ΑΝΑΚΟΙΝΩΣΗ. Διευκρινίσεις για την ύλη του μαθήματος ΚΟΣΜΟΛΟΓΙΑ
|
|
- Θησεύς Ζάρκος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΑΝΑΚΟΙΝΩΣΗ Διευκρινίσεις για την ύλη του μαθήματος ΚΟΣΜΟΛΟΓΙΑ Η ύλη του μαθήματος «Κοσμολογία» περιέχεται στις νέες σημειώσεις του μαθήματος (ανάρτηση 2016) και στο βιβλίο γενικής σχετικότητας που έχετε πάρει. Η περιγραφή της ύλης έχει ως εξής. Νέες Σημειώσεις του μαθήματος «Κοσμολογία» (ανάρτηση 2016) Κεφάλαιο Η παράγραφος αναφέρεται στους λευκούς νάνους Η παράγραφος αναφέρεται στους αστέρες νετρονίων (ολόκληρη) Η παράγραφος αναφέρεται στις μελανές οπές (εξαιρούνται οι υπο-παράγραφοι & ) Η παράγραφος αναφέρεται στους μεταβλητούς αστέρες. Κεφάλαιο Μεσοαστρική ακτινοβολία (ολόκληρη) Η μάζα του Γαλαξία. Κεφάλαιο Προσδιορισμός των αποστάσεων γαλαξιών και σμηνών γαλαξιών.
2 4.8. Ραδιογαλαξίες, κβάζαρς, γαλαξίες Seyfert, μπλάζαρς. Κεφάλαιο 5 Όλες οι παράγραφοι περιλαμβάνονται στην ύλη και είναι σημαντικές. Κεφάλαιο 6 στην παράγραφο 6.3. Η κατανομή των ραδιογαλαξιών. Κεφάλαιο Η κοσμολογική αρχή και η τέλεια κοσμολογική αρχή Κοσμολογία και γεωμετρικές υποθέσεις Η θεωρία της μεγάλης έκρηξης Το πρόβλημα του ορίζοντα και το πρόβλημα της επιπεδότητας Το πληθωριστικό Σύμπαν. Γενική Σχετικότητα: Μία βασική εισαγωγή για Φυσικούς, του J.L. Martin (Διευκρίνιση: οι φοιτητές που έχουν πάρει την Γενική Σχετικότητα, του B.F. Schutz, θα εντοπίσουν και θα διαβάσουν την αντίστοιχη ύλη από το βιβλίο αυτό). Κεφάλαιο 3 Αδρανειακοί παρατηρητές σε καμπύλο χωρόχρονο 3.2. Η γενική διατύπωση στις n διαστάσεις Η σύμβαση της άθροισης Αλλάζοντας τις συντεταγμένες: τι είναι ένας τανυστής; 3.5. Γεωδαισιακές Η Λαγκρανζιανή συνταγή για μία γεωδαισιακή.
3 3.7. Συναφείς παράμετροι Πρώτα ολοκληρώματα των εξισώσεων. Η παράγραφος 3.9 (Ένα παράδειγμα) να θεωρηθεί ως λυμένη άσκηση. Κεφάλαιο 5 Παράλληλη μεταφορά και η Αρχή της Ισοδυναμίας 5.2. Τα σύμβολα Christoffel Παράλληλη μεταφορά ενός ανταλλοίωτου διανύσματος κατά μήκος μίας λείας καμπύλης Οι γεωδαισιακές συντεταγμένες σε ένα σημείο Οι γεωδαισιακές συντεταγμένες κατά μήκος μίας γεωδαισιακής Η Αρχή της Ισοδυναμίας. Οι παράγραφοι 5.3 (Υπολογίζοντας τα σύμβολα Christoffel), 5.5 (Πώς επηρεάζεται το βαθμωτό γινόμενο κατά την παράλληλη μεταφορά;), 5.6 (Παράλληλη μεταφορά συναλλοίωτου διανύσματος), 5.7 (Η παράλληλη μεταφορά μοιάζει με περιστροφή), 5.8 (Ένα παράδειγμα) να θεωρηθούν ως λυμένες ασκήσεις. Κεφάλαιο 6 Ο τανυστής Riemann 6.1. Συναλλοίωτες παράγωγοι Ο τανυστής Riemann Οι συμμετρίες του τανυστή Riemann Η καμπυλότητα μπορεί να γίνει πολύ περίπλοκη. Κεφάλαιο 8 Οι πεδιακές εξισώσεις για την καμπυλότητα του κενού χωροχρόνου 8.1. Παλίρροιες Οι πεδιακές εξισώσεις για τον κενό χωρόχρονο.
4 8.3. Γιατί τέσσερις διαστάσεις; Κεφάλαιο 10 Ο τανυστής της ύλης Μερικές ειδικές περιπτώσεις του τανυστή ύλης Η μετάβαση στη Γενική Σχετικότητα Οι εξισώσεις του πεδίου βαρύτητας παρουσία ύλης Γεωμετροποιημένες μονάδες. Κεφάλαιο 11 Κοσμολογία Το ομαλό Σύμπαν Η μετρική Robertson Walker Η κοσμολογική ερυθρά μετατόπιση Η «σταθερά» Hubble και η παράμετρος επιβράδυνσης Το γεμάτο κονιορτό σύμπαν Το γεμάτο ακτινοβολία σύμπαν Το σύμπαν του Einstein Πόσο ρεαλιστικά είναι τα παραπάνω; Προσοχή: Στις ασκήσεις που (ενδεχομένως θα) ζητούνται αριθμητικά αποτελέσματα, πρέπει να γίνουν όλες οι πράξεις. Για τον λόγο αυτόν, πρέπει να έχετε στην εξέταση του μαθήματος κομπιουτεράκι (ΔΕΝ ΕΠΙΤΡΕΠΕΤΑΙ η χρήση άλλης ηλεκτρονικής συσκευής αντί για κομπιουτεράκι, π.χ. κινητού τηλεφώνου).
5
ΚΟΣΜΟΛΟΓΙΑ ΚΟΣΜΟΛΟΓΙΑ είναι ο τομέας τις ϕυσικής που προσπαθεί να εξηγήσει την γένεση και την εξέλιξη του σύμπαντος χρησιμοποιώντας παρατηρήσεις και τ
ΗΡΑΚΛΕΙΟ, 10 Οκτωβρίου, 2017 ΚΟΣΜΟΛΟΓΙΑ ΓΙΑ ΑΡΧΑΡΙΟΥΣ Πανεπιστήμιο Κρήτης 1- ΚΟΣΜΟΛΟΓΙΑ ΚΟΣΜΟΛΟΓΙΑ είναι ο τομέας τις ϕυσικής που προσπαθεί να εξηγήσει την γένεση και την εξέλιξη του σύμπαντος χρησιμοποιώντας
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο. Σεμινάριο Φυσικής Ενότητα 14
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Σεμινάριο Φυσικής Ενότητα 14 Γεωργακίλας Αλέξανδρος Ζουμπούλης Ηλίας Μακροπούλου Μυρσίνη Πίσσης Πολύκαρπος Άδεια Χρήσης
c 4 (1) Robertson Walker (x 0 = ct) , R 2 (t) = R0a 2 2 (t) (2) p(t) g = (3) p(t) g 22 p(t) g 33
ΤΟ ΚΑΘΙΕΡΩΜΕΝΟ ΠΡΟΤΥΠΟ ΤΗΣ ΚΟΣΜΟΛΟΓΙΑΣ Α. Η ΕΞΙΣΩΣΗ EINSTEIN Διδάσκων: Θεόδωρος Ν. Τομαράς G µν R µν 1 g µν R = κ T µν, κ 8πG N c 4 (1) Β. Η ΕΞΙΣΩΣΗ FRIEDMANN. Για ομογενή και ισότροπο χωρόχρονο έχουμε
ξ i (t) = v i t + ξ i (0) (9) c (t t 0). (10) t = t, z = z 1 2 gt 2 (12)
Η ΓΕΝΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς 1 Κίνηση σώματος σε πεδίο βαρύτητας Εδώ θα εφαρμόσουμε την Ι.Α.Ι. και τις γνώσεις μας από την Ειδική Θεωρία της Σχετικότητας για να παράγουμε
Ημερολόγιο μαθήματος
ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α.Π.Θ. ΜΑΘΗΜΑ: ΚΛΑΣΙΚΗ ΔΙΑΦΟΡΙΚΗ ΓΕΩΜΕΤPΙΑ Ι ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2018 19 Τμήμα Α Διδάσκων: Kαθηγητής Στυλιανός Σταματάκης Website URL: http://stamata.webpages.auth.gr/geometry/ Ημερολόγιο
Λέανδρος Περιβολαρόπουλος Καθηγητής Παν/μίου Ιωαννίνων
Open page Λέανδρος Περιβολαρόπουλος http://leandros.physics.uoi.gr Καθηγητής Παν/μίου Ιωαννίνων Αρχείο παρουσίασης διαθέσιμο μέσω του συνδέσμου: https://dl.dropbox.com/u/20653799/talks/eie.ppt Κλίμακες
14 η εβδομάδα (26/01/2017) Έγιναν οι ασκήσεις 28, 29 και 30. Έγινε επανάληψη στη Θεωρία Καμπυλών και στη Θεωρία Επιφανειών.
14 η εβδομάδα (26/01/2017) Έγιναν οι ασκήσεις 28, 29 και 30. Έγινε επανάληψη στη Θεωρία Καμπυλών και στη Θεωρία Επιφανειών. 13 η εβδομάδα (16/01/2017 & 19/01/2017) Ασυμπτωτική διεύθυνση και ασυμπτωτικό
ΣΧΕΤΙΚΟΤΗΤΑ Μετασχηματισμοί Γαλιλαίου. (Κλασική θεώρηση) αφού σύμφωνα με τα πειράματα Mickelson-Morley είναι c =c.
ΣΧΕΤΙΚΟΤΗΤΑ Μετασχηματισμοί Γαλιλαίου. (Κλασική θεώρηση) y y z z t t Το οποίο οδηγεί στο ότι - υ.(άτοπο), αφού σύμφωνα με τα πειράματα Mikelson-Morley είναι. Επίσης y y, z z, t t Το οποίο ( t t ) είναι
Γενική Θεωρία της Σχετικότητας
Γενική Θεωρία της Σχετικότητας Αδρανειακή Βαρυτική Μάζα Σύμφωνα με τον Νεύτωνα η μάζα ενός σώματος ορίζεται με δύο τρόπους: Μέσω του δευτέρου νόμου F=ma. (Αδρανειακή Μάζα). Ζυγίζοντας το σώμα και εφαρμόζοντας
ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ
ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς 1. Μετασχηματισμοί συντεταγμένων και συμμετρίες. 1α. Στροφές στο επίπεδο. Θεωρείστε δύο καρτεσιανά συστήματα συντεταγμένων στο επίπεδο, στραμμένα
Αριθμητικός υπολογισμός τροχιών σωμάτων στη γεωμετρία Schwarzschild. Κουλούρης Κωνσταντίνος
Αριθμητικός υπολογισμός τροχιών σωμάτων στη γεωμετρία Schwarzschild Κουλούρης Κωνσταντίνος Σύνοψη Σχετικότητα Ειδική και γενική θεωρία Γεωμετρία Swarzschild Μετρική και εξισώσεις γεωδαιτικών τροχιών Υπολογιστική
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Σχολή Θετικών Επιστηµών και Τεχνολογίας. Πρόγραµµα Σπουδών ΠΡΟΧΩΡΗΜΕΝΕΣ ΣΠΟΥ ΕΣ ΣΤΗ ΦΥΣΙΚΗ.
Σηµείωση: Οι εικόνες οι οποίες έχουν περιληφθεί στον παρόντα τόµο χρησιµοποιούνται για καθαρά εκπαιδευτικούς σκοπούς και υποκαθιστούν την προβολή εικαστικού υλικού στο πλαίσιο µιας διάλεξης. Παρατίθενται
H ΚΟΣΜΟΛΟΓΙΑ ΜΕΤΑ ΑΠΟ 100 ΧΡΟΝΙΑ ΓΕΝΙΚΗΣ ΘΕΩΡΙΑΣ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΟΣ
H ΚΟΣΜΟΛΟΓΙΑ ΜΕΤΑ ΑΠΟ 100 ΧΡΟΝΙΑ ΓΕΝΙΚΗΣ ΘΕΩΡΙΑΣ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΟΣ ΔΡ. ΣΠΥΡΟΣ ΒΑΣΙΛΑΚΟΣ ΚΕΝΤΡΟ ΕΡΕΥΝΩΝ ΑΣΤΡΟΝΟΜΙΑΣ ΑΚΑΔΗΜΙΑ ΑΘΗΝΩΝ ΑΚΑΔΗΜΙΑ ΑΘΗΝΩΝ 25/11/2015 Η ΧΡΥΣΗ ΠΕΡΙΟΔΟΣ ΤΗΣ ΚΟΣΜΟΛΟΓΙΑΣ 96% του Σύμπαντος
Υπάρχουν οι Μελανές Οπές;
Υπάρχουν οι Μελανές Οπές; ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Θεσσαλονίκη, 10/2/2014 Σκοτεινοί αστέρες 1783: Ο John Michell ανακαλύπτει την έννοια ενός σκοτεινού αστέρα,
Κεφάλαιο 1: ΕΙΣΑΓΩΓΗ
ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 130 Κεφάλαιο 1: ΕΙΣΑΓΩΓΗ Α. Απαντήσεις στις ερωτήσεις πολλαπλής επιλογής 1. α, β 2. γ 3. ε 4. β, δ 5. γ 6. α, β, γ, ε Β. Απαντήσεις στις ερωτήσεις συµπλήρωσης κενού 1. η αρχαιότερη
Εισαγωγή στην Αστροφυσική
Εισαγωγή στην Αστροφυσική Ενότητα: Ασκήσεις Ξενοφών Μουσάς Τμήμα: Φυσικής Σελίδα 2 1. Ασκήσεις... 4 Σελίδα 3 1. Ασκήσεις Άσκηση 1 α. Τι είναι οι κηλίδες; β. Πώς δημιουργούνται; Αναπτύξτε την σχετική θεωρία
ds 2 = 1 y 2 (dx2 + dy 2 ), y 0, < x < + (1) dx/(1 x 2 ) = 1 ln((1 + x)/(1 x)) για 1 < x < 1. l AB = dx/1 = 2 (2) (5) w 1/2 = ±κx + C (7)
ΒΑΡΥΤΗΤΑ ΚΑΙ ΚΟΣΜΟΛΟΓΙΑ Θ. Τομαράς 1. ΤΟ ΥΠΕΡΒΟΛΙΚΟ ΕΠΙΠΕΔΟ. Το υπερβολικό επίπεδο ορίζεται με τη μετρική ds = 1 y dx + dy ), y 0, < x < + 1) α) Να υπολογίσετε το μήκος της γραμμής της παράλληλης στον
ΕΞΕΡΕΥΝΩΝΤΑΣ ΤΟ ΣΥΜΠΑΝ ΜΕ ΤΑ ΚΥΜΑΤΑ ΤΗΣ ΒΑΡΥΤΗΤΑΣ
ΕΞΕΡΕΥΝΩΝΤΑΣ ΤΟ ΣΥΜΠΑΝ ΜΕ ΤΑ ΚΥΜΑΤΑ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Κατερίνη, 7/5/2016 14 Σεπτεµβρίου 2015 14 Σεπτεµβρίου 2015 14 Σεπτεµβρίου 2015
Ερευνητική Εργασία με θέμα: «Ερευνώντας τα χρονικά μυστικά του Σύμπαντος»
Ερευνητική Εργασία με θέμα: «Ερευνώντας τα χρονικά μυστικά του Σύμπαντος» Σωτήρης Τσαντίλας (PhD, MSc), Μαθηματικός Αστροφυσικός Σύντομη περιγραφή: Χρησιμοποιώντας δεδομένα από το διαστημικό τηλεσκόπιο
ΠΕΡΙΕΧΟΜΕΝΑ ΓΕΝΙΚΗ ΘΕΩΡΙΑ ΣΧΕΤΙΚΟΤΗΤΑΣ ΒΑΡΥΤΙΚΑ ΚΥΜΑΤΑ ΣΤΟ ΚΕΝΟ ΠΑΡΑΓΩΓΗ ΒΑΡΥΤΙΚΩΝ ΚΥΜΑΤΩΝ ΑΠΟ ΠΗΓΕΣ ΑΝΙΧΝΕΥΣΗ ΒΑΡΥΤΙΚΩΝ ΚΥΜΑΤΩΝ
ΒΑΡΥΤΙΚΑ ΚΥΜΑΤΑ ΤΖΩΡΤΖΗΣ ΔΗΜΗΤΡΗΣ Επιβλέπων καθηγητής:αναγνωστοπουλοσ Κ. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ-ΣΕΜΦΕ 26 Σεπτεμβρίου 2016 ΠΕΡΙΕΧΟΜΕΝΑ ΓΕΝΙΚΗ ΘΕΩΡΙΑ ΣΧΕΤΙΚΟΤΗΤΑΣ ΒΑΡΥΤΙΚΑ ΚΥΜΑΤΑ ΣΤΟ ΚΕΝΟ ΠΑΡΑΓΩΓΗ ΒΑΡΥΤΙΚΩΝ
Ακτινοβολία Hawking. Πιέρρος Ντελής. Εθνικό Μετσόβιο Πολυτεχνείο Σ.Ε.Μ.Φ.Ε. July 3, / 29. Πιέρρος Ντελής Ακτινοβολία Hawking 1/29
Ακτινοβολία Hawking Πιέρρος Ντελής Εθνικό Μετσόβιο Πολυτεχνείο ΣΕΜΦΕ July 3, 2013 1 / 29 Πιέρρος Ντελής Ακτινοβολία Hawking 1/29 Outline Σχετικότητα Ειδική & Γενική Θεωρία Κβαντική Θεωρία Πεδίου Πεδία
Κοσμολογική ερυθρομετατόπιση Ιδιότητα του διαστελλόμενου χώρου. Όπως το Σύμπαν διαστέλλεται το μήκος κύματος του φωτονίου διαστέλλεται ανάλογα με τον παράγοντα διαστολής [συντελεστής Κοσμικής κλίμακας,
1 Ο παράγοντας κλίμακας και ο Νόμος του Hubble
ΤΟ ΚΑΘΙΕΡΩΜΕΝΟ ΠΡΟΤΥΠΟ ΤΗΣ ΚΟΣΜΟΛΟΓΙΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς Ο παράγοντας κλίμακας και ο Νόμος του Hubble Σύμφωνα με την Κοσμολογική Αρχή το Σύμπαν είναι σε μεγάλες κλίμακες ομογενές και ισότροπο.
ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ
ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ Κ. Ν. Γουργουλιάτος ΜΑΥΡΕΣ ΤΡΥΠΕΣ Η ΒΑΣΙΚΗ ΙΔΕΑ Αντικείμενα που εμποδίζουν την διάδοση φωτός από αυτά Πρωτοπροτάθηκε γύρω στα 1783 (John( John Michell) ως αντικείμενο
Εισαγωγή στη Σχετικότητα και την Κοσμολογία ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΟΣ
Εισαγωγή στη Σχετικότητα και την Κοσμολογία Διδάσκων: Θεόδωρος Τομαράς, Πανεπιστήμιο Κρήτης ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΟΣ Εβδομάδα 1 Σχετικότητα 1.1 Η ανεπάρκεια της μηχανικής του Νεύτωνα V1.1.1 Σύντομη εισαγωγή
7.2. ΠΑΡΑΤΗΡΗΣΕΙΣ (ΚΑΤΑ ΣΕΙΡΑ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ)
7. Κοσμολογία 7.1 ΓΕΝΙΚΑ Έχει υποστηριχθεί ότι η πιο σπουδαία επιστημονική ανακάλυψη που έγινε ποτέ είναι ότι το Σύμπαν ολόκληρο, δηλαδή ο,τιδήποτε υπάρχει και είναι δυνατό να υποπέσει στην αντίληψη μας,
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Προσδιορισμός του λόγου Μ/R μέσω αριθμητικής επίλυσης των εξισώσεων Tolman-Oppenheimer-Volkov για μη περιστρεφόμενους σφαιρικά
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Πτυχιακή Εργασία. Σχολή Θετικών Επιστημών. Τμήμα Φυσικής
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Πτυχιακή Εργασία Επιταχυνόμενη διαστολή του σύμπαντος - Πειραματικά δεδομένα Διδασκάλου Στυλιανός AEM: 13269 Επιβλέπων καθηγητής
Κοσμολογία. Η δομή, η εξέλιξη του Σύμπαντος και τα πειράματα στο CERN. Γιάννης Νταλιάνης (PhD)
Κοσμολογία Η δομή, η εξέλιξη του Σύμπαντος και τα πειράματα στο CERN Γιάννης Νταλιάνης (PhD) Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Ε. Μ. Πολυτεχνείο Ελληνική Ομάδα Εκλαΐκευσης Γη Τοπική
ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2
ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2. ΜΑΘΗΜΑΤΙΚΩΝ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ
Εργαλειοθήκη I: Μετρήσεις σε κοσµολογικές αποστάσεις (µέρος 2 ο )
Αστροφυσική Υψηλών Ενεργειών Διδάσκ.: Β. Παυλίδου Μετρήσεις σε κοσμολογικές αποστάσεις, μέρος ο 1 Βιβλιογραφία Εργαλειοθήκη I: Μετρήσεις σε κοσµολογικές αποστάσεις (µέρος ο ) Θ. Τοµαρά, σηµειώσεις για
Κοσμολογία. Η δημιουργία και η εξέλιξη του Σύμπαντος. Κοσμάς Γαζέας. Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών
Κοσμολογία Η δημιουργία και η εξέλιξη του Σύμπαντος Κοσμάς Γαζέας Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Οι σχετικές αποστάσεις στο Σύμπαν Hubble Deep Field Hubble Ultra Deep Field Το φαινόμενο
θεμελιακά Ερωτήματα Κοσμολογίας & Αστροφυσικής
θεμελιακά Ερωτήματα Απόστολος Δ. Παναγιώτου Ομότιμος Καθηγητής Πανεπιστημίου Αθηνών Επιστημονικός Συνεργάτης στο CERN Σχολή Αστρονομίας και Διαστήματος Βόλος, 5 Απριλίου, 2014 1 BIG BANG 10 24 μ 10-19
Φαινόμενο Unruh. Δημήτρης Μάγγος. Εθνικό Μετσόβιο Πολυτεχνείο September 26, / 20. Δημήτρης Μάγγος Φαινόμενο Unruh 1/20
Φαινόμενο Unruh Δημήτρης Μάγγος Εθνικό Μετσόβιο Πολυτεχνείο September 26, 2012 1 / 20 Δημήτρης Μάγγος Φαινόμενο Unruh 1/20 Outline Σχετικότητα Ειδική & Γενική Θεωρία Κβαντική Θεωρία Πεδίου Πεδία Στον Χωρόχρονο
ΚΕΦΑΛΑΙΟ 5 ΟΙ ΑΣΤΕΡΕΣ
ΚΕΦΑΛΑΙΟ 5 ΟΙ ΑΣΤΕΡΕΣ Α. Ερωτήσεις πολλαπλής επιλογής Για να απαντήσεις στις ερωτήσεις που ακολουθούν αρκεί να επιλέξεις την ή τις σωστές από τις προτεινόµενες απαντήσεις. 1. Το φαινόµενο µέγεθος ενός
Κοσµολογία. Το παρελθόν, το παρόν, και το µέλλον του Σύµπαντος.
Κοσµολογία Το παρελθόν, το παρόν, και το µέλλον του Σύµπαντος. Τι είναι όµως η Κοσµολογία; Ηκοσµολογία είναι ο κλάδος της φυσικής που µελετά την δηµιουργία και την εξέλιξη του Σύµπαντος. Με τον όρο Σύµπαν
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Isaac Newton: Θεωρείται πατέρας της Κλασικής Φυσικής, καθώς ξεκινώντας από τις παρατηρήσεις του Γαλιλαίου αλλά και τους νόμους του Κέπλερ για την κίνηση των πλανητών
Δρ Μάνος Δανέζης Επίκουρος Καθηγητής Αστροφυσικής Τμήμα Φυσικής ΕΚΠΑ. Μελανές Οπές
Δρ Μάνος Δανέζης Επίκουρος Καθηγητής Αστροφυσικής Τμήμα Φυσικής ΕΚΠΑ Μελανές Οπές Αν η μάζα που απομένει να είναι μεγαλύτερη από 3,2 ηλιακές μάζες (M>3,2Mο), ο αστέρας δεν μπορεί να ισορροπήσει ούτε ως
Κλασική Μηχανική 1 ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΟΣ
Κλασική Μηχανική 1 Διδάσκων: Κώστας Τάσσης, Πανεπιστήμιο Κρήτης ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΟΣ Εβδομάδα 1: Νόμοι Νεύτωνα 1.1: Θεμελίωση θεωρίας Νόμοι Νεύτωνα V1.1.1 Ορισμός και όρια της Κλασικής Μηχανικής V1.1.2
ΠΑΡΑΡΤΗΜΑ Γ. Επικαμπύλια και Επιφανειακά Ολοκληρώματα. Γ.1 Επικαμπύλιο Ολοκλήρωμα
ΠΑΡΑΡΤΗΜΑ Γ Επικαμπύλια και Επιφανειακά Ολοκληρώματα Η αναγκαιότητα για τον ορισμό και την περιγραφή των ολοκληρωμάτων που θα περιγράψουμε στο Παράρτημα αυτό προκύπτει από το γεγονός ότι τα μεγέθη που
ΤΟ ΠΛΗΘΩΡΙΣΤΙΚΟ ΜΟΝΤΕΛΟ ΔΥΝΑΤΟΤΗΤΑ ΕΠΙΛΥΣΗΣ ΚΟΣΜΟΛΟΓΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ Κ. Ν. ΓΟΥΡΓΟΥΛΙΑΤΟΣ ΧΕΙΜΩΝΑΣ 2004
ΤΟ ΠΛΗΘΩΡΙΣΤΙΚΟ ΜΟΝΤΕΛΟ ΔΥΝΑΤΟΤΗΤΑ ΕΠΙΛΥΣΗΣ ΚΟΣΜΟΛΟΓΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ Κ. Ν. ΓΟΥΡΓΟΥΛΙΑΤΟΣ ΧΕΙΜΩΝΑΣ 2004 ΣΥΝΟΨΗ ΔΕΔΟΜΕΝΩΝ Το μοντέλο της Μεγάλης έκρηξης εξηγεί με ακρίβεια
Τμήμα Φυσικής, Παν/μιο Ιωαννίνων, Ειδική Σχετικότητα, Διάλεξη 5 Οι Μετασχηματισμοί του Lorentz και η Συστολή του μήκους
1 Οι Μετασχηματισμοί του Lorentz και η Συστολή του μήκους Σκοποί της πέμπτης διάλεξης: 10.11.2011 Εξοικείωση με τους μετασχηματισμούς του Lorentz και τις διάφορες μορφές που μπορούν να πάρουν για την επίλυση
Αστροφυσική ΙΙ Tεστ II- 16 Ιανουαρίου 2009
Αστροφυσική ΙΙ Tεστ II- 16 Ιανουαρίου 2009 1. Μία περιοχή στο μεσοαστρικό χώρο με ερυθρωπή απόχρωση είναι a. Ο ψυχρός πυρήνας ενός μοριακού νέφους b. Μία περιοχή θερμού ιονισμένου αερίου c. Μία περιοχή
ΠΑΡΑΤΗΡΗΣΙΑΚΗ ΚΟΣΜΟΛΟΓΙΑ
Ελένη Πετράκου - National Taiwan University ΠΑΡΑΤΗΡΗΣΙΑΚΗ ΚΟΣΜΟΛΟΓΙΑ Πρόγραμμα επιμόρφωσης ελλήνων εκπαιδευτικών CERN, 7 Νοεμβρίου 2014 You are here! 1929: απομάκρυνση γαλαξιών θεωρία της μεγάλης έκρηξης
Ο κόσμος των Γαλαξιών
Ο κόσμος των Γαλαξιών Δρ Μάνος Δανέζης Επίκουρος Καθηγητής Αστροφυσικής ΕΚΠΑ Aν κάποια έναστρη νύχτα παρατηρήσουμε τον ουρανό μ ένα ισχυρό τηλεσκόπιο, θα εντοπίσουμε πολλά φωτεινά αντικείμενα τα οποία
Η «ΠΡΟΣΘΕΤΙΚΗ ΙΔΙΟΤΗΤΑ» ΤΗΣ ΚΙΝΗΤΙΚΗΣ ΕΝΕΡΓΕΙΑΣ
Η «ΠΡΟΣΘΕΤΙΚΗ ΙΔΙΟΤΗΤΑ» ΤΗΣ ΚΙΝΗΤΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΑΘΗΝΑ,ΜΑΡΤΗΣ 2011 ΑΝΤΙ ΠΡΟΛΟΓΟΥ Αφορμή για την παρακάτω εργασία αποτέλεσε μια παρατήρηση του συνάδελφου (και φίλου) Διονύση Μητρόπουλου, για την «προσθετική
Αστρική Εξέλιξη. Η ζωή και ο θάνατος των αστέρων. Κοσμάς Γαζέας. Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών
Αστρική Εξέλιξη Η ζωή και ο θάνατος των αστέρων Κοσμάς Γαζέας Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Αστρική εξέλιξη Η εξέλιξη ενός αστέρα καθορίζεται από την κατανάλωση διαδοχικών «κύκλων» πυρηνικών
Ευστάθεια και αστάθεια των ακραίων μελανών οπών
Ευστάθεια και αστάθεια των ακραίων μελανών οπών κατά τον Στέφανο Αρετάκη (Cambridge/Princeton) Πάτρα, 19 Μαΐου 2012 κατά τον Στέφανο Αρετάκη(Cambridge/Princeton) 1 1. Σύντομη περίληψη της γενικής σχετικότητας
Η ΣΧΕΤΙΚΟΤΗΤΑ ΣΗΜΕΡΑ ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
Η ΣΧΕΤΙΚΟΤΗΤΑ ΣΗΜΕΡΑ ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ 12ο Θερινό Σχολείο Αστρονομίας Βόλος, 8/7/2011 Περιεχόμενα 1. Ειδική Θεωρία Σχετικότητας (ΕΘΣ) 2. Γενική Θεωρία
1 Μονάδες - Τυπικά μεγέθη. 2 Η Διαστολή και η Ηλικία του Σύμπαντος ΚΟΣΜΟΓΡΑΦΙΑ. 2.1 Ο νόμος του Hubble. Διδάσκων: Θεόδωρος Ν.
ΚΟΣΜΟΓΡΑΦΙΑ Διδάσκων: Θεόδωρος Ν. Τομαράς Α. ΤΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΟΥ ΣΥΜΠΑΝΤΟΣ 1 Μονάδες - Τυπικά μεγέθη 1 light year = 0.951 10 16 m 1 AU = 1.50 10 11 m 1 = 4.85 10 6 rad 1pc 1 parsec 1AU/(1 in rad) = 3.1
0λ έως. Εξάρτηση. ω και ο. του ω: mx x (1) με λύση. όπου το. ), Im. m ( 0 ( ) (2) Re x / ) ) ( / 0 και Im 20.
ΚΕΦ. 14.1 : ΚΟΣΜΟΛΟΓΙΑ Ι ΣΕΛ. 37 έως 5 ΤΟΥ ΒΙΒΛΙΟΥ ΚΣ. 4 Ο VIDEO, 9/1/14 λ έως 19:4λ Εξάρτηση ρόλος των συντονισμών της διηλεκτρικής συνάρτησης από τη συχνότητα ω και ο Παρουσιάζεται το γράφημα e(ε) και
Η εσωτερική δομή των μελανών οπών και η εικασία της ισχυρής κοσμικής λογοκρισίας στη γενική σχετικότητα
Η εσωτερική δομή των μελανών οπών και η εικασία της ισχυρής κοσμικής λογοκρισίας στη γενική σχετικότητα Μιχάλης Δαφέρμος Πανεπιστήμιο Princeton/ Πανεπιστήμιο του Cambridge Γενικό Σεμινάριο, Μαθηματικό
3 ΚΕΦΑΛΑΙΟ ΤΡΙΤΟ: Κοσμολογικά Μοντέλα
ΚΕΦΑΛΑΙΟ ΤΡΙΤΟ: Κοσμολογικά Μοντέλα.1 Βασικές Εξισώσεις Οπως είδαμε στο προηγούμενο κεφάλαιο, οι εξισώσεις του Einstein για ένα εξελισσόμενο στο χρόνο σύμπαν, που περιγράφεται από το στοιχείο μήκους Robertson-Walker
Doppler, ηλεκτρομαγνητικά κύματα και μερικές εφαρμογές τους!
1 Doppler, ηλεκτρομαγνητικά κύματα και μερικές εφαρμογές τους! Με αφορμή τις συχνές ερωτήσεις μαθητών για το Doppler και το φως και κυρίως λόγω της επιμονής ενός άριστου μαθητή που από την Β Λυκείου ενθουσιάζονταν
ΕΙΣΑΓΩΓΙΚΟ ΜΑΘΗΜΑ ΑΣΤΡΟΝΟΜΙΑ-ΑΣΤΡΟΦΥΣΙΚΗ. Μανώλης Πλειώνης
ΕΙΣΑΓΩΓΙΚΟ ΜΑΘΗΜΑ ΑΣΤΡΟΝΟΜΙΑ-ΑΣΤΡΟΦΥΣΙΚΗ Μανώλης Πλειώνης Η κατανοµή της ύλης στο Σύµπαν Γαλαξίες... Οι δομικοί λίθοι του Σύμπαντος (περιέχουν άστρα, σκόνη, αέρια, πλανήτες...) Σμήνη Γαλαξιών Ομάδες Γαλαξιών
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Isaac Newton: Θεωρείται πατέρας της Κλασικής Φυσικής, καθώς ξεκινώντας από τις παρατηρήσεις του Γαλιλαίου αλλά και τους νόμους του Κέπλερ για την κίνηση των πλανητών
ΚΟΣΜΟΓΡΑΦΙΑ. 1 Τα χαρακτηριστικά του Σύμπαντος. 1.1 Μονάδες - Τυπικά μεγέθη. 1.2 Η Διαστολή και η Ηλικία του Σύμπαντος. Διδάσκων: Θεόδωρος Ν.
ΚΟΣΜΟΓΡΑΦΙΑ Διδάσκων: Θεόδωρος Ν. Τομαράς Τα χαρακτηριστικά του Σύμπαντος. Μονάδες - Τυπικά μεγέθη light year =.95 6 m AU =.5 m = 4.85 6 rad pc parsec AU/( in rad) = 3. 6 m = 3.26 light years Διαστάσεις
Βιβλιογραφία Λ.Τσίτσα -Εφαρμοσμένος Απειροστικός Λογισμός
ΕΞΕΤΑΣΤΕΑ ΥΛΗ στο μάθημα ANAΛΥΣΗ Ι 1) Πραγματικοί και φυσικοί αριθμοί -Αξιώματα του συνόλου R των πραγματικών αριθμών -Τέλεια Επαγωγή 2) Ακολουθίες -Ορια ακολουθιών -Κριτήρια σύγκλισης -Ακολουθίες Cauchy
Λουκάς Βλάχος Τµήµα Φυσικής, ΑΠΘ Εισαγωγή στην αστρονοµία Κεφάλαιο 11: Ο Θάνατος των αστέρων
Εισαγωγή στην αστρονοµία Κεφάλαιο 11: Ο Θάνατος των αστέρων Λουκάς Βλάχος Τµήµα Φυσικής, ΑΠΘ 28 Νοεµβρίου 2009 Εισαγωγή στην αστρονοµία Κεφάλαιο 11: Ο Θάνατος των αστέρων Λουκάς Βλάχος Τµήµα Φυσικής, ΑΠΘ
Το Σύμπαν. (Δημιουργία, δομή και εξέλιξη) Λουκάς Βλάχος Τμήμα Φυσικής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης
Το Σύμπαν (Δημιουργία, δομή και εξέλιξη) Λουκάς Βλάχος Τμήμα Φυσικής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Αφιέρωση Θα ήθελα να αφιερώσω αυτή την διάλεξη στο Νίκο Λαμπρόπουλο σαν ένα δείγμα ευγνωμοσύνης
Εισαγωγή στην Κοσμολογία. Γιώργος Νικολιδάκης
Εισαγωγή στην Κοσμολογία Γιώργος Νικολιδάκης Περιεχόμενα Κοσμολογικές Ιδέες Κοσμολογία- Θεμελίωση ως Επιστήμη Παρατηρησιακά Δεδομένα στο Ορατό φώς Ο νυχτερινός ουρανός είναι σκοτεινός Αστέρες, Γαλαξίες
ΠΡΟΣΟΧΗ : Nέα Ύλη για τις Κατατακτήριες από 2012 και μετά στην Φυσική Ι. Για το 3ο εξάμηνο. ΕΞΕΤΑΣΤΕΑ ΥΛΗ στο μάθημα ΦΥΣΙΚΗ Ι - ΜΗΧΑΝΙΚΗ
ΠΡΟΣΟΧΗ : Nέα Ύλη για τις Κατατακτήριες από 2012 και μετά στην Φυσική Ι ΕΞΕΤΑΣΤΕΑ ΥΛΗ στο μάθημα ΦΥΣΙΚΗ Ι - ΜΗΧΑΝΙΚΗ 1. Κινηματική (ευθύγραμμη και καμπυλόγραμμη κίνηση) 2. Σχετική κίνηση-μετασχηματισμοί
Αστρικά Συστήματα και Γαλαξίες
Αστρικά Συστήματα και Γαλαξίες Κοσμάς Γαζέας Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Αστρικά Σμήνη Οι ομάδες των αστέρων Κοσμάς Γαζέας Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Αστρικά σμήνη Είναι
Ινστιτούτο Αστρονομίας & Αστροφυσικής, ΕΑΑ
Παιχνίδια Προοπτικής στο Σύμπαν Ελένη Χατζηχρήστου Ινστιτούτο Αστρονομίας & Αστροφυσικής, ΕΑΑ Όταν δυο ουράνια αντικείμενα βρίσκονται στην ίδια περίπου οπτική γωνία αν και σε πολύ διαφορετικές αποστάσεις
Δύο Συνταρακτικές Ανακαλύψεις
Δύο Συνταρακτικές Ανακαλύψεις στα Όρια των Διαστάσεων του Χώρου Απόστολος Δ. Παναγιώτου Ομότιμος Καθηγητής Πανεπιστημίου Αθηνών Επιστημονικός Συνεργάτης στο CERN Σώμα Ομοτίμων Καθηγητών Πανεπιστήμιου Αθηνών
Εκροή ύλης από μαύρες τρύπες
Εκροή ύλης από μαύρες τρύπες Νίκος Κυλάφης Πανεπιστήµιο Κρήτης Η µελέτη του θέµατος ξεκίνησε ως διδακτορική διατριβή του Δηµήτρη Γιαννίου (Princeton) και συνεχίζεται. Ιωάννινα, 8-9-11 Κατ αρχάς, πώς ξέρομε
Βαρυτικά Κύματα ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
Βαρυτικά Κύματα ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Θεσσαλονίκη, 6/4/2014 Νευτώνεια βαρύτητα 1687: Ο Νεύτωνας θεωρούσε ότι η βαρύτητα δρα ακαριαία σε οσοδήποτε μεγάλες
ΣΥΜΦΩΝΑ ΜΕ ΤΗΝ ΚΟΣΜΟΛΟΓΙΑ
ΠΡΟΛΟΓΟΣ Η αρχή του κόσμου έγινε από μια υπερβολικά πυκνή και θερμή κατάσταση, όπου δεν ισχύουν οι γνωστοί φυσικοί νόμοι. Από αυτή την άγνωστη κατάσταση με ανεξήγητο τρόπο, άρχισε να σχηματίζεται ο χρόνος
ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΠΥΡΗΝΙΚΗΣ ΦΥΣΙΚΗΣ ΚΑΙ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΜΙΧΑΗΛ Ε.
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΠΥΡΗΝΙΚΗΣ ΦΥΣΙΚΗΣ ΚΑΙ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΚΟΣΜΟΛΟΓΙΑ ΣΤΗΝ ΘΕΩΡΙΑ ΑΙΘΕΡΑ ΤΟΥ
Τα Κύματα της Βαρύτητας
Τα Κύματα της Βαρύτητας ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΟΦΑ, 24/1/2015 Πως διαδίδεται η βαρυτική έλξη; 1900: ο Lorentz προτείνει ότι η δύναμη της βαρύτητας δε
ΠΕΡΙΕΧΟΜΕΝΑ ΤΟΜΟΣ Ι ΕΙΣΑΓΩΓΗ 1
ΤΟΜΟΣ Ι ΕΙΣΑΓΩΓΗ 1 1 ΟΙ ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΤΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟΥ ΠΕΔΙΟΥ 7 1.1 Μονάδες και σύμβολα φυσικών μεγεθών..................... 7 1.2 Προθέματα φυσικών μεγεθών.............................. 13 1.3 Αγωγοί,
Εξερευνώντας το Σύμπαν με τα Κύματα της Βαρύτητας
Εξερευνώντας το Σύμπαν με τα Κύματα της Βαρύτητας ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Νάουσα, 28/11/2015 Πως διαδίδεται η βαρυτική έλξη; 1900: ο Lorentz προτείνει
Το Σύμπαν. (Δημιουργία, δομή και εξέλιξη) Λουκάς Βλάχος Τμήμα Φυσικής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης
Το Σύμπαν (Δημιουργία, δομή και εξέλιξη) Λουκάς Βλάχος Τμήμα Φυσικής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Μια σημαντική παρατήρηση Η επιστήμη αναζητά την αλήθεια μέσα από το πείραμα και την παρατήρηση.
Κοσμολογία & Αστροσωματιδική Φυσική Μάγδα Λώλα CERN, 28/9/2010
Κοσμολογία & Αστροσωματιδική Φυσική Μάγδα Λώλα CERN, 28/9/2010 Η φυσική υψηλών ενεργειών µελετά το µικρόκοσµο, αλλά συνδέεται άµεσα µε το µακρόκοσµο Κοσµολογία - Μελέτη της δηµιουργίας και εξέλιξης του
ΓΑΛΑΞΙΕΣ, ΑΣΤΡΙΚΑ ΣΜΗΝΗ, ΝΕΦΕΛΩΜΑΤΑ.
ΓΑΛΑΞΙΕΣ, ΑΣΤΡΙΚΑ ΣΜΗΝΗ, ΝΕΦΕΛΩΜΑΤΑ. Η δημιουργία και εξέλιξη του σύμπαντος υπήρξε αντικείμενο όλων των θρησκειών. Από τη δεκαετία όμως του 1930, το θέμα αυτό περιήλθε στην δικαιοδοσία της επιστήμης με
Ο ΡΟΛΟΣ ΤΗΣ ΧΗΜΕΙΑΣ ΣΤΗ ΔΟΜΗ ΤΟΥ ΣΥΜΠΑΝΤΟΣ
Ο ΡΟΛΟΣ ΤΗΣ ΧΗΜΕΙΑΣ ΣΤΗ ΔΟΜΗ ΤΟΥ ΣΥΜΠΑΝΤΟΣ Πολυχρόνης Σ. Καραγκιοζίδης Site: www.polkarag.gr E-mail : info@polkarag.gr Η δημιουργία και εξέλιξη του σύμπαντος υπήρξε αντικείμενο όλων των θρησκειών. Από
Τα μαθήματα του 2 ου έτους
Χειμερινό εξάμηνο (Γ εξάμηνο) ΚΩΔ. ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ Τα μαθήματα του 2 ου έτους Μονάδες ΕCTS Θεωρία (ώρες/εβ δ.) Φροντιστήριο (ώρες/εβδ.) Εργαστή ριο 1 ΜΗΧΑΝΙΚΗ Ι 6 2 2-2 33 38 4 5 ΦΥΣΙΚΗ ΙΙΙ (Ηλεκτρομαγνητισμός)
ΣΤΟΙΧΕΙΑ ΑΣΤΡΟΝΟΜΙΑΣ & ΔΙΑΣΤΗΜΙΚΗΣ. Β' Τάξη Γενικού Λυκείου
ΣΤΟΙΧΕΙΑ ΑΣΤΡΟΝΟΜΙΑΣ & ΔΙΑΣΤΗΜΙΚΗΣ Β' Τάξη Γενικού Λυκείου Ομάδα συγγραφής: Κων/νος Γαβρίλης, καθηγητής Μαθηματικών Β/θμιας Εκπαίδευσης. Μαργαρίτα Μεταξά, Δρ. Αστροφυσικής, καθηγήτρια Φυσικής του Τοσιτσείου-Αρσακείου
Πανεπιστήμιο Πατρών Τμήμα Μαθηματικών ΒΑΡΥΤΙΚΑ ΚΥΜΑΤΑ. Διπλωματική εργασία της: Ελένης-Άννας Φαλλίδα. Επιβλέπων καθηγητής: Βασίλειος Παπαγεωργίου
Πανεπιστήμιο Πατρών Τμήμα Μαθηματικών ΒΑΡΥΤΙΚΑ ΚΥΜΑΤΑ Διπλωματική εργασία της: Ελένης-Άννας Φαλλίδα Επιβλέπων καθηγητής: Βασίλειος Παπαγεωργίου Πάτρα, Σεπτέμβριος 2016 Ευχαριστίες Θα ήθελα να ευχαριστήσω
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας Ιούνιος 2010
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας Ιούνιος Αν θέλετε μπορείτε να επεξεργαστείτε όλα τα προβλήματα σε σύστημα μονάδων όπου η ταχύτητα του φωτός είναι c. Να λύσετε
ΑΣΤΡΟΝΟΜΙΑ ΚΑΙ ΑΣΤΡΟΦΥΣΙΚΗ 7 ο ΕΞΑΜΗΝΟ ΤΜΗΜΑ ΦΥΣIΚΗΣ ΑΠΘ
ΑΣΤΡΟΝΟΜΙΑ ΚΑΙ ΑΣΤΡΟΦΥΣΙΚΗ 7 ο ΕΞΑΜΗΝΟ 2016-2017 ΤΜΗΜΑ ΦΥΣIΚΗΣ ΑΠΘ 1ο Σ Ε Τ Α Σ Κ Η Σ Ε Ω Ν 1. Να κατασκευαστεί η ουράνια σφαίρα για έναν παρατηρητή που βρίσκεται σε γεωγραφικό πλάτος 25º και να τοποθετηθούν
1 Ω(t) = k c2 (1) 1 Ω(t 0 ) = ) z RM = O(10 4 ) (2) = a RM. 1 Ω(t bbn ) 1 Ω(t RM ) = = = O(10 10 ) (3)
ΤΟ ΠΛΗΘΩΡΙΣΤΙΚΟ ΣΥΜΠΑΝ ΠΡΟΣΟΧΗ: ΟΧΙ ΑΡΚΕΤΑ ΕΠΕΞΕΡΓΑΣΜΕΝΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΥΡΙΑ ΓΙΑ ΝΑ ΕΧΕΤΕ ΤΟ ΤΙ ΘΕΜΑΤΑ ΣΥΖΗΤΗΣΑΜΕ ΣΤΗ ΤΑΞΗ Διδάσκων: Θεόδωρος Ν. Τομαράς 1 Το πρόβλημα των αρχικών συνθηκών της Κοσμολογίας
Κριτικά σχόλια επί της Γενικής Θεωρίας της Σχετικότητας όπως αυτή αναπτύσσεται από τους Landau-Lifshitz
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΠΥΡΗΝΙΚΗΣ ΦΥΣΙΚΗΣ ΚΑΙ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ Πτυχιακή Εργασία Κριτικά σχόλια επί της Γενικής Θεωρίας της Σχετικότητας όπως αυτή αναπτύσσεται
Το μεγάλο Μπαμ!!! Δρ Μάνος Δανέζης Επίκουρος Καθηγητής Αστροφυσικής
Το μεγάλο Μπαμ!!! Δρ Μάνος Δανέζης Επίκουρος Καθηγητής Αστροφυσικής Από τα πανάρχαια χρόνια η σκέψη του ανθρώπου προσπαθεί απεγνωσμένα να δώσει απάντηση σε τρία βασικά υπαρξιακά του προβλήματα. Τι είναι
Κεφάλαιο 3 Κίνηση σε 2 και 3 Διαστάσεις
Κεφάλαιο 3 Κίνηση σε και 3 Διαστάσεις Κίνηση υλικού σημείου στο επίπεδο ( -D) και στο χώρο (3 -D). Ορισμός διανυσμάτων για την μελέτη της -D 3-D κίνησης: Θέση, Μετατόπιση Μέση και στιγμιαία ταχύτητα Μέση
Ένα πείραμα θα δημιουργήσει ένα νέο σύμπαν;
ΤΟ ΜΟΝΤΕΛΟ ΤΗΣ ΜΕΓΑΛΗΣ ΕΚΡΗΞΗΣ (BIG BANG) Ένα πείραμα θα δημιουργήσει ένα νέο σύμπαν; Η θεωρία της Μεγάλης Έκρηξης με όλες τις σύγχρονες παραλλαγές και βελτιώσεις της είναι η πλέον αποδεκτή εκδοχή της
EΦΑΡΜΟΓΕΣ ΥΠΟΛΟΓΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ ΙΙ
ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ EΦΑΡΜΟΓΕΣ ΥΠΟΛΟΓΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ ΙΙ ΑΣΤΡΟΦΥΣΙΚΗ ΚΟΣΜΟΛΟΓΙΑ ΣΤΟΙΧΕΙΩ Η ΣΩΜΑΤΙΑ Χ. ΒΑΡΒΟΓΛΗΣ Χ. ΕΛΕΥΘΕΡΙΑ ΗΣ Α. ΝΙΚΟΛΑΪ ΗΣ Ν. ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ Α.Π.Θ. ΙΑΝΟΥΑΡΙΟΣ 5 ΠΡΟΛΟΓΟΣ
iii vii de Sitter Einstein-Hilbert Hartle-Hawking
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Διπλωματική εργασία: Κυματοσυνάρτηση Hartle-Hawking στην R 2 θεωρία Ευτύχιος Καϊμακκάμης Επιβλέπων καθηγητής: Νικόλαος Τούμπας Τμήμα Φυσικής Σχολή Θετικών και Εφαρμοσμένων Επιστημών
Ενότητα 1: Εργαλειοθήκη, μέρος 1 ο : μετρήσεις σε κοσμολογικές αποστάσεις Φύλλο Φοιτητή
1 Ενότητα 1: Εργαλειοθήκη, μέρος 1 ο : μετρήσεις σε κοσμολογικές αποστάσεις Φύλλο Φοιτητή Σκοπός της ενότητας αυτής: Πολλά αστροφυσικά συστήµατα υψηλών ενεργειών, π.χ. ενεργοί γαλαξιακοί πυρήνες (active
Ο ΓΑΛΙΛΑΙΟΣ ΕΙΝΑΙ ΛΑΘΟΣ!
Ο ΓΑΛΙΛΑΙΟΣ ΕΙΝΑΙ ΛΑΘΟΣ! ΤΟ ΠΕΙΡΑΜΑ ΤΟΥ ΓΑΛΙΛΑΙΟΥ Ας υποθέσουµε σχ. 1, ότι έχουµε ένα ουράνιο σώµα µάζας Μ (γη, σελήνη, αστεροειδής, κ.λ.π.). K 1 M2 R K 1 K M 2 2 M 1 M 1 t = (Ι) (ΙΙ) Ελεύθερη πτώση των
ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ ΦΑΙΝΟΜΕΝΟ DOPPLER
ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ ΦΑΙΝΟΜΕΝΟ DOPPLER Μαγνητικό πεδίο γης Μετασχηματισμοί Λόρεντζ Φαινόμενο Doppler για τον ήχο Φαινόμενο Doppler για ηλεκτρομαγνητικά κύματα Κύριες εφαρμογές φαινομένου Doppler ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ
Γιώργος Μπαρακλιανός τηλ ( ) Κώστας Τζάλλας τηλ ( ) Παραγγελίες : τηλ.
Γιώργος Μπαρακλιανός τηλ. 69377886 ( mparakgeo@gmail.com ) Κώστας Τζάλλας τηλ. 69733004 ( tzallask@gmail.com ) Παραγγελίες : τηλ. 5407604 Email : mparakgeo@gmail.com Messenger : Giorgos Mparaklianos Πρόλογος
3.0.2 F(R) μορϕή Mach s Principle... 43
Διπλωματική Εργασία: Θεωρίες Βαρύτητας Brans-Dicke και εϕαρμογές Παπαγιαννόπουλος Γιάννης 28 Ιουνίου 2016 2 Περιεχόμενα 1 Εισαγωγή στη Γενική Σχετικότητα 9 1.1 Γεωμετρικά αντικείμενα και Τανυστές.............................
Κατασκευή χωρόχρονων οι οποίοι επιδέχονται έναν μη τετριμμένο, δεύτερης τάξης, τανυστή Killing
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Κατασκευή χωρόχρονων οι οποίοι επιδέχονται έναν μη τετριμμένο, δεύτερης τάξης, τανυστή Killing Φοιτητής: Θεόδωρος
Θεωρητική Εξέταση - Σύντοµες Ερωτήσεις
1. Στο Εθνικό Αστεροσκοπείο της Βραζιλίας, που βρίσκεται στη πόλη Ρίο ντε Τζανέιρο ( 22 54ʹ S, 43 12ʹ W), υπάρχει ένα ηλιακό ρολόι πάνω από την πόρτα του θόλου που είναι εγκατεστηµένο το τηλεσκόπιο των
Μαθαίνω και εξερευνώ: ΤΟ ΔΙΑΣΤΗΜΑ
Μαθαίνω και εξερευνώ: ΤΟ ΔΙΑΣΤΗΜΑ Μαθαίνω και εξερευνώ: ΤΟ ΔΙΑΣΤΗΜΑ Περιεχόμενα Τι είναι το Διάστημα;... 2 Το ηλιακό σύστημα... 4 Οι πλανήτες... 6 Ο Ήλιος... 10 Η Σελήνη... 12 Αστέρια και κομήτες... 14
Η πρόβλεψη της ύπαρξης και η έµµεση παρατήρηση των µελανών οπών θεωρείται ότι είναι ένα από τα πιο σύγχρονα επιτεύγµατα της Κοσµολογίας.
Η πρόβλεψη της ύπαρξης και η έµµεση παρατήρηση των µελανών οπών θεωρείται ότι είναι ένα από τα πιο σύγχρονα επιτεύγµατα της Κοσµολογίας. Παρ' όλα αυτά, πρώτος ο γάλλος µαθηµατικός Λαπλάςτο 1796 ανέφερε
[ΠΛΗΘΩΡΙΣΤΙΚΟ ΣΥΜΠΑΝ]
Τμήμα Φυσικής Πανεπιστημίου Πατρών ΑΘΑΝΑΣΙΟΣ ΧΡ. ΤΖΕΜΟΣ [ΠΛΗΘΩΡΙΣΤΙΚΟ ΣΥΜΠΑΝ] ΑΘΑΝΑΣΙΟΣ ΧΡ.ΤΖΕΜΟΣ ΜΕΤΑΠΤΥΧΙΑΚΟΣ ΦΟΙΤΗΤΗΣ (Α.Μ. 86) ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ ΠΛΗΘΩΡΙΣΤΙΚΟ ΣΥΜΠΑΝ (ΜΙΑ ΣΥΝΤΟΜΗ ΕΙΣΑΓΩΓΗ)
L = T V = 1 2 (ṙ2 + r 2 φ2 + ż 2 ) U (3)
ΥΠΟΛΟΓΙΣΤΙΚΗ ΑΣΤΡΟΔΥΝΑΜΙΚΗ 3): Κινήσεις αστέρων σε αστρικά συστήματα Βασικές έννοιες Θεωρούμε αστρικό σύστημα π.χ. γαλαξία ή αστρικό σμήνος) αποτελούμενο από μεγάλο αριθμό αστέρων της τάξης των 10 8 10
Πληθωριστική Κοσμολογία
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΚΕΦΕ «ΔΗΜΟΚΡΙΤΟΣ» ΙΝΣΤΙΤΟΥΤΟ ΝΑΝΟΕΠΙΣΤΗΜΗΣ ΚΑΙ ΝΑΝΟΤΕΧΝΟΛΟΓΙΑΣ ΙΝΣΤΙΤΟΥΤΟ ΠΥΡΗΝΙΚΗΣ ΚΑΙ ΣΩΜΑΤΙΔΙΑΚΗΣ