Τεύχος 5. Περιοδική έκδοση για τα Μαθηματικά Γυμνασίου Περιεχόμενα

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Τεύχος 5. Περιοδική έκδοση για τα Μαθηματικά Γυμνασίου https://mathsgymnasio.wordpress.com/ Περιεχόμενα"

Transcript

1 Περιοδική έκδοση για τα Μαθηματικά Γυμνασίου Τεύχος 5 Περιεχόμενα Σελίδα 5: Α Γυμνασίου, Μέρος Α, Άλγεβρα, Κεφάλαιο 7, Θετικοί και Αρνητικοί Αριθμοί Δουκάκης Σπυρίδων & Σαράφης Ιωάννης Αθήνα, Απρίλιος 2015 Έκδοση 1.0 ISSN:

2 Πρόλογος Το πέμπτο τεύχος είναι το πρώτο τεύχος της «Περιοδικής έκδοσης για τα Μαθηματικά Γυμνασίου» που συνοδεύεται στο εξώφυλλο από «σφραγίδα» βέλτιστης πρακτικής διδασκαλίας για τη βιωματική μάθηση των θετικών επιστημών στη Δευτεροβάθμια Εκπαίδευση από το Υπουργείο Πολιτισμού, Παιδείας και Θρησκευμάτων και το Τμήμα Εκπαιδευτικής Ραδιοτηλεόρασης. Σας ευχαριστούμε που έχετε αγκαλιάσει το ηλεκτρονικό περιοδικό. Η δική σας συμμετοχή και το ενδιαφέρον που δείχνεται συνεισέφεραν τόσο στην προσπάθεια, όσο και σε αυτό το αποτέλεσμα. Με το πέμπτο τεύχος ολοκληρώνεται η ύλη της α γυμνασίου, σύμφωνα με την οπτική των δημιουργών. Το παρόν τεύχος περιλαμβάνεται διδακτικό υλικό για το κεφάλαιο «Θετικοί και Αρνητικοί Αριθμοί». Το υλικό, μπορεί να αξιοποιηθεί τόσο στο πλαίσιο της σχολικής τάξης, όσο και στο σπίτι από τον ίδιο τον μαθητή και την μαθήτρια. Το υλικό περιλαμβάνει φύλλα εργασίας τα οποία είναι δομημένα σε μορφή δίστηλου. Τα φύλλα εργασίας περιλαμβάνουν στην αριστερή στήλη και μέσα σε κατάλληλα πλαίσια θεωρία, χρήσιμες πληροφορίες, ιστορικά σημειώματα κ.α., τα οποία χαρακτηρίζονται από συγκεκριμένα εικονίδια 1 για να μπορεί ο μαθητής και η μαθήτρια να διακρίνει το στόχο τους. Στο κύριο μέρος του φύλλου εργασίας ο μαθητής καλείται να εργαστεί ατομικά ή συνεργατικά για να οικοδομήσει τις γνώσεις τους, μέσα σε ένα πλαίσιο σκαλωσιάς μάθησης, βάσει του ισχύοντος προγράμματος σπουδών, των οδηγιών διδασκαλίας, του υλικού του σχολικού βιβλίου και του υλικού του βιβλίου εκπαιδευτικού. Το υλικό συνοδεύεται από επιλεγμένα μικροπειράματα 2 που προέρχονται από το ψηφιακό σχολείο, από άλλες πηγές ή έχουν αναπτυχθεί από τους συγγραφείς. Κάθε κεφάλαιο ολοκληρώνεται με ασκήσεις, που καλείται να λύσει ο μαθητής. Οι ασκήσεις έχουν αναπτυχθεί με γνώμονα τις ανάγκες της σχολικής τάξης και την εμβάθυνση των μαθητών στις μαθηματικές έννοιες. Τα φύλλα εργασίας και οι ασκήσεις αποτελούν μία οργανωμένη συγκέντρωση των υπαρχουσών πηγών υλικού και στοχεύουν στην υποστήριξη της μάθησης των μαθητών και στην ενίσχυση της μαθηματικής εκπαίδευσης, μέσα από ένα πλούσιο σε πηγές πλαίσιο. Για το λόγο αυτό το υλικό προσφέρεται με άδεια creative commons, ώστε να είναι διαθέσιμο και «ανοικτό» σε όλη την εκπαιδευτική μαθηματική κοινότητα. Το υλικό έχει δουλευτεί στις τάξεις, έχει αξιοποιηθεί από δεκάδες μαθητές και μαθήτριες και από αρκετούς εκπαιδευτικούς. Ευχαριστούμε για τη βοήθεια όλους τους συναδέλφους που μας στήριξαν σε αυτή την προσπάθεια και κυρίως τους συναδέλφους μαθηματικούς του PIERCE- Αμερικανικό Κολλέγιο Ελλάδος και της Ελληνογαλλικής Σχολής Καλαμαρί. Το Τεύχος 5 περιέχει υλικό για τα ακόλουθα: Α Γυμνασίου, Μέρος Α, Άλγεβρα, Κεφάλαιο 7, Θετικοί και Αρνητικοί Αριθμοί Καλή μελέτη! Σπυρίδων Δουκάκης & Ιωάννης Σαράφης Αυτό το υλικό διατίθεται με άδεια Creative Commons Αναφορά Δημιουργού - Παρόμοια Διανομή 4.0 ( Ευχαριστίες στους/στις εκπαιδευτικούς: Η αναφορά σε αυτό θα πρέπει να γίνεται ως εξής: Δουκάκης, Σ., & Σαράφης, Ι. (2015). Περιοδική έκδοση για τα Μαθηματικά Γυμνασίου, Τεύχος 5, (Έκδοση 1.0, σ. 27). Βροντάκη Εμμανουήλ, Διαμάντη Χρήστο, Κάντα Σπυριδούλα, Μιχαλοπούλου Γεωργία και Πέρδο Αθανάσιο. 1 Τα εικονίδια προέρχονται από το βιβλίο: Βακάλη Α., Γιαννόπουλος Η., Ιωαννίδης Ν., Κοίλιας Χ., Μάλαμας Κ., Μανωλόπουλος Ι., Πολίτης Π. (1999). Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον, ΙΤΥΕ, Διόφαντος. 2 Τα μικροπειράματα προέρχονται από το Φωτόδεντρο (photodentro.edu.gr) και έχουν αναπτυχθεί από την ομάδα του Εργαστήριου Εκπαιδευτικής Τεχνολογίας με συντονιστή τον Καθ. Κυνηγό Χρόνη.

3 Α Γυμνασίου, Μέρος Α, Άλγεβρα, Κεφάλαιο 7, Θετικοί και Αρνητικοί Αριθμοί

4

5 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Μέρος Α - Κεφάλαιο 7, Α. 7.1 Μέρος Α' - Κεφάλαιο 7ο - Θετικοί και Αρνητικοί Αριθμοί Α.7.1. Θετικοί και Αρνητικοί Αριθμοί (Ρητοί αριθμοί) - H ευθεία των ρητών - Τετμημένη σημείου 1. Γιατί υπάρχει η ανάγκη εισαγωγής αρνητικών αριθμών; 2. Δραστηριότητα. Θερμόμετρο με βαθμούς Κελσίου και βαθμούς Φαρενάιτ. 3. Στον ανελκυστήρα ενός γκαράζ υπάρχουν τα κουμπιά που βλέπετε δίπλα. Τι εκφράζουν οι αριθμοί που είναι γραμμένοι στα κουμπιά; Τα σύμβολα «+» και «-» λέγονται πρόσημα. Γράφονται πριν από τους αριθμούς και τους χαρακτηρίζουν, αντίστοιχα, ως θετικούς ή αρνητικούς. Σε περιπτώσεις που αναφερόμαστε μόνο σε θετικούς αριθμούς, μπορούμε να παραλείψουμε το πρόσημο + Η εισαγωγή των αρνητικών αριθμών δημιουργεί την ανάγκη της τοποθέτησης πρόσημου μπροστά από όλους τους αριθμούς. Έτσι γίνεται φανερό ποιοι αριθμοί είναι οι θετικοί και ποιοι οι αρνητικοί. 4. Στο ακόλουθο σχήμα παρατηρούμε ότι το αεροπλάνο πετάει στα 200 m και ο καρχαρίας βρίσκεται σε βάθος 200 m κάτω από την επιφάνεια της θάλασσας. Προσπαθήστε να εκφράσετε με κατάλληλους αριθμούς τις θέσεις του αεροπλάνου και του καρχαρία σε σχέση με την επιφάνεια της θάλασσας; Να γράψετε τους ακόλουθους αριθμούς. Τον θετικό αριθμό 3... Τον αρνητικό αριθμό Τον θετικό αριθμό 15,7... Τον αρνητικό αριθμό 0, Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 5 από 27

6 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Μέρος Α - Κεφάλαιο 7, Α. 7.1 Το μηδέν δεν είναι ούτε θετικός ούτε αρνητικός αριθμός. Ομόσημοι λέγονται οι αριθμοί που έχουν το ίδιο πρόσημο. Ετερόσημοι λέγονται οι αριθμοί που έχουν διαφορετικό πρόσημο. Το σύνολο των αριθμών 0,1,2,3, ονομάζεται σύνολο των φυσικών αριθμών. Ακέραιοι αριθμοί είναι οι φυσικοί αριθμοί μαζί με τους αντίστοιχους αρνητικούς αριθμούς. Ρητοί αριθμοί είναι όλοι οι γνωστοί μας έως τώρα αριθμοί: φυσικοί, κλάσματα και δεκαδικοί μαζί με τους αντίστοιχους αρνητικούς αριθμούς. Αν θεωρήσουμε αριστερά της αρχής Ο του ημιάξονα Οx των αριθμών, τον αντικείμενο αυτού ημιάξονα Οx', θα έχουμε τη δυνατότητα, με αυτόν τον τρόπο, να παραστήσουμε όλους τους ρητούς αριθμούς. Η θέση ενός σημείου επάνω στην ευθεία ορίζεται με έναν αριθμό που ονομάζεται τετμημένη του σημείου. 6. Να διαχωρίσετε τους ακόλουθους αριθμούς σε ομόσημους και ετερόσημους. Αριθμοί Ομόσημοι Ετερόσημοι 7 + 1, , Δίνονται οι ακόλουθοι αριθμοί. Να συμπληρώσετε τον ακόλουθο πίνακα έτσι ώστε να δείξετε αν είναι φυσικοί, ακέραιοι ή/και ρητοί. Τοποθετήστε το σύμβολο αν ο αριθμός ανήκει στο συγκεκριμένο σύνολο. Αριθμοί Φυσικοί Ακέραιοι Ρητοί , ,46 3, Να βάλετε σε μία ημιευθεία (ημιάξονα) με όνομα Οx ορισμένους φυσικούς αριθμούς. Σκεφτείτε ποιος θα είναι ο πρώτος αριθμός. Σκεφτείτε ποιος θα είναι ο επόμενος αριθμός. Σχεδιάστε μία ημιευθεία. Τοποθετήστε ορισμένους φυσικούς αριθμούς. 9. Στον προηγούμενο ημιάξονα που κατασκευάσατε, να φτιάξετε τον αντικείμενο ημιάξονα του ημιάξονα Οx και να τον ονομάσετε Ox. Να τοποθετήσετε ορισμένους ακέραιους αρνητικούς αριθμούς. Σκεφτείτε που θα βρίσκεται ο πρώτος αρνητικός ακέραιος αριθμός. Σκεφτείτε που θα τοποθετήσετε τον επόμενο αρνητικό ακέραιο αριθμό. Τοποθετήστε ορισμένους αρνητικούς ακέραιους αριθμούς. 10. Να σημειώσετε στον άξονα τους παρακάτω αριθμούς: +2, -3, +4, -5, +3,5, -1.5, 3 5 +,, + 8, Β Ο Α Το σημείο Α έχει τετμημένη... Το σημείο Β έχει τετμημένη... Το σημείο Ο έχει τετμημένη... Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 6 από 27

7 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Μέρος Α - Κεφάλαιο 7, Α Να εργαστείτε στο μικροπείραμα mpa7_1. Να κατασκευάσετε την ευθεία και να τοποθετήσετε τους αριθμούς: 1,3 2, ,2 2 0,2 0, Να εκφράσετε με τη βοήθεια των θετικών και αρνητικών ρητών αριθμών: α) 13,75 m κάτω από την επιφάνεια της θάλασσας:... β) 20 Κέλσιου πάνω από το μηδέν:... γ) κέρδος 3.368,97 :... δ) αύξηση κατά 2.527,15 :... ε) μείωση κατά 50 μονάδες:... στ) έκπτωση 15% επί της τιμής:... Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 7 από 27

8 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Μέρος Α - Κεφάλαιο 7, Α. 7.2 Α.7.2. Απόλυτη τιμή ρητού - Αντίθετοι ρητοί - Σύγκριση ρητών 13. Βρείτε πόσες μονάδες απέχουν από την αρχή Ο του άξονα τα σημεία Α, Β, Γ και Δ. Η απόλυτη τιμή ενός ρητού αριθμού α εκφράζει την απόσταση του σημείου με τετμημένη α από την αρχή Ο του άξονα και συμβολίζεται με α. Η απόλυτη τιμή είναι πάντα μη αρνητικός αριθμός αφού εκφράζει απόσταση. α) Το σημείο Α απέχει από την αρχή Ο του άξονα... μονάδα(ες). β) Το σημείο Β... γ) Το σημείο Γ... δ) Το σημείο Δ Στην παρακάτω ευθεία βρείτε τις τετμημένες των σημείων Μ' και Μ. Για να βρείτε την απόλυτη τιμή ενός ρητού αριθμού γράφετε τον αριθμό που σας δίνεται χωρίς το πρόσημο του. H απόλυτη τιμή ενός θετικού αριθμού είναι ο ίδιος ο αριθμός. α) Τι παρατηρείτε για τις τετμημένες των σημείων Μ' και Μ;... β) Προσπαθήστε να τοποθετήσετε στην παραπάνω ευθεία των ρητών τα σημεία Α' και Α που απέχουν από την αρχή Ο του άξονα 3,5 μονάδες. γ) Κάντε το ίδιο για τα σημεία Β' και Β που απέχουν από την αρχή Ο του άξονα 5 μονάδες. 15. α) Το σημείο Κ έχει τετμημένη -6. Να βρείτε το σημείο Λ με αντίθετη τετμημένη. H απόλυτη τιμή ενός αρνητικού αριθμού είναι ο αντίθετός του. H απόλυτη τιμή του μηδενός είναι το μηδέν. β) Να συμπληρώσετε τα παρακάτω κενά βάσει του παραπάνω άξονα: 1. Η απόλυτη τιμή του +2 είναι + 2 = 2. Η απόλυτη τιμή του 1 είναι 1 = 3. Η απόλυτη τιμή του -3 είναι 3 = 4. Η απόλυτη τιμή του 5 2 είναι 5 2 = 5. Η απόλυτη τιμή του -1,5 είναι 1,5 = 6. Η απόλυτη τιμή της τετμημένης του σημείου Ο είναι: Η απόλυτη τιμή της τετμημένης του σημείου Σ είναι: Η απόλυτη τιμή της τετμημένης του σημείου Κ είναι: Η απόλυτη τιμή της τετμημένης του σημείου Ρ είναι: Εάν η απόλυτη τιμή του αριθμού α είναι 2, να βρεθεί ο αριθμός α. Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 8 από 27

9 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Μέρος Α - Κεφάλαιο 7, Α. 7.2 Αντίθετοι αριθμοί λέγονται οι αριθμοί που έχουν την ίδια απόλυτη τιμή και διαφορετικό πρόσημο. Ο αντίθετος του x είναι ο -x. 17. Να βρείτε την απόλυτη τιμή των ακόλουθων αριθμών: α) β) 6... γ) -3,8... δ) ε) στ) Να βρείτε την απόλυτη τιμή των αριθμών: Τι παρατηρείτε; Να βρείτε τον αντίθετο αριθμό σε κάθε περίπτωση α) Ο αντίθετος του 3 είναι το... β) Ο αντίθετος του 1 2 είναι το... Ο αντίθετος του 0 είναι το 0. γ) Ο αντίθετος του -5 είναι το... δ) Ο αντίθετος του -3,5 είναι το Να συμπληρώσετε τον πίνακα Αριθμός 5-2,1 7 3 Αντίθετος Απόλυτη τιμή Να υπολογίσετε τις τιμές των παραστάσεων α) = β) = Δύο σημεία που βρίσκονται σε ίση απόσταση, δεξιά και αριστερά από την αρχή των αξόνων, έχουν τετμημένες, αντίθετους αριθμούς. 22. Να βρείτε τους αριθμούς που έχουν απόλυτη τιμή Να βρείτε τις τιμές της μεταβλητής x όταν x= Αν δύο σημεία έχουν τετμημένες αντίθετους αριθμούς και απέχουν απόσταση ίση με 10, τότε να βρείτε τις τετμημένες τους. Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 9 από 27

10 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Μέρος Α - Κεφάλαιο 7, Α. 7.2 Ο μεγαλύτερος από δύο ρητούς αριθμούς είναι εκείνος που βρίσκεται δεξιότερα από τον άλλο πάνω στον άξονα. 25. Μια κρύα μέρα του χειμώνα ο Κώστας κοιτούσε τη θερμοκρασία κάθε δύο ώρες. Οι ενδείξεις του θερμομέτρου, που έβλεπε, φαίνονται παρακάτω: Κάθε θετικός ρητός είναι μεγαλύτερος από κάθε αρνητικό ρητό αριθμό. Το μηδέν είναι μικρότερο από κάθε θετικό αριθμό και μεγαλύτερο από κάθε αρνητικό αριθμό. Ο μεγαλύτερος από δύο θετικούς ρητούς είναι εκείνος που έχει την μεγαλύτερη απόλυτη τιμή, δηλαδή αυτός που βρίσκεται δεξιότερα από τον άλλο πάνω στον άξονα. Ο μεγαλύτερος από δύο αρνητικούς ρητούς είναι εκείνος που έχει την μικρότερη απόλυτη τιμή, δηλαδή αυτός που βρίσκεται δεξιότερα από τον άλλο πάνω στον άξονα. α) Να καταγράψετε όλες τις ενδείξεις του θερμομέτρου με αύξουσα σειρά.... β) Να καταγράψετε όλες τις ενδείξεις του θερμομέτρου με φθίνουσα σειρά Να συμπληρώσετε με το κατάλληλο σύμβολο (>, <, =) α) β) γ) δ) ε) ζ) ,5 η) θ) ι)... ια)... 0, Στον άξονα των αριθμών να τοποθετήσετε τους αριθμούς και στη συνέχεια να τους γράψετε κατά αύξουσα σειρά. α) 5 β) 7 γ) -5 δ) 0 ε) -2,5 στ) 0,3 9 ζ) η) -2,01 4 θ) 0,5 28. Το x παριστάνει έναν ακέραιο αριθμό. Για ποιες τιμές του x θα ισχύουν οι σχέσεις: α) -5 < x < β) -1 x < 3... Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 10 από 27

11 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Μέρος Α - Κεφάλαιο 7, Α. 7.3 Για να προσθέσετε δύο ομόσημους ρητούς αριθμούς, προσθέτετε τις απόλυτες τιμές τους και στο άθροισμα βάζετε το πρόσημό τους. Για να προσθέσετε δύο ετερόσημους ρητούς αριθμούς, αφαιρείτε από τη μεγαλύτερη τη μικρότερη απόλυτη τιμή και στη διαφορά βάζετε το πρόσημο του ρητού με τη μεγαλύτερη απόλυτη τιμή. Ιδιότητες της πρόσθεσης Μπορείτε να αλλάζετε τη σειρά των δύο προσθετέων ενός αθροίσματος. (Αντιμεταθετική ιδιότητα) α + β = β + α Μπορούμε να αντικαθιστούμε προσθετέους με το άθροισμά τους ή να αναλύουμε ένα προσθετέο σε άθροισμα. (Προσεταιριστική ιδιότητα) α + (β + γ) = (α + β) + γ Το 0 όταν προστεθεί σε ένα ρητό δεν τον μεταβάλλει. α + 0 = 0 + α = α Το άθροισμα δύο αντιθέτων αριθμών είναι μηδέν. α + (-α) = (-α) + α = 0 Α.7.3. Πρόσθεση ρητών αριθμών 29. Σε κάθε μία από τις περιπτώσεις που περιγράφονται, να γράψετε την πρόσθεση που της αντιστοιχεί και στη συνέχεια το αποτέλεσμα. Πρόσθεση Αποτέλεσμα α) Η τιμή ενός προϊόντος αυξήθηκε συνεχόμενα δύο φορές: Η πρώτη αύξηση ήταν 8,5 και η δεύτερη 6,2 β) Η τιμή ενός προϊόντος μειώθηκε συνεχόμενα δύο φορές: Η πρώτη μείωση ήταν 8,5 και η δεύτερη 6,2 γ) Η τιμή ενός προϊόντος αυξήθηκε κατά 8,5 και μετά μειώθηκε κατά 6,2 δ) Η τιμή ενός προϊόντος μειώθηκε κατά 8,5 και μετά αυξήθηκε κατά 6,2 30. Να εκτελέσετε τις πράξεις: α) β) Να εκτελέσετε τις πράξεις: α) β) Ας εργαστούμε στο μικροπείραμα mpa7_2. Περιγράψτε την διαδικασία με την οποία μπορείτε να προσθέσετε δύο αριθμούς. 33. Ας εργαστούμε στο μικροπείραμα mpa7_3. Περιγράψτε την διαδικασία με την οποία μπορείτε να προσθέσετε δύο αριθμούς. 34. Να προσθέσετε σε κάθε ένα από τα παρακάτω τον αντίθετο που αριθμού που υπάρχει και να εκτελέσετε τις πράξεις: α) β) 3 + γ) x + δ) -x + Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 11 από 27

12 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Μέρος Α - Κεφάλαιο 7, Α Να υπολογίσετε τα παρακάτω αθροίσματα: α) (+5) + (+8) + (-3) + (-6) + (+3) + (-7) β) (-1,8) + (+4,8) + (+9,7) + (-4,8) + (-3,4) + (+1,5) (χωρίζουμε τους αρνητικούς από τους θετικούς) (προσθέτουμε χωριστά τους αρνητικούς και τους θετικούς) γ) (+5,6) + (+8,7) + (-3,2) + (-6,9) + (+3,2) + (-7,4) Να υπολογίσετε κάθε έκφραση για x = 3,5. α) 5,2 + x β) -5,2 + x γ) -x + 5,2 δ) -x + (-5,2) ε) x + (-3,5) Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 12 από 27

13 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Μέρος Α - Κεφάλαιο 7, Α. 7.4 Α.7.4. Αφαίρεση ρητών αριθμών 37. Στο σχήμα βλέπουμε τη μέση θερμοκρασία μιας περιοχής για τους 12 μήνες του χρόνου σε συγκεκριμένη ώρα της ημέρας. Για να αφαιρέσουμε από τον αριθμό α τον αριθμό β, προσθέτουμε στον α τον αντίθετο του β. α - β = α + (-β) Στους ρητούς αριθμούς η αφαίρεση μετατρέπεται σε πρόσθεση και επομένως είναι πάντα δυνατή (δηλαδή, δεν απαιτείται να είναι ο μειωτέος πάντα μεγαλύτερος από τον αφαιρετέο, όπως ίσχυε μέχρι τώρα). Απαλοιφή παρενθέσεων Όταν μια παρένθεση έχει μπροστά της το + (ή δεν έχει πρόσημο), μπορούμε να την απαλείψουμε μαζί με το + (αν έχει) και να γράψουμε τους όρους που περιέχει με τα πρόσημά τους. Όταν μια παρένθεση έχει μπροστά της το -, μπορούμε να την απαλείψουμε μαζί με το - και να γράψουμε τους όρους που περιέχει με αλλαγμένα πρόσημα. α) Ποιος είναι ο πιο ζεστός μήνας του έτους και ποιος ο πιο κρύος;... β) Ποια είναι η διαφορά θερμοκρασίας μεταξύ αυτών των μηνών;... γ) Ποια είναι η διαφορά θερμοκρασίας μεταξύ κάθε δύο διαδοχικών μηνών; Ας εργαστούμε στο μικροπείραμα mpa7_4. Περιγράψτε την διαδικασία με την οποία μπορείτε να αφαιρέσετε δύο αριθμούς. 39. Να κάνετε τις πράξεις: α) (+5) + (-7) Να κάνετε τις πράξεις: α) (-5) - (-7) β) (9,1-6,2+3,4) + (-7,5+10-8,3) β) -(9,1-6,2+3,4) - (-7,5+10-8,3) Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 13 από 27

14 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Μέρος Α - Κεφάλαιο 7, Α. 7.4 Η έκφραση -x σημαίνει ο αντίθετος του x. Η έκφραση -x μπορεί να αναπαριστά έναν αρνητικό αριθμό, το μηδέν ή ένα θετικό αριθμό. 41. Ένα βράδυ το θερμόμετρο στο μπαλκόνι ενός σπιτιού έδειχνε -3 C και μέσα στο σπίτι 18 C. Πόση ήταν η διαφορά θερμοκρασίας; Ένας έμπορος χρωστάει στον προμηθευτή του 897,56 και του οφείλει ένας πελάτης 527,42. Πόσα πρέπει να έχει στο ταμείο για να ξεχρεώσει; 43. Να λύσετε τις εξισώσεις: α) x + (+3) = (-9) β) (-8) - x = Να υπολογίσετε την τιμή της μεταβλητής x α) Ποια είναι η τιμή του -x αν x = -4;... β) Ποια είναι η τιμή του -x αν x = 4;. γ) Για ποιες τιμές του x θα είναι το -x θετικό;... δ) Για ποιες τιμές του x θα είναι το -x αρνητικό; Να βρείτε την τιμή της παράστασης: (0, ) + (0,38-11) 46. Ποιο είναι μεγαλύτερο: Το άθροισμα ή Το άθροισμα ; 47. Εξηγήστε τι λάθος εντοπίζετε στην ακόλουθη πρόταση: Αφού το 20 είναι ο αντίθετος του -20, η θερμοκρασία 20 ο είναι πολύ ζεστή, αφού η θερμοκρασία -20 ο είναι πολύ κρύα. Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 14 από 27

15 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Μέρος Α - Κεφάλαιο 7, Α Δίνεται ο ακόλουθος άξονας αριθμών: α) Αν Γ είναι ο αντίθετος του Β, ποια είναι η τιμή του Ε; β) Αν Α είναι ο αντίθετος του Β, είναι ο Δ θετικός ή αρνητικός; Γιατί; γ) Αν ο Δ είναι ο αντίθετος του Β, ποιο από τα Α, Β, Γ, Δ, Ε, έχει την μεγαλύτερη τιμή; 49. Να γράψετε τους επόμενους τρεις αριθμούς στις ακόλουθες κανονικότητες: α) -5, -1, 3,,, β) 9, 6, 3, 0,,, γ) -15, -10, -5,,, δ) 6, 4, 2,,, Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 15 από 27

16 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Μέρος Α - Κεφάλαιο 7, Α. 7.5 Α.7.5 Πολλαπλασιασμός ρητών αριθμών 50. Όταν ένα διαστημικό λεωφορείο είναι στο πρώτο στάδιο της προσγείωσης κατέρχεται 3,5 μίλια ανά λεπτό. Αυτός ο ρυθμός είναι -3,5 μίλια/λεπτό. α) Πόσα μίλια θα έχει κατέβει σε 10 λεπτά;... β) Το ύψος που βρίσκεται το διαστημικό λεωφορείο μειώνεται ή αυξάνεται;... γ) Είναι το γινόμενο (-3,5) 10 ίσο με 35 ή -35; Γιατί;... Το γινόμενο δύο θετικών ρητών είναι θετικός ρητός. Το γινόμενο ενός θετικού και ενός αρνητικού ρητού Στο πρωτάθλημα ποδοσφαίρου κάποια ομάδα έχασε σε δύο αγωνιστικές τρεις βαθμούς, ως ποινή για τα επεισόδια που διαδραματίστηκαν στον αγώνα που συμμετείχε. Ποια από τις παρακάτω πράξεις δείχνει το αποτέλεσμα των βαθμών που έχασε η ομάδα; α) 2 (-3) β) 2 3 Το γινόμενο δύο αρνητικών ρητών είναι θετικός ρητός. Για να πολλαπλασιάσουμε δύο ομόσημους ρητούς αριθμούς, πολλαπλασιά-ζουμε τις απόλυτες τιμές τους και στο γινόμενο βάζουμε το πρόσημο «+». Δηλαδή: + + = + και - - = + Για να πολλαπλασιάσουμε δύο ετερόσημους ρητούς αριθμούς, πολλαπλασιάζουμε τις απόλυτες τιμές τους και στο γινόμενο βάζουμε το πρόσημο «-». Δηλαδή: + - = - και - + = Να υπολογίσετε τα ακόλουθα γινόμενα α) 3 (-4) =... β) 2 (-4) =... γ) 1 (-4) =... δ) 0 (-4) =... ε) -1 (-4) =... στ) -2 (-4) =... ζ) -3 (-4) =... Τι παρατηρείτε; Το σύμβολο του πολλαπλασιασμού μπορεί να παραλείπεται. Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 16 από 27

17 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Μέρος Α - Κεφάλαιο 7, Α. 7.5 Ιδιότητες πολλαπλασιασμού Μπορούμε να αλλάζουμε τη σειρά δύο παραγόντων ενός γινομένου. (Αντιμεταθετική ιδιότητα) α β = β α Μπορούμε να αντικαθιστούμε παράγοντες με το γινόμενό τους ή να αναλύουμε ένα παράγοντα σε γινόμενο. (Προσεταιριστική ιδιότητα) α (β γ) = (α β) γ Όταν ένας ρητός πολλαπλασιάζεται με τον αριθμό 1 δεν μεταβάλλεται. α 1 = 1 α = α Όταν ένας ρητός πολλαπλασιάζεται με το 0 μηδενίζεται. 0 α = α 0 = 0 Επιμεριστική ιδιότητα του πολλαπλασιασμού ως προς την πρόσθεση και την αφαίρεση: α (β + γ) = α β + α γ α (β - γ) = α β - α γ Οι ρητοί αριθμοί α και β λέγονται αντίστροφοι, όταν είναι διάφοροι του μηδενός και το γινόμενό τους είναι ίσο με τη μονάδα: α β = Να υπολογίσετε τα ακόλουθα γινόμενα. α) (+1,5) (-2,2) =... β) (-2,2) (+1,5) =... γ) (-0,5) (+2,2 (-3,5)) =... δ) (-0,5 (+2,2)) (-3,5) =... Τι παρατηρείτε; ε) 1 (+1,5) =... στ) 1 (-2,2) =... Τι παρατηρείτε; ζ) 0,15 (-5) + 1,85 (-5) =... η) (0,15 + 1,85) (-5) =... Τι παρατηρείτε; θ) ( 3) = ι) 3 2 =... ια) (-0,25) (-4) =... Τι παρατηρείτε; ιβ) (-1,3) 0 =... 2 ιγ) =... Τι παρατηρείτε; + + = + Αν καλοί αθλητές ( + ) παίζουν σε μία ομάδα ( + ), τότε είναι καλό για την ομάδα ( + ) + = Αν καλοί αθλητές ( + ) φύγουν από μία ομάδα ( ),τότε είναι κακό για την ομάδα ( ) + = Αν κακοί αθλητές ( ) παίζουν σε μία ομάδα ( + ), τότε είναι κακό για την ομάδα ( ) = + Αν κακοί αθλητές ( ) φύγουν από μία ομάδα ( ),τότε είναι καλό για την ομάδα ( + ) Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 17 από 27

18 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Μέρος Α - Κεφάλαιο 7, Α. 7.5 Γινόμενο πολλών παραγόντων Γνωρίζουμε ότι το γινόμενο θετικών ρητών είναι πάντα θετικό. Αν υπάρχει ένας παράγοντας που είναι αρνητικός μετατρέπει το γινόμενο σε αρνητικό. Στην περίπτωση που υπάρχει και δεύτερος αρνητικός παράγοντας ξαναμετατρέπει το γινόμενο σε θετικό κ.ο.κ. Άρα: Για να υπολογίσουμε ένα γινόμενο πολλών παραγόντων (που κανένας δεν είναι μηδέν), πολλαπλασιάζουμε τις απόλυτες τιμές τους και στο γινόμενο βάζουμε: o Το πρόσημο +, αν το πλήθος των αρνητικών παραγόντων είναι άρτιο (ζυγό). o Το πρόσημο -, αν το πλήθος των αρνητικών παραγόντων είναι περιττό (μονό). Αν τουλάχιστον ένας παράγοντας είναι μηδέν, τότε και το γινόμενο είναι ίσο με μηδέν. Σύμφωνα με την επιμεριστική ιδιότητα, έχουμε: (α + β)(γ + δ) = (α + β)γ + (α + β)δ = αγ + βγ + αδ + βδ 54. Χωρίς να κάνετε τις πράξεις προσπαθήσετε να προβλέψετε αν το γινόμενο κάθε έκφρασης είναι θετικό ή αρνητικό. α) (-1)(-2) β) (-1)(-2)(-3) γ) (-1)(-2)(-3)(-4) δ) (-1)(-2)(-3)(-4)(-5) Να συμπληρώσετε τα κενά. α) Για άρτιο πλήθος αρνητικών παραγόντων, το γινόμενο θα είναι:... β) Για περιττό πλήθος αρνητικών παραγόντων, το γινόμενο θα είναι:... γ) Σε ένα γινόμενο που περιέχει αρνητικούς και θετικούς παράγοντες επηρεάζουν οι θετικοί παράγοντες το πρόσημο του γινομένου; Να υπολογίσετε τα παρακάτω γινόμενα: α) (-1,4) ,1 3 β) ( ) 56. Να υπολογίσετε το ακόλουθο γινόμενο: 2 ( 1)( 20) + ( 3)( 0,25) 3 γ) (-10) (-0,7) Να υπολογίσετε το γινόμενο (-1)α, όταν το α παίρνει τις τιμές: +3, -1,2, +, Να εκτελέσετε τις πράξεις α) -6 (α β) β) (α - 2)(β + 3) γ) 2α + 3β + 4α - 5β Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 18 από 27

19 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Μέρος Α - Κεφάλαιο 7, Α Ισχύει πάντα ότι α β = α β ; Εξηγήστε. 60. Αν x = -3, y = 2 και z = -5, να γράψετε μία έκφραση που θα έχει κάθε μία από τις ακόλουθες τιμές. α) 17 β) 0 γ) -1 δ) 1 ε) 7 Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 19 από 27

20 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Μέρος Α - Κεφάλαιο 7, Α. 7.6 Για να διαιρέσουμε δύο ρητούς αριθμούς, διαιρούμε τις απόλυτες τιμές τους και στο πηλίκο βάζουμε: το πρόσημο +, αν είναι ομόσημοι, Δηλαδή + : + = + και - : - = + το πρόσημο -, αν είναι ετερόσημοι, Δηλαδή: + : - = - και - : + = - Το πηλίκο της διαίρεσης α : β ή α λέγεται λόγος του α β προς το β και ορίζεται ως η μοναδική λύση της εξίσωσης β x = α Η διαίρεση α μπορεί να β 1 γραφτεί α, επομένως για β να διαιρέσουμε δύο ρητούς αριθμούς, αρκεί να πολλαπλασιάσουμε το διαιρετέο με τον αντίστροφο του διαιρέτη. Διαίρεση με διαιρέτη το μηδέν δεν ορίζεται. Α.7.6. Διαίρεση ρητών αριθμών 61. Να υπολογίσετε τα πηλίκα: α) (+1,5) : (+5) 62. Να λύσετε τις εξισώσεις: α) -6x = -24 β) : 3 5 β) -3x = Να υπολογίσετε την τιμή της παράστασης: 2 ( 3) ( 2)( 9 ) :[ 0,4( 10) ( 0,2)( 5) ] γ) (-0,45) : (-0,15) γ) x : (-2) = Να υπολογίσετε τις τιμές των παραστάσεων Α = Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 20 από 27

21 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Μέρος Α - Κεφάλαιο 7, Υλικό αξιολόγησης Β = Γ = Δ = 2 : Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 21 από 27

22 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Μέρος Α - Κεφάλαιο 7, Υλικό αξιολόγησης 65. Να υπολογίσετε τις παραστάσεις β Α = 3 + γ (3α + 2β γ) 3 α + + β (5 2) 3 δ Β (γ 2α) 2 = + β αν α+ β= 3 και γ+ δ= 5 2 Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 22 από 27

23 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Μέρος Α - Κεφάλαιο 7, Υλικό αξιολόγησης Ασκήσεις προς λύση Θετικοί Αρνητικοί 7.1. Να γράψετε έναν αριθμό που να εκφράζει το καθένα από τα παρακάτω μεγέθη ή τις μεταβολές. α) Βάθος κάτω από την επιφάνεια της θάλασσας β) Αύξηση κατά 2 μονάδες γ) Θερμοκρασία πάνω από το μηδέν δ) Ζημία ευρώ ε) Υψόμετρο πάνω από την επιφάνεια της θάλασσας στ) Θερμοκρασία κάτω από το μηδέν ζ) Αύξηση μισθού κατά 200 ευρώ 7.2. Πάνω στον άξονα x x έχουμε τα σημεία Μ και Κ που αντιστοιχούν στους αριθμούς 5 και -3.Να βρείτε τα συμμετρικά τους σημεία ως προς την αρχή Ο του άξονα Να βρείτε ποιοι ακέραιοι αριθμοί βρίσκονται μεταξύ των αριθμών: α) -3 και 0 β) -2 και 2 γ) -5,2 και -3,1 δ) 0,2 και 6, Αν σ έναν άξονα τα σημεία Μ και Λ έχουν τετμημένες -3 και 2 αντίστοιχα, να βρείτε την τετμημένη του μέσου Α του ευθύγραμμου τμήματος ΜΛ Να συγκρίνετε τους αριθμούς σε κάθε ζευγάρι και να σημειώσετε ανάμεσα τους το κατάλληλο σύμβολο ανισότητας (<, >) 2 3 α) -7 0 β) 5 2 γ) 3-3 δ) 3 2 ε) 0 2,1 στ) -7,2-7 ζ) α) Οι αριθμοί α, β είναι ετερόσημοι και ο 7 είναι ομόσημος του β. Ο αριθμός α είναι αρνητικός ή θετικός; β) Οι αριθμοί α, β είναι ομόσημοι και ο α είναι ομόσημος του -1. Ο αριθμός β είναι αρνητικός ή θετικός; Απόλυτη τιμή 7.7. Να λύσετε τις εξισώσεις: α) -3 +κ=- 4 β) 4x =- -5 γ) y- 4 = Συμπληρώστε τα κενά με κατάλληλο σύμβολο (< ή = ή > ή ή ) α) Αν x 0: -x 0 - -x 0 3x 0-4x 0 x 0 - -x 0 β) Αν y > 0: -y 0 - -y 0 3y 0-4y 0 y 0 - -y Για τους μη μηδενικούς ρητούς αριθμούς z και ω ισχύει z < ω. Να συγκρίνετε τους z και ω αν: α) z < 0 και ω > 0 β) z < 0 και ω < 0 γ) z > 0 και ω < 0 δ) z > 0 και ω > Να βρείτε ποιες τιμές μπορεί να πάρει ο αριθμός x σε κάθε περίπτωση: α) x = 3 β) x = 1 3 γ) x = 0 δ) x = -1 Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 23 από 27

24 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Μέρος Α - Κεφάλαιο 7, Υλικό αξιολόγησης Γράψτε τους αντίθετους των αριθμών: α) -3 β) 4 γ) -2,5 δ) Να κάνετε τις πράξεις: α) :7 β) ( 8:2+5 :3-1) -4 Πρόσθεση ρητών αριθμών Να υπολογίσετε τα παρακάτω αθροίσματα: α) (-3)+(+4)+(-6)+(+5) γ) ( + 3) β) (+2,3)+(-1,7)+(-2,8)+(+4,5) δ) Να τοποθετήσετε στα κενά τα κατάλληλα πρόσημα, ώστε να προκύψουν αληθείς ισότητες = = 12 α) ( ) ( ) γ) ( ) ( ) β) ( ) ( ) = 0 δ) = Nα υπολογίσετε την θερμοκρασία που θα προκύψει σε κάθε περίπτωση: α) Η θερμοκρασία βρίσκεται στους 3 C και ανεβαίνει κατά 4 C. β) Η θερμοκρασία βρίσκεται στους 0 C και ανεβαίνει κατά 2 C. γ) o o Η θερμοκρασία βρίσκεται στους 5 C και ανεβαίνει κατά 5 C Να υπολογίσετε τα παρακάτω αθροίσματα: A= x+ y+ z αν x = -3,2, y = -1,4, z = 4 α) ( ) β) B= ( x) + ( y) + z αν x = -2, y = 7,1, z = -5, Nα υπολογίσετε το άθροισμα Κ + Λ, αν είναι: K= 5,6+ 2,3 και Λ=+ 8,5+ 10,24+ 0, Να υπολογίσετε τα αθροίσματα: α) ( ) ( ) β) ( + 1) + ( 10) + + ( 17) o o Ένας καταστηματάρχης έχει στο ταμείο του Κατά την διάρκεια της ημέρας έκανε τις παρακάτω διαδοχικές εισπράξεις και πληρωμές: +227, -79, +29, -91, -43, Τι ποσό έχει το ταμείο στο τέλος της ημέρας; Αφαίρεση ρητών αριθμών Να υπολογίσετε τις παρακάτω διαφορές: 4 5 α) ( 3) γ) ( 7) β) + 2 δ) o o Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 24 από 27

25 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Μέρος Α - Κεφάλαιο 7, Υλικό αξιολόγησης Να υπολογίσετε τις τιμές των παρακάτω αλγεβρικών παραστάσεων: α) ( ) ( ) ( ) ( ) ( ) β) + ( 3) + 2 ( 0,2) γ) Να εξετάσετε αν οι εξισώσεις x ( 2) = 5 και x ( 7) 10 ( 5) + = ++ έχουν την ίδια λύση Να απαλείψετε τις παρενθέσεις στην παράσταση A= ( 2x y+ 3) ( x+ 3y 2) + ( 2y 1) και να βρείτε την τιμή της παράστασης Α για x = Να υπολογίσετε τις τιμές των παραστάσεων: A= x y x x 4+ y α) ( ) ( ) ( ) β) B= 11 ( x+ y z) ( 2 x) + ( y z) Αν x + y = -1,να υπολογίσετε την τιμή της παράστασης: K= ( 2x 3y 2) + ( x 2y+ 1) ( 3 4x) Να λύσετε τις παρακάτω εξισώσεις: α) 2x 14 = 21 β) + 1,2 + x= 2,2 + 3,2 γ) 2,7 + x = 4, Ο Μέγας Αλέξανδρος γεννήθηκε το 356 π.χ., έγινε βασιλιάς το 336 π.χ. και έζησε 33 χρόνια. Να βρείτε πόσων ετών έγινε βασιλιάς και ποια χρονολογία πέθανε; Πολλαπλασιασμός ρητών Συμπληρώστε τα πρόσημα και τους αριθμούς όπου λείπουν: = 28 α) ( ) ( ) ( ) = = 2 5 β) ( ) γ) ( ) ( ) Συμπληρώστε με κατάλληλο σύμβολο (< ή = ή >) τις παρακάτω προτάσεις: α) αν 2x< 0, τότε x 0 β) αν 3κ> 0, τότε κ 0 γ) αν 5α= 0, τότε α 0 δ) αν ( 1)( λ) < 0,τότε λ Με τη χρήση της επιμεριστικής ιδιότητας, να κάνετε τις παρακάτω πράξεις: α) 1,2 13,4 + 2,8 13,4 β) 4,1 19,3 2,1 19, Αν είναι x+ y= 1, να υπολογίσετε τις παραστάσεις: α) 3 ( x + 2) + 3y β) 1+ 2( x 2+ y) Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 25 από 27

26 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Μέρος Α - Κεφάλαιο 7, Υλικό αξιολόγησης Αν xy= 1, να υπολογίσετε τα γινόμενα: α) x ( 1) ( y) β) 3 ( x) ( 2) y Να εκτελέσετε τις πράξεις: α) ( ) ( ) ( ) ( ) ( ) ( ) ( ) β) Να εξετάσετε στις παρακάτω περιπτώσεις, αν οι αριθμοί x, y είναι αντίστροφοι: 3 x 2 y = 6 α) ( ) 1 β) ( x) ( y) 2 2 γ) 2 = 4 15 y x = Να βρείτε το αποτέλεσμα των παρακάτω πράξεων: β) 3 2( 5+ 7) ( 2 + 1)( 2) + 3 ( 5 9) γ) 4 + ( ) 4 ( 3) 2 ( 6 + 8) α) ( ) ( ) ( ) ( ) ( ) ( ) Να βρείτε το αποτέλεσμα των παρακάτω πράξεων: α) ( 3) γ) ( 1 3) β) ( ) ( ) Να υπολογίσετε τα παρακάτω πηλίκα: α) : 4 8 β) : γ) : Διαίρεση ρητών αριθμών Να λύσετε τις εξισώσεις: α) x : 5= 2 γ) β) 8:k= 2 δ) 1 3 : y = λ : = 6 3 Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 26 από 27

27 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Μέρος Α - Κεφάλαιο 7, Υλικό αξιολόγησης Να βρείτε την τιμή της παράστασης: α) ( 10: 5 2) 7 ( 6 ):( 2) + 14:7 ( 2) β) : 3 2 : 4 + : 4 1: Να υπολογίσετε τις τιμές των ακόλουθων αριθμητικών παραστάσεων. ( 10) ( 3 ) :( 1) ( 3) ( 4) α) + 6 : ( ) ( ) ( )( ) ( ):( 4 3) 4 2 β) Αν x = 1 και 1 y= να υπολογίσετε την αριθμητική τιμή της παράστασης 2 x 5y+ 2xy A= x+ y Να υπολογίσετε τις τιμές των ακόλουθων αριθμητικών παραστάσεων α) 2 : 4 : γ) : β) 5 δ) : Να υπολογίσετε τις τιμές των ακόλουθων αριθμητικών παραστάσεων : α) γ) : : 1 2 : 1 β) δ) Υπολογίστε την τιμή της παράστασης Να υπολογίσετε την τιμή της παράστασης x 4 4 x : + 5 y x y y A = αν ο λόγος του x προς το y είναι ίσος με -2. x 3x : y y Πρόταση Διδασκαλίας και Συνοδευτικά φύλλα εργασίας v 1.0 Σελίδα 27 από 27

Μέρος Α' - Κεφάλαιο 7ο - Θετικοί και Αρνητικοί Αριθμοί Α.7.1. Θετικοί και Αρνητικοί Αριθμοί (Ρητοί αριθμοί) - H ευθεία των ρητών - Τετμημένη σημείου

Μέρος Α' - Κεφάλαιο 7ο - Θετικοί και Αρνητικοί Αριθμοί Α.7.1. Θετικοί και Αρνητικοί Αριθμοί (Ρητοί αριθμοί) - H ευθεία των ρητών - Τετμημένη σημείου Μαθηματικά Α Γυμνασίου Μέρος Α - Κεφάλαιο 7, Α. 7.1 Μέρος Α' - Κεφάλαιο 7ο - Θετικοί και Αρνητικοί Αριθμοί Α.7.1. Θετικοί και Αρνητικοί Αριθμοί (Ρητοί αριθμοί) - H ευθεία των ρητών - Τετμημένη σημείου

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 7 Ο ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 1. Όταν μπροστα" (αριστερα") απο" ε"ναν αριθμο" γραφει" το συ"μβολο + το"τε ο αριθμο"ς

Διαβάστε περισσότερα

1 ο Πρότυπο Πειραματικό Γυμνάσιο Θεσσαλονίκης Α Γυμνασίου Ακέραιοι Αριθμοί -Η ευθεία των αριθμών

1 ο Πρότυπο Πειραματικό Γυμνάσιο Θεσσαλονίκης Α Γυμνασίου Ακέραιοι Αριθμοί -Η ευθεία των αριθμών κέραιοι ριθμοί -Η ευθεία των αριθμών κέραιοι αριθμοί είναι οι φυσικοί αριθμοί μαζί με τους αντίστοιχους αρνητικούς αριθμούς. Τα σύμβολα «+» και «-» που γράφονται μπροστά από τους αριθμούς λέγονται πρόσημα.

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ Ποιους αριθµούς ονοµάζουµε οµόσηµους και ποιους ετερόσηµους; Ποιους αριθµούς ονοµάζουµε ακέραιους; Ποιους αριθµούς ονοµάζουµε ρητούς; Τι ονοµάζουµε απόλυτη τιµή ενός ρητού αριθµού; Τι παριστάνει η απόλυτη

Διαβάστε περισσότερα

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.7.2. ΑΠΟΛΥΤΗ ΤΙΜΗ ΑΝΤΙΘΕΤΟΙ - ΣΥΓΚΡΙΣΗ ΟΝΟΜΑΤΕΠΩΝΥΜΟ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.7.2. ΑΠΟΛΥΤΗ ΤΙΜΗ ΑΝΤΙΘΕΤΟΙ - ΣΥΓΚΡΙΣΗ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.7.2. ΑΠΟΛΥΤΗ ΤΙΜΗ ΑΝΤΙΘΕΤΟΙ - ΣΥΓΚΡΙΣΗ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / Πόσες μονάδες απέχει από την αρχή Ο το σημείο Α; Πόσες μονάδες απέχει από την αρχή Ο το σημείο Β; Πόσες μονάδες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1 ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΜΕΡΟΣ 1ο : ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1ο ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 1. Ποιοι αριθμοί ονομάζονται φυσικοί, ποια ιδιότητα έχουν και πως χωρίζονται; Οι αριθμοί

Διαβάστε περισσότερα

Δοκιμασίες πολλαπλών επιλογών

Δοκιμασίες πολλαπλών επιλογών Δοκιμασίες πολλαπλών επιλογών ) Η απόλυτη τιμή θετικού αριθμού είναι: Α. Ο αντίθετός του Β. Ο ίδιος ο αριθμός Γ. Ο αντίστροφός του 2) Αν x =3, τότε Α. x=3 Β. x 0 Γ. x=-3 Δ. x=3 ή x=-3 3) Με το -x συμβολίζουμε

Διαβάστε περισσότερα

Σελίδα 4: Α Γυμνασίου, Μέρος Α, Αριθμητική - Άλγεβρα, Κεφάλαιο 2, Κλάσματα

Σελίδα 4: Α Γυμνασίου, Μέρος Α, Αριθμητική - Άλγεβρα, Κεφάλαιο 2, Κλάσματα Περιοδική έκδοση για τα Μαθηματικά Γυμνασίου https://mathsgymnasio.wordpress.com/ Τεύχος 2 Περιεχόμενα Σελίδα 4: Α Γυμνασίου, Μέρος Α, Αριθμητική - Άλγεβρα, Κεφάλαιο 2, Κλάσματα Σελίδα 22: Α Γυμνασίου,

Διαβάστε περισσότερα

Σελίδα 5: Α Γυμνασίου, Μέρος Β, Γεωμετρία, Κεφάλαιο 2, Συμμετρία

Σελίδα 5: Α Γυμνασίου, Μέρος Β, Γεωμετρία, Κεφάλαιο 2, Συμμετρία Περιοδική έκδοση για τα Μαθηματικά Γυμνασίου https://mathsgymnasio.wordpress.com/ Τεύχος 4 Περιεχόμενα Σελίδα 5: Α Γυμνασίου, Μέρος Β, Γεωμετρία, Κεφάλαιο 2, Συμμετρία Σελίδα 19: Α Γυμνασίου, Μέρος Β,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙ ΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ

ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙ ΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙ ΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ Ιωάννης Βανδουλάκης Χαράλαμπος Καλλιγάς Νικηφόρος Μαρκάκης Σπύρος Φερεντίνος ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου ΜΕΡΟΣ Α ΑΡΙΘΜΗΤΙΚΗ - ΑΛΓΕΒΡΑ Τόμος

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

7.Αριθμητική παράσταση καλείται σειρά αριθμών που συνδέονται με πράξεις μεταξύ τους. Το αποτέλεσμα της αριθμητικής παράστασης ονομάζεται τιμή της.

7.Αριθμητική παράσταση καλείται σειρά αριθμών που συνδέονται με πράξεις μεταξύ τους. Το αποτέλεσμα της αριθμητικής παράστασης ονομάζεται τιμή της. ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ Α.1.2 1. Οι ιδιότητες της πρόσθεσης των φυσικών αριθμών είναι οι εξής : Αντιμεταθετική ιδιότητα π.χ. α+β=β+α Προσετεριστική ιδιότητα π.χ. α+β+γ=(α+β)+γ=α+(β+γ) 2.Η πραξη της αφαίρεσης

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

1.1 A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ

1.1 A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ . A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ ΠΡΑΞΕΙΣ ΤΟΥΣ ΘΕΩΡΙΑ. Τα σύνολα των αριθµών Το σύνολο των φυσικών αριθµών. Το σύνολο των ακεραίων αριθµών. N {0,,, 3 } Z { 3,,, 0,,, 3 } Το σύνολο των ρητών αριθµών. Q

Διαβάστε περισσότερα

Τεύχος 6. Περιοδική έκδοση για τα Μαθηματικά Γυμνασίου https://mathsgymnasio.wordpress.com/ Περιεχόμενα

Τεύχος 6. Περιοδική έκδοση για τα Μαθηματικά Γυμνασίου https://mathsgymnasio.wordpress.com/ Περιεχόμενα Περιοδική έκδοση για τα Μαθηματικά Γυμνασίου https://mathsgymnasio.wordpress.com/ Τεύχος 6 Περιεχόμενα Σελίδα 5: Σελίδα 17: Α Γυμνασίου, Μέρος Α, Κεφάλαιο 7, Θετικοί και Αρνητικοί Αριθμοί, Α.7.8. Δυνάμεις

Διαβάστε περισσότερα

R={α/ αρητός ή άρρητος αριθμός }

R={α/ αρητός ή άρρητος αριθμός } o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ Οι ρητοί και οι άρρητοι αριθμοί λέγονται πραγματικοί αριθμοί. Το σύνολο που περιέχει όλους τους πραγματικούς αριθμούς λέγεται σύνολο των πραγματικών αριθμών και συμβολίζεται με R.

Διαβάστε περισσότερα

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ

Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ 1 ΜΕΡΟΣ Α ΚEΦΑΛΑΙΟ 1 Ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. ΕΡΩΤΗΣΗ Τι ονομάζουμε

Διαβάστε περισσότερα

Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, δέντρα κ.λ.π.

Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, δέντρα κ.λ.π. Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, 1.000 δέντρα κ.λ.π. Εκτός από πλήθος οι αριθμοί αυτοί μπορούν να δηλώσουν και τη θέση

Διαβάστε περισσότερα

1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΔΑΜΑΝΤΙΟΣ ΣΧΟΛΗ ΤΑΞΗ Δ ΟΝΟΜΑ α. Αντιμεταθετική ιδιότητα 1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Π Ρ Ο Σ Θ Ε Σ Η Α. ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΠΡΟΣΘΕΣΗΣ 8 + 7 = 15 ή 7 + 8 = 15 346 ή 517 ή 82 + 517 + 82 + 346 82 346 517 945 945

Διαβάστε περισσότερα

Ιωάννης Σ. Μιχέλης Μαθηματικός

Ιωάννης Σ. Μιχέλης Μαθηματικός 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; Το άθροισμα ενός φυσικού αριθμού με το 0 ισούται με τον ίδιο αριθμό. α+0=α Αντιμεταθετική ιδιότητα. Με βάση την οποία

Διαβάστε περισσότερα

Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί

Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΙΚΩΝ ΕΝΝΟΙΙΩΝ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Α ΤΑΞΗΣ Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί Α. 7. 1 1. Τι είναι τα πρόσημα και πως χαρακτηρίζονται οι αριθμοί από αυτά; Τα σύμβολα

Διαβάστε περισσότερα

ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ)

ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) Α ΜΕΡΟΣ- ΑΛΓΕΒΡΑ ΕΡΩΤΗΣΗ 1 Ποιοι αριθμοί ονομάζονται πρώτοι και ποιοι σύνθετοι; Να δώσετε παραδείγματα. ΑΠΑΝΤΗΣΗ 1 Όταν ένας αριθμός διαιρείται

Διαβάστε περισσότερα

ΡΗΤΟΙ ΑΡΙΘΜΟΙ - ΘΕΩΡΙΑ

ΡΗΤΟΙ ΑΡΙΘΜΟΙ - ΘΕΩΡΙΑ ΡΗΤΟΙ ΑΡΙΘΜΟΙ - ΘΕΩΡΙΑ Α. ΟΡΙΣΜΟΙ Θετικοί αριθµοί είναι οι αριθµοί που έχουν πρόσηµο το + (πολλές φορές το + παραλείπεται) π.χ. +3, +105, +, + 0,7, 326. Αρνητικοί αριθµοί είναι οι αριθµοί που έχουν πρόσηµο

Διαβάστε περισσότερα

ΑΝΙΣΟΤΗΤΕΣ. Αν α-β>0 τότε α>β «Αν η διαφορά είναι θετικός αριθμός τότε ο πρώτος αριθμός δηλαδή το α είναι μεγαλύτερος από τον δεύτερο δηλαδή το β»

ΑΝΙΣΟΤΗΤΕΣ. Αν α-β>0 τότε α>β «Αν η διαφορά είναι θετικός αριθμός τότε ο πρώτος αριθμός δηλαδή το α είναι μεγαλύτερος από τον δεύτερο δηλαδή το β» ΑΝΙΣΟΤΗΤΕΣ Μεταξύ δύο πραγματικών αριθμών μεγαλύτερος είναι εκείνος που βρίσκεται πιο δεξιά στον άξονα των πραγματικών αριθμών. Αν θέλουμε να συγκρίνουμε δύο αριθμούς α και β βρίσκουμε τη διαφορά τους

Διαβάστε περισσότερα

Φίλη μαθήτρια, φίλε μαθητή

Φίλη μαθήτρια, φίλε μαθητή Φίλη μαθήτρια, φίλε μαθητή Το βιβλίο αυτό έχει διπλό σκοπό: Να σε βοηθήσει στη γρήγορη, άρτια και αποτελεσματική προετοιμασία του καθημερινού σχολικού μαθήματος. Να σου δώσει όλα τα απαραίτητα εφόδια,

Διαβάστε περισσότερα

Aπάντηση Απόλυτη τιμή αριθμού είναι η απόσταση του αριθμού από το 0. Συμβολίζεται με 3 = 3-3 = 3 + και και είναι πάντα θετικός αριθμός. Π.

Aπάντηση Απόλυτη τιμή αριθμού είναι η απόσταση του αριθμού από το 0. Συμβολίζεται με 3 = 3-3 = 3 + και και είναι πάντα θετικός αριθμός. Π. ΜΕΡΟΣ Α : Α Λ Γ Ε Β ΡΑ ΚΕΦΑΛΑΙΟ 1ο ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και πράξεις τους 1. Γράψε τα βασικότερα σύνολα τιμών: Aπάντηση Ν{0,1,,,4,5,6,..+

Διαβάστε περισσότερα

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Τι είναι κλάσμα; Κλάσμα είναι ένα μέρος μιας ποσότητας. ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Κλάσμα είναι ένας λόγος δύο αριθμών(fraction is a ratio of two whole numbers) Πως εκφράζετε συμβολικά ένα κλάσμα; Εκφράζετε

Διαβάστε περισσότερα

Αρβανιτίδης Θεόδωρος, - Μαθηματικά Ε

Αρβανιτίδης Θεόδωρος,  - Μαθηματικά Ε Πρόσθεση Φυσικών Αριθμών Μάθημα 5 ο Για να προσθέσω φυσικούς αριθμούς πρέπει να προσθέσω τις μονάδες των αριθμών αυτών, μετά τις δεκάδες των αριθμών, μετά τις εκατοντάδες κλπ. Η πρόσθεση φυσικών αριθμών

Διαβάστε περισσότερα

Όταν οι αριθμοί είναι ομόσημοι Βάζουμε το κοινό πρόσημο και προσθέτουμε

Όταν οι αριθμοί είναι ομόσημοι Βάζουμε το κοινό πρόσημο και προσθέτουμε Κανόνες των προσήμων Στην πρόσθεση Όταν οι αριθμοί είναι ομόσημοι Βάζουμε το κοινό πρόσημο και προσθέτουμε (+) και (+) κάνει (+) + + 3 = +5 (-) και (-) κάνει (-) - - 3 = -5 Όταν οι αριθμοί είναι ετερόσημοι

Διαβάστε περισσότερα

Μ α θ η μ α τ ι κ α Γ Γ υ μ ν α σ ι ο υ

Μ α θ η μ α τ ι κ α Γ Γ υ μ ν α σ ι ο υ Α λ γ ε β ρ α Μ α θ η μ α τ ι κ α Γ Γ υ μ ν α σ ι ο υ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς Α λ γ ε β ρ α Γ Γ υ μ ν α σ ι ο υ Με πολυ μερακι Για τους μικρους φιλους μου Τακης Τσακαλακος Κερκυρα

Διαβάστε περισσότερα

MAΘΗΜΑΤΙΚΑ. κριτήρια αξιολόγησης. Κωνσταντίνος Ηλιόπουλος A ΓΥΜΝΑΣΙΟΥ

MAΘΗΜΑΤΙΚΑ. κριτήρια αξιολόγησης. Κωνσταντίνος Ηλιόπουλος A ΓΥΜΝΑΣΙΟΥ A ΓΥΜΝΑΣΙΟΥ Κωνσταντίνος Ηλιόπουλος κριτήρια αξιολόγησης MAΘΗΜΑΤΙΚΑ Διαγωνίσματα σε κάθε μάθημα και επαναληπτικά σε κάθε κεφάλαιο Διαγωνίσματα σε όλη την ύλη για τις τελικές εξετάσεις Αναλυτικές απαντήσεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» 1 2.1 ΟΙ ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ιδιότητες των πράξεων Στους πραγματικούς αριθμούς ορίστηκαν οι πράξεις της πρόσθεσης και του πολλαπλασιασμού και με την οήθειά τους η αφαίρεση και η διαίρεση. Για

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Συνοπτική θεωρία Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ 1. Πότε ένας φυσικός αριθμός λέγεται άρτιος; Άρτιος

Διαβάστε περισσότερα

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΚΕΦΑΛΑΙΟ Ο ΚΛΑΣΜΑΤΑ Α.. Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΥΓΚΡΙΣΗ ΚΛΑΣΜΑΤΟΣ ΜΕ ΤΟ Αν ο αριθμητής ενός κλάσματος είναι μεγαλύτερος από τον παρανομαστή, τότε το κλάσμα είναι μεγαλύτερο από το. Αν ο αριθμητής

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ ΕΠΑΝΑΛΗΨΕΙΣ- ΣΥΜΠΛΗΡΩΣΕΙΣ

1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ ΕΠΑΝΑΛΗΨΕΙΣ- ΣΥΜΠΛΗΡΩΣΕΙΣ ΜΕΡΟΣ Α. ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ. ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ ΕΠΑΝΑΛΗΨΕΙΣ- ΣΥΜΠΛΗΡΩΣΕΙΣ Α Οι πραγματικοί αριθμοί και οι πράξεις τους Όπως γνωρίζουμε, το σύνολο των φυσικών αριθμών Ν είναι

Διαβάστε περισσότερα

Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος)

Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος) Μαθηματικά Γ Γυμνασίου Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος) 1. Πως προσθέτουμε δυο πραγματικούς αριθμούς; Για να προσθέσουμε δύο ομόσημους αριθμούς, προσθέτουμε τις απόλυτες τιμές τους και στο άθροισμά

Διαβάστε περισσότερα

Οι φυσικοί αριθμοί. Παράδειγμα

Οι φυσικοί αριθμοί. Παράδειγμα Οι φυσικοί αριθμοί Φυσικοί Αριθμοί Είναι οι αριθμοί με τους οποίους δηλώνουμε πλήθος ή σειρά. Για παράδειγμα, φυσικοί αριθμοί είναι οι: 0, 1,, 3,..., 99, 100,...,999, 1000, 0... Χωρίζουμε τους Φυσικούς

Διαβάστε περισσότερα

Σελίδα 5: Α Γυμνασίου, Μέρος Α, Αριθμητική - Άλγεβρα, Κεφάλαιο 4, Εξισώσεις και προβλήματα

Σελίδα 5: Α Γυμνασίου, Μέρος Α, Αριθμητική - Άλγεβρα, Κεφάλαιο 4, Εξισώσεις και προβλήματα Περιοδική έκδοση για τα Μαθηματικά Γυμνασίου https://mathsgymnasio.wordpress.com/ Τεύχος 3 Περιεχόμενα Σελίδα 5: Α Γυμνασίου, Μέρος Α, Αριθμητική - Άλγεβρα, Κεφάλαιο 4, Εξισώσεις και προβλήματα Σελίδα

Διαβάστε περισσότερα

Αριθμητής = Παρονομαστής

Αριθμητής = Παρονομαστής Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ To κλάσμα κ εκφράζει τα κ μέρη από τα ν ίσα μέρη στα οποία έχει χωριστεί μία ποσότητα ν Αριθμητής = Παρονομαστής Το ν α = 0 = α κ ν = κ ν ονομάζεται κλασματική μονάδα 8 = α α = Άρα

Διαβάστε περισσότερα

ÊåöÜëáéï 8 ï. -Áöáßñåóç ñçôþí áñéèìþí

ÊåöÜëáéï 8 ï. -Áöáßñåóç ñçôþí áñéèìþí ÊåöÜëáéï 8 ï Ïé ñçôïß áñéèìïß âéâëéïììüèçìá 24: -Ïé èåôéêïß êáé ïé áñíçôéêïß áñéèìïß -ÐáñÜóôáóç ôùí ñçôþí ìå óçìåßá ìéáò åõèåßáò -ÓõíôåôáãìÝíåò óçìåßïõ -Áðüëõôç ôéìþ ñçôïý áñéèìïý -áíôßèåôïé áñéèìïß -Óýãêñéóç

Διαβάστε περισσότερα

Κάθε φυσικός αριθμός έχει έναν επόμενο αριθμό. Κάθε φυσικός αριθμός (εκτός από το 0) έχει έναν προηγούμενο φυσικό αριθμό.

Κάθε φυσικός αριθμός έχει έναν επόμενο αριθμό. Κάθε φυσικός αριθμός (εκτός από το 0) έχει έναν προηγούμενο φυσικό αριθμό. A.1.1 Φυσικοί αριθμοί Διάταξη φυσικών Στρογγυλοποίηση Φυσικοί αριθμοί OÚÈÛÌfi 1. Φυσικοί αριθμοί λέγονται οι αριθμοί 0, 1, 2, 3,... και συμβολίζονται με το γράμμα Ν (το οποίο είναι το αρχικό γράμμα της

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΩΝ EΞΙΣΩΣΕΙΣ...47 ΠΡΟΛΟΓΟΣ... 9

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΩΝ EΞΙΣΩΣΕΙΣ...47 ΠΡΟΛΟΓΟΣ... 9 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 9 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ...11 1.1 Βασικές θεωρητικές γνώσεις... 11 1.. Λυμένα προβλήματα... 19 1. Προβλήματα προς λύση... 4 1.4 Απαντήσεις προβλημάτων Πραγματικοί αριθμοί... 0 ΑΚΟΛΟΥΘΙΕΣ

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. 1. Να γράψετε τον τύπο της Ευκλείδειας διαίρεσης. Πώς ονομάζεται κάθε σύμβολο του τύπου;

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. 1. Να γράψετε τον τύπο της Ευκλείδειας διαίρεσης. Πώς ονομάζεται κάθε σύμβολο του τύπου; ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Να γράψετε τον τύπο της Ευκλείδειας διαίρεσης. Πώς ονομάζεται κάθε σύμβολο του τύπου; 2. Τι ξέρετε για το υπόλοιπο που προκύπτει από μια Ευκλείδεια διαίρεση; 3. Τι ονομάζουμε τέλεια

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 1: Οι Αριθμοί. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 1: Οι Αριθμοί. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 1: Οι Αριθμοί Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ; ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά

Διαβάστε περισσότερα

2. Να γράψετε έναν αριθμό που είναι μεγαλύτερος από το 3,456 και μικρότερος από το 3,457.

2. Να γράψετε έναν αριθμό που είναι μεγαλύτερος από το 3,456 και μικρότερος από το 3,457. 1. Ένα κεφάλαιο ενός βιβλίου ξεκινάει από τη σελίδα 32 και τελειώνει στη σελίδα 75. Από πόσες σελίδες αποτελείται το κεφάλαιο; Αν το κεφάλαιο ξεκινάει από τη σελίδα κ και τελειώνει στη σελίδα λ, από πόσες

Διαβάστε περισσότερα

7.5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΡΗΤΩΝ

7.5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΡΗΤΩΝ 1 7.5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΡΗΤΩΝ ΘΕΩΡΙΑ 1. Κανόνας πολλαπλασιασµού : Το γινόµενο δύο οµοσήµων αριθµών είναι θετικός ενώ το γινόµενο δύο ετεροσήµων είναι αρνητικός ηλαδή (+) (+) = + και ( ) ( ) = + Ενώ (+) (

Διαβάστε περισσότερα

Φ1: ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ

Φ1: ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Φ: ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ 0-0 ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α - ΘΕΩΡΙΑ - ΣΩΣΤΟ-ΛΑΘΟΣ - ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ - ΑΝΤΙΣΤΟΙΧΗΣΗΣ - ΠΑΡΑΤΗΡΗΣΕΙΣ-ΜΕΘΟΔΟΛΟΓΙΑ ΘΕΜΑ Β - ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 2 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ

ΕΝΟΤΗΤΑ 2 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.9 Αναγνωρίζουν και ονομάζουν τους όρους: άθροισμα, διαφορά, γινόμενο, πηλίκο, αφαιρέτης, αφαιρετέος, προσθετέος, διαιρέτης,

Διαβάστε περισσότερα

Ερωτήσεις επί των ρητών αριθµών

Ερωτήσεις επί των ρητών αριθµών Σελ. 1 Ερωτήσεις επί των ρητών αριθµών 1. Ποια είναι τα πρόσηµα των ακεραίων αριθµών; Ζ={... -3,-2,-1,0,+1,+2,+3,... } 2. Ποιοι αριθµοί λέγονται θετικοί και ποιοι αρνητικοί; Γράψε από έναν. 3. Στον άξονα

Διαβάστε περισσότερα

Α. ΔΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ

Α. ΔΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΜΕΡΟΣ Α.5 ΑΝΙΣΟΤΗΤΕΣ-ΑΝΙΣΩΣΕΙΣ ΜΕ ΕΝΑΝ ΑΓΝΩΣΤΟ 9. 5 ΑΝΙΣΟΤΗΤΕΣ- ΑΝΙΣΩΣΕΙΣ ΜΕ ΕΝΑΝ ΑΓΝΩΣΤΟ Α. ΔΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΟΡΙΣΜΟΙ Εάν έχουμε δύο πραγματικούς αριθμούς α και β τότε λέμε ότι ο α είναι μεγαλύτερος

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 0 ΘΕΩΡΙΑ ΜΕΘΟΔΟΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Βαγγέλης Α Νικολακάκης Μαθηματικός . ΠΡΑΞΕΙΣ ΠΡΑΓΜΑΤΙΚΩΝ ΒΑΣΙΚΗ ΘΕΩΡΙΑ. ΠΡΟΣΘΕΣΗ ΟΜΟΣΗΜΩΝ- ΕΤΕΡΟΣΗΜΩΝ Σε ομόσημους κάνω πρόσθεση και βάζω το κοινό

Διαβάστε περισσότερα

3, ( 4), ( 3),( 2), 2017

3, ( 4), ( 3),( 2), 2017 ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙ ΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ. Ιωάννης Βανδουλάκης Χαράλαμπος Καλλιγάς Νικηφόρος Μαρκάκης Σπύρος Φερεντίνος

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙ ΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ. Ιωάννης Βανδουλάκης Χαράλαμπος Καλλιγάς Νικηφόρος Μαρκάκης Σπύρος Φερεντίνος ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙ ΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ Ιωάννης Βανδουλάκης Χαράλαμπος Καλλιγάς Νικηφόρος Μαρκάκης Σπύρος Φερεντίνος ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου ΜΕΡΟΣ Α ΑΡΙΘΜΗΤΙΚΗ ΑΛΓΕΒΡΑ Τόμος 3ος

Διαβάστε περισσότερα

7.1 ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ

7.1 ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ 1 7.1 ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ 1. Τα πρόσηµα : Τα µαθηµατικά σύµβολα + και τα ονοµάζουµε πρόσηµα. 2. Θετικοί αρνητικοί αριθµοί : Όλοι οι αριθµοί που µπροστά τους έχουν το πρόσηµο + ονοµάζονται

Διαβάστε περισσότερα

Α Γυμνασίου, Μέρος Α, Αριθμητική - Άλγεβρα, Κεφάλαιο 1, Οι φυσικοί αριθμοί. Α Γυμνασίου, Μέρος Β, Γεωμετρία, Κεφάλαιο 1, Βασικές Γεωμετρικές έννοιες

Α Γυμνασίου, Μέρος Α, Αριθμητική - Άλγεβρα, Κεφάλαιο 1, Οι φυσικοί αριθμοί. Α Γυμνασίου, Μέρος Β, Γεωμετρία, Κεφάλαιο 1, Βασικές Γεωμετρικές έννοιες Περιοδική έκδοση για τα Μαθηματικά Γυμνασίου https://mathsgymnasio.wordpress.com/ Τεύχος 1 Περιεχόμενα Σελίδα 4: Σελίδα 16: Α Γυμνασίου, Μέρος Α, Αριθμητική - Άλγεβρα, Κεφάλαιο 1, Οι φυσικοί αριθμοί Α

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / ΠΡΟΣΘΕΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 12+ 7 = 19 Οι αριθμοί 12 και 7 ονομάζονται ενώ το 19 ονομάζεται.. 3+5 =, 5+3 =...

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

Να γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ρητοί και ποιοι άρρητοι;

Να γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ρητοί και ποιοι άρρητοι; Φυσικοί, Ακέραιοι, Ρητοί, Άρρητοι, Πραγματικοί, Απόλυτη Τιμή, Ομόσημοι, Ετερόσημοι, Αντίθετοι, Αντίστροφοι. Να γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ακέραιοι;

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥΣΤΗΝ ΑΛΓΕΒΡΑ. Άρτιοι αριθμοί ονομάζονται οι αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥΣΤΗΝ ΑΛΓΕΒΡΑ. Άρτιοι αριθμοί ονομάζονται οι αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥΣΤΗΝ ΑΛΓΕΒΡΑ 1)Ποιοι αριθμοί ονομάζονται άρτιοι και ποιοι περιττοί ; Άρτιοι αριθμοί ονομάζονται οι αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι που δεν διαιρούνται

Διαβάστε περισσότερα

( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει

( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει μέρος πρώτο v v 1 v 1 Γενική μορφή πολυωνύμου: ( ) 1 1 Όροι του ( ) v v v P = a v + av 1 + av +... + a + a 1 + a, ν Ν, α ν R Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή. P : a, a, a,...,

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

Τεύχος 6. Περιοδική έκδοση για τα Μαθηματικά Γυμνασίου https://mathsgymnasio.wordpress.com/ Περιεχόμενα

Τεύχος 6. Περιοδική έκδοση για τα Μαθηματικά Γυμνασίου https://mathsgymnasio.wordpress.com/ Περιεχόμενα Περιοδική έκδοση για τα Μαθηματικά Γυμνασίου https://mathsgymnasio.wordpress.com/ Τεύχος 6 Περιεχόμενα Σελίδα 5: Σελίδα 7: Α Γυμνασίου, Μέρος Α, Κεφάλαιο 7, Θετικοί και Αρνητικοί Αριθμοί, Α.7.8. Δυνάμεις

Διαβάστε περισσότερα

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ. Βαγγέλης. Βαγγέλης Νικολακάκης Μαθηματικός.

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ. Βαγγέλης. Βαγγέλης Νικολακάκης Μαθηματικός. 01 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παρον φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια

Διαβάστε περισσότερα

Μαθηματικά A Γυμνασίου

Μαθηματικά A Γυμνασίου Μαθηματικά A Γυμνασίου ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ Μέρος Α - Άλγεβρα 1. Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; (σελ. 15) 2. Πως ορίζεται η πράξη της αφαίρεσης στους φυσικούς και πότε αυτή μπορεί να

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι η Ευκλείδια διαίρεση; Είναι η διαδικασία κατά την οποία όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε βρίσκουμε άλλους δύο φυσικούς αριθμούς π και υ,

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

4. Να βρείτε τον βαθμό των πολυωνύμων ως προς χ, ως προς ψ και ως προς χ και ψ μαζί

4. Να βρείτε τον βαθμό των πολυωνύμων ως προς χ, ως προς ψ και ως προς χ και ψ μαζί 1 ΑΣΚΗΣΕΙΣ 1. Να εκτελέσετε τις προσθέσεις, όπου αυτό είναι δυνατόν α) χ 3 +5ψ 3 β) χ 3 +6χ 3 γ) 4χ 5 ω-7ωχ 5 δ) 3χ 5 +4χ ε) χ 4 +3χ 4 ζ) χ -χ η) χ +χ θ) χ +χ ι) χ+χ 3 κ) χ -χ λ) 3χ 4-4χ 4 μ) 3χ-3χ 3.

Διαβάστε περισσότερα

Ρητοί αριθμοί είναι αυτοί που έχουν (ή μπορεί να πάρουν) κλασματική μορφή,

Ρητοί αριθμοί είναι αυτοί που έχουν (ή μπορεί να πάρουν) κλασματική μορφή, ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ.1 ΠΡΑΞΕΙΣ ΚΑΙ ΙΔΙΟΤΗΤΕΣ Οι αριθμοί 0,1,,,4, είναι οι Φυσικοί αριθμοί. Οι Φυσικοί αριθμοί μαζί με τους αντίθετούς τους αποτελούν τους Ακέραιους αριθμούς. Δηλαδή ακέραιοι είναι οι αριθμοί,-,-,-1,0,1,,,

Διαβάστε περισσότερα

Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5

Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5 Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5 Α Σύνολα αριθμών Για τα σύνολα των αριθμών γνωρίζουμε ότι N Z Q R. ) Το N= { 0,,,,... } είναι το σύνολο των φυσικών αριθμών. ) Το Z = { 0, ±, ±, ±,... } είναι το σύνολο

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 2: Δεκαδικοί αριθμοί, κλάσματα, δυνάμεις, ρίζες και ποσοστά. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 2: Δεκαδικοί αριθμοί, κλάσματα, δυνάμεις, ρίζες και ποσοστά. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 2: Δεκαδικοί αριθμοί, κλάσματα, δυνάμεις, ρίζες και ποσοστά Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ Ποια κλάσματα λέγονται ισοδύναμα; Με ποιους τρόπους μπορούμε να φτιάξουμε ισοδύναμα κλάματα; Ποια διαδικασία ονομάζουμε απλοποίηση ενός κλάσματος; Πότε ένα κλάσμα λέγεται ανάγωγο; Ποια κλάσματα λέγονται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 2013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός http://cutemaths.wordpress.com/ ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 20,

Διαβάστε περισσότερα

ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ

ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ 1 ΚΕΦΑΛΑΙΟ 1ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ Οι Πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι είναι οι πραγματικοί αριθμοί ; Ποιοι είναι οι

Διαβάστε περισσότερα

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ο ΓΕΛ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β ΛΥΚΕΙΟΥ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ -4 ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Επιμέλεια: ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος 013-014, Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

2 Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

2 Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΧΟΛΙΚΟ ΕΤΟΣ 016-017 ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΟΙ ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ Ι ΙΟΤΗΤΕΣ ΤΟΥΣ ΡΗΤΟΙ λέγονται οι αριθµοί : ΟΙ ΠΕΡΙΟ ΙΚΟΙ αριθµοί είναι :. ΑΡΡΗΤΟΙ

Διαβάστε περισσότερα

7.2 ΑΠΟΛΥΤΗ ΤΙΜΗ ΡΗΤΟΥ

7.2 ΑΠΟΛΥΤΗ ΤΙΜΗ ΡΗΤΟΥ 1 7.2 ΑΠΟΛΥΤΗ ΤΙΜΗ ΡΗΤΟΥ ΘΕΩΡΙΑ 1. Απόλυτη τιµή ρητού: Έστω ένας ρητός αριθµός α. Η απόλυτη τιµή του αριθµού α συµβολίζεται µε α και εκφράζει την απόσταση του σηµείου µε τετµηµένη α από την αρχή Ο του

Διαβάστε περισσότερα

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις 24 Κεφάλαιο ο. Να κάνετε τις πράξεις : α) 2 + 3 4-2 : (-4) + γ) -3 (-2) -5 +4: (-2) -6 β) 2 +3 (4-2): (-4 +) δ) -8 : (-3 +5) -4 (-2 + 6) Για να κάνουμε τις πράξεις ακολουθούμε τα εξής βήματα: ο βήμα: Πράξεις

Διαβάστε περισσότερα

Μαθηματικά. Γ'Γυμνασίου. Μαρίνος Παπαδόπουλος

Μαθηματικά. Γ'Γυμνασίου. Μαρίνος Παπαδόπουλος Μαθηματικά Γ'Γυμνασίου Μαρίνος Παπαδόπουλος ΠΡΟΛΟΓΙΚΟ ΣΗΜΕΙΩΜΑ Σας καλωσορίζω στον όµορφο κόσµο των Μαθηµατικών της Γ Γυµνασίου. Τα µαθηµατικά της συγκεκριµένης τάξης αποτελούν ίσως το αποκορύφωµα των

Διαβάστε περισσότερα

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Φώτης Κουνάδης Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ ΕΚ ΟΤΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΛΙΒΑΝΗ ΑΘΗΝΑ 2007 Σειρά:

Διαβάστε περισσότερα

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών 2 Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Προσθετέοι 18+17=35 α Προσθετέοι + β = γ Άθοι ρ σμα Άθοι ρ σμα 13 + 17 = 17 + 13 Πρόσθεση φυσικών αριθμών Πρόσθεση είναι η πράξη με την οποία από

Διαβάστε περισσότερα

Τμήμα Τεχνολόγων Γεωπόνων - Φλώρινα

Τμήμα Τεχνολόγων Γεωπόνων - Φλώρινα Τμήμα Τεχνολόγων Γεωπόνων - Φλώρινα Μάθημα: Μαθηματικά Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών (1 ο, 2 ο, 3 ο Κεφάλαιο) 11-10-2017, 18-10-2017 Διδάσκουσα: Αριστούλα Κοντογιάννη ΩΡΕΣ ΔΙΔΑΣΚΑΛΙΑΣ

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Τ Ν Ο Π Σ Ι Κ Η Τ Λ Η

ΑΛΓΕΒΡΑ Τ Ν Ο Π Σ Ι Κ Η Τ Λ Η Τ Ν Ο Π Σ Ι Κ Η Τ Λ Η ΑΛΓΕΒΡΑ Τα ςημαντικότερα ςημεία τησ θεωρίασ Ερωτήςεισ εμπζδωςησ- απαντήςεισ Μεθοδολογία αςκήςεων Προτεινόμενεσ αςκήςεισ του βιβλίου - διεξοδική ανάλυςη των λφςεων (ςκζψη-βήματα-επεξήγηςη

Διαβάστε περισσότερα

ÊåöÜëáéï 1 ï. Ïé ñçôïß áñéèìïß

ÊåöÜëáéï 1 ï. Ïé ñçôïß áñéèìïß ÊåöÜëáéï 1 ï Ïé ñçôïß áñéèìïß ÂéâëéïìÜèçìá 1 ï ÅðáíÜëçøç âáóéêþí åííïéþí Ðñüóèåóç ñçôþí áñéèìþí èñïéóìá ðïëëþí ðñïóèåôýùí ÁðáëïéöÞ ðáñåíèýóåùí ÂéâëéïìÜèçìá ï Ðïëëáðëáóéáóìüò ñçôþí áñéèìþí Ãéíüìåíï ðïëëþí

Διαβάστε περισσότερα