Σελίδα 5: Α Γυμνασίου, Μέρος Β, Γεωμετρία, Κεφάλαιο 2, Συμμετρία

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Σελίδα 5: Α Γυμνασίου, Μέρος Β, Γεωμετρία, Κεφάλαιο 2, Συμμετρία"

Transcript

1 Περιοδική έκδοση για τα Μαθηματικά Γυμνασίου Τεύχος 4 Περιεχόμενα Σελίδα 5: Α Γυμνασίου, Μέρος Β, Γεωμετρία, Κεφάλαιο 2, Συμμετρία Σελίδα 19: Α Γυμνασίου, Μέρος Β, Γεωμετρία, Κεφάλαιο 3, Τρίγωνα - Παραλληλόγραμμα - Τραπέζια Δουκάκης Σπυρίδων & Σαράφης Ιωάννης Αθήνα, Φεβρουάριος 2015 Έκδοση 1.0 ISSN:

2 Πρόλογος Στο τέταρτο τεύχος της περιοδικής έκδοσης για τα Μαθηματικά Γυμνασίου περιλαμβάνεται διδακτικό υλικό για το κεφάλαιο «Συμμετρία» και το κεφάλαιο «Τρίγωνα-Παραλληλόγραμμα- Τραπέζια», το οποίο μπορεί να αξιοποιηθεί τόσο στο πλαίσιο της σχολικής τάξης, όσο και στο σπίτι από τον ίδιο τον μαθητή και την μαθήτρια. Το υλικό περιλαμβάνει φύλλα εργασίας τα οποία είναι δομημένα σε μορφή δίστηλου. Τα φύλλα εργασίας περιλαμβάνουν στην αριστερή στήλη και μέσα σε κατάλληλα πλαίσια θεωρία, χρήσιμες πληροφορίες, ιστορικά σημειώματα κ.α., τα οποία χαρακτηρίζονται από συγκεκριμένα εικονίδια 1 για να μπορεί ο μαθητής και η μαθήτρια να διακρίνει το στόχο τους. Στο κύριο μέρος του φύλλου εργασίας ο μαθητής καλείται να εργαστεί ατομικά ή συνεργατικά για να οικοδομήσει τις γνώσεις τους, μέσα σε ένα πλαίσιο σκαλωσιάς μάθησης, βάσει του ισχύοντος προγράμματος σπουδών, των οδηγιών διδασκαλίας, του υλικού του σχολικού βιβλίου και του υλικού του βιβλίου εκπαιδευτικού. Το υλικό συνοδεύεται από επιλεγμένα μικροπειράματα 2 που προέρχονται από το ψηφιακό σχολείο, από άλλες πηγές ή έχουν αναπτυχθεί από τους συγγραφείς. Κάθε κεφάλαιο ολοκληρώνεται με ασκήσεις, που καλείται να λύσει ο μαθητής. Οι ασκήσεις έχουν αναπτυχθεί με γνώμονα τις ανάγκες της σχολικής τάξης και την εμβάθυνση των μαθητών στις μαθηματικές έννοιες. Τα φύλλα εργασίας και οι ασκήσεις αποτελούν μία οργανωμένη συγκέντρωση των υπαρχουσών πηγών υλικού και στοχεύουν στην υποστήριξη της μάθησης των μαθητών και στην ενίσχυση της μαθηματικής εκπαίδευσης, μέσα από ένα πλούσιο σε πηγές πλαίσιο. Για το λόγο αυτό το υλικό προσφέρεται με άδεια creative commons, ώστε να είναι διαθέσιμο και «ανοικτό» σε όλη την εκπαιδευτική μαθηματική κοινότητα. Το υλικό έχει δουλευτεί στις τάξεις, έχει αξιοποιηθεί από δεκάδες μαθητές και μαθήτριες και από αρκετούς εκπαιδευτικούς. Ευχαριστούμε για τη βοήθεια όλους τους συναδέλφους που μας στήριξαν σε αυτή την προσπάθεια και κυρίως τους συναδέλφους μαθηματικούς του PIERCE- Αμερικανικό Κολλέγιο Ελλάδος και της Ελληνογαλλικής Σχολής Καλαμαρί. Το Τεύχος 4 περιέχει υλικό για τα ακόλουθα: Α Γυμνασίου, Μέρος Β, Γεωμετρία, Κεφάλαιο 2, Συμμετρία Α Γυμνασίου, Μέρος Β, Γεωμετρία, Κεφάλαιο 3, Τρίγωνα - Παραλληλόγραμμα - Τραπέζια Καλή μελέτη! Σπυρίδων Δουκάκης & Ιωάννης Σαράφης Αυτό το υλικό διατίθεται με άδεια Creative Commons Αναφορά Δημιουργού - Παρόμοια Διανομή 4.0 ( Ευχαριστίες στους/στις εκπαιδευτικούς: Η αναφορά σε αυτό θα πρέπει να γίνεται ως εξής: Δουκάκης, Σ., & Σαράφης, Ι. (2015). Περιοδική έκδοση για τα Μαθηματικά Γυμνασίου, Τεύχος 4, (Έκδοση 1.0, σ. 20). Βροντάκη Εμμανουήλ, Διαμάντη Χρήστο, Κάντα Σπυριδούλα, Μιχαλοπούλου Γεωργία και Πέρδο Αθανάσιο. 1 Τα εικονίδια προέρχονται από το βιβλίο: Βακάλη Α., Γιαννόπουλος Η., Ιωαννίδης Ν., Κοίλιας Χ., Μάλαμας Κ., Μανωλόπουλος Ι., Πολίτης Π. (1999), Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον, ΙΤΥΕ, Διόφαντος. 2 Τα μικροπειράματα προέρχονται από το Ψηφιακό σχολείο (dschool.edu.gr) και έχουν αναπτυχθεί από την ομάδα του Εργαστήριου Εκπαιδευτικής Τεχνολογίας με συντονιστή τον Καθ. Κυνηγό Χρόνη.

3 Α Γυμνασίου, Μέρος Β, Γεωμετρία, Κεφάλαιο 2, Συμμετρία

4

5 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Μέρος Β - Κεφάλαιο 2, Β Άξονας συμμετρίας σχήματος ονομάζεται η ευθεία που χωρίζει το σχήμα σε δύο μέρη, τα οποία συμπίπτουν όταν διπλωθεί το σχήμα κατά μήκος της ευθείας. Στην περίπτωση αυτή λέμε ότι το σχήμα έχει άξονα συμμετρίας την ευθεία αυτή. Όταν ένα σχήμα έχει άξονα συμμετρίας, το συμμετρικό του ως προς τον άξονα αυτόν είναι το ίδιο το σχήμα. Κεφάλαιο 2 Β.2.2. Άξονας συμμετρίας 1. Μελετήστε το μικροπείραμα mpb2_1.ggb. (α) Τι παρατηρείτε σ αυτό το σχήμα; (β) Με την ενεργοποίηση του κουμπιού «Πάνω σχήμα» και στη συνέχεια την ενεργοποίηση του κουμπιού «Κάτω σχήμα», τι παρατηρείτε; (γ) Ενεργοποιείστε το κουμπί «Άξονας». Μπορείτε να φανταστείτε ποιος είναι ο ρόλος της ευθείας που εμφανίστηκε; Να βρείτε τους άξονες συμμετρίας του κύκλου και του αντίστοιχου κυκλικού δίσκου (Ο, ρ). Μελετήστε το μικροπείραμα mpb2_2.ggb Να επιλέξετε τη σωστή απάντηση: (1) Κάθε κύκλος και ο αντίστοιχος κυκλικός δίσκος έχουν: (α) έναν άξονα συμμετρίας (β) άπειρους άξονες συμμετρίας (γ) κανένα άξονα συμμετρίας. (2) Εξετάσετε για καθένα από τα κεφαλαία γράμματα του αλφαβήτου A, I, Γ και Θ αν έχουν: (α) κανένα (β) ένα (γ) περισσότερους από ένα άξονες συμμετρίας Α Ι Γ Θ 4. Να σχεδιάστε τους άξονες συμμετρίας των παρακάτω γεωμετρικών σχημάτων. Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 5 από 28

6 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Β Συμμετρικό σημείου Β ως προς ευθεία ε, είναι το σημείο Γ με το οποίο συμπίπτει το Β, αν διπλώσουμε το φύλλο κατά μήκος της ευθείας ε. Β.2.1. Συμμετρία ως προς άξονα 5. Εργαστείτε στο μικροπείραμα mpb2_3.ggb. Δίνεται ισοσκελές τρίγωνο ΑΒΓ με ΑΒ = ΑΓ. (α) Τι παρατηρείτε όταν το τρίγωνο είναι διπλωμένο; Κάθε σημείο μιας ευθείας ε είναι συμμετρικό του εαυτού του ως προς την ε. Δύο σχήματα (Σ1) και (Σ2) λέγονται συμμετρικά ως προς μία ευθεία ε, όταν καθένα αποτελείται από τα συμμετρικά σημεία του άλλου ως προς την ε. Επειδή με δίπλωση κατά μήκος της ε συμπίπτει το (Σ1) με το (Σ2), γνωρίζουμε ότι αυτά θα είναι ίσα. Επομένως: Τα συμμετρικά ως προς ευθεία σχήματα είναι ίσα. (β) Τι παρατηρείτε για το σημείο Μ; (γ) Τι παρατηρείτε για την ευθεία ε σε σχέση με την ΒΓ; (δ) Τι είναι η ΑΔ για την γωνία Α; (ε) Ποιες είναι οι ιδιότητες του ισοσκελούς τριγώνου; Εργαστείτε στο μικροπείραμα mpb2_4.ggb. Τι παρατηρείτε; Εργαστείτε στο μικροπείραμα mpb2_5.ggb. Τι παρατηρείτε; Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 6 από 28

7 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Β Μεσοκάθετος ευθυγράμμου τμήματος λέγεται η ευθεία που είναι κάθετη προς αυτό και διέρχεται από το μέσον του. Κάθε σημείο της μεσοκαθέτου ενός ευθυγράμμου τμήματος έχει ίσες αποστάσεις (ισαπέχει) από τα άκρα του. Β.2.3. Μεσοκάθετος ευθυγράμμου τμήματος 8. Οι χαρταετοί κατασκευάζονται σε διάφορα σχήματα. Ένα από αυτά είναι το ακόλουθο. (α) Αν ο καιρός είναι κατάλληλος, ο χαρταετός με την συγκεκριμένη κατασκευή θα πετάξει; (β) Ποιες, προϋποθέσεις απαιτούνται γι αυτό; Να σχεδιάσετε την μεσοκάθετο ενός ευθυγράμμου τμήματος ΑΒ, χωρίς τη βοήθεια του υποδεκάμετρου και του γνώμονα, αλλά μόνο με τη χρήση «κανόνα και διαβήτη» (mpb2_6.ggb). Κάθε σημείο που ισαπέχει από τα άκρα ενός ευθυγράμμου τμήματος βρίσκεται πάνω στη μεσοκάθετό του. 10. Να κατασκευάσετε ευθεία δ κάθετη σε ευθεία ε στο σημείο της Α. Να κατασκευάσετε την κάθετη δ μιας ευθείας ε από σημείο Α εκτός αυτής. (mpb2_7.ggb). H μεσοκάθετος ενός ευθυγράμμου τμήματος είναι άξονας συμμετρίας του. 11. Να κατασκευάσετε ένα ισόπλευρο τρίγωνο πλευράς α. Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 7 από 28

8 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Β Β.2.5. Κέντρο συμμετρίας Κέντρο συμμετρίας σχήματος ονομάζεται ένα σημείο του Ο, γύρω από το οποίο αν περιστραφεί το σχήμα κατά 180, συμπίπτει με το αρχικό. Στην περίπτωση που υπάρχει τέτοιο σημείο, λέμε ότι το σχήμα έχει κέντρο συμμετρίας το σημείο Ο. 12. Εργαστείτε στο μικροπείραμα mpb2_8.ggb. Ελέγξτε αν τα σχήματα έχουν κέντρο συμμετρίας. 13. Ποιο είναι το κέντρο συμμετρίας ενός κύκλου; Τοποθετήστε ένα "Χ" στις κατάλληλες θέσεις, για τη θετική σας απάντηση. Όταν ένα σχήμα έχει κέντρο συμμετρίας, το συμμετρικό του ως προς το κέντρο αυτό είναι το ίδιο το σχήμα. 15. Να βρείτε στα παρακάτω σχήματα το κέντρο συμμετρίας, αν υπάρχει. Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 8 από 28

9 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Β Β.2.4. Συμμετρία ως προς σημείο 16. Εργαστείτε στο μικροπείραμα mpb2_9.ggb. Τι παρατηρείτε; Συμμετρικό σημείου Α ως προς κέντρο Ο, είναι το σημείο Α', με το οποίο συμπίπτει το Α, αν περιστραφεί περί το Ο κατά Να βρείτε το συμμετρικό Α' του σημείου Α, ως προς σημείο Ο. Δύο σημεία Μ και Μ' είναι συμμετρικά ως προς σημείο Ο, όταν το Ο είναι μέσο του τμήματος ΜΜ'. 18. Να κατασκευάσετε το συμμετρικό Α'Β' ενός ευθυγράμμου τμήματος ΑΒ ως προς σημείο Ο. Δύο σχήματα λέγονται συμμετρικά ως προς σημείο Ο, όταν κάθε σημείο του ενός είναι συμμετρικό ενός σημείου του άλλου ως προς το Ο. 19. Να κατασκευάσετε το συμμετρικό ως προς σημείο Ο: (α) μιας ευθείας ε και (β) μιας ημιευθείας Αx. Τα συμμετρικά ως προς σημείο σχήματα είναι ίσα. 20. Να κατασκευάσετε το συμμετρικό σχήμα μιας γωνίας xây ως προς σημείο Ο. 21. Να κατασκευάσετε το συμμετρικό σχήμα ενός κύκλου (Κ, ρ) ως προς σημείο Ο. Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 9 από 28

10 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Β Β.2.6. Παράλληλες ευθείες που τέμνονται από μια άλλη ευθεία 22. Εργαστείτε στο μικροπείραμα mpb2_10.ggb. Σχήμα 1 (α) Αν σας ρωτούσαν σε ποια ζώνη βρίσκεται το κορίτσι στο Σχήμα 1 τι θα απαντούσατε;... (β) Αν σας ρωτούσαν σε ποια ζώνη βρίσκονται τα αγόρια στο Σχήμα 1 τι θα απαντούσατε;... Σχήμα 2 (γ) Αν σας ρωτούσαν ποια είναι η θέση των δυο παιδιών ως προς τον δρόμο στο Σχήμα 2 τι θα απαντούσατε;... Σχήμα 3 (δ) Αν σας ρωτούσαν ποια είναι η θέση των δυο παιδιών ως προς τον δρόμο στο Σχήμα 3 τι θα απαντούσατε;... Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 10 από 28

11 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Β Μελετήστε τις δραστηριότητες του μικροπειράματος mpb2_11.ggb. Οι γωνίες που βρίσκονται ανάμεσα στις ευθείες ε1 και ε2 ονομάζονται «εντός» (των ευθειών) και όλες οι άλλες «εκτός». Οι γωνίες που βρίσκονται προς το ίδιο μέρος της ευθείας δ ονομάζονται «επί τα αυτά» (μέρη της ευθείας). Δύο γωνίες που βρίσκονται η μία στο ένα κι η άλλη στο άλλο ημιεπίπεδο της ευθείας δ, λέγονται μεταξύ τους «εναλλάξ». Άρα έχουμε έξι ονομασίες για τα διαφορετικά ζευγάρια των γωνιών. (α) εντός εναλλάξ και (β) εκτός εναλλάξ (γ) εντός και επί τα αυτά και (δ) εκτός και επί (ε) τα αυτά εντός - εκτός εναλλάξ και (στ) εντός - εκτός επί τα αυτά. Ο χαρακτηρισμός των γωνιών γίνεται: (α) από τη θέση τους ως προς την ενδιάμεση περιοχή που ορίζουν οι ε1 και ε2 (εντός, εκτός, εντός-εκτός) και (β) από τη θέση τους ως προς τα ημιεπίπεδα που ορίζει η δ (επί τα αυτά, εναλλάξ). Οι χαρακτηρισμοί που δίνονται στα ζεύγη γωνιών είναι ανεξάρτητοι του αν οι ευθείες ε1 και ε2 είναι παράλληλες. 24. Παρατηρήστε το σχήμα και στη συνέχεια καταγράψετε τις γωνίες που βρίσκονται ανάμεσα στις ευθείες ε1 και ε Παρατηρήστε το σχήμα και στη συνέχεια καταγράψετε τις γωνίες που βρίσκονται προς το ίδιο μέρος της ευθείας δ. 26. Παρατηρήστε το σχήμα και στη συνέχεια καταγράψετε τις γωνίες που βρίσκονται η μία στο ένα κι η άλλη στο άλλο ημιεπίπεδο της ευθείας δ. 27. Παρατηρήστε το σχήμα και στη συνέχεια καταγράψετε (α) τις εντός εναλλάξ γωνίες, (β) τις εκτός εναλλάξ γωνίες, (γ) εντός και επί τα αυτά γωνίες, (δ) τις εκτός και επί τα αυτά γωνίες, (ε) τις εντός - εκτός εναλλάξ γωνίες, (στ) τις εντός - εκτός επί τα αυτά γωνίες, Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 11 από 28

12 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Β Στην περίπτωση κατά την οποία οι ευθείες που τέμνονται από άλλη είναι παράλληλες τότε ισχύουν ορισμένες σημαντικές σχέσεις μεταξύ των γωνιών. 28. Να συγκρίνετε μεταξύ τους τις γωνίες, που σχηματίζονται στα σημεία Α και Β, στα οποία τέμνει μια ευθεία δ δύο παράλληλες ευθείες ε 1 και ε 2 αντίστοιχα. 1. Οι εντός εναλλάξ γωνίες είναι ίσες. 2. Οι εντός εκτός και επί τα αυτά γωνίες είναι ίσες. 3. Οι εντός και επί τα αυτά γωνίες είναι παραπληρωματικέ ς. Αν μια από τις παραπάνω προτάσεις ισχύει, τότε οι ευθείες ε1 και ε2 είναι παράλληλες Στο παρακάτω σχήμα είναι ε1//ε2. Να υπολογίσετε όλες τις γωνίες, που είναι σημειωμένες, αν είναι α = 40. Συνεπώς, κάθε μια από τις παραπάνω τρεις προτάσεις αποτελεί συνθήκη παραλληλίας Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 12 από 28

13 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Μέρος Β - Κεφάλαιο 2, Υλικό αξιολόγησης Ασκήσεις προς λύση 2.1. Στο παρακάτω σχήμα σχεδιάστε το συμμετρικό του τριγώνου ΑΒΓ ως προς την πλευρά ΒΓ. Τι σχήμα σχηματίζεται και γιατί; 2.2. Να κατασκευάσετε το συμμετρικό του ευθύγραμμου τμήματος ΚΛ ως προς την ευθεία ε σε καθένα από τα παρακάτω σχήματα: α) β) γ) δ) 2.3. Να κατασκευάσετε το συμμετρικό ενός τυχαίου τριγώνου ΑΒΓ ως προς: α) ευθεία ε η οποία διέρχεται από τα σημεία Β και Γ. β) τυχαία ευθεία που διέρχεται από το σημείο Γ. γ) ευθεία δ που είναι παράλληλη στην ΑΓ και διέρχεται από το σημείο Β Δίνεται μια γωνία διχοτόμο Οδ. xoy και η διχοτόμος της Οδ. Να βρείτε το συμμετρικό της γωνίας ως προς τη 2.5. Δίνεται τυχαίο τρίγωνο ΑΒΓ και η διάμεσός του ΑΜ. Να κατασκευάσετε το συμμετρικό του τριγώνου ως προς τη διάμεσο ΑΜ. Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 13 από 28

14 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Μέρος Β - Κεφάλαιο 2, Υλικό αξιολόγησης 2.6. Δίνεται ένα ισοσκελές τρίγωνο ΑΒΓ (ΑΒ = ΑΓ) και ένα ισόπλευρο τρίγωνο ΚΛΜ. Να χαράξετε τους άξονες συμμετρίας σε καθένα από τα σχήματα Χαράξτε τον ή τους άξονες συμμετρίας σε όσα από τα παρακάτω σχήματα έχουν άξονα συμμετρίας Να βρείτε τους άξονες συμμετρίας του σχήματος που αποτελείται από δύο ίσους κύκλους αν αυτοί: α) εφάπτονται εξωτερικά, β) τέμνονται, γ) βρίσκονται ο ένας μέσα στον άλλο Δίνεται τυχαίο τρίγωνο ΑΒΓ. Κατασκευάστε τις μεσοκαθέτους του. Τι παρατηρείτε; Δίνεται ευθεία ε και δύο σημεία Α και Β εκτός της ευθείας. Να βρείτε το σημείο της ευθείας ε που απέχει την ίδια απόσταση από τα σημεία Α και Β. Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 14 από 28

15 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Μέρος Β - Κεφάλαιο 2, Υλικό αξιολόγησης Στο παρακάτω σχήμα δίνονται δύο ομόκεντροι κύκλοι με κέντρο Κ. Αποδείξτε ότι η κάθετη στις ΑΒ και ΓΔ από το Κ είναι μεσοκάθετός τους Να βρείτε το κέντρο ενός κύκλου, χρησιμοποιώντας μόνο κανόνα και διαβήτη Κατασκευάστε το συμμετρικό του ευθύγραμμου τμήματος ΑΒ ως προς το σημείο Μ στα παρακάτω σχήματα: α) β) γ) δ) Να κατασκευάσετε το συμμετρικό ενός τριγώνου ΑΒΓ ως προς: α) το μέσο Δ της πλευράς ΑΓ. β) το σημείο Β Να βρείτε το συμμετρικό μιας ημιευθείας ως προς την αρχή της Να βρείτε το συμμετρικό ενός ορθογωνίου τριγώνου ως προς την κορυφή της ορθής γωνίας του Να βρείτε το κέντρο συμμετρίας του παρακάτω σχήματος. Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 15 από 28

16 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Μέρος Β - Κεφάλαιο 2, Υλικό αξιολόγησης Να βρείτε το κέντρο συμμετρίας του παρακάτω σχήματος Στο παρακάτω σχήμα δίνεται ε 1//ε 2 και η γωνία γ είναι μεγαλύτερη από τη γωνία α κατά 53. Να υπολογίσετε τις γωνίες α, β, γ, δ, κ, λ Στο παρακάτω σχήμα οι ευθείες ε 1 και ε 2 είναι παράλληλες με τέμνουσες τις δ 1 και δ 2, που τέμνονται στο σημείο Α της ευθείας ε 1. Δίνονται οι γωνίες 50 και ω 130. Να υπολογίσετε σε μοίρες, τις γωνίες α, β, γ, δ. Να αιτιολογήσετε τις απαντήσεις σας. Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 16 από 28

17 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Μέρος Β - Κεφάλαιο 2, Υλικό αξιολόγησης Οι ημιευθείες Οx, Ay και Βz είναι παράλληλες. Να υπολογίσετε τις γωνίες α, β, ΟΑΒ Στο παρακάτω σχήμα ισχύει ε 1//ε 2. Οι ε 1 και ε 2 τέμνονται από τις ε 3//ε 4. Να υπολογίσετε τις γωνίες α, β, γ Στο παρακάτω σχήμα ισχύει ε 1//ε 2. Να υπολογίσετε τις γωνίες x, y Στο παρακάτω σχήμα ισχύει ε 1 //ε 2 //ε 3. Να υπολογίσετε τις γωνίες x, y, ω. Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 17 από 28

18 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Μέρος Β - Κεφάλαιο 2, Υλικό αξιολόγησης Στο παρακάτω σχήμα ισχύει x x //y y, xby 35 και AB BΓ. Να υπολογίσετε τις γωνίες θ, κ, α Αν ε 1//ε 2, να υπολογίσετε τις γωνίες που σημειώνονται στο παρακάτω σχήμα Στο παρακάτω σχήμα ισχύει ε 1//ε 2. Να υπολογίσετε τις γωνίες x, y, ω Στο παρακάτω σχήμα έχουμε ε 1 //ε 2 //ε 3 και τέμνονται από τις δ 1 και δ 2.Να υπολογίσετε: α) το x. β) τις γωνίες α, β, γ, κ. Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 18 από 28

19 Α Γυμνασίου, Μέρος Β, Γεωμετρία, Κεφάλαιο 3, Τρίγωνα - Παραλληλόγραμμα - Τραπέζια

20

21 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Β Κάθε τρίγωνο ΑΒΓ έχει τρεις κορυφές Α, Β, Γ, τρεις πλευρές ΑΒ, ΒΓ, ΓΑ και τρεις γωνίες. Κεφάλαιο 3ο: Τρίγωνα - Παραλληλόγραμμα - Τραπέζια Β.3.1 Στοιχεία τριγώνου - Είδη τριγώνων 30. Μελετήστε το μικροπείραμα mpb3_1.ggb. (α) Να καταγράψετε τα κριτήρια με τα οποία διακρίνουμε τα τρίγωνα (β) Να σχεδιάσετε από ένα αντίστοιχο τρίγωνο. Τα ΑΒ, ΒΓ, ΓΑ, εκτός από τις πλευρές, συμβολίζουν και τα μήκη των αντίστοιχων ευθυγράμμων τμημάτων. Μία γωνία ορθή: Ορθογώνιο 31. Δευτερεύοντα στοιχεία τριγώνου (α) Το ευθύγραμμο τμήμα που ενώνει την κορυφή ενός τριγώνου με το μέσο της απέναντι πλευράς, λέγεται διάμεσος. Να σχεδιάσετε και τις υπόλοιπες διαμέσους στο τρίγωνο ΑΒΓ. Μία γωνία μεγαλύτερη της ορθής: Αμβλυγώνιο Όλες οι γωνίες μικρότερες της ορθής: Οξυγώνιο (β) Το ευθύγραμμο τμήμα που φέρνουμε από μία κορυφή ενός τριγώνου κάθετο στην ευθεία της απέναντι πλευράς, λέγεται ύψος του τριγώνου. Να σχεδιάσετε και τα υπόλοιπα ύψη στο τρίγωνο ΑΒΓ. Τρεις πλευρές ίσες: Ισόπλευρο Δύο πλευρές ίσες: Ισοσκελές (γ) Το ευθύγραμμο τμήμα της διχοτόμου μιας γωνίας ενός τριγώνου που φέρνουμε από μια κορυφή και καταλήγει στην απέναντι πλευρά, λέγεται διχοτόμος του τριγώνου. Να σχεδιάσετε και τις υπόλοιπες διχοτόμους στο τρίγωνο ΑΒΓ. Όλες οι πλευρές άνισες Σκαληνό Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 21 από 28

22 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Β Β.3.2. Άθροισμα γωνιών τριγώνου - Ιδιότητες ισοσκελούς τριγώνου Σε κάθε τρίγωνο ΑΒΓ ˆ ισχύει: Αˆ Βˆ Γˆ 180 ο 32. Μελετήστε το μικροπείραμα mpb3_2.ggb. (α) Να εξετάσετε σε κάθε περίπτωση πόσο είναι το άθροισμα των γωνιών του τριγώνου. Να διατυπώσετε έναν κανόνα (β) Να εξετάσετε αν είναι δυνατόν όλες οι γωνίες ενός τριγώνου να είναι ίσες. Εξηγήστε (γ) Να εξετάσετε αν είναι δυνατόν δύο γωνίες του (π.χ οι Β και Γ) να είναι ορθές. Εξηγήστε (δ) Να εξετάσετε το άθροισμα των γωνιών Β και Γ όταν η γωνία Α γίνει ορθή. Εξηγήστε Να επιχειρηματολογήσετε για το άθροισμα των τριών γωνιών κάθε τριγώνου. Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 22 από 28

23 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Β Σε κάθε ορθογώνιο τρίγωνο οι οξείες γωνίες είναι συμπληρωματικές Το άθροισμα δύο γωνιών ενός τριγώνου ισούται με την εξωτερική της τρίτης γωνίας. (Στο τρίγωνο ΑΒΓ η γωνία ΑΓx ˆ, που σχηματίζεται από την ΑΓ και την προέκταση της ΒΓ προς το μέρος του Γ, ονομάζεται εξωτερική γωνία της ˆΓ ) Στο παρακάτω σχήμα η ε 1 είναι παράλληλη στην ε 2. Να υπολογίσετε τις γωνίες α, β, γ και δ. 37. Στο παρακάτω σχήμα, αν ε 1 // ε 2, να υπολογίσετε τις γωνίες x, y και ω: Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 23 από 28

24 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Μέρος Β - Κεφάλαιο 3, Υλικό αξιολόγησης Στοιχεία τριγώνου - Είδη τριγώνων Ασκήσεις προς λύση 3.1. Να σχεδιάσετε ένα τρίγωνο ΑΒΓ και τη διάμεσο του ΓΔ. Να φέρετε τις διαμέσους ΑΜ και ΒΖ αντίστοιχα στα τρίγωνα ΑΔΓ και ΒΓΔ Σε τυχαίο τρίγωνο ΑΒΓ να χαράξετε τις τρείς διαμέσους. Τι παρατηρείτε; 3.3. Σε ορθογώνιο τρίγωνο ΑΒΓ ( Α 90 ),να φέρετε τη διάμεσο Μ και να συγκρίνετε το μήκος της με τα τμήματα ΒΜ και ΜΓ Δίνεται τρίγωνο ΑΒΓ και η διάμεσος του ΑΔ. Από την κρυφή Α να φέρετε τα ύψη των τριγώνων ΑΒΔ και ΑΔΓ. Τι παρατηρείτε; Άθροισμα γωνιών τριγώνου-ιδιότητες ισοσκελούς τριγώνου 3.5. Να υπολογίσετε τις γωνίες α, β στα παρακάτω σχήματα. α) β) αν ΑΒ // ΓΔ 3.6. Να υπολογίσετε τις γωνίες x, y, z στα παρακάτω σχήματα. α) β) ΑΒ // ΓΔ και ΑΔ // ΒΓ Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 24 από 28

25 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Μέρος Β - Κεφάλαιο 3, Υλικό αξιολόγησης 3.7. Δίνεται τρίγωνο ΑΒΓ με ˆΒ 44, ˆΓ 39. Μια ευθεία ε//βγ τέμνει τις πλευρές ΑΒ, ΑΓ στα σημεία Δ, Ε αντίστοιχα. Να υπολογίσετε τις γωνίες του τριγώνου ΑΔΕ Δίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ = ΑΓ) με ˆΒ 70. Φέρουμε τη διχοτόμο ΒΔ της γωνίας Β. Να υπολογίσετε τις γωνίες των τριγώνων ΑΒΓ, ΒΔΓ Να υπολογίσετε τις γωνίες α, β, γ στα παρακάτω σχήματα. α) ε 1 // ε 2 β) Αx//ΒΓ Δίνεται τρίγωνο ΑΒΓ με ˆΑ 60, ˆΒ 75 και ΑΒ < ΑΓ. Στην πλευρά ΑΓ θεωρούμε σημείο Δ ώστε ΓΔ = ΒΔ. Να αποδείξετε ότι το τρίγωνο ΒΓΔ είναι ισοσκελές και ορθογώνιο Δίνεται τρίγωνο ΑΒΓ με γωνίες ˆΑ 30, ˆΒ (x 30) και ˆΓ (2x). Να υπολογίσετε τις γωνίες του και να προσδιορίσετε το είδος του τριγώνου ως προς τις γωνίες του Να υπολογίσετε τις γωνίες του παρακάτω τριγώνου ΑΒΓ και να βρείτε το είδος του. Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 25 από 28

26 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Μέρος Β - Κεφάλαιο 3, Υλικό αξιολόγησης Στο παρακάτω σχήμα οι ευθείες ε 1 και ε 2 είναι παράλληλες. α) Να υπολογίσετε τις γωνίες x, y, z, ω και θ. β) Να αναφέρετε το είδος του τριγώνου ΚΛΜ ως προς τις γωνίες του Δύο ευθείες x x και y y παράλληλες μεταξύ τους τέμνονται από τρίτη ευθεία ε στα σημεία Α και Β αντίστοιχα και η γωνία x Αε είναι 130 ο. Φέρνουμε τη διχοτόμο της γωνίας ΑΒy που τέμνει την x x στο Γ. Να υπολογίσετε όλες τις γωνίες του τριγώνου ΑΒΓ Να υπολογίσετε στο παρακάτω σχήμα τις γωνίες x, y, ω γνωρίζοντας ότι οι ευθείες (ε) και (δ) είναι παράλληλες. Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 26 από 28

27 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Μέρος Β - Κεφάλαιο 3, Υλικό αξιολόγησης Στο παρακάτω σχήμα έχουμε ε 1 // ε 2 και ΔΗ η διχοτόμος της γωνίας ΕΔΘ. Να υπολογίσετε τις γωνίες x, y, ω, z και να δικαιολογήσετε την απάντησή σας Στο παρακάτω σχήμα να υπολογίσετε τη γωνία ˆx. o Σε ένα τρίγωνο ΑΒΓ είναι ˆB 36 και η γωνία Â είναι διπλάσια από τη γωνία ˆΓ. Να υπολογίσετε τις γωνίες Â, ˆΓ Σε ισοσκελές τρίγωνο ΚΛΜ με ΚΛ = ΛΜ, η γωνία ˆΛ είναι κατά 42 ο μεγαλύτερη από τη γωνία ˆΚ. Να υπολογίσετε τις γωνίες του τριγώνου ΚΛΜ Στο παρακάτω σχήμα η γωνία ˆB είναι 74 ο και η γωνία ˆΓ είναι32 ο. Φέρνουμε τις διχοτόμους ΒΕ και ΓΖ οι οποίοι τέμνονται στο Δ. Να υπολογίσετε τις γωνίες Â και ΒΔΓ Να υπολογίσετε τη γωνία ŷ στο παρακάτω σχήμα. Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 27 από 28

28 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Μέρος Β - Κεφάλαιο 3, Υλικό αξιολόγησης Υπολογίστε τις γωνίες ˆ ˆ x, y στο παρακάτω σχήμα. Ισχύει ότι ε 1 // ε 2 και δ 1 // δ 2. Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 28 από 28

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι

Διαβάστε περισσότερα

Βασικές Γεωμετρικές έννοιες

Βασικές Γεωμετρικές έννοιες Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο

Διαβάστε περισσότερα

Γεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η

Γεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η Γεωμετρία Κεφάλαιο 1: Βασικές γεωμετρικές έννοιες Β.1.1 61.Η ευθεία είναι βασική έννοια της γεωμετρίας που την αντιλαμβανόμαστε ως την γραμμή που αφήνει ο κανόνας (χάρακας).συμβολίζεται με μικρά γράμματα

Διαβάστε περισσότερα

Παράλληλες ευθείες που τέμνονται από μια άλλη ευθεία. είναι «επί τα αυτά».

Παράλληλες ευθείες που τέμνονται από μια άλλη ευθεία. είναι «επί τα αυτά». Παράλληλες ευθείες που τέμνονται από μια άλλη ευθεία Οι γωνίες που βρίσκονται ανάμεσα στις ευθείες ε 1 και ε ονομάζονται «εντός» (των ευθειών)και όλες οι άλλες «εκτός». Οι γωνίες B 4, B 3, 1, είναι εντός

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ 1)Τι ονομάζεται διχοτόμος μιας γωνίας ; Διχοτόμος γωνίας ονομάζεται η ημιευθεία που έχει αρχή την κορυφή της γωνίας και τη χωρίζει σε δύο ίσες γωνίες. 2)Να

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ

ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ 1. Απόσταση δύο σηµείων Α και Β είναι το µήκος του ευθύγραµµου τµήµατος που τα ενώνει. 2. Γωνία είναι το µέρος του επιπέδου που βρίσκεται µεταξύ

Διαβάστε περισσότερα

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ 1 ΛΕΞΙΚΟ ΓΕΩΜΕΤΡΙΚΩΝ ΟΡΩΝ Α Ακτίνιο Ακτίνα κύκλου Ακτίνα σφαίρας Άκρα ευθύγραµµου τµήµατος Αµβλεία γωνία Αµβλυγώνιο Ανάλογα ευθύγραµµα τµήµατα Αντιδιαµετρικό σηµείο Αντικείµενες ηµιευθείες Άξονας συµµετρίας

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ

ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ 1) Από εξωτερικό σημείο Ρ ενός κύκλου (Ο,ρ) φέρνουμε τα εφαπτόμενα τμήματα ΡΑ και ΡΒ. Αν Μ είναι ένα τυχαίο εσωτερικό σημείο του ευθύγραμμου τμήματος ΟΡ, να αποδείξετε ότι: α) τα

Διαβάστε περισσότερα

Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων.

Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων. ΜΕΡΟΣ Β 1.1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ 397 1. 1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων. Σε κάθε τρίγωνο οι πλευρές και οι γωνίες του ονομάζονται κύρια στοιχεία του τριγώνου. Οι πλευρές

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ

ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ Τι ονοµάζουµε γωνία σε ένα επίπεδο; Tι ονοµάζουµε κορυφή µιας γωνίας και τι πλευρά µιας γωνίας; Πότε δύο σχήµατα λέγονται ίσα; Τι ονοµάζουµε απόσταση δύο σηµείων; Τι ονοµάζουµε µέσο ενός ευθυγράµµου τµήµατος;

Διαβάστε περισσότερα

Σωστό -λάθος. 2) Δύο τρίγωνα που έχουν τις γωνίες τους ίσες μία προς μία είναι ίσα

Σωστό -λάθος. 2) Δύο τρίγωνα που έχουν τις γωνίες τους ίσες μία προς μία είναι ίσα Σωστό -λάθος Α. Για καθεμιά από τις παρακάτω προτάσεις να γράψετε στο τετράδιό σας τον αριθμό της και, ακριβώς δίπλα, την ένδειξη (Σ), αν η πρόταση είναι σωστή, ή (Λ), αν αυτή είναι λανθασμένη. 1)Δύο ισόπλευρα

Διαβάστε περισσότερα

3, ( 4), ( 3),( 2), 2017

3, ( 4), ( 3),( 2), 2017 ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι

Διαβάστε περισσότερα

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις Γεωμετρία Β Λυκείου Κεφάλαιο 9 Γεωμετρία Βˊ Λυκείου Κεφάλαιο 9 ο Μετρικές Σχέσεις ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Μετρικές σχέσεις ονομάζουμε τις σχέσεις μεταξύ των μέτρων των στοιχείων

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης

ΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης ΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γρήγορη Επανάληψη Θεωρίας Ένα τρίγωνο ανάλογα με το είδος των γωνιών του ονομάζεται: Σε κάθε ορθογώνιο τρίγωνο η πλευρά που

Διαβάστε περισσότερα

Τρίγωνο λέγεται το σχήμα που ορίζεται από τρία σημεία A,B και Γ, μη περιεχόμενα σε μία και μόνον ευθεία, καθώς και τα ευθύγραμμα τμήματα που τα

Τρίγωνο λέγεται το σχήμα που ορίζεται από τρία σημεία A,B και Γ, μη περιεχόμενα σε μία και μόνον ευθεία, καθώς και τα ευθύγραμμα τμήματα που τα Τρίγωνο λέγεται το σχήμα που ορίζεται από τρία σημεία A,B και Γ, μη περιεχόμενα σε μία και μόνον ευθεία, καθώς και τα ευθύγραμμα τμήματα που τα ενώνουν. Τα τρία σημεία αυτά λέγονται κορυφές του τριγώνου.

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ

ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 1 Ο Βασικές Γεωμετρικές Έννοιες ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Μια τεντωμένη κλωστή με άκρα δύο σημεία Α και Β μας δίνει μια εικόνα της έννοιας του.. Τα σημεία Α και Β λέγονται.. 2. Τι ονομάζεται ευθεία;..

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΟΣ & ΕΡΓΑΣΙΑΣ

ΜΑΘΗΜΑΤΟΣ & ΕΡΓΑΣΙΑΣ ΦΥΛΛΟ ΜΑΘΗΜΑΤΟΣ & ΕΡΓΑΣΙΑΣ ΓΕΩΜΕΤΡΙΑ Α ΚΕΦΑΛΑΙΟ 3 3.1-3.6 Τρίγωνα Πλευρές ΑΒ ή ΒΑ ή γ ΑΓ ή ΓΑ ή β ΒΓ ή ΓΒ ή α Γωνίες ˆ ή ˆ ή ˆ ˆ ή ˆ ή ˆ ˆ ή ˆ ή ˆ μ α δ α υ α Διάμεσος ΑΜ ή μ α Διχοτόμος ΑΔ ή δ α Ύψος

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

Μαθηματικά Α Γυμνασίου. Επαναληπτικές ερωτήσεις θεωρίας

Μαθηματικά Α Γυμνασίου. Επαναληπτικές ερωτήσεις θεωρίας Μαθηματικά Α Γυμνασίου Επαναληπτικές ερωτήσεις θεωρίας Επαναληπτικές Ερωτήσεις Θεωρίας 1. Τι ονομάζεται Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) δύο ή περισσότερων αριθμών; Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) δύο

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΑΡΑΛΛΗΛΕΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΑΡΑΛΛΗΛΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΑΡΑΛΛΗΛΕΣ 1 Σε ισοσκελές τρίγωνο ΑΒΓ με ΑΒ=ΑΓ είναι =80. Παίρνουμε τυχαίο σημείο Ε στην πλευρά ΒΓ και κατόπιν τα σημεία Δ και Ζ στις πλευρές ΑΒ και ΑΓ αντίστοιχα έτσι ώστε ΒΔ=ΒΕ και ΓΕ=ΓΖ.

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ

ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ Χρήστος Π. Μουρατίδης 2013 2014 ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΥΜΝΑΣΙΟ ΑΓΙΩΝ ΑΝΑΡΓΥΡΩΝ ΤΑΞΗ Α ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ B Κ 1.1 ΕΝΟΤΗΤΑ : Βασικές Γεωμετρικές ένοιες Τάξη : A Γυμνασίου. Καθ. Χρήστος Μουρατίδης

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι η Ευκλείδια διαίρεση; Είναι η διαδικασία κατά την οποία όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε βρίσκουμε άλλους δύο φυσικούς αριθμούς π και υ,

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων

ΕΝΟΤΗΤΑ Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων ΕΝΟΤΗΤΑ Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / Σελίδα 37 Στο παρακάτω σχήμα σχεδιάστε την διάμεσο ΑΜ, την διάμεσο ΒΛ και την διάμεσο ΓΝ. Τι παρατηρείτε; Να κατασκευάσετε

Διαβάστε περισσότερα

Τεύχος 5. Περιοδική έκδοση για τα Μαθηματικά Γυμνασίου https://mathsgymnasio.wordpress.com/ Περιεχόμενα

Τεύχος 5. Περιοδική έκδοση για τα Μαθηματικά Γυμνασίου https://mathsgymnasio.wordpress.com/ Περιεχόμενα Περιοδική έκδοση για τα Μαθηματικά Γυμνασίου https://mathsgymnasio.wordpress.com/ Τεύχος 5 Περιεχόμενα Σελίδα 5: Α Γυμνασίου, Μέρος Α, Άλγεβρα, Κεφάλαιο 7, Θετικοί και Αρνητικοί Αριθμοί Δουκάκης Σπυρίδων

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του 198 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Στο παρακάτω σχήμα το τρίγωνο ΑΒΓ είναι ορθογώνιο στο Α. Αν ΑΔ ΒΓ, ΕΔ ΑΒ τότε το τρίγωνο

Διαβάστε περισσότερα

Τάξη A Μάθημα: Γεωμετρία

Τάξη A Μάθημα: Γεωμετρία Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού

Διαβάστε περισσότερα

Ιωάννης Σ. Μιχέλης Μαθηματικός

Ιωάννης Σ. Μιχέλης Μαθηματικός 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; Το άθροισμα ενός φυσικού αριθμού με το 0 ισούται με τον ίδιο αριθμό. α+0=α Αντιμεταθετική ιδιότητα. Με βάση την οποία

Διαβάστε περισσότερα

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες. ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΑ ΓΙΑ ΤΟΝ ΔΙΑΓΩΝΙΣΜΟ «ΘΑΛΗΣ» ΤΑΞΗ Α ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ 1. Μεσοκάθετος ενός ευθύγραμμου τμήματος ΑΒ ονομάζεται η ευθεία που είναι κάθετη

Διαβάστε περισσότερα

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου.

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Τυπολόγιο Μαθηματικών Πρόλογος Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Π ε ρ ι ε χ ό μ ε ν α Λυκείου Άλγεβρα 001 018 Γεωμετρία 019

Διαβάστε περισσότερα

Γεωμετρία. Κεφ 1 ο : Γεωμετρια.

Γεωμετρία. Κεφ 1 ο : Γεωμετρια. Μαθηματικά Γ Γυμνασίου Γεωμετρία. Κεφ 1 ο : Γεωμετρια. Μέρος Α Θεωρία. 1. Με τι είναι ίσο το άθροισμα των γωνιών ενός τριγώνου; 2. Ποιο τρίγωνο λέγετε οξυγώνιο αμβλυγώνιο ορθογώνιο. 3. Ποιο τρίγωνο λέγετε

Διαβάστε περισσότερα

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α )

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α ) A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α ) 1 Στις πλευρες ΑΒ, ΒΓ, ΓΑ ισοπλευρου τριγωνου ΑΒΓ, παιρνουμε 3 Να δειχτει οτι α + 110 0α Ποτε ισχυει Συγκρινετε το ισον; τα τριγωνα με σημεια Δ, Ε, Ζ αντιστοιχα,

Διαβάστε περισσότερα

4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ

4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ 4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ 1. Δίνεται ορθογώνιο και ισοσκελές τρίγωνο ΑΒΓ( ˆ =90 ο ) και ΑΔ η διχοτόμος της γωνίας A. Από το σημείο Δ φέρουμε παράλληλη προς την ΑΒ που τέμνει την πλευρά ΑΓ στο σημείο

Διαβάστε περισσότερα

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία 2014 2015 ΜΑΥΡΑΓΑΝΗΣ ΣΤΑΘΗΣ ΚΑΡΑΓΕΩΡΓΟΣ ΒΑΣΙΛΗΣ ΘΕΩΡΙΑ ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 2 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ιδακτέα εξεταστέα ύλη σχολικού

Διαβάστε περισσότερα

Τρίγωνα. Αθανασίου Δημήτρης (Μαθηματικός)

Τρίγωνα. Αθανασίου Δημήτρης (Μαθηματικός) Τρίγωνα Αθανασίου Δημήτρης (Μαθηματικός) www.peira.gr asepfreedom@yahoo.gr 1 3.1 Στοιχεία και είδη τριγώνων 2 Ένα τρίγωνο ΑΒΓ έχει τρεις κορυφές Α, Β, Γ, τρεις πλευρές ΒΓ, ΓΑ, ΑΒ και τρεις γωνίες Β ΑΓ,

Διαβάστε περισσότερα

α) Να υπολογίσετε τις γωνίες των τριγώνων Β Ε γ) Να υπολογίσετε τη γωνία ΕΖ.

α) Να υπολογίσετε τις γωνίες των τριγώνων Β Ε γ) Να υπολογίσετε τη γωνία ΕΖ. 1. Σε ισοσκελές τρίγωνο ΑΒΓ µε ΑΒ=ΑΓ είναι Â =80. Παίρνουµε τυχαίο σηµείο Ε στην πλευρά ΒΓ και κατόπιν τα σηµεία και Ζ στις πλευρές ΑΒ και ΑΓ αντίστοιχα έτσι ώστε Β =ΒΕ και ΓΕ=ΓΖ. α) Να υπολογίσετε τις

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

Μαθηµατικά Κατεύθυνσης Β Λυκείου Ευθεία. Ασκήσεις Ευθεία

Μαθηµατικά Κατεύθυνσης Β Λυκείου Ευθεία. Ασκήσεις Ευθεία Ασκήσεις Ευθεία 1. Να βρεθεί η εξίσωση της ευθείας η οποία διέρχεται από το σηµείο τοµής των ευθειών 3x + 4y 11 = 0 και 2x 3y + 21 = 0 και να γίνει η γραφική της παράσταση όταν είναι: i) παράλληλη στην

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ ΜΕΡΟΣ ΚΕΦΛΙΟ 1 Ο ΕΩΜΕΤΡΙ 1.1 ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ 1. Ποια ονομάζονται κύρια και ποια δευτερεύοντα στοιχεία τριγώνων; Κύρια στοιχεία ενός τριγώνου ονομάζουμε τις πλευρές και τις γωνίες του. Δευτερεύοντα στοιχεία

Διαβάστε περισσότερα

2ο ΘΕΜΑ. μ Σε ισοσκελές τρίγωνο ΑΒΓ AB

2ο ΘΕΜΑ. μ Σε ισοσκελές τρίγωνο ΑΒΓ AB 2ο ΘΕΜΑ 2845. Σε ισοσκελές τρίγωνο ΑΒΓ AB A φέρουμε τη ΑΔ και μια ευθεία (ε) παράλληλη προς τη ΒΓ, που τέμνει τις πλευρές ΑΒ και ΑΓ στα σημεία Ε και Ζ αντίστοιχα. Να αποδείξετε ότι: α) Το τρίγωνο ΑΕΖ είναι

Διαβάστε περισσότερα

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ Ερώτηση 1 η Ποια καλούνται κύρια και ποια δευτερεύοντα στοιχεία ενός τριγώνου; Τι ονομάζεται τριγωνική ανισότητα; Κύρια στοιχεία ενός τριγώνου είναι οι πλευρές και οι γωνίες του. Οι

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράλληλες Ευθείες και Τετράπλευρα Ορισμός. Δύο ευθείες ονομάζονται παράλληλες όταν ανήκουν στο ίδιο επίπεδο και δεν τέμνονται. Δύο παράλληλες ευθείες ε και ζ συμβολίζονται ε ζ. Γωνίες δύο ευθειών

Διαβάστε περισσότερα

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων Μάθημα: Γεωμετρία Α Λυκείου Παρουσιάζουμε συνοπτικές λύσεις σε επιλεγμένα Θέματα («Θέμα 4 ο») από την Τράπεζα θεμάτων. Το αρχείο αυτό τις επόμενες ημέρες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΓΕΩΜΕΤΡΙΑ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΓΕΩΜΕΤΡΙΑ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ.1.1. Σημείο - Ευθύγραμμο τμήμα - Ευθεία - Ημιευθεία - Επίπεδο - Ημιεπίπεδο. ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / 1. Σχεδιάστε το ευθύγραμμο τμήμα Α και το ευθύγραμμο τμήμα ΓΔ A B Γ Δ 2.

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ 43. Ύλη: Όλη η ύλη

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ 43. Ύλη: Όλη η ύλη ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ 43 Ον/μο:.. Α Λυκείου Ύλη: Όλη η ύλη 08-05-16 Θέμα 1 ο : Α. Σε ποιες κατηγορίες ταξινομούνται τα τρίγωνα με βάση τις πλευρές τους και σε ποιες με βάση τις γωνίες τους; (αναλυτικά)

Διαβάστε περισσότερα

ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ. 2ο ΘΕΜΑ

ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ. 2ο ΘΕΜΑ ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ 5029 Έστω κυρτό τετράπλευρο ΑΒΓΔ με και α) β) Το τρίγωνο ΑΔΓ είναι ισοσκελές μ 10 γ) Η ευθεία ΒΔ είναι μεσοκάθετος του τμήματος ΑΓ μ 7 5619 Δίνεται γωνία χαy και

Διαβάστε περισσότερα

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και Α. Να χαρακτηρίσετε Σωστές (Σ) ή Λάθος (Λ) τις παρακάτω προτάσεις: α. Οι διχοτόμοι δύο διαδοχικών και παραπληρωματικών γωνιών σχηματίζουν ορθή γωνία. β. Οι διαγώνιες κάθε παραλληλογράμμου είναι ίσες μεταξύ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΟΣ & ΕΡΓΑΣΙΑΣ

ΜΑΘΗΜΑΤΟΣ & ΕΡΓΑΣΙΑΣ Η ΓΕΩΜΕΤΡΙΑ της Α τάξης του ΕΠΑΛ με Φύλλα Μαθήματος & Εργασίας - ΕΠΑΛ ΚΑΛΑΜΑΡΙΑΣ 014 ΦΥΛΛΟ ΜΑΘΗΜΑΤΟΣ & ΕΡΓΑΣΙΑΣ ΓΕΩΜΕΤΡΙΑ Α ΕΠΑΛ ΚΕΦΑΛΑΙΟ 3 3.1-3.6 Τρίγωνα ΕΠΑΛ ΚΑΛΑΜΑΡΙΑΣ Ονομασία Πλευρών ΑΒ ή ΒΑ ή γ

Διαβάστε περισσότερα

ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο

ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο τέλος της πρότασης αν αυτή είναι Σωστή και Λ αν αυτή είναι Λάθος: ύο τρίγωνα είναι ίσα αν έχουν ίσες

Διαβάστε περισσότερα

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 4 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=ΒΓ. Φέρνουμε το ΑΕ ΒΓ και έστω Ζ,Η τα μέσα των ΔΓ και ΑΒ αντίστοιχα. Ν.δ.ο. α) το ΖΓΒΗ είναι ρόμβος ( 9 μον.) β) ΗΖ=ΗΕ ( 8 μον.) γ)

Διαβάστε περισσότερα

Γεωμετρία Α' Λυκείου Κεφάλαιο 3 ο (Τρίγωνα) Γεωμετρία Αˊ Λυκείου. Κεφάλαιο 3 ο Τρίγωνα

Γεωμετρία Α' Λυκείου Κεφάλαιο 3 ο (Τρίγωνα) Γεωμετρία Αˊ Λυκείου. Κεφάλαιο 3 ο Τρίγωνα Γεωμετρία Αˊ Λυκείου Κεφάλαιο 3 ο Τρίγωνα Κεφάλαιο 3 ο :Τρίγωνα 1. Τι λέγονται κύρια στοιχεία ενός τριγώνου; Οι πλευρές και οι γωνίες ενός τριγώνου λέγονται κύρια στοιχεία του τριγώνου. Για ευκολία οι

Διαβάστε περισσότερα

Ασκήσεις - Πυθαγόρειο Θεώρηµα

Ασκήσεις - Πυθαγόρειο Θεώρηµα Ασκήσεις - Πυθαγόρειο Θεώρηµα. Έστω ορθογώνιο τρίγωνο ΑΒΓ ( Â = 90 ο ) µε ΒΓ = 0 και ΑΓ =. Αν το µέσο της ΒΓ και Ε ΒΓ (Ε σηµείο της ΑΒ) τότε το µήκος της ΑΕ είναι: i) 3 3,5 i 4 iv) 4,5 v) 5. Έστω ορθογώνιο

Διαβάστε περισσότερα

ΔΡΑΣΤΗΡΙΟΤΗΤΑ. Θυμόμαστε - Μαθαίνουμε Κύρια στοιχεία τριγώνου. Σκεφτόμαστε. Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων. Όχι κάθετες πλευρές

ΔΡΑΣΤΗΡΙΟΤΗΤΑ. Θυμόμαστε - Μαθαίνουμε Κύρια στοιχεία τριγώνου. Σκεφτόμαστε. Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων. Όχι κάθετες πλευρές - 218 - Μέρος Kεφάλαιο 3 ο - Τρίγωνα - Παραλληλόγραμμα - Τραπέζια.3.1. Στοιχεία τριγώνου - Είδη τριγώνων Θυμόμαστε - Μαθαίνουμε Κύρια στοιχεία τριγώνου κορυφή Κάθε τρίγωνο έχει τρεις κορυφές,,, τρεις πλευρές,,

Διαβάστε περισσότερα

5o ΚΕΦΑΛΑΙΟ : Παραλληλόγραμμα - Τραπέζια

5o ΚΕΦΑΛΑΙΟ : Παραλληλόγραμμα - Τραπέζια 5o ΚΕΦΑΛΑΙΟ : Παραλληλόγραμμα - Τραπέζια 7 η διδακτική ενότητα : Παραλληλόγραμμα-Είδη παραλληλογράμμων 1. Να εξετάσετε αν είναι σωστή ή λανθασμένη καθεμιά από τις επόμενες προτάσεις: α) Οι διαγώνιοι κάθε

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Ο - Α ( απόδειξη θεωρήματος) 1 ) Να αποδειχθεί ότι : «Οι διαγώνιοι ορθογωνίου είναι ίσες». ( 5.3 σελ 100 ) 2 ) Να αποδειχθεί ότι τα εφαπτόμενα τμήματα κύκλου

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων Γεωμετρία Β Λυκείου Τράπεζα θεμάτων www.askisopolis.gr η έκδοση - - 0 Μεταβολές από την προηγούμενη έκδοση Αφαιρέθηκαν οι ασκήσεις _90, _900 και _907 Αλλαγές: Στην άσκηση _909 άλλαξε το β ερώτημα, στην

Διαβάστε περισσότερα

ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο;

ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο; 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 14 ΘΕΩΡΙA 5 ΘΕΜΑ A 1. A1. Να μεταφέρετε στην κόλλα απαντήσεων το γράμμα που αντιστοιχεί σε κάθε πρόταση και δίπλα να σημειώσετε το γράμμα Σ αν

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος ) Πυθαγόρειο ενικό Λύκειο Σάμου ΕΠΝΛΗΨΗ ΕΩΜΕΤΡΙΣ ΛΥΚΕΙΟΥ ( α μέρος ) Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό

Διαβάστε περισσότερα

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις Γεωµετρία Α Γυµνασίου Ορισµοί Ιδιότητες Εξηγήσεις Ευθεία γραµµή Ορισµός δεν υπάρχει. Η απλούστερη από όλες τις γραµµές. Κατασκευάζεται µε τον χάρακα (κανόνα) πάνω σε επίπεδο. 1. ύο σηµεία ορίζουν την θέση

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια 184 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Να αντιστοιχίσετε κάθε στοιχείο της στήλης (Α) µε ένα µόνο στοιχείο της στήλης (Β): στήλη (Α) τετράπλευρα

Διαβάστε περισσότερα

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.

Διαβάστε περισσότερα

ΕΥΘΕΙΕΣ ΠΟΥ ΤΕΜΝΟΝΤΑΙ ΑΠΟ ΜΙΑ ΑΛΛΗ ΕΥΘΕΙΑ

ΕΥΘΕΙΕΣ ΠΟΥ ΤΕΜΝΟΝΤΑΙ ΑΠΟ ΜΙΑ ΑΛΛΗ ΕΥΘΕΙΑ ΕΥΘΕΙΕΣ ΠΟΥ ΤΕΜΝΟΝΤΑΙ ΑΠΟ ΜΙΑ ΑΛΛΗ ΕΥΘΕΙΑ Έχουµε 2 ευθείες ε 1,ε 2 και τουλάχιστον µία ευθεία που τέµνει αυτές τις 2 ευθείες, εδώ τη (δ). Ονοµάζουµε τις γωνίες µε βάση το: 1. Πού βρίσκονται σε σχέση µε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 10.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 10.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ ΚΕΦΑΛΑΙΟ 0 Ο ΕΜΒΑΔΑ 0.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 0.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ ΘΕΩΡΙΑ Αν θεωρήσουμε δύο τρίγωνα ΑΒΓ και Α Β Γ με εμβαδά Ε και Ε αντίστοιχα. Τότε είναι:

Διαβάστε περισσότερα

ΚΥΚΛΟ. κάθετη στη χορδή ΑΒ. τη χορδή. του κέντρου Κ από. (βλέπε σχήμα).

ΚΥΚΛΟ. κάθετη στη χορδή ΑΒ. τη χορδή. του κέντρου Κ από. (βλέπε σχήμα). ΑΣΚΗΣΕΙΣ ΣΤΟΝ ΚΥΚΛΟ 1. Να κατασκευάσετε έναν κύκλο και να πάρετε μια χορδή του ΑΒ. Από το κέντρο Κ του κύκλου να φέρετε κάθετη στη χορδή ΑΒ η οποία τέμνει τη χορδή στο σημείο Μ. Να διαπιστώσετε με μέτρηση

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Γεωμετρία Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός

Τράπεζα Θεμάτων Γεωμετρία Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Τράπεζα Θεμάτων Γεωμετρία Α Λυκείου Κεφάλαιο 3 Θέμα 2 Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Θεωρία ως και το 3.2 Ασκήσεις: 1-8 Θεωρία ως και το 3.4 Ασκήσεις: 9-13 Θεωρία ως και το 3.7 Ασκήσεις: 14-29

Διαβάστε περισσότερα

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 1ο Α. Nα αποδείξετε ότι το άθροισμα των γωνιών κάθε τριγώνου είναι 2 ορθές. Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στο τετράδιό σας τη λέξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

Φύλλο εργασίας. Τα κύρια στοιχεία ενός τριγώνου είναι:...

Φύλλο εργασίας. Τα κύρια στοιχεία ενός τριγώνου είναι:... 1 Κύρια στοιχεία τριγώνου Φύλλο εργασίας 1 Να γράψετε τις κορυφές, τις γωνίες και τις πλευρές του διπλανού σχήματος: Κορυφές:..,.,.. ωνίες: Πλευρές Τα κύρια στοιχεία ενός τριγώνου είναι:... 2 Στη σελίδα

Διαβάστε περισσότερα

Γραμμή. Σημείο. κεφαλαίο γράμμα. Κάθε γραμμή. αποτελείται. Ευθεία κι αν αρχή και χωρίς. τέλος! x x

Γραμμή. Σημείο. κεφαλαίο γράμμα. Κάθε γραμμή. αποτελείται. Ευθεία κι αν αρχή και χωρίς. τέλος! x x 1. Οι Πρωταρχικές Γεωμετρικές Έννοιες Σημείο Γραμμή Δεν έχει διαστάσεις!! Υπάρχει μόνο στο μυαλό μας. Συμβολίζεται με κεφαλαίο γράμμα. Κάθε γραμμή αποτελείται από άπειρα σημεία. Ευθεία Δεν είναι εύκολο

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα... Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β) ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x. Να λυθούν οι εξισώσεις: α) 3x x 3 3 5x x β) 4 3 x x x 0

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 8 Ο - ΟΜΟΙΟΤΗΤΑ ΘΕΜΑ 2 Ο

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 8 Ο - ΟΜΟΙΟΤΗΤΑ ΘΕΜΑ 2 Ο ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 8 Ο - ΟΜΟΙΟΤΗΤΑ ΘΕΜΑ 2 Ο Άσκηση 1 (2_18984) Θεωρούμε δύο τρίγωνα ΑΒΓ και ΔΕΖ. (α) Να εξετάσετε σε ποιες από τις παρακάτω περιπτώσεις τα τρίγωνα ΑΒΓ και ΔΕΖ είναι όμοια και να δικαιολογήσετε

Διαβάστε περισσότερα

Α Γυμνασίου, Μέρος Α, Αριθμητική - Άλγεβρα, Κεφάλαιο 1, Οι φυσικοί αριθμοί. Α Γυμνασίου, Μέρος Β, Γεωμετρία, Κεφάλαιο 1, Βασικές Γεωμετρικές έννοιες

Α Γυμνασίου, Μέρος Α, Αριθμητική - Άλγεβρα, Κεφάλαιο 1, Οι φυσικοί αριθμοί. Α Γυμνασίου, Μέρος Β, Γεωμετρία, Κεφάλαιο 1, Βασικές Γεωμετρικές έννοιες Περιοδική έκδοση για τα Μαθηματικά Γυμνασίου https://mathsgymnasio.wordpress.com/ Τεύχος 1 Περιεχόμενα Σελίδα 4: Σελίδα 16: Α Γυμνασίου, Μέρος Α, Αριθμητική - Άλγεβρα, Κεφάλαιο 1, Οι φυσικοί αριθμοί Α

Διαβάστε περισσότερα

Γεωμετρία Α' Λυκείου Κεφάλαιο 4 ο (Παράλληλες ευθείες) Λύσεις Διαγωνισμάτων

Γεωμετρία Α' Λυκείου Κεφάλαιο 4 ο (Παράλληλες ευθείες) Λύσεις Διαγωνισμάτων Λύσεις Διαγωνισμάτων Λύσεις 1 ου Διαγωνίσματος Θέμα 1 ο α) Από μία κορυφή, π.χ. την Α, φέρουμε ευθεία xy ΒΓ. Τότε ω = Β και φ = Γ, ως εντός εναλλάξ των παραλλήλων xy και ΒΓ με τέμνουσες ΑΒ και ΑΓ αντίστοιχα.

Διαβάστε περισσότερα

2ηέκδοση 20Ιανουαρίου2015

2ηέκδοση 20Ιανουαρίου2015 ηέκδοση 0Ιανουαρίου015 ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΓΧΡΟΝΗ ΜΑΘΗΣΗ (β-πακέτο ασκήσεων) 1 89 Δίνεται τρίγωνο ΑΒΓ και Δ εσωτερικό σημείο του ΒΓ. Φέρουμε από το Δ παράλληλες στις πλευρές ΑΒ και ΑΓ. Η παράλληλη στην

Διαβάστε περισσότερα

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ ε ς Ε υ θ ε ι ε ς ) 2. Aν α, β θετικοι, να συγκρινεται τους αριθμους Α = α + β, Β = α β + αβ.

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ ε ς Ε υ θ ε ι ε ς ) 2. Aν α, β θετικοι, να συγκρινεται τους αριθμους Α = α + β, Β = α β + αβ. 1 Δινεται τριγωνο ΑΒΓ και η διχοτομος ΒΕ της γωνιας B του τριγωνου Απο το Α φερνουμε παράλληλη της ΒΕ, που τεμνει τη ΒΓ 3 Να δειχτει οτι α + 11 α Ποτε ισχυει ΑΔ ΒΕ το ισον; οποτε οι γωνιες 3 3 Aν α, β

Διαβάστε περισσότερα

ΑΒ ίνεται τραπέζιο ΑΒΓ (ΑΒ//Γ ) και σηµείο Μ της πλευράς του Α ώστε =. Από το

ΑΒ ίνεται τραπέζιο ΑΒΓ (ΑΒ//Γ ) και σηµείο Μ της πλευράς του Α ώστε =. Από το 1. ίνεται ισοσκελές τρίγωνο ΑΒΓ µε ΑΒ=ΑΓ, Â =36o και η διχοτόµος του Β. α) Να αποδείξετε ότι: i) Τα τρίγωνα Β Γ και ΑΒΓ είναι όµοια. ii) A 2 =ΑΓ Γ β) Αν θεωρήσουµε το ΑΓ ως µοναδιαίο τµήµα (ΑΓ=1), να υπολογίσετε

Διαβάστε περισσότερα

Κεφάλαιο 1 ο. Βασικές γεωμετρικές έννοιες.

Κεφάλαιο 1 ο. Βασικές γεωμετρικές έννοιες. Μαθηματικά A Γυμνασίου Κεφάλαιο 1 ο. Βασικές γεωμετρικές έννοιες. 1. Τι λέμε σημείο; Η άκρη του μολυβιού μας, οι κορυφές ενός σχήματος, η μύτη μιας βελόνας, μας δίνουν την έννοια του σημείου. 2. Τι λέμε

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ

ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ 1. Να αναπτύξετε τις ταυτότητες: α. (α+8) β. (-) γ. (γ+k) δ. (+γ) ε. (3k-5λ) ζ. (5/κ - 4/λ) η. (/3-χ/4) θ. (χ - 3/χ) ι. (χ/3+3ψ/4) κ. (3χ+χ/) λ. (χ+8)(χ-8)

Διαβάστε περισσότερα

Όμοια τρίγωνα. Ορισμός : Δύο τρίγωνα είναι όμοια όταν έχουν τις γωνίες τους ίσες και τις αντίστοιχες πλευρές τους ανάλογες.

Όμοια τρίγωνα. Ορισμός : Δύο τρίγωνα είναι όμοια όταν έχουν τις γωνίες τους ίσες και τις αντίστοιχες πλευρές τους ανάλογες. Όμοια τρίγωνα Ορισμός : Δύο τρίγωνα είναι όμοια όταν έχουν τις γωνίες τους ίσες και τις αντίστοιχες πλευρές τους ανάλογες. Συμβολισμός : Αν τα τρίγωνα ΑΒΓ, ΔΕΖ είναι όμοια γράφουμε Κριτήριο 1 Όταν δύο

Διαβάστε περισσότερα

B τάξη Γυμνασίου ( 2 2) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009

B τάξη Γυμνασίου ( 2 2) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 B τάξη Γυμνασίου Πρόβλημα. Αν ισχύει ότι 4x 5y = 0, να βρείτε την τιμή της παράστασης Η

Διαβάστε περισσότερα

Ερωτήσεις: 1. Να αναγνωρίσετε και να ονομάσετε γεωμετρικά σχήματα στα παραπάνω στερεά.

Ερωτήσεις: 1. Να αναγνωρίσετε και να ονομάσετε γεωμετρικά σχήματα στα παραπάνω στερεά. 1. ΑΝΑΓΝΩΡΙΣΗ, ΟΝΟΜΑΣΙΑ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΓΕΩΜΕΤΡΙΚΩΝ ΣΧΗΜΑΤΩΝ a. Αναγνώριση και ονομασία Δραστηριότητα 1 1. Ας κατασκευάσουμε όσο το δυνατόν περισσότερες γραμμές μπορούμε να σκεφτούμε. 2. Έχουμε ξανασυναντήσει

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1Ο : ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Διάνυσμα Θέσης ενός σημείου Αν θεωρήσουμε ένα οποιοδήποτε σημείο Ο του επιπέδου ως σημείο αναφοράς (ακόμα

Διαβάστε περισσότερα

2. ίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και οι διχοτόµοι του Β και ΓΕ. Αν ΕΗ ΒΓ και Ζ ΒΓ, να αποδείξετε ότι: β) Τα τρίγωνα ΑΕ και ΑΖ είναι ίσα.

2. ίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και οι διχοτόµοι του Β και ΓΕ. Αν ΕΗ ΒΓ και Ζ ΒΓ, να αποδείξετε ότι: β) Τα τρίγωνα ΑΕ και ΑΖ είναι ίσα. 1. Από εξωτερικό σηµείο Σ κύκλου (Κ,ρ) θεωρούµε τις τέµνουσες ΣΑΒ και ΣΓ του κύκλου για τις οποίες ισχύει ΣΒ=Σ. Τα ΚΛ και ΚΜ είναι τα αποστήµατα των χορδών ΑΒ και Γ του κύκλου αντίστοιχα. α) i. τα τρίγωνα

Διαβάστε περισσότερα

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος Εγγράψιμα και περιγράψιμα τετράπλευρα Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος 1. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι παραλληλόγραμμο.. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων

Διαβάστε περισσότερα

ΚΥΚΛΟΣ. Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΚΥΚΛΟΣ. Ερωτήσεις του τύπου «Σωστό-Λάθος» ΚΥΚΛΟΣ Ερωτήσεις του τύπου «Σωστό-Λάθος» Σωστό Λάθος 1. Αν α είναι η απόσταση ευθείας ε από το κέντρο του κύκλου (Ο, ρ) τότε: αν α > ρ η ε λέγεται εξωτερική του κύκλου αν α = ρ η ε λέγεται τέμνουσα του

Διαβάστε περισσότερα

Συνοπτική θεωρία. Οι σημαντικότερες αποδείξεις. Ερωτήσεις αντικειμενικού τύπου. Ασκήσεις. Διαγωνίσματα

Συνοπτική θεωρία. Οι σημαντικότερες αποδείξεις. Ερωτήσεις αντικειμενικού τύπου. Ασκήσεις. Διαγωνίσματα Γ Ε Ω Μ Ε Τ Ρ Ι Α Β Λ Υ Κ Ε Ι Ο Υ Συνοπτική θεωρία Οι σημαντικότερες αποδείξεις Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα Μαθηματικός Περιηγητής 1 ΚΕΦΑΙΑΟ 9 ο : ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ

Διαβάστε περισσότερα

1 x και y = - λx είναι κάθετες

1 x και y = - λx είναι κάθετες Κεφάλαιο ο: ΕΥΘΕΙΑ Ερωτήσεις του τύπου «Σωστό-Λάθος» 1. * Συντελεστής διεύθυνσης μιας ευθείας (ε) είναι η εφαπτομένη της γωνίας που σχηματίζει η ευθεία (ε) με τον άξονα. Σ Λ. * Ο συντελεστής διεύθυνσης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ ΑΝΑΛΟΓΙΕΣ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ Βασικά θεωρήματα Αν τρεις τουλάχιστον παράλληλες ευθείες τέμνουν δύο άλλες ευθείες, ορίζουν σε αυτές τμήματα ανάλογα. (αντίστροφο Θεωρήματος Θαλή) Θεωρούμε δύο ευθείες δ και

Διαβάστε περισσότερα

ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γ ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ

ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γ ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γ ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ Α. ύο τρίγωνα είναι ίσα όταν µε κατάλληλη µετατόπιση, το ένα συµπίπτει µε το άλλο. Β. Κριτήρια ισότητας τριγώνων Πρώτο κριτήριο Αν όλες οι πλευρές του ενός τριγώνου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2 ΕΠΝΛΗΠΤΙΚ ΘΕΜΤ ΓΥΝΜΣΙΟΥ ΜΘΗΜΤΙΚ ΛΓΕΡ ΚΕΦΛΙΟ. Να διατυπώσετε τα κριτήρια διαιρετότητας. πό τους αριθμούς 675, 0, 4404, 7450 να γράψετε αυτούς που διαιρούνται με το, με το, με το 4, με το 9.. Ποια είναι

Διαβάστε περισσότερα

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΧΟΛΙΑ στη γεωµετρία της Α τάξης ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΚΑΘΕΤΕΣ 1. είχνω ότι η γωνία τους είναι 90 ο 2. είχνω ότι είναι διχοτόµοι δύο εφεξής και παραπληρωµατικών γωνιών. 3. είχνω ότι

Διαβάστε περισσότερα

) = Απόσταση σημείου από ευθεία. Υπολογισμός Εμβαδού Τριγώνου. και A

) = Απόσταση σημείου από ευθεία. Υπολογισμός Εμβαδού Τριγώνου. και A [Επιλογή Ιαν.. Εμβαδόν Τριγώνου ΣΤΟΧΟΙ: Ο µαθητής ϖρέϖει: να είναι ικανός να υϖολογίζει την αϖόσταση σηµείου αϖό ευθεία να είναι ικανός να υϖολογίζει το εµβαδό ενός τριγώνου αϖό τις συντεταγµένες των κορυφών

Διαβάστε περισσότερα

66 Γεωμετρία Σχήμα 11.1: Το ΜΝ είναι κοινό μέτρο των και ΓΔ. τόσο ανατρεπτική που απαγόρευσαν να διαδοθεί αυτή η γνώση. Οταν μάλιστα ο *** παρέβει την

66 Γεωμετρία Σχήμα 11.1: Το ΜΝ είναι κοινό μέτρο των και ΓΔ. τόσο ανατρεπτική που απαγόρευσαν να διαδοθεί αυτή η γνώση. Οταν μάλιστα ο *** παρέβει την Κεφάλαιο 11 Αναλογίες, Ομοιότητα Η έννοια του λόγου ορίζεται στο πέμπτο βιβλίο των Στοιχείων του Ευκλείδη ως εξής: Λόγος εστί δύο μεγεθών ομογενών η κατά πηλικότητά ποια σχέσις Λόγον έχειν προς άλληλα

Διαβάστε περισσότερα