Κβαντικές Καταστάσεις

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κβαντικές Καταστάσεις"

Transcript

1 Κβαντικές Καταστάσεις

2 Δομή Διάλεξης Σύντομη ιστορική ανασκόπηση Ανασκόπηση Πιθανότητας Το Πλάτος Πιθανότητας Πείραμα διπλής οπής Κβαντικές καταστάσεις (ket) Ο δυίκός χώρος (bra) Σύνοψη

3 Κβαντική Φυσική Όχί τελείως κατανοητή θεωρία (ανοιχτα ερευνητικά θέματα - δυσκολίες) Απαραίτητη η λύση πολλών ασκήσεων για σωστή κατανόηση Κλασσική Φυσική: Μόνη πηγή αβεβαιότητας σφάλμα (αβεβαιότητα) μετρήσεων (δεδομένων) που οδηγεί σε κατανομή πιθανότητας προβλέψεων. Κβαντική Φυσική: Η αβεβαιότητα σε ορισμένες μετρήσεις είναι ενδογενής στην θεωρία και στην φύση!!

4 Ιστορική Αναδρομή Αρχικό πρόβλημα (τέλη 19 ου αιώνα): Μέλαν σώμα θα έπρεπε να ακτινοβολεί άπειρη ενέργεια με βάση την κλασσική φυσική. Πείραμα: ακτινοβολούμενη ενέργεια ~ Τ Max Planck: Εξήγησε το πείραμα με την υπόθεση ότι η ΗΜ ακτινοβολία αποτελείται απο φωτόνια με διακριτές τιμές ενέργειας (κβαντισμένες) Ε=nhν (ν η συχότητα). https://www.youtube.com/watch?v=errhupngfs8 Άλλο πρόβλημα: Φωτοηλεκτρικό φαινόμενο: Αύξηση της έντασης της ακτινοβολίας (πλάτος ταλάντωσης πεδίου) δεν οδηγεί σε εκπομπή ηλεκτρονιων αν η συχνότητα ακτινοβολίας δεν είναι αρκετά μεγάλη! Einstein 1905: η ΗΜ ενέργεια αποτελείται απο κυματοπακέτα ενέργειας μεγέθους hν.

5 Ιστορική Αναδρομή 1911 το άτομο του Rutherford θα έπρεπε να κατaρεύσει με βάση την κλασσική φυσική 1913 Niels Bohr: το άτομο είναι ευσταθές αν η στροφορμή των ηλεκτρονίων μπορεί να πάρει μόνο διακριτές τιμες nh/2π που εξηγεί και φασματοσκοπικά δεδομένα Luis de Broglie: Τα σωμάτια συμπεριφέρονται σαν κύματα με μήκος κύματος λ που συνδέεται με την ορμή τους p ως: p=h/λ. Άρα τα ηλεκτρόνια συμπεριφέρονται σαν στάσιμα κύματα γύρω απο τον πυρήνα και δεν μπορουν να έχουν οποιοδήποτε μήκος κύματος (λογω οριακών συνθηκών). Άρα δεν μπορούν να έχουν και οποιαδήποτε ορμή (άρα και στροφρομή, ενέργεια κλπ) παρά μόνο συγκεκριμένες (κβαντισμένες) τιμές.

6 Ιστορική Αναδρομή 1926 Schrodinger: Τα σωματια συμπεριφέρονται σαν κύματα. Η ποσότητα που ταλαντώνεται είναι το πλάτος πιθανότητας εύρεσης του σωματίου σε μια θέση στο χώρο (κυματοσυνάρτηση Ψ). Το πλάτος αυτό υπακούει συγκεκριμένη κυματική εξίσωση Heisenberg: Τα μετρήσιμα μεγέθη (ενέργεια, στροφορμή κλπ) μπορούν να περιγραφούν απο πίνακες που εξελίσονται χρονικά (τελεστές) με βαση συγκεριμένες εξισώσεις (μηχανική των μητρών). Η περιγραφή αυτή είναι ισδοδύναμη με την περιγραφή του Scrodinger και οδηγει στις ίδιες φυσικές προβλεψεις (Dirac 1926).

7 Ιστορική Αναδρομή Einstein: Είναι η αβεβαιότητα-κύμα πιθανότητας της κβαντομηχανίκής αποτέλεσμα ελλειπους γνώσης της πραγματικής θεωρίας; Υπάρχουν κρυμένες μεταβλητές που θα οδηγήσουν σε θεωρία χωρίς αβεβαιότητα και πιθανότητα; Απάντηση Bell 1964: Όχι, δεν υπάρχει πιο πλήρης θεωρία απο την κβαντομηχανική. Δεν υπάρχουν κρυμμένες μεταβλητές (πειραματική επιβεβαίωση 1972).

8 Ανασκόπηση Πιθανότητας Πιθανότητα αποτελέσματος Χ: Λόγος διαδικασιών που δίνουν το αποτέλεσμα Χ προς σύνολο διαδικασιών μετά απο άπειρες μετρήσεις Αριθμός μεταξύ 0 και 1 Πιθανότητα απόκτησης είτε αποτελεσματος X είτε αποτελέσματος Υ: Προφανώς ισχύει (αν δεν μπορούμε να πάρουμε ταυτόχρονα Χ και Υ): Άρα : Επίσης για το σύνολο Μ των πιθανών αποτελεσμάτων έχουμε:

9 Συνδυασμός στατιστικά ανεξάρτητων μετρήσεων Συνδυασμός στατιστικά ανεξάρτητών μετρήσεων: Άρα η πιθανότητα να πάρουμε πρώτα το αποτέλεσμα Χ και μετά το αποτέλεσμα Υ σε στατιστικά ανεξάρτητες μετρήσεις είναι: Παράδειγμα: Η πιθανότητα να φέρουμε στο ζάρι πρώτα άσσο και μετα 2 είναι 1/6 x 1/6=1/36

10 Μέσος Όρος Ο μέσος όρος (mean) ή αναμενόμενη τιμή τυχαίας μεταβλητής u με Μ πιθανές τιμές είναι: Για συναρτήσεις τυχαίας μεταβλητής έχουμε: Ισχύει ακόμα: Άρα : Όμοια δείχνουμε ότι : 1a+

11 Διασπορά Η διασπορά (variance) περιγράφει το εύρος των πιθανών αποτελεσμάτων μετρήσεων γύρω απο την μέση τιμή και ορίζεται ώς ο θετικός αριθμός:: Για την διασπορά ισχύει γενικά ότι: Η τυπική απόκλιση ορίζεται ως:

12 Συνεχεις Κατανομές Πιθανότητας Η συνεχής κατανομή πιθανότητας ορίζεται ως: Απο τις διακριτες κατανομές προκύπτουν οι παρακάτω γενικεύσεις (απλά αντικαθιστούμε το άθροισμα με ολοκλήρωμα επι du και ολοκληρώνουμε σε όλα τα πιθανά αποτελέσματα δηλ. απο απειρο μέχρι άπειρο):

13 Πλάτος Πιθανότητας Πλάτος πιθανότητας ορίζεται ως ο μιγαδικός αριθμος Α απο τον οποίο προκύπτει η πιθανότητα P ως: Η κβαντομηχανική μπορεί να προβλέψει πλατη πιθανότητας (εμφανίζονται μόνο στην κβαντομηχανική). Φυσική συνέπεια πλάτους πιθανότητας: Έστω πείραμα με δυο πιθανές διεργασίες S και Τ που οδηγούν στο ίδιο μετρούμενο αποτέλεσμα. Η ολίκή πιθανότητα να συμβεί το αποτέλεσμα είναι P(S ή T): κβαντικό σύστημα

14 Πλάτος Πιθανότητας Όρος κβαντικής συμβολής (χωρίς κλασσικό ανάλογο) παραβιάζει θεμελιώδη νόμο των πιθανοτήτων: Φυσική σημασία: ο όρος συμβολής επιτρέπει τον ενδεχόμενο να συμβούν ταυτόχρονα και το ενδεχόμενο S και το ενδεχόμενο T (μη τοπικότητα) Κβαντική Συμβολή: Θεμελώδης αρχή της κβαντομηχανικής

15 Παράδειγμα: Το πείραμα της διπλής οπής S T x Πιθανότητα εύρεσης ηλεκτρονίου στην θέση x του πετάσματος: 1b+ Πλάτος πιθανότητας να περάσει το ηλεκτρόνια απο την οπή 1 (2) και να φθάσει στην θέση x.

16 Παράδειγμα: Το πείραμα της διπλής οπής Πιθανότητα εύρεσης ηλεκτρονίου στην θέση x του πετάσματος: Πλάτος πιθανότητας να περάσει το ηλεκτρόνια απο την οπή 1 (2) και να φθάσει στην θέση x. S T

17 Παράδειγμα: Το πείραμα της διπλής οπής Πιθανότητα εύρεσης ηλεκτρονίου στην θέση x του πετάσματος: Όρος συμβολής: 1c+ Στο κέντρο του πετάσματος: 1d+ P 1 P 2 4P 1 > P x > 0

18 Αναμενόμενη μορφή πιθανότητας P(x) Λόγω όρου συμβολής Πείραμα με ηλεκτρόνια: Μίο οπή: Δύο οπές (όρος συμβολής): Για μακροσκοπικά σωμάτιο η απόσταση μεταξύ των κροσων είναι τόσο μικρη ώστε γινεται μη μετρήσιμη! Τότε πειράματα μετρούν την μέση τιμή του Ι(x) που είναι 0 και η κβαντική συμβολή δεν είναι μετρήσιμη!

19 Κβαντικές Καταστάσεις Η μέτρηση μιας ποσότητας (παρατηρήσιμου μεγέθους) ενός συστήματος (πχ ορμή) διαταράσει το σύστημα και το σύστημα μεταπίπτει σε μια κβαντική κατάσταση στην οποία η επανάληψη μέτρησης της ίδιας ιδιότητας οδηγεί στο ίδιο αποτέλεσμα. Παραδείγματα κβαντικών καταστάσεων: Ε>: Κβαντική κατάσταση όπου άν μετρηθεί η ενέργεια το αποτέλεσμα θα είναι Ε. p>: Κβαντική κατάσταση όπου άν μετρηθεί η ορμή το αποτέλεσμα θα είναι p. x>: Κβαντική κατάσταση όπου άν μετρηθεί η θέση το αποτέλεσμα θα είναι x. Γενική κατάσταση ψ> όπου οι πιθανότητες μέτρησης διαφόρων φυσικών ιδιοτήτων έχουν αβεβαιότητα: υπάρχει πιθανότητα P 1 (E) να μετρηθεί τιμή της ενέργειας E, P 2 (p) να μετρηθεί τιμή της ορμής p κλπ. Σε σύστημα με κατάσταση ψ>, μετά την μέτρηση πχ της ενέργειας με αποτέλεσμα Ε 1 η κυματοσυνάρτηση διαταράσεται και καταρέει (μετατρέπεται) σε νέα κατάσταση Ε 1 > ώστε επανάληψη της ίδιας μέτρησης να δώσει το ίδιο αποτέλεσμα.

20 Κβαντικές Καταστάσεις Σε σύστημα με κατάσταση ψ>, μετά την μέτρηση πχ της ορμής με αποτέλεσμα p 1 η κυματοσυνάρτηση διαταράσεται και καταρέει (μετατρέπεται) σε νέα κατάσταση p 1 > ώστε επανάληψη της ίδιας μέτρησης να δώσει το ίδιο αποτέλεσμα. p > p με πιθανότητα 1 Οι καταστάσεις x> και p> δεν μπορούν να συμπίπτουν γιατί μέτρηση της θέσης (πχ με σκέδαση φωτονίου μικρού μήκους κύματος) μεταβάλλει την ορμή. Άρα δεν μπορούμε να είμαστε ταυτόχρονα σίγουροι για την ορμή και την θέση ενός σωματίου. Σε αντιδιαστολή, η κλασική κατάσταση ενός σωματίου καθορίζεται πλήρως απο την ταυτόχρονη μέτρηση της θέσης και της ορμής του. Αυτή είναι η πλήρης πληροφορία που απαιτείται για να βρούμε την χρονική εξέλιξη του σωματίου (αν ξέρουμε το δυναμικό ή την δύναμη).

21 Παρατηρήσιμα Μεγέθη (Observables) Παρατηρήσιμα μεγέθη ενός συτήματος είναι εκείνα τα μεγέθη που μπορούν να μετρηθούν (θέση, ορμή, ενέργεια, στροφορμή κλπ) Φάσμα (spectrum) ενός παρατηρήσιμου μεγέθους είναι όλες εκείνες οι τιμές που μπορεί να δώσει μια μέτρηση για το συγκεκριμένο μέγεθος σε δεδομένο σύστημα. Για παράδειγμα το φάσμα της συνετταγμέχης x ελεύθερου σωματίου στο χώρο είναι απο έως + ενώ το φάσμα της κινητικής ενέργειας είναι απο 0 έως +. Θα δούμε ότι στην κβαντική μηχανική η προβολή της στροφορμής κατα μήκος οποιουδήποτε άξονα έχει διακριτό φάσμα (δεν μπορεί να πάρει συνεχείς τιμές): Όπου ћ είναι η σταθερά του Planck h/2π.

22 Κβαντική κατάσταση και πλατη πιθανότητας παρατηρήσιμων μεγεθών Τα παρατηρήσιμα μεγέθη στην κβαντομηχανική είναι τυχαίες μεταβλητες. Σε κάθε τιμή του φάσματος ενος παρατηρήσιμου μεγέθους αντιστοιχεί ένα κβαντικό πλάτος πιθανότητας για την μέτρηση της συγκεκριμένης τιμής. Το σύνολο των κβαντικών πλάτών πιθανότητας ενος φάσματος παρατηρήσιμου μεγέθους καθορίζουν πλήρως την κβαντική κατάσταση του συστήματος. Στόχος της κβαντομηχανικής είναι ο υπολογισμός αυτών των πλατών πιθανότητας με χρήση αποτελεσματών πειραματικών μετρήσεων. Παράδειγμα: Για το φάσμα n-τιμών ενος παρατηρήσιμου μεγέθους μπορεί να έχουμε τα πλάτη πιθανότητας {α 1, α 2,..., α n } (μπορεί να είναι και συνεχές). Για ένα άλλο παρατηρήσιμο μέγεθος μπορεί να έχουμε τα πλάτη πιθανότητας {b 1, b 2,..., b n }. Η κατάσταση του συστήματος περιγράφεται πληρως απο οποιοδήποτε απο τα παραπάνων σύνολα και αν γνωρίζουμε το ένα μπορούμε να υπολογίσουμε το άλλο με αλλαγή αναπαράστασης της κβαντικής κατάστασης.

23 Παράδειγμα: Κβαντική κατάσταση του Spin To spin είναι μια καθαρά κβαντική ποσότητα που χαρακτρίζει τα σωματια και έχει χαρακτηριστικά ιδιοστροφορμης. Έστω σωμάτιο με μέτρο spin: Αποδεικνύεται ότι το φάσμα για την z συνιστώσα του spin είναι {-ћ/2, ћ /2} (δύο τιμές) Όμοια, το φάσμα για την x συνιστώσα του spin είναι το ίδιο {-ћ/2, ћ /2} Έστω ότι τα πλάτη πιθανότητας για τo φασμα της z συνιστώσας είναι: Αυτά τα πλάτη καθορίζουν πλήρως την κατάσταση spin του σωματίου Με κατάληλο μετασχηματισμό μπορούμε να βρούμε τα πλάτη για την x συνιστώσα του spin:

24 Παράδειγμα: Κυματοσυνάρτηση Η κυματοσυνάρτηση Ψ(x) περιγράφει και αυτή ένα συνεχές σύνολο πλατών πιθανότητας να βρεθεί το σωμάτιο σε κάθε σημείο του χώρου. Αντιστοιχεί στα πλατη πιθανότητας του φάσματος του παρατηρήσιμου μεγέθους της θέσης ενός σωματίου. Άλλο παράδειγμα είναι τα πλάτη πιθανότητας για το φάσμα της ενέργειας:

25 Διανυσματικός χώρος κβαντικών καταστάσεων Έστω δύο καταστάσεις που περιγράφονται απο σύνολα πλατών πιθανότητας παρατηρήσιμου μεγέθους (πχ η ανίχνευση του ηλεκτρονίου στην θέση x πείραμα διπλής οπής είτε μέσω της μιας διαδρομής (ψ) είτε μέσω της άλλης (φ)). Με βάση την θεμελιώδη αρχή της κβαντομηχανικής, το πλατος πιθανότητας να προκύψει μέτρηση είτε μέσω της μιας φυσικής διεργασίας είτε μέσω της άλλης είναι το άθροισμα των δύο πλατών πιθανότητας που αντιστοιχούν σε κάθε φυσική διεργασία. Αυτά τα αθροίσματα περιγράφουν μια νέα νέα κβαντική κατάσταση που δίνει τα πλάτη πιθανότητας για την κάθε τιμή μέτρησης ανεξάρτητα απο την φυσική διεργασία που οδήγησε στην μέτρηση.

26 Διανυσματικός χώρος κβαντικών καταστάσεων Αυτά τα αθροίσματα περιγράφουν μια νέα νέα κβαντική κατάσταση που δίνει τα πλάτη πιθανότητας για την κάθε τιμή μέτρησης ανεξάρτητα απο την φυσική διεργασία που οδήγησε στην μέτρηση. Άρα το άθροισμα δύο κατασάσεων είναι μια νέα κβαντική κατάσταση όπως συμβαίνει με τα διανύσματα. Όμοια, τα γινόμενα των πλατών πιθανότητας επι ένα μιγαδικό αριθμό περιγράφουν μια νέα κβαντική κατάσταση όπως στα διανύσματα. 1e+

27 Διανυσματικός χώρος κβαντικών καταστάσεων Άρα το άθροισμα δύο κατασάσεων είναι μια νέα κβαντική κατάσταση όπως συμβαίναι με τα διανύσματα. Όμοια, τα γινόμενα των πλατών πιθανότητας επι ένα μιγαδικό αριθμό περιγράφουν μια νέα κβαντική κατάσταση όπως στα διανύσματα. Άρα ο χώρος των κβαντικών καταστάσεων είναι ένας διανυσματικός χώρος (χώρος Hilbert) στον οποίο κάθε κατάσταση περιγράφεται συντομογραφικά απο ένα ket: ψ>.

28 Ιδιότητες Διανυσματικών Χώρων: Βάση Βάση διανυσματικού χώρου V είναι ένα σύνολο διανυσμάτων i>, μέσω των οποίων μπορεί να εκφραστεί οποιοδήποτε διάνυσμα του διανυσματικού χώρου σαν γραμμικός συνδυασμός: μιγαδικοί αριθμοί Τα διανύσματα της βάσης έιναι γραμμικά ανεξάρτητα (κανένα δεν μπορεί να εκφραστεί ώς γραμμικός συνδυασμός των άλλων). Παράδειγμα βάσης:

29 Συναρτήσεις στον Διανυσματικό Χώρο (Δυικός (dual) χώρος) Για να εξάγουμε τα μιγαδικά πλάτη πιθανότητας απο τις κβαντικές καταστάσεις χρειαζόμαστε μιγαδικές συναρτήσεις που θα έχουν όρισμα κβαντικές καταστάσεις και θα μας δίνουν μιγαδικούς αριθμούς: Ο χώρος αυτών των συναρτήσεων <f (bra <f ) αποτελεί ένα δυικό χώρο σε σχέση με τον διανυσματικό χώρο των κβαντικών καταστάσεων (ket ψ>) Οι συναρτήσεις που αντιστοιχούν στο δυικό χώρο είναι γραμμικές δηλαδή ισχύει Ο δυικός χώρος των συναρτήσεων είναι διανυσματικός δηλαδή ισχύει

30 Συναρτήσεις στον Διανυσματικό Χώρο (Δυικός (dual) χώρος) Ο δυικός χώρος των συναρτήσεων είναι διανυσματικός δηλαδή ισχύει όπου οι συναρτήσεις bra <h και <p ανήκουν και αυτές στον δυικό διανυσματικό χώρο και ορίζονται απο τις σχέσεις:

31 Βάση στο δυικό χώρο Αφού ο δυικός χώρος V είναι διανυσματικός θα πρέπει να έχει μια βάση. Έστω βάση i> (i=1,..,n) στο χώρο V. Μια κατάσταση ψ> αναπτύσεται στην βάση αυτή ως: Ορίζουμε την βάση στο δυικό χώρο (συζηγής βάση )ως: όπου: 1f+ μήκος της ψ>

32 Αντιστοιχία με διανύσματα μήκος του διανύσματος στο τετράγωνο Στην περίπτωση του διανύσματος το δυικό συζηγές ταυτίζεται με το διάνυσμα γιατί οι συνιστώσες είναι πραγματικοί αριθμοί (δεν αλλάζουν με την συζυγία). Εσωτερικό γινόμενο: 1g+ 1h+

33 Η αναπαράσταση της ενέργειας Για σωμάτιο σε δέσμια κατάσταση (πχ πηγάδι δυναμικού), το φάσμα της ενέργειας είναι διακριτο: Ε 0,Ε 1,... Μια κβαντική κατάσταση περιγράφεται πλήρως απο το σετ των πλατών πιθανότητας που αντιστοιχεί στο παραπάνω φάσμα {α 0,α 1,...} Έστω μια κατάσταση για την οποία ισχύει: Στην κατάσταση αυτή μέτρηση της ενέργειας θα δώσει την τιμή Ε k με πιθανότητα 1. Ονομάζουμε αυτή την κατάσταση Ε k > (βάση καθορισμένης ενέργειας). Αναπτύσουμε μια κατάσταση ψ> στην βάση καθορισμένης ενέργειας ως: 1i+

34 Εύρεση πλάτους πιθανότητας απο κατάσταση ψ> Αναπτύσουμε μια κατάσταση ψ> στην βάση καθορισμένης ενέργειας ως: Έτσι απο την ψ> βρίσκουμε τα πλάτη πιθανότητας για το φάσμα ενέργειας!! Απο τα πλάτη βρίσκουμε και τις αντίστοιχες πιθανότητες για την μέτρηση των διαφόρων τιμών του φάσματος.

35 Κανονικοποίηση Για το μήκος της κυματοσυνάρτησης έχουμε: Το άθροισμα των πιθανοτήτων πρέπει να είναι μονάδα αφού θα μετρηθεί σίγουρα μια απο τις τιμές του φάσματος Άρα τα μήκη κβαντικών καταστάσεων πρέπει να είναι μόνάδα (κανονικοποιημένα). κανονικοποίηση <ψ ψ>=1 1j+

36 Ο κβαντικός πολωτής Η ένταση ακτινοβολίας είναι ανάλογη του αριθμού φωτονίων που πέρασαν που είναι ανάλογος με την πιθανότητα να μετρηθεί το κάθε φωτόνιο να έχει την δεδομένη πόλωση. Πλάτη πιθανότητας της κβαντικής κατάστασης στην βάση της νέας μέτρησης E E cosθ Κλασσική περιγραφή: I 0 I 0 I 0 2 I 0 cos 2 θ 1l+

37 Σύνοψη Το κβαντικό πλάτος πιθανότητας είναι ένας μιγαδικός αριθμός Α του οποίο το μέτρο στο τετράγωνο δίνει την πιθανότητα P να δώσει μια μέτρηση φυσικού μεγέθους μια δεδομένη τιμή (P= A 2 ). Όταν ένα αποτέλεσμα μέτρησης μπορεί να προκύψει με δύο ή περισσότερες φυσικές διεργασίες (πχ πείραμα διπλής οπής) τότε το πλάτος πιθανότητας Α για το τελικό αποτέλεσμα της μέτρησης είναι το άθροισμα των πλατών πιθανότητας για το ίδιο αποτέλεσμα μέσω της κάθε διεργασίας: Α=Α 1 +Α Άρα στην κβαντομηχανική παραβιάζεται κλασσική θεωρία πιθανοτήτων σύμφωνα με την οποία θα έπρεπε P=P 1 +P 2 + Η κβαντική κατάσταση συστήματος ανήκει σε διανυσματικό χώρο καθορίζεται απο το πλήρες σετ πλατών πιθανότητας για την μέτρηση παρατηρήσιμου μεγέθους. Με χρήση του διυκού χώρου και του εσωτερικού γινομένου μπορύν να προκύψουν τα πλάτη πιθανότητας για οποιαδήποτε μέτρηση απο την κβαντική κατάσταση.

38 Ασκήσεις Πως ορίζεται μια κβαντική κατάσταση; Απ: Απο το πλήρες σετ των πλατών πιθανότητας για το φάσμα δεδομένου παρατηρήσιμου μεγέθους. Ποιά είναι η χρησιμότητα των bra (δυικού χώρου); Απ: Το bra είναι μια συνάρτηση που δέχεται σαν όρισμα το ket (κβαντική κατάσταση) και δίνει ένα μιγαδικό αριθμό: το πλάτος πιθανότητας για το αποτέλεσμα μιας μέτρησης. Για παράδειγμα το bra <Ε 2 εξάγει απο την κβαντική κατάσταση ψ> το πλάτος πιθανότητας <Ε 2 ψ> να δωσει μια μέτρηση της ενέργειας αποτέλεσμα που αντιστηχεί στην ενέργεια Ε 2 (δεύτερη διεγερμένη στάθμη). Απ: Έστω η κβαντική κατάσταση: Εκφράστε το bra <ψ σαν γραμμικό συνδυασμο των bra <a και <b.

39 Ασκήσεις Απ: Έστω η κβαντική κατάσταση: Εκφράστε το bra <ψ σαν γραμμικό συνδυασμο των bra <a και <b. Έστω η κανονικοποιημένη κβαντική κατάσταση: Βρείτε την πιθανότητα να βρεθεί το σύστημα στην κατάσταση Α> αν Απ:

40 Ασκήσεις Έστω η κβαντική κατάσταση: όπου: Αν οι καταστάσεις n> αποτελούν ορθοκανονική βάση, (α) βρείτε την πιθανότητα εύρεσης του συστήματος σε δεδομένη κατάσταση n>. (b) Βρείτε την πιθανότητα εύρεσης του συστήματος σε κατάσταση με μή αρνητικό n. Απ:

ΛΕΑΝΔΡΟΣ ΠΕΡΙΒΟΛΑΡΟΠΟΥΛΟΣ Καθηγητής Πανεπιστημίου Ιωαννίνων. Εισαγωγή στην Κβαντική θεωρία

ΛΕΑΝΔΡΟΣ ΠΕΡΙΒΟΛΑΡΟΠΟΥΛΟΣ Καθηγητής Πανεπιστημίου Ιωαννίνων. Εισαγωγή στην Κβαντική θεωρία ΛΕΑΝΔΡΟΣ ΠΕΡΙΒΟΛΑΡΟΠΟΥΛΟΣ Καθηγητής Πανεπιστημίου Ιωαννίνων Εισαγωγή στην Κβαντική θεωρία Εισαγωγή στην Κβαντική Θεωρία Συγγραφή Λέανδρος Περιβολαρόπουλος Κριτικός αναγνώστης Θεοχάρης Κοσμάς Συντελεστές

Διαβάστε περισσότερα

Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας

Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας Δομή Διάλεξης Χρονική εξέλιξη Gaussian κυματοσυνάρτησης σε μηδενικό δυναμικό (ελέυθερο σωμάτιο): Μετατόπιση και Διασπορά Πείραμα διπλής οπής: Κροσσοί συμβολής για

Διαβάστε περισσότερα

Η Αναπαράσταση της Θέσης (Position Representation)

Η Αναπαράσταση της Θέσης (Position Representation) Η Αναπαράσταση της Θέσης (Position Representation) Δομή Διάλεξης Το παρατηρήσιμο μέγεθος της θεσης και τα αντίστοιχα πλάτη πιθανότητας (συνεχές φάσμα ιδιοτιμών και ιδιοκαταστάσεων) Οι τελεστές της θέσης

Διαβάστε περισσότερα

Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική

Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική Spin Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική Δομή Διάλεξης Το πείραμα Stern-Gerlach: Πειραματική απόδειξη spin Ο δισδιάστατος χώρος καταστάσεων spin του ηλεκτρονίου: οι πίνακες Pauli Χρονική εξέλιξη

Διαβάστε περισσότερα

3. Το πρότυπο του Bohr εξήγησε το ότι το φάσμα της ακτινοβολίας που εκπέμπει το αέριο υδρογόνο, είναι γραμμικό.

3. Το πρότυπο του Bohr εξήγησε το ότι το φάσμα της ακτινοβολίας που εκπέμπει το αέριο υδρογόνο, είναι γραμμικό. ΧΗΜΕΙΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 16 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ-ΠΡΟΤΥΠΟ BOHR ΟΜΑΔΑ Α Να χαρακτηρίσετε τις παρακάτω προτάσεις ως Σωστές ή Λάθος και να αιτιολογήσετε αυτές που είναι λάθος : 1.

Διαβάστε περισσότερα

Δομή Διάλεξης. Ορισμός-Παραδείγματα Τελεστών. Αναμενόμενες τιμές φυσικών μεγεθών με χρήση τελεστών. Ιδιοκαταστάσεις και Ιδιοτιμές τελεστών

Δομή Διάλεξης. Ορισμός-Παραδείγματα Τελεστών. Αναμενόμενες τιμές φυσικών μεγεθών με χρήση τελεστών. Ιδιοκαταστάσεις και Ιδιοτιμές τελεστών Τελεστές Δομή Διάλεξης Ορισμός-Παραδείγματα Τελεστών Αναμενόμενες τιμές φυσικών μεγεθών με χρήση τελεστών Ιδιοκαταστάσεις και Ιδιοτιμές τελεστών Ερμητειανοί τελεστές Στοιχεία πίνακα τελεστών Μεταθέτες

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ eclass: MED808 Π. Παπαγιάννης

ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ eclass: MED808 Π. Παπαγιάννης ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ eclass: MED808 Π. Παπαγιάννης Επικ. Καθηγητής, Εργαστήριο Ιατρικής Φυσικής, Ιατρική Σχολή Αθηνών. Γραφείο 21 210-746 2442 ppapagi@phys.uoa.gr Τις προσεχείς ώρες θα συζητήσουμε τα πέντε πρώτα

Διαβάστε περισσότερα

Από τι αποτελείται το Φως (1873)

Από τι αποτελείται το Φως (1873) Από τι αποτελείται το Φως (1873) Ο James Maxwell έδειξε θεωρητικά ότι το ορατό φως αποτελείται από ηλεκτρομαγνητικά κύματα. Ηλεκτρομαγνητικό κύμα είναι η ταυτόχρονη διάδοση, μέσω της ταχύτητας του φωτός

Διαβάστε περισσότερα

Αρμονικός Ταλαντωτής

Αρμονικός Ταλαντωτής Αρμονικός Ταλαντωτής Δομή Διάλεξης Η χρησιμότητα του προβλήματος του αρμονικού ταλαντωτή Η Hamiltonian και οι τελεστές δημιουργίας και καταστροφής Το φάσμα ιδιοτιμών της Hamiltonian Οι ιδιοκαταστάσεις

Διαβάστε περισσότερα

Κβαντική µηχανική. Τύχη ή αναγκαιότητα. Ηµερίδα σύγχρονης φυσικής Καραδηµητρίου Μιχάλης

Κβαντική µηχανική. Τύχη ή αναγκαιότητα. Ηµερίδα σύγχρονης φυσικής Καραδηµητρίου Μιχάλης Κβαντική µηχανική Τύχη ή αναγκαιότητα Ηµερίδα σύγχρονης φυσικής Καραδηµητρίου Μιχάλης Ηφυσικήστόγύρισµα του αιώνα «Όλοι οι θεµελιώδεις νόµοι και δεδοµένα της φυσικής επιστήµης έχουν ήδη ανακαλυφθεί και

Διαβάστε περισσότερα

Μετασχηματισμοί Καταστάσεων και Τελεστών

Μετασχηματισμοί Καταστάσεων και Τελεστών Μετασχηματισμοί Καταστάσεων και Τελεστών Δομή Διάλεξης Μετασχηματισμοί Καταστάσεων Τελεστής Μετατόπισης Συνεχείς Μετασχηματισμοί και οι Γεννήτορές τους Τελεστής Στροφής Διακριτοί Μετασχηματισμοί: Parity

Διαβάστε περισσότερα

Μοντέρνα Φυσική. Κβαντική Θεωρία. Ατομική Φυσική. Μοριακή Φυσική. Πυρηνική Φυσική. Φασματοσκοπία

Μοντέρνα Φυσική. Κβαντική Θεωρία. Ατομική Φυσική. Μοριακή Φυσική. Πυρηνική Φυσική. Φασματοσκοπία Μοντέρνα Φυσική Κβαντική Θεωρία Ατομική Φυσική Μοριακή Φυσική Πυρηνική Φυσική Φασματοσκοπία ΚΒΑΝΤΙΚΗ ΘΕΩΡΙΑ Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης:

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ Στέλιος Τζωρτζάκης 1 3 4 Ο διανυσματικός χώρος των φυσικών καταστάσεων Η έννοια

Διαβάστε περισσότερα

Χημεία Γ Λυκείου Θετικής Κατεύθυνσης

Χημεία Γ Λυκείου Θετικής Κατεύθυνσης Χημεία Γ Λυκείου Θετικής Κατεύθυνσης Κεφάλαιο 1 Ηλεκτρονιακή δομή των ατόμων 1 Εισαγωγή Δομή του ατόμου Δημόκριτος Αριστοτέλης Dalton Thomson 400 π.χ. 350π.χ. 1808 1897 Απειροελάχιστα τεμάχια ύλης (τα

Διαβάστε περισσότερα

ETY-202. Ο γενικός φορμαλισμός Dirac ETY-202 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC. Στέλιος Τζωρτζάκης 21/11/2013

ETY-202. Ο γενικός φορμαλισμός Dirac ETY-202 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC. Στέλιος Τζωρτζάκης 21/11/2013 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC Στέλιος Τζωρτζάκης Ο γενικός φορμαλισμός Dirac 1 3 4 Εικόνες και αναπαραστάσεις Επίσης μια πολύ χρήσιμη ιδιότητα

Διαβάστε περισσότερα

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου Ι Άσκηση 1: Θεωρήστε δύο ορθοκανονικά διανύσματα ψ 1 και ψ και υποθέστε ότι αποτελούν βάση σε ένα χώρο δύο διαστάσεων. Θεωρήστε επίσης ένα τελαστή T που ορίζεται στο χώρο

Διαβάστε περισσότερα

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 1

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 1 Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 1/ 39 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 1 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων Ακαδηµαικό έτος

Διαβάστε περισσότερα

Υλικά κύματα. Οδηγούντα κύματα de Broglie. Τα όρια της θεωρίας Bohr. h pc p

Υλικά κύματα. Οδηγούντα κύματα de Broglie. Τα όρια της θεωρίας Bohr. h pc p University of Ioannina Deartment of Materials Science & Engineering Comutational Materials Science τική Θεωρία της Ύλης ιδάσκων: Λευτέρης Λοιδωρίκης Π1, 7146, elidorik@cc.uoi.gr cmsl.materials.uoi.gr/elidorik

Διαβάστε περισσότερα

Κεφάλαιο 2. Ο κυματοσωματιδιακός δυισμός της ύλης

Κεφάλαιο 2. Ο κυματοσωματιδιακός δυισμός της ύλης ΤΕΤΥ Σύγχρονη Φυσική Κεφ. 2-1 Κεφάλαιο 2. Ο κυματοσωματιδιακός δυισμός της ύλης Εδάφια: 2.a. Η σύσταση των ατόμων 2.b. Ατομικά φάσματα 2.c. Η Θεωρία του Bohr 2.d. Η κυματική συμπεριφορά των σωμάτων: Υλικά

Διαβάστε περισσότερα

ΣΩΜΑΤΙ ΙΑΚΗ ΦΥΣΗ ΦΩΤΟΣ

ΣΩΜΑΤΙ ΙΑΚΗ ΦΥΣΗ ΦΩΤΟΣ Μάθηµα 1 ο, 30 Σεπτεµβρίου 2008 (9:00-11:00). ΣΩΜΑΤΙ ΙΑΚΗ ΦΥΣΗ ΦΩΤΟΣ Ακτινοβολία µέλανος σώµατος (1900) Plank: έδωσε εξήγηση του φάσµατος (κβαντική ερµηνεία*) ΠΑΡΑ ΟΧΗ Το φως δεν είναι µόνο κύµα. Είναι

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 1: Ανασκόπηση Σύγχρονης Φυσικής. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 1: Ανασκόπηση Σύγχρονης Φυσικής. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 1: Ανασκόπηση Σύγχρονης Φυσικής Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να επαναληφθούν βασικές έννοιες της Σύγχρονης Φυσικής,

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 20η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

Στοιχειώδη Σωματίδια. Διάλεξη 20η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Στοιχειώδη Σωματίδια Διάλεξη 20η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Φερµιόνια & Μποζόνια Συµπεριφορά της Κυµατοσυνάρτησης δύο ταυτόσηµων σωµατίων κάτω από την εναλλαγή τους στο χώρο 15 Δεκ

Διαβάστε περισσότερα

3/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 08. ΤΟ ΣΠΙΝ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΟ ΣΠΙΝ

3/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 08. ΤΟ ΣΠΙΝ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΟ ΣΠΙΝ stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΤΟ ΣΠΙΝ ΎΛΗ & ΦΩΣ 08. ΤΟ ΣΠΙΝ Στέλιος Τζωρτζάκης 1 3 4 Εισαγωγή Η ενδογενής στροφορμή ή αλλιώς σπιν αποτελεί ένα θεμελιώδες χαρακτηριστικό των σωματιδίων διότι

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 15: Η έννοια του κυματοπακέτου στην Kβαντομηχανική. Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 15: Η έννοια του κυματοπακέτου στην Kβαντομηχανική. Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 15: Η έννοια του κυματοπακέτου στην Kβαντομηχανική Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι να ολοκληρώσει την εφαρμογή της

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ Η ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ II. ΤΟ ΦΩΣ ΜΟΝΤΕΛΟ ΤΟΥ BOHR Ν. ΜΠΕΚΙΑΡΗΣ

ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ Η ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ II. ΤΟ ΦΩΣ ΜΟΝΤΕΛΟ ΤΟΥ BOHR Ν. ΜΠΕΚΙΑΡΗΣ ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ Η ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ II. ΤΟ ΦΩΣ ΜΟΝΤΕΛΟ ΤΟΥ BOHR Ν. ΜΠΕΚΙΑΡΗΣ ΕΙΣΑΓΩΓΗ Κλειδί στην παραπέρα διερεύνηση της δομής του ατόμου είναι η ερμηνεία της φύσης του φωτός και ιδιαίτερα

Διαβάστε περισσότερα

Διάλεξη 2: Κεντρικά Δυναμικά. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για κεντρικά δυναμικά

Διάλεξη 2: Κεντρικά Δυναμικά. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για κεντρικά δυναμικά Διάλεξη : Κεντρικά Δυναμικά Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schöing για κεντρικά δυναμικά Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 03 Κεντρικά δυναμικά Εξάρτηση δυναμικού

Διαβάστε περισσότερα

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής. ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου V Άσκηση : Οι θεμελιώδεις σχέσεις μετάθεσης της στροφορμής επιτρέπουν την ύπαρξη ακέραιων και ημιπεριττών ιδιοτιμών Αλλά για την τροχιακή στροφορμή L r p γνωρίζουμε ότι

Διαβάστε περισσότερα

Κβαντικό Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο

Κβαντικό Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Κβαντικό Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Δομή Διάλεξης Χαμιλτονιανή και Ρεύμα Πιθανότητας για Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Μετασχηματισμοί Βαθμίδας Αρμονικός Ταλαντωτής σε Ηλεκτρικό Πεδίο Σωμάτιο

Διαβάστε περισσότερα

και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για

και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου IV Άσκηση 1: Σωματίδιο μάζας Μ κινείται στην περιφέρεια κύκλου ακτίνας R. Υπολογίστε τις επιτρεπόμενες τιμές της ενέργειας, τις αντίστοιχες κυματοσυναρτήσεις και τον εκφυλισμό.

Διαβάστε περισσότερα

KBANTOMHXANIKH Ο ΣΩΜΑΤΙΚΟΣ ΧΑΡΑΚΤΗΡΑΣ ΤΩΝ Η/Μ ΚΥΜΑΤΩΝ ΑΚΤΙΝΟΒΟΛΙΑ ΜΕΛΑΝΟΣ ΣΩΜΑΤΟΣ.

KBANTOMHXANIKH Ο ΣΩΜΑΤΙΚΟΣ ΧΑΡΑΚΤΗΡΑΣ ΤΩΝ Η/Μ ΚΥΜΑΤΩΝ ΑΚΤΙΝΟΒΟΛΙΑ ΜΕΛΑΝΟΣ ΣΩΜΑΤΟΣ. KBANTOMHXANIKH Είναι η φυσική του μικρόκοσμου Κεντρική θέση σ αυτήν κατέχει η εξίσωση Schrodinger (είναι για το μικρόκοσμο ότι οι νόμοι του Newton για το μακρόκοσμο). Ο ΣΩΜΑΤΙΚΟΣ ΧΑΡΑΚΤΗΡΑΣ ΤΩΝ Η/Μ ΚΥΜΑΤΩΝ

Διαβάστε περισσότερα

Μοριακή Φασματοσκοπία I. Παραδόσεις μαθήματος Θ. Λαζαρίδης

Μοριακή Φασματοσκοπία I. Παραδόσεις μαθήματος Θ. Λαζαρίδης Μοριακή Φασματοσκοπία I Παραδόσεις μαθήματος Θ. Λαζαρίδης 2 Τι μελετά η μοριακή φασματοσκοπία; Η μοριακή φασματοσκοπία μελετά την αλληλεπίδραση των μορίων με την ηλεκτρομαγνητική ακτινοβολία Από τη μελέτη

Διαβάστε περισσότερα

Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση:

Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση: Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση: Να γνωρίζει το ατοµικό πρότυπο του Bohr καθώς και τα µειονεκτήµατά του. Να υπολογίζει την ενέργεια που εκπέµπεται ή απορροφάται

Διαβάστε περισσότερα

ΜΕΡΟΣ Α: ΤΑ ΘΕΜΕΛΙΑ ΚΕΦ. 1. ΟΙ ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΚΕΦ. 4. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ ΤΟΥ DIRAC ΚΕΦ. 5. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΚΕΦ. 7.

ΜΕΡΟΣ Α: ΤΑ ΘΕΜΕΛΙΑ ΚΕΦ. 1. ΟΙ ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΚΕΦ. 4. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ ΤΟΥ DIRAC ΚΕΦ. 5. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΚΕΦ. 7. stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 01. ΟΙ ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΜΕΡΟΣ Α: ΤΑ ΘΕΜΕΛΙΑ ΚΕΦ. 1. ΟΙ ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ Στέλιος Τζωρτζάκης ΚΕΦ. 2. ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ΚΕΦ.

Διαβάστε περισσότερα

16/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ

16/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ Στέλιος Τζωρτζάκης 1 3 4 φάση Η έννοια των ταυτόσημων σωματιδίων Ταυτόσημα αποκαλούνται όλα τα σωματίδια

Διαβάστε περισσότερα

Η Κβαντική «επανάσταση»! Κύκλοι Μαθημάτων Σύγχρονης Φυσικής Δρ. Μιχάλης Καραδημητρίου

Η Κβαντική «επανάσταση»! Κύκλοι Μαθημάτων Σύγχρονης Φυσικής Δρ. Μιχάλης Καραδημητρίου Η Κβαντική «επανάσταση»! Κύκλοι Μαθημάτων Σύγχρονης Φυσικής Δρ. Μιχάλης Καραδημητρίου www.perifysikhs.com Η Φυσική στο γύρισμα του Αιώνα Όλοι οι θεμελιώδεις νόμοι και δεδομένα της φυσικής επιστήµης έχουν

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ ΚΑΙ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ

ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ ΚΑΙ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ ΚΑΙ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ Απεικόνιση ηλεκτρονίων ατόμων σιδήρου ως κύματα, διατεταγμένων κυκλικά σε χάλκινη επιφάνεια, με την τεχνική μικροσκοπικής σάρωσης σήραγγας. Δημήτρης

Διαβάστε περισσότερα

Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013

Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013 ΘΕΜΑ 1: ( 3 µονάδες ) Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013 Ηλεκτρόνιο κινείται επάνω από µία αδιαπέραστη και αγώγιµη γειωµένη επιφάνεια που

Διαβάστε περισσότερα

. Να βρεθεί η Ψ(x,t).

. Να βρεθεί η Ψ(x,t). ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου II Άσκηση 1: Εάν η κυματοσυνάρτηση Ψ(,0) παριστάνει ένα ελεύθερο σωματίδιο, με μάζα m, στη μία διάσταση την χρονική στιγμή t=0: (,0) N ep( ), όπου N 1/ 4. Να βρεθεί η

Διαβάστε περισσότερα

5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ

5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ Α Τόγκας - ΑΜ333: Ειδική Θεωρία Σχετικότητας Σχετικιστική μάζα 5 Σχετικιστική μάζα Όπως έχουμε διαπιστώσει στην ειδική θεωρία της Σχετικότητας οι μετρήσεις των χωρικών και χρονικών αποστάσεων εξαρτώνται

Διαβάστε περισσότερα

Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 )

Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 ) vs of Io vs of Io D of Ms Scc & gg Couo Ms Scc ική Θεωλης ική Θεωλης ιδάσκων: Λευτέρης Λοιδωρίκης Π 746 dok@cc.uo.g cs.s.uo.g/dok ομηχ ομηχ δ ά τρεις διαστ Εξίσωση Schödg σε D Σε μία διάσταση Σε τρείς

Διαβάστε περισσότερα

Κβαντομηχανική ή κυματομηχανική

Κβαντομηχανική ή κυματομηχανική Κβαντομηχανική ή κυματομηχανική Ποια ήταν τα αναπάντητα ερωτήματα της θεωρίας του Bohr; 1. Φάσματα πολυηλεκτρονικών ατόμων 2. Κυκλικές τροχιές 3. Γιατί η ενέργεια του e είναι κβαντισμένη; Κβαντομηχανική

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 23η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

Στοιχειώδη Σωματίδια. Διάλεξη 23η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Στοιχειώδη Σωματίδια Διάλεξη 23η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Αλληλεπιδράσεις & Πεδία στη Σωματιδιακή Φυσική Τα Θεμελιώδη Μποζόνια των αλληλεπιδράσεων Οι Θεμελιώδεις Αλληλεπιδράσεις

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Συνεχές Φάσµα - Συνάρτηση δέλτα (Dirac)

Συνεχές Φάσµα - Συνάρτηση δέλτα (Dirac) Συνεχές ϕάσµα Συνεχές Φάσµα - Συνάρτηση δέλτα (Dirac) Στην κβαντική µηχανική τα ϕυσικά µεγέθη παρίστανται µε αυτοσυζυγείς τελεστές. Για έναν αυτοσυζυγή τελεστή ˆΩ = ˆΩ είναι γνωστό ότι οι ιδιοτιµές του

Διαβάστε περισσότερα

Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Εξάρτηση του πυρηνικού δυναμικού από άλλους παράγοντες (πλην της απόστασης) Η συνάρτηση του δυναμικού

Διαβάστε περισσότερα

ETY-202 ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΤΩΝ ΘΕΜΕΛΙΩΔΩΝ ΑΡΧΩΝ ETY-202 ΎΛΗ & ΦΩΣ 03. ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ. Στέλιος Τζωρτζάκης 1/11/2013

ETY-202 ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΤΩΝ ΘΕΜΕΛΙΩΔΩΝ ΑΡΧΩΝ ETY-202 ΎΛΗ & ΦΩΣ 03. ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ. Στέλιος Τζωρτζάκης 1/11/2013 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 03. ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΤΩΝ ΘΕΜΕΛΙΩΔΩΝ ΑΡΧΩΝ Στέλιος Τζωρτζάκης 1 3 4 Ο νόμος της χρονικής μεταβολής των μέσων τιμών και το

Διαβάστε περισσότερα

Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών

Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών Βασικά σημεία της κβαντομηχανικής Διδάσκων : Επίκουρη Καθηγήτρια Χριστίνα Λέκκα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κβαντομηχανική σε τρεις διαστάσεις Διδάσκων : Επίκ. Καθ. Μ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κβαντομηχανική σε τρεις διαστάσεις Διδάσκων : Επίκ. Καθ. Μ. ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγρονη Φυσική II Κβαντομηχανική σε τρεις διαστάσεις Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 2: Κβαντομηχανική προσέγγιση του ατόμου

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 2: Κβαντομηχανική προσέγγιση του ατόμου Τμήμα Μηχανολόγων Μηχανικών Χημεία Ενότητα 2: Κβαντομηχανική προσέγγιση του ατόμου Τόλης Ευάγγελος e-mail: etolis@uowm.gr Τμήμα Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Ελεύθερα ηλεκτρόνια στα μέταλλα-σχέση διασποράς

Ελεύθερα ηλεκτρόνια στα μέταλλα-σχέση διασποράς Ελεύθερα ηλεκτρόνια στα μέταλλα-σχέση διασποράς Στόχος : Να εξηγήσουμε την επίδραση του δυναμικού του κρυστάλλου στις Ε- Ειδικώτερα: Το δυναμικό του κρυστάλλου 1. εισάγονται χάσματα στα σημεία όπου τέμνονται

Διαβάστε περισσότερα

Γραμμικά φάσματα εκπομπής

Γραμμικά φάσματα εκπομπής Γραμμικά φάσματα εκπομπής Η Ηe Li Na Ca Sr Cd Οι γραμμές αντιστοιχούν σε ορατό φως που εκπέμπεται από διάφορα άτομα. Ba Hg Tl 400 500 600 700 nm Ποιο φάσμα χαρακτηρίζεται ως γραμμικό; Σχισμή Πρίσμα Φωτεινή

Διαβάστε περισσότερα

Χρονοανεξάρτητη Μη-Εκφυλισμένη Θεωρία Διαταραχών

Χρονοανεξάρτητη Μη-Εκφυλισμένη Θεωρία Διαταραχών Χρονοανεξάρτητη Μη-Εκφυλισμένη Θεωρία Διαταραχών Δομή Διάλεξης Ανασκόπηση συμβολισμού Dirac Διαταραχές σε σύστημα δύο καταστάσεων Η γενική μέθοδος μη-εκφυλισμένης θεωρίας διαταραχών Εφαρμογή: Διαταραχή

Διαβάστε περισσότερα

Η Ψ = Ε Ψ. Ψ = f(x, y, z, t, λ)

Η Ψ = Ε Ψ. Ψ = f(x, y, z, t, λ) Κυματική εξίσωση του Schrödinger (196) Η Ψ = Ε Ψ Η: τελεστής Hamilton (Hamiltonian operator) εκτέλεση μαθηματικών πράξεων επί της κυματοσυνάρτησης Ψ. Ε: ολική ενέργεια των ηλεκτρονίων δυναμική ενέργεια

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Σύγχρονη Φυσική

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Σύγχρονη Φυσική Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Σύγχρονη Φυσική Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών 7/4/014 Κβαντική μηχανική Κβαντική μηχανική Η θεωρία

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 10/11/2013

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 10/11/2013 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 10/11/2013 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα

Διαβάστε περισσότερα

Sˆy. Η βάση για την οποία συζητάμε απαρτίζεται από τα ανύσματα = (1) ˆ 2 ± =± ± Άσκηση 20. (βοήθημα θεωρίας)

Sˆy. Η βάση για την οποία συζητάμε απαρτίζεται από τα ανύσματα = (1) ˆ 2 ± =± ± Άσκηση 20. (βοήθημα θεωρίας) Άσκηση 0. (βοήθημα θεωρίας) Έστω + και η βάση που συγκροτούν οι (κοινές) ιδιοκαταστάσεις των τελεστών ˆ S και Sˆz ενός σωματίου με spin 1/. Να βρείτε την αναπαράσταση των τελεστών S ˆx, Sˆ και Sˆz στη

Διαβάστε περισσότερα

Διάλεξη 9: Στατιστική Φυσική

Διάλεξη 9: Στατιστική Φυσική Στατιστική Φυσική: Η μελέτη της θερμοδυναμικής συμπεριφοράς ενός συστήματος σωματίων σε σχέση με τις ιδιότητες των επί μέρους σωματίων. Αν και δεν μπορεί να προβλέψει με απόλυτη ακρίβεια την θερμοδυναμική

Διαβάστε περισσότερα

ΑΓ.ΚΩΝΣΤΑΝΤΙΝΟΥ ΠΕΙΡΑΙΑΣ ΤΗΛ , ΟΔΗΓΙΕΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. Φως

ΑΓ.ΚΩΝΣΤΑΝΤΙΝΟΥ ΠΕΙΡΑΙΑΣ ΤΗΛ , ΟΔΗΓΙΕΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. Φως ΟΔΗΓΙΕΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Κεφάλαιο 1 ο Φως Ο μαθητής που έχει μελετήσει το κεφάλαιο του φωτός πρέπει: Να γνωρίζει πως εξελίχθηκε ιστορικά η έννοια του φωτός και ποια είναι η σημερινή

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ Συζευγμένα ηλεκτρικά και μαγνητικά πεδία τα οποία κινούνται με την ταχύτητα του φωτός και παρουσιάζουν τυπική κυματική συμπεριφορά Αν τα φορτία ταλαντώνονται περιοδικά οι διαταραχές

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 4 Αρχές της Κβαντικής Μηχανικής Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 4 Αρχές της Κβαντικής Μηχανικής Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 4 Αρχές της Κβαντικής Μηχανικής Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενδεικτική βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ P.W. Atkins, J.

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ. Θέμα 2. α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει

ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ. Θέμα 2. α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ Θέμα α) Δείξτε ότι οι διακριτές ιδιοτιμές της ενέργειας σε ένα μονοδιάστατο πρόβλημα δεν είναι εκφυλισμένες β) Με βάση το προηγούμενο ερώτημα να δείξετε ότι μπορούμε να διαλέξουμε τις

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

Κβαντομηχανική σε μία διάσταση

Κβαντομηχανική σε μία διάσταση vrsy of Io Dr of Mrls Scc & grg Couol Mrls Scc κή Θεωρία της Ύλης ιδάσκων: Λευτέρης Λοιδωρίκης Π 76 ldor@cc.uo.gr csl.rls.uo.gr/ldor σταση Μία ιάσ ανική σε Μ κή Θεωρ ρία της Ύλης: Κβα αντομηχα Κβαντομηχανική

Διαβάστε περισσότερα

Το κυματοπακέτο. (Η αρίθμηση των εξισώσεων είναι συνέχεια της αρίθμησης που εμφανίζεται στο εδάφιο «Ελεύθερο Σωμάτιο».

Το κυματοπακέτο. (Η αρίθμηση των εξισώσεων είναι συνέχεια της αρίθμησης που εμφανίζεται στο εδάφιο «Ελεύθερο Σωμάτιο». Το κυματοπακέτο (Η αρίθμηση των εξισώσεων είναι συνέχεια της αρίθμησης που εμφανίζεται στο εδάφιο «Ελεύθερο Σωμάτιο». Ένα ελεύθερο σωμάτιο δεν έχει κατ ανάγκη απολύτως καθορισμένη ορμή. Αν, για παράδειγμα,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Ηλεκτρονική δομή ημιαγωγών-περίληψη. Σχέση διασποράς για ελεύθερα ηλεκτρόνια στα μέταλλα-

Ηλεκτρονική δομή ημιαγωγών-περίληψη. Σχέση διασποράς για ελεύθερα ηλεκτρόνια στα μέταλλα- E. K. Παλούρα Οπτοηλεκτρονική_semis_summary.doc Ηλεκτρονική δομή ημιαγωγών-περίληψη Σχέση διασποράς για ελεύθερα ηλεκτρόνια στα μέταλλα- Η κυματοσυνάρτηση ψ(r) του ελεύθερου e είναι λύση της Schrödinger:

Διαβάστε περισσότερα

ETY-202. Εκπομπή και απορρόφηση ακτινοβολίας ETY-202 ΎΛΗ & ΦΩΣ 12. ΎΛΗ & ΦΩΣ. Στέλιος Τζωρτζάκης 21/12/2012

ETY-202. Εκπομπή και απορρόφηση ακτινοβολίας ETY-202 ΎΛΗ & ΦΩΣ 12. ΎΛΗ & ΦΩΣ. Στέλιος Τζωρτζάκης 21/12/2012 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 Εκπομπή και απορρόφηση ακτινοβολίας ΎΛΗ & ΦΩΣ 12. ΎΛΗ & ΦΩΣ Στέλιος Τζωρτζάκης 1 3 4 Ηλεκτρομαγνητικά πεδία Απορρόφηση είναι Σε αυτή τη διαδικασία το ηλεκτρόνιο

Διαβάστε περισσότερα

Πανεπιστήµιο Αθηνών. προς το χρόνο και χρησιµοποιείστε την εξίσωση Schrodinger για να βρείτε τη χρονική παράγωγο της κυµατοσυνάρτησης.

Πανεπιστήµιο Αθηνών. προς το χρόνο και χρησιµοποιείστε την εξίσωση Schrodinger για να βρείτε τη χρονική παράγωγο της κυµατοσυνάρτησης. Πανεπιστήµιο Αθηνών Τµήµα Φυσικής Κβαντοµηχανική Ι Α Καρανίκας και Π Σφήκας Άσκηση 1 Η Hamiltonian ενός συστήµατος έχει τη γενική µορφή Δείξτε ότι Υπόδειξη: Ξεκινείστε από τον ορισµό της αναµενόµενης τιµής,

Διαβάστε περισσότερα

( )U 1 ( θ )U 3 ( ) = U 3. ( ) όπου U j περιγράφει περιστροφή ως προς! e j. Γωνίες Euler. ω i. ω = ϕ ( ) = ei = U ij ej j

( )U 1 ( θ )U 3 ( ) = U 3. ( ) όπου U j περιγράφει περιστροφή ως προς! e j. Γωνίες Euler. ω i. ω = ϕ ( ) = ei = U ij ej j Γωνίες Euler ΦΥΣ 11 - Διαλ.3 1 q Όλοι σχεδόν οι υπολογισµοί που έχουµε κάνει για την κίνηση ενός στερεού στο σύστηµα συντεταγµένων του στερεού σώµατος Ø Για παράδειγµα η γωνιακή ταχύτητα είναι: ω = i ω

Διαβάστε περισσότερα

Δρ. Ιωάννης Καλαμαράς, Διδάκτωρ Χημικός. 100 Ερωτήσεις τύπου Σωστού Λάθους Στο τέλος οι απαντήσεις

Δρ. Ιωάννης Καλαμαράς, Διδάκτωρ Χημικός. 100 Ερωτήσεις τύπου Σωστού Λάθους Στο τέλος οι απαντήσεις 1 ο Κεφάλαιο Χημείας Θετικής Κατεύθυνσης Γ Λυκείου 100 Ερωτήσεις τύπου Σωστού Λάθους Στο τέλος οι απαντήσεις 1. Η εξίσωση E = h v μας δίνει την ενέργεια μιας ηλεκτρομαγνητικής ακτινοβολίας 2. H κβαντική

Διαβάστε περισσότερα

ΠΡΟΤΥΠΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ

ΠΡΟΤΥΠΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ ΠΡΟΤΥΠΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ ΕΠΙΛΟΓΗ ΘΕΜΑΤΩΝ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ «Β ΘΕΜΑΤΑ ΑΤΟΜΙΚΑ ΜΟΝΤΕΛΑ» ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ Χ. Δ. ΦΑΝΙΔΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 0-05 ΘΕΜΑ B Σχέσεις μεταξύ κινητικής,

Διαβάστε περισσότερα

Κίνηση σε Μονοδιάστατα Τετραγωνικά Δυναμικά

Κίνηση σε Μονοδιάστατα Τετραγωνικά Δυναμικά Κίνηση σε Μονοδιάστατα Τετραγωνικά Δυναμικά Δομή Διάλεξης Τετραγωνικό Πηγάδι Δυναμικού: Δέσμιες καταστάσεις - ιδιοτιμές Οριακές Περιπτώσεις: δ δυναμικό, άπειρο βάθος Σκέδαση σε μια διάσταση: Σκαλοπάτι

Διαβάστε περισσότερα

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙI Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Α. Καρανίκας και Π. Σφήκας Σημειώσεις IX: Πρόσθεση στροφορμών Υπάρχουν πάμπολα φυσικά συστήματα στα οποία η κίνηση των επί μέρους σωματιδίων ή τα spin

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΤΗΣ ΣΤΑΘΕΡΑΣ ΤΟΥ PLANCK

ΜΕΤΡΗΣΗ ΤΗΣ ΣΤΑΘΕΡΑΣ ΤΟΥ PLANCK ΜΕΤΡΗΣΗ ΤΗΣ ΣΤΑΘΕΡΑΣ ΤΟΥ PLANCK Με τη βοήθεια του φωτοηλεκτρικού φαινομένου προσδιορίσαμε τη σταθερά του Planck. Βρέθηκε h=(3.50±0.27) 10-15 ev sec. Προσδιορίσαμε επίσης το έργο εξόδου της καθόδου του

Διαβάστε περισσότερα

Σύγχρονη Φυσική 1, Διάλεξη 13, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων. Κβάντωση της Ενέργειας - Μέλαν Σώμα

Σύγχρονη Φυσική 1, Διάλεξη 13, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων. Κβάντωση της Ενέργειας - Μέλαν Σώμα 1 Κβάντωση της Ενέργειας - Μέλαν Σώμα 06/02/13 Σκοπός της ενδέκατης διάλεξης: Να εισάγει τις πρώτες ιδέες για την κβάντωση της ενέργειας όπως παρουσιάστηκαν αρχικά από τον Max Planck. Να παρουσιάσει τους

Διαβάστε περισσότερα

Κυματική φύση της ύλης: ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ. Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης:

Κυματική φύση της ύλης: ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ. Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης: Κυματική φύση της ύλης: ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης: Κινούμενα ηλεκτρόνια συμπεριφέρονται σαν κύματα (κύματα de Broglie)

Διαβάστε περισσότερα

2.1 ΕΝΕΡΓΕΙΑ ΤΟΥ ΗΛΕΚΤΡΟΝΙΟΥ ΣΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ

2.1 ΕΝΕΡΓΕΙΑ ΤΟΥ ΗΛΕΚΤΡΟΝΙΟΥ ΣΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ 2-1 Ένας φύλακας του ατομικού ρολογιού καισίου στο Γραφείο Μέτρων και Σταθμών της Ουάσιγκτον. 2-2 Άτομα στην επιφάνεια μιας μύτης βελόνας όπως φαίνονται μεηλεκτρονικόμικροσκό 2.1 ΕΝΕΡΓΕΙΑ ΤΟΥ ΗΛΕΚΤΡΟΝΙΟΥ

Διαβάστε περισσότερα

IV. Συνεχές ή ασυνεχές;

IV. Συνεχές ή ασυνεχές; ΠΑΡΑΡΤΗΜΑ ΙΙ ΘΕΜΑΤΑ ΓΙΑ ΣΥΖΗΤΗΣΗ (ΕΠΙΛΟΓΗ) Μια νέα θεωρία εμφανίστηκε στο ξεκίνημα του εικοστού αιώνα, ανάμεσα στο 1900 και το 1930: Η κβαντική Φυσική. Με την θεωρία αυτή ερμηνεύτηκε με επιτυχία η συμπεριφορά

Διαβάστε περισσότερα

Ακτίνες επιτρεπόμενων τροχιών (2.6)

Ακτίνες επιτρεπόμενων τροχιών (2.6) Αντικαθιστώντας το r με r n, έχουμε: Ακτίνες επιτρεπόμενων τροχιών (2.6) Αντικαθιστώντας n=1, βρίσκουμε την τροχιά με τη μικρότερη ακτίνα n: Αντικαθιστώντας την τελευταία εξίσωση στη 2.6, παίρνουμε: Αν

Διαβάστε περισσότερα

Τηλ: Ανδρέου Δημητρίου 81 & Ακριτών 26 -ΚΑΛΟΓΡΕΖΑ 1

Τηλ: Ανδρέου Δημητρίου 81 & Ακριτών 26 -ΚΑΛΟΓΡΕΖΑ 1 Διαγώνισμα Φυσικής Γ' Λυκείου Γενικής Παιδείας ΘΕΜΑ ο Στις ερωτήσεις -5 να επιλέξετε τη σωστή ) Όταν μονοχρωματικό φως διαδίδεται σε δυο διαφορετικά υλικά τότε: α) Το μήκος κύματος έχει μικρότερη τιμή

Διαβάστε περισσότερα

ΓΛ/Μ ΣΥΣΤΗΜΑ ΠΑΙΔΕΙΑΣ ΟΡΟΣΗΜΟ. Τεύχος 3ο: Φυσική Γενικής Παιδείας: Ατομικά Φαινόμενα

ΓΛ/Μ ΣΥΣΤΗΜΑ ΠΑΙΔΕΙΑΣ ΟΡΟΣΗΜΟ. Τεύχος 3ο: Φυσική Γενικής Παιδείας: Ατομικά Φαινόμενα ΓΛ/Μ3 05-06 ΣΥΣΤΗΜΑ ΠΑΙΔΕΙΑΣ ΟΡΟΣΗΜΟ Τεύχος 3ο: Φυσική Γενικής Παιδείας: Ατομικά Φαινόμενα ΕΚΔΟΤΙΚΕΣ ΤΟΜΕΣ ΟΡΟΣΗΜΟ ΠΕΡΙΟΔΙΚΗ ΕΚΔΟΣΗ ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ ΚΑΙ ΤΟ ΛΥΚΕΙΟ Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Φυσική Γενικής Παιδείας

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 5: Κυματομηχανική. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 5: Κυματομηχανική. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 5: Κυματομηχανική Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι η ερμηνεία της κυματοσυνάρτησης, δηλαδή της λύσης της εξίσωσης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Συστήματα Πολλών Σωματίων Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Συστήματα Πολλών Σωματίων Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Συστήματα Πολλών Σωματίων Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009 Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δεκέμβριος 2009 Νόμοι Διατήρησης κβαντικών αριθμών Αρχές Αναλλοίωτου Συμμετρία ή αναλλοίωτο των εξισώσεων που περιγράφουν σύστημα σωματιδίων κάτω

Διαβάστε περισσότερα

H εικόνα του ατόμου έχει αλλάξει δραστικά

H εικόνα του ατόμου έχει αλλάξει δραστικά Δομή Ατόμου και Ατομικά Τροχιακά Α Τα κλασσικά πρότυπα Η ιστορία της δομής του ατόμου (1/2) ατομική θεωρία Δημόκριτου (άτομοι) ατομική θεωρία Dalton Πλανητικό πρότυπο Rutherford πρότυπο Schrodinger 460

Διαβάστε περισσότερα

Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα

Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα Κώστας

Διαβάστε περισσότερα

Το Μποζόνιο Higgs. Το σωματίδιο Higgs σύμφωνα με το Καθιερωμένο Πρότυπο

Το Μποζόνιο Higgs. Το σωματίδιο Higgs σύμφωνα με το Καθιερωμένο Πρότυπο 1 Το Μποζόνιο Higgs 29/05/13 Σκοποί: I. Να απαντήσει στο ερώτημα του τι είναι ακριβώς το σωματίδιο Higgs. II. Να εισάγει τους διάφορους τρόπους παραγωγής και μετάπτωσης του Higgs. III. Να δώσει μία σύντομη

Διαβάστε περισσότερα

ΥΛΙΚΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΔΙΑΤΑΞΕΙΣ. Μάθημα Ι: Εισαγωγικές έννοιες. Πρασσά Βάια

ΥΛΙΚΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΔΙΑΤΑΞΕΙΣ. Μάθημα Ι: Εισαγωγικές έννοιες. Πρασσά Βάια ΥΛΙΚΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΔΙΑΤΑΞΕΙΣ Μάθημα Ι: Εισαγωγικές έννοιες Πρασσά Βάια Περιγραφή Στοιχειώδεις έννοιες της επιστήμης υλικών, ηλεκτρική και θερμική αγωγιμότητα στα στερεά, στοιχειώδης κβαντομηχανική,

Διαβάστε περισσότερα

Κβαντικη Θεωρια και Υπολογιστες

Κβαντικη Θεωρια και Υπολογιστες Κβαντικη Θεωρια και Υπολογιστες 2 Μαθηματικη Βαση της Κβαντικής Θεωρίας Κλασσικα και Κβαντικα Μαθηματικα Μοντελα Χειμερινο Εξαμηνο Iωαννης E. Aντωνιου Τμημα Μαθηματικων Aριστοτελειο Πανεπιστημιο 54124,

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 01 ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Στις ερωτήσεις Α1-Α3 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη φράση η οποία

Διαβάστε περισσότερα

Tι είναι η κβαντική Φυσική

Tι είναι η κβαντική Φυσική Tι είναι η κβαντική Φυσική Η κβαντική Θεωρία είναι η μεγαλύτερη πνευματική δημιουργία του ανθρώπου αλλά συγχρόνως και η πιο παράξενη θεωρία η οποία αντιβαίνει σε πολλά από τη καθημερινή μας εμπειρία. Στη

Διαβάστε περισσότερα

Κυματοσωματιδιακός Δυϊσμός

Κυματοσωματιδιακός Δυϊσμός ΕΝΟΤΗΤΑ 4 Η ενότητα αυτή στοχεύει στην παρουσίαση των αρχών της Κβαντομηχανικής και του δυϊσμού σωματιδίου-κύματος, όπως αυτά χτίστηκαν στις αρχές του 20ου αιώνα με βάση τα αντικρουόμενα προς την Κλασική

Διαβάστε περισσότερα

Δομή Διάλεξης. Κλασσική Θεωρία Σκέδασης Ορισμοί μεγεθών σκέδασης. Κβαντική θεωρία σκέδασης Πλάτος σκέδασης

Δομή Διάλεξης. Κλασσική Θεωρία Σκέδασης Ορισμοί μεγεθών σκέδασης. Κβαντική θεωρία σκέδασης Πλάτος σκέδασης Σκέδαση Δομή Διάλεξης Κλασσική Θεωρία Σκέδασης Ορισμοί μεγεθών σκέδασης Κβαντική θεωρία σκέδασης Πλάτος σκέδασης Υπολογισμός διατομής σκέδασης με την μέθοδο στοιχειωδών κυμάτων (partial waves) Υπολογισμός

Διαβάστε περισσότερα

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Ενεργειακές Ζώνες και Στατιστική Φορέων Φορτίου Required Text: Microelectronic Devices, Keith Leaver (2 nd Chapter) Εισαγωγή Στο προηγούμενο κεφάλαιο προσεγγίσαμε τους ημιαγωγούς

Διαβάστε περισσότερα

Γιατί δεν πιάνεται; (δεν το αισθανόμαστε- δεν το πιάνουμε)

Γιατί δεν πιάνεται; (δεν το αισθανόμαστε- δεν το πιάνουμε) Γιατί δεν πιάνεται; (δεν το αισθανόμαστε- δεν το πιάνουμε) Αραχωβίτη Ελένη- Βαλεντίνη Δέγλερη Βασιλική Καντάνη Χριστίνα Κουμψάκη Ελένη Μάλλη Ευγενία Σαϊτάνη Μαρία Σούκουλη Ελευθερία Τριανταφύλλου Βασιλική-

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ. Ομοτιμία Κβαντικοί Αριθμοί Συμμετρίες και Νόμοι Διατήρησης

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ. Ομοτιμία Κβαντικοί Αριθμοί Συμμετρίες και Νόμοι Διατήρησης ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Ν. Γιόκαρης,, (Κ.Ν.( Παπανικόλας) & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ,, 2016 Ομοτιμία Κβαντικοί Αριθμοί Συμμετρίες και Νόμοι Διατήρησης 1 Stathis STILIARIS,

Διαβάστε περισσότερα

Κβαντομηχανική εικόνα του ατομικού μοντέλου

Κβαντομηχανική εικόνα του ατομικού μοντέλου Κβαντομηχανική εικόνα του ατομικού μοντέλου 1. Ερώτηση: Τι είναι η κβαντομηχανική; H κβαντομηχανική, είναι η σύγχρονη αντίληψη μιας νέας μηχανικής που μπορεί να εφαρμοστεί στο μικρόκοσμο του ατόμου. Σήμερα

Διαβάστε περισσότερα

Η ΕΝΕΡΓΕΙΑ ΤΟΥ ΑΤΟΜΟΥ ΤΟΥ ΥΔΡΟΓΟΝΟΥ

Η ΕΝΕΡΓΕΙΑ ΤΟΥ ΑΤΟΜΟΥ ΤΟΥ ΥΔΡΟΓΟΝΟΥ Η ΕΝΕΡΓΕΙΑ ΤΟΥ ΑΤΟΜΟΥ ΤΟΥ ΥΔΡΟΓΟΝΟΥ ΑΣΚΗΣΗ 1 Άτομα αερίου υδρογόνου που βρίσκονται στη θεμελιώδη κατάσταση (n = 1), διεγείρονται με κρούση από δέσμη ηλεκτρονίων που έχουν επιταχυνθεί από διαφορά δυναμικού

Διαβάστε περισσότερα