδιασµός: Πρακτικές Συµβουλές

Γεωργικός Πειραµατικός Σχεδιασµός: Πρακτικές Συµβουλές Γεωργικός Πειραµατικός Σχεδιασµός: Πρακτικές Συµβουλές Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata Η Γεωργία Εισαγωγή

Διαβάστε περισσότερα

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Χημική Τεχνολογία Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

Σημειακή εκτίμηση και εκτίμηση με διάστημα Παραδείγματα. 12 η Διάλεξη

Σημειακή εκτίμηση και εκτίμηση με διάστημα Παραδείγματα. 12 η Διάλεξη Σημειακή εκτίμηση και εκτίμηση με διάστημα Παραδείγματα 12 η Διάλεξη 1 ο Παράδειγμα (1) Μια αυτόματη μηχανή συσκευάζει καλαμπόκι σε τσουβάλια των 25kg Το βάρος του καλαμποκιού που συσκευάζεται ανά τσουβάλι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές

Διαβάστε περισσότερα

Κλωνάρης Στάθης. ΠΜΣ: Οργάνωση & Διοίκηση Επιχειρήσεων Τροφίμων και Γεωργίας

Κλωνάρης Στάθης. ΠΜΣ: Οργάνωση & Διοίκηση Επιχειρήσεων Τροφίμων και Γεωργίας Κλωνάρης Στάθης ΠΜΣ: Οργάνωση & Διοίκηση Επιχειρήσεων Τροφίμων και Γεωργίας Μέχρι τώρα ασχοληθήκαμε με τις τεχνικές εκτίμησης παραμέτρων για ένα πληθυσμό όπως: τον Μέσο µ και το ποσοστό p Θα συνεχίσουμε

Διαβάστε περισσότερα

Έλεγχος υποθέσεων ΙI ANOVA

Έλεγχος υποθέσεων ΙI ANOVA Έλεγχος υποθέσεων ΙI ANOVA Μοντέλα στην Επιστήμη Τροφίμων 532Ε Τομέας Επιστήμης & Τεχνολογίας Τροφίμων Έλεγχος υποθέσεων Συνεχή δεδομένα z-test Student s test (t-test) Ανάλυση παραλλακτικότητας ή ανάλυση

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

Στατιστική: Δειγματοληψία X συλλογή δεδομένων. Περιγραφική στατιστική V πίνακες, γραφήματα, συνοπτικά μέτρα

Στατιστική: Δειγματοληψία X συλλογή δεδομένων. Περιγραφική στατιστική V πίνακες, γραφήματα, συνοπτικά μέτρα ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ Α Δημήτρης Κουγιουμτζής e-mail: dkugiu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://users.auth.gr/~dkugiu/teach/civiltrasport/ide.html Στατιστική: Δειγματοληψία

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική

Εφαρμοσμένη Στατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Ανάλυση διακύμανσης Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Έλεγχοι Υποθέσεων. Χρήση της Στατιστικής. Η λογική του Ελέγχου Υπόθεσης Ο Έλεγχος Υπόθεσης 7-2

Έλεγχοι Υποθέσεων. Χρήση της Στατιστικής. Η λογική του Ελέγχου Υπόθεσης Ο Έλεγχος Υπόθεσης 7-2 Έλεγχοι Υποθέσεων 7-2 7 Έλεγχοι Υποθέσεων Χρήση της Στατιστικής Η λογική του Ελέγχου Υπόθεσης Ο Έλεγχος Υπόθεσης 7-3 7 Μαθησιακοί Στόχοι Όταν θα έχετε ολοκληρώσει την μελέτη του κεφαλαίου θα πρέπει να

Διαβάστε περισσότερα

Έλεγχος υποθέσεων Ι z-test & t-test

Έλεγχος υποθέσεων Ι z-test & t-test Έλεγχος υποθέσεων Ι z-test & t-test Μοντέλα στην Επιστήμη Τροφίμων 53Ε Τομέας Επιστήμης & Τεχνολογίας Τροφίμων Έλεγχος υποθέσεων Συνεχή δεδομένα z-test Student s test (t-test) Ανάλυση παραλλακτικότητας

Διαβάστε περισσότερα

Γ. Πειραματισμός - Βιομετρία

Γ. Πειραματισμός - Βιομετρία Γ. Πειραματισμός - Βιομετρία Πληθυσμοί και δείγματα Πληθυσμός Περιλαμβάνει όλες τις πιθανές τιμές μιας μεταβλητής, δηλαδή αναφέρεται σε μια παρατήρηση σε όλα τα άτομα του πληθυσμού Ο πληθυσμός προσδιορίζεται

Διαβάστε περισσότερα

Κεφάλαιο 14. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης

Κεφάλαιο 14. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Κεφάλαιο 14 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης 1 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Παραµετρικό στατιστικό κριτήριο για τη µελέτη της επίδρασης µιας ανεξάρτητης µεταβλητής στην εξαρτηµένη Λογική παρόµοια

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 12ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 12ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 12ο ΑΙΤΙΟΤΗΤΑ Ένα από τα βασικά προβλήματα που υπάρχουν στην εξειδίκευση ενός υποδείγματος είναι να προσδιοριστεί η κατεύθυνση που μία μεταβλητή

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που

Διαβάστε περισσότερα

Σφάλματα Είδη σφαλμάτων

Σφάλματα Είδη σφαλμάτων Σφάλματα Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα μετράμε την

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA)

ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA) ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA). Εισαγωγή Η ανάλυση της διακύμανσης (ANalysis Of VAriance ANOVA) είναι μια στατιστική μεθόδος με την οποία η μεταβλητότητα που υπάρχει σ ένα σύνολο δεδομένων διασπάται στις

Διαβάστε περισσότερα

Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο )

Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 2 Η γενική ιδέα της διαδικασίας στατιστικού ελέγχου υποθέσεων Πρόκειται για μια διαδικασία απόφασης μεταξύ δύο υποθέσεων Η μια υπόθεση ονομάζεται μηδενική (Η

Διαβάστε περισσότερα

Περιγραϕική Στατιστική, Εκτίµηση και Ελεγχος Παραµέτρων

Περιγραϕική Στατιστική, Εκτίµηση και Ελεγχος Παραµέτρων 78 ΚΕΦΑΛΑΙΟ 4. ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ ΑΣΚΗΣΕΙΣ Περιγραϕική Στατιστική, Εκτίµηση και Ελεγχος Παραµέτρων 1. είξτε ότι η εκτιµήτρια s 2 της διασποράς σ 2 είναι αµερόληπτη. 2. ύο τυχαίες µεταβλητές X 1

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 3-4 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 5] 3η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να φθάσουν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 3η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

Σύγκριση μέσου όρου πληθυσμού με τιμή ελέγχου. One-Sample t-test

Σύγκριση μέσου όρου πληθυσμού με τιμή ελέγχου. One-Sample t-test 1 Σύγκριση μέσου όρου πληθυσμού με τιμή ελέγχου One-Sample t-test 2 Μια σύντομη αναδρομή Στα τέλη του 19 ου αιώνα μια μεγάλη αλλαγή για την επιστήμη ζυμώνονταν στην ζυθοποιία Guinness. Ο William Gosset

Διαβάστε περισσότερα

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ Ενότητα 7: Έλεγχοι σημαντικότητας πολλών ανεξάρτητων δειγμάτων Κωνσταντίνος Ζαφειρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ Χ 2 test ανεξαρτησίας: σχέση 2 ποιοτικών μεταβλητών

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

Κεφάλαιο 13. Εισαγωγή στην. Η Ανάλυση ιακύµανσης

Κεφάλαιο 13. Εισαγωγή στην. Η Ανάλυση ιακύµανσης Κεφάλαιο 13 Εισαγωγή στην Ανάλυση ιακύµανσης 1 Η Ανάλυση ιακύµανσης Από τα πιο συχνά χρησιµοποιούµενα στατιστικά κριτήρια στην κοινωνική έρευνα Γιατί; 1. Ενώ αναφέρεται σε διαφορές µέσων όρων, όπως και

Διαβάστε περισσότερα

6. ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΚΑΤΑ ΟΜΑΔΕΣ (Cluster Sampling)

6. ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΚΑΤΑ ΟΜΑΔΕΣ (Cluster Sampling) 6. ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΚΑΤΑ ΟΜΑΔΕΣ (Cluster Sampling) Από την θεωρία που αναπτύχθηκε στα προηγούμενα κεφάλαια, φαίνεται ότι μια αλλαγή στον σχεδιασμό της δειγματοληψίας και, κατά συνέπεια, στην μέθοδο εκτίμησης

Διαβάστε περισσότερα

Εργαστήριο Μαθηµατικών & Στατιστικής. 1 η Πρόοδος στο Μάθηµα Στατιστική 5/12/08 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ. 3 ο Θέµα

Εργαστήριο Μαθηµατικών & Στατιστικής. 1 η Πρόοδος στο Μάθηµα Στατιστική 5/12/08 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ. 3 ο Θέµα Εργαστήριο Μαθηµατικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθηµα Στατιστική 5//8 ο Θέµα To % των ζώων µιας µεγάλης κτηνοτροφικής µονάδας έχει προσβληθεί από µια ασθένεια. Για τη διάγνωση της συγκεκριµένης

Διαβάστε περισσότερα