Ενότητα 1: Εργαλειοθήκη, μέρος 1 ο : μετρήσεις σε κοσμολογικές αποστάσεις Φύλλο Φοιτητή
|
|
- Αθανας Αλεξάνδρου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 1 Ενότητα 1: Εργαλειοθήκη, μέρος 1 ο : μετρήσεις σε κοσμολογικές αποστάσεις Φύλλο Φοιτητή Σκοπός της ενότητας αυτής: Πολλά αστροφυσικά συστήµατα υψηλών ενεργειών, π.χ. ενεργοί γαλαξιακοί πυρήνες (active galactic nuclei ή AGN), εκρήξεις ακτίνων γάµµα (gamma-ray bursts ή GRB) ζουν σε κοσµολογικές αποστάσεις. Πρέπει να ξέρουµε πώς να χειριστούµε αστρονοµικά δεδοµένα από τέτοια συστήµατα: πώς να µετρήσουµε την απόσταση τους πώς να µετατρέψουµε γωνιακές σε φυσικές αποστάσεις στα συστήµατα αυτά, ώστε να µπορούµε να υπολογίζουµε µε τι ταχύτητα κινείται η ύλη πώς να µετατρέψουµε ένταση της ακτινοβολίας σε φωτεινότητα (ισχύ) σε κοσµολογικές αποστάσεις, ώστε να µπορούµε να υπολογίζουµε τις ενεργειακές απαιτήσεις ενός τέτοιου συστήµατος Τι θα συζητήσουµε: A. Γεωµετρία στο διαστελλόµενο σύµπαν: η µετρική Robertson-Walker B. Κοσµολογική µετατόπιση προς το ερυθρό: µια ποσότητα που χαρακτηρίζει την απόσταση και η οποία είναι ανεξάρτητη από το κοσµολογικό µας µοντέλο C. Συντεταγµένη απόσταση (coordinate distance), ιδιοαπόσταση (proper distance), απόσταση φωτεινότητας (luminosity distance), απόσταση γωνιακής διαµέτρου (angular diameter distance). D. Σχέση µεταξύ µονοχρωµατικής έντασης και µονοχρωµατικής φωτεινότητας (ισχύος). E. Νόµος διαστολής του Hubble και παράµετρος Hubble F. Δυναµική της διαστολής: η εξίσωση Friedmann Γνώσεις και δεξιότητες που θέλουµε να αποκτήσουµε ή να φρεσκάρουµε (τα SOS!) : i. (Επαν)εξοικίωση µε τις µετρικές γενικότερα και τη µετρική Robertson-Walker ειδικότερα. ii. Πώς συνδέεται η µετατόπιση στο ερυθρό µε τον παράγοντα κλίµακας (scale factor) iii. Ποιες ποσότητες στην Κοσµολογία είναι απ ευθείας παρατηρήσιµες (και ανεξάρτητες από το κοσµολογικό µοντέλο) και ποιες είναι παράγωγες (και εξαρτώνται από το κοσµολογικό µοντέλο). iv. Τι αντιπροσωπεύει κάθε όρος της εξίσωσης Friedmann v. Για οποιοδήποτε κσµολογικό µοντέλο (και βεβαίως για το τρέχον βέλτιστο), ξεκινώντας από την εξίσωση Friedmann, να µπορούµε να γράψουµε το ολοκλήρωµα που συνδέει redshift και κοσµικό χρόνο, και redshift και συντεταγµένη απόσταση. vi. Να µπορούµε εύκολα να µετατρέπουµε την ίδια απόσταση σε απόσταση φωτεινότητας ή γωνιακής διαµέτρου και το αντίστροφο, και να κατανοήσουµε από πού πηγάζει η διαφορά µεταξύ των αποστάσεων αυτών.
2 A. Γεωµετρία στο διαστελλόµενο σύµπαν: η µετρική Robertson-Walker Η γεωµερία του χωρόχρονου περιγράφεται από τη µετρική (τον µετρικό τανυστή), η οποία µπορεί επίσης να εκφραστεί µέσω του γραµµικού στοιχείου ds : ds = g µν dx µ dx ν Το γραµµικό στοιχείο είναι µια ποσότητα αµετάβλητη κάτω από αλλαγές συστήµατος συντεταγµένων. Ποια είναι η µετρική του επίπεδου χωρόχρονου σε καρτεσιανές συντεταγµένες; σε σφαιρικές συντεταγµένες; Τι είναι ο ιδιόχρονος, και τι το ιδιοµήκος; Ιδιόχρονος: Ιδιοµήκος: Τι είναι το χωροειδές, χρονοειδές, και φωτοειδές χωροχρονικό διάστηµα; Ας γράψουµε µια γενική διαγώνια µετρική σε χωρικές συντεταγµένες r,θ,φ ds = g tt dt + g rr dr + g θθ dθ + g φφ dφ Πώς υπολογίζουµε το ιδιοµήκος ανάµεσα σε εµάς (κέντρο της σφαίρας) και σε ένα µακρινό αστέρι σε συντεταγµένη απόσταση r; Πώς υπολογίζουµε πόσο χρόνο θα κάνει ένα φωτόνιο από το µακρινό αστέρι συντεταγµένης απόστασης r να µας φτάσει; Πώς υπολογίζουµε το µήκος µιας ράβδου στον ουρανό η οποία ειναι προσανατολισµένη στην κατεύθυνση θ; Πώς υπολογίζουµε την επιφάνεια µιας σφαίρας συντεταγµένης ακτίνας r?
3 3 Η µετρική του διαστελλόµενου σύµπαντος: (µετρική Robertwon Walker) ds = c dt + R dξ 0 a (t) 1 kξ + ξ ( dθ + sin θdφ ) k είναι η καµπυλότητα, που µπορεί να είναι θετική, αρνητική, ή µηδέν (το k παίρνει τιµές +1,-1,0 στον συγκεκριµένο τρόπο γραφής της µετρικής), αλλά είναι η ίδια παντού. Και a(t) είναι ο παράγοντας κλίµακας του σύµπαντος, τον οποίον κατά σύµβαση τον κανονικοποιούµε στη σηµερινή εποχή (a(σήµερα) = a 0 =1). R 0 είναι µια σταθερά που δίνει µονάδες στις συντεταγµένες (ώστε στη µορφή αυτή να είναι αδιάστατες). Ας παίξουµε λίγο µε τη µετρική RW k=0. Τι γίνεται όταν t=σήµερα; Όταν dt=0? Όταν ds=0? Πώς γράφεται η µετρική αυτή σε καρτεσιανές συντεταγµένες; k=1. Ποια είναι η µετρική της -διάσταστης σφάιρας; Χρησιµοποίησε το µετασχηµατισµό ξ= sina για να δείξεις ότι οι πρώτοι χωρικοί όροι της RW µετρικής για k=1 είναι η =σφαίρα (κλειστό σύµπαν). Γιατί είναι σηµαντικό να κατανοούµε τις άλλες γεωµετρίες κι ας δείχνουν τα δεδοµένα ότι το σύµπαν µας είναι επίπεδο; Ποιες ποσότητες στη µετρική είναι απ ευθείας παρατηρήσιµες; B. Κοσµολογική µετατόπιση προς το ερυθρό (ερυθρόπηση ή redshift): µια παρατηρήσιµη ποσότητα που χαρακτηρίζει την απόσταση και η οποία είναι ανεξάρτητη από το κοσµολογικό µας µοντέλο Ορισµός του redshift: Το redshift είναι µια παρατηρήσιµη ποσότητα. 1+z = λ τώρα / λ τότε Με ποιον τρόπο συνδέεται το redshift µε τον παράγοντα κλίµακας; Με ποιον τρόπο το redshift κωδικοποιεί µια απόσταση; C. Συντεταγµένη απόσταση, ιδιοαπόσταση, απόσταση γωνιακής διαµέτρου, απόσταση φωτεινότητας, Συντεταγµένη απόσταση είναι απλώς η ακτινική συντεταγµένη ξ πολλαπλασιασµένη µε τον παράγοντα R 0, R 0 ξ. Στην περιπτωση που k=0, η συντεταγµένη απόσταση είναι ίση µε την συνταξιδεύσουσα ιδιοαπόσταση d 0, η
4 4 ξ dξ' οποία γενικά είναι ίση µε το ολοκληρωµα R 0 -- είναι δηλαδή η ακτινική απόσταση η οποία 0 1 kξ' προκύπτει από τη µετρική όπως µετράται σήµερα. Αντίστοιχα η ιδιοαπόσταση σε χρόνο t είναι d p (t) = a(t)d 0. Απόσταση γωνιακής διαµέτρου είναι ο λόγος ενός µήκους l που ζει σε µια εποχή z, προς την γωνιακή διάµετρο που µετρούµε σήµερα για το µήκος αυτό. Πίσω στη µετρική RW: για να µετρήσουµε ένα µήκος, χρησιµοποιούµε φωτόνια που εκπέµπονται ταυτόχρονα (οπότε dt = 0) και ακτινικά προς εµάς. Έστω ότι το µήκος l είναι προσανατολισµένο στο επίπεδο του ουρανού και στην κατεύθυνση θ, οπότε dφ=0. Τότε l = ds = a z R 0 ξdθ = R 0ξ (1+ z) dθ ονοµάζουµε το λόγο R 0 ξ/(1+z) απόσταση γωνιακής διαµέτρου. Απόσταση φωτεινότητας είναι ο λόγος L(4πS) (εκ του S = L/4πr αν δεν υπήρχε διαστολή) Πίσω στη µετρική RW: Επιφάνεια σφαίρας σε ακτινική συντεταγµένη ξ: 4πR 0 ξ. Όµως για πηγή που ζει στο ξ και εκπέµπει µε ισχύ (όπως τη µετρά η ίδια) L: η (παγχρωµατική) ένταση της ακτινοβολίας που λαµβάνουµε είναι: - S = L/4πR 0 ξ αν δεν υπήρχε διαστολή - Μικρότερη κατά παράγοντα (1+z) γιατί το µήκος κύµατος κάθε φωτονίου διαστέλλεται µαζί µε το σύµπαν και άρα η ενέργειά του έχει ελαττωθεί κατά (1+z) από το z µέχρι σήµερα - Μικρότερη κατά παράγοντα (1+z) επειδή διαδοχικά φωτόνια φτάνουν στον παρατηρητή σε χρονικό διάστηµα µεγαλύτερο από αυτό που εκπέµφθηκαν. Οπότε: S = L/4πR 0 ξ (1+z), και η απόσταση φωτεινότητας ορίζεται σαν R 0 ξ(1+z). Προφανώς: η απόσταση γωνιακής διαµέτρου είναι µικρότερη από R 0 ξ γιατί τα αντικείµενα φαίνονται µεγαλύτερα λόγω της διαστολής (και άρα πιο κοντινά), η απόσταση φωτεινότητας είναι µεγαλύτερη από R 0 ξ γιατί τα αντικείµενα φαίνονται αµυδρότερα λόγω της διαστολής (και άρα πιο µαρκυνά). D. Σχέση µεταξύ µονοχρωµατικής έντασης και µονοχρωµατικής φωτεινότητας (ισχύος). Η πιο πάνω συζήτηση για την απόσταση φωτεινότητας αφορά παγχρωµατική (βολοµετρική) φωτεινότητα. Στην περίπτωση µονοχρωµατικής φωτεινότητας και έντασης (φωτεινότητας και έντασης που εκπέµονται σε µικρό εύρος συχνοτήτων dν): S ν (ν 0 ) = L ν ([1+ z]ν 0 ) 4πR 0 ξ (1+ z) Διαφορές: Ο παράγοντας (1+z) στον παρονοµαστή τώρα είναι (1+z), γιατί στα δυο φαινόµενα που συζητήσαµε (διαστολή του µήκους κύµατος του φωτονίου και διαστολή του χρόνου µεταξύ διαδοχικών φωτονίων) που κάνουν την πηγή να φαίνιται αµυδρότερη καθένα κατα (1+z), προστίθεται ένα τρίτο που κάνει την πηγή να φαίνεται λαµπρότερη κατά παράγοντα (1+z): Το εύρος συχνοτήτων dν που λαµβάνει ο παρατηρητής είναι
5 5 µικρότερο κατά (1+z) από ότι αυτό που εξέπεµψε η πηγή, οπότε ο ίδιος αριθµός φωτονίων συµπιέζεται σε µικρότερο εύρος σχνοτήτων και η ένταση ανά µονάδα συχνότητας φαίνεται µεγαλύτερη. Η συχνότητα την οποία µετρά ο παρατηρητής είναι µικρότερη κατά (1+z) από αυτήν που εξέπεµψε η πηγή. Η παραπάνω σχέση υποθέτει ισότροπη εκποµπή (οπότε η φωτεινότητα είναι σε µονάδες ενέργεια/χρονοςσυχνότητα). Αν η πηγή δεν εκπέµπει ισότροπα, τότε µπορούµε να θεωρήσουµε εκποµπή στη µονάδα στερεάς γωνίας (οπότε η φωτεινότητα είναι σε µονάδες ενέργεια / χρόνος-συχνότητα-στερεά γωνία) και η παραπάνω σχέση δεν έχει 4π στον παρονοµαστή. Ε. Νόµος διαστολής του Hubble και παράµετρος Hubble Παράµετρος Hubble: ειναι η «σταθερά» H της (παρατηρηµένης) αναλογίας v R = Hd p (νόµος διαστολής του Hubble). Παρατηρώντας ότι v R = dd p /dt = d(ad 0 )/dt = d 0 da/dt, παίρνουµε αµέσως H = a /a Προφανώς το H είναι συνάρτηση του χρόνου (ή, ισοδύναµα, του redshift). Η τιµή του H σήµερα συµβολίζεται µε H 0 και µε h συµβολίζουµε την ποσότητα H 0 /100 km s -1 Mpc -1. Τι µονάδες έχει το H? Τι µονάδες έχει το 1/H? Πώς πρέπει να διαστέλλεται το σύµπαν για να είναι το H πραγµατικά σταθερό; Το σύµπαν αυτό έχει όνοµα: σύµπαν de Sitter. Αν το τρέχον προτιµώµενο κοσµολογικό µοντέλο είναι σωστό, το σύµπαν µας βαδίζει προς διαστολή de Sitter στο απώτερο µέλλον. Επίσης πιστεύεται ότι το σύµπαν πέρασε από περίοδο διαστολής de Sitter στο παρελθόν. F. Δυναµική της διαστολής: η εξίσωση Friedmann Στο οµογενές και ισότροπο σύµπαν, η γενική µορφή της µετρικής είναι η RW, όµως δεν γνωρίζουµε την χρονική εξέλιξη του a. Αυτή περιγράφεται από την Εξίσωση Friedmann: a a 3 ρ kc a η οποία είναι η µορφή µε την οποία συνήθως απαντάται στα βιβλία, ή, στη µορφή που προτιµώ εγώ γιατι είναι προφανέστερη η φυσική της ερµηνεία κι έτσι είναι ευκολότερο να τη θυµάµαι, a 3 ρa kc
6 6 Η οποία είναι απλώς η διατήρηση της ενέργειας σε ένα διαστελλόµενο σύµπαν: το άθροισµα κινητικής και δυναµικής ενέργειας ( M/r ρa 3 /a) είναι σταθερό. To ρ είναι το άθροισµα όλων των µορφών ύλης/ενέργειας (βαρυονική και σκοτεινή ύλη, ακτινοβολία, ενέργεια κενού) και κάθε µια από τις µορφές αυτές έχει την δική της εξάρτηση από το a, η οποία είναι µάλλον προφανής: Για την ύλη Για την ενέργεια του κενού (αν υποθέσουµε ότι αυτή συµπεριφέρεται όπως η κοσµολογική σταθερά, δηλαδή είναι αµετάβλητη µε το χρόνο και άρα µε τον παράγοντα κλίµακας) Για την ακτινοβολία Κρισιµη πυκνότητα σήµερα: Ορίζουµε την κρίσιµη πυκνότητα σήµερα, ρ c, 0, ως την τιµή εκείνη της (συνολικής) πυκνότητας η οποία µε βάση την σηµερινή τιµή του H = a /a, την οποία συµβολίζουµε µε H 0, η οποία µηδενίζει το k στη µετρική RW: H 0 3 ρ c,0 ρ c,0 = 3H 0 8πG Συνηθίζεται λοιπόν να γράφουµε τις τιµές των πυκνοτήτων των διαφόρων συστατικών του σύµπαντος σήµερα ως κλάσµατα του ρ c, 0, και να τις συµβολίζουµε µε Ω: Ω m = ρ m,0 /ρ c,0 Ω Λ = ρ Λ,0 /ρ c,0 Ω r = ρ v,0 /ρ c,0 Επίσης ορίζουµε Ω = Ω m +Ω Λ + Ω r = ρ 0 /ρ c,0. Από τη γενική εξισωση Friedmann σήµερα, αντικαθιστώντας το ρ µε Ωρ c,0, και λαµβάνοντας υπ όψιν µας ότι εξ ορισµού ο παράγοντας κλίµακας σήµερα είναι ίσος µε 1, παίρνουµε H 0 3 Ωρ kc c,0 kc 3 Ωρ H c,0 0 = H 0 (Ω 1) Τα Ω, Ω m, Ω Λ, Ω r είναι οι παράµετροι που θα βρούµε στη βιβλιογραφία για το περιεχόµενο του σύµπαντος στα διάφορα συστατικά του, και για την καµπυλότητά του, που όπως δείξαµε χαρακτηρίζεται από την ποσότητα Ω-1: αν αυτή η ποσότητα είναι µηδέν το σύµπαν είναι επίπεδο, αν ειναι θετική είναι κλειστό, αν είναι αρνητική είναι ανοιχτό. Είναι λοιπόν πολύ σηµαντικό να κατανοήσουµε και να θυµόµαστε την φυσική σηµασία καθενός Ω. Ας κάνουµε µια µικρή ανακεφαλαίωση: Φυσική σηµασία του Ω m ; Φυσική σηµασία του Ω Λ ;
7 7 Φυσική σηµασία του Ω r ; Φυσική σηµασία του Ω;. Όταν λέµε ότι το σύµπαν σήµερα είναι επίπεδο και κυριαρχείται από ύλη (η ύλη είναι το µόνο σηµαντικό συστατικό): ποιες είναι οι τιµές των Ω; Όταν λέµε ότι το σύµπαν σήµερα είναι επίπεδο µε 70% ενέργεια κενού και µηδαµινή ακτινοβολία, ποιές είναι οι τιµές των Ω; Σε ένα σύµπαν χωρίς ενέργεια κενού που κυριαρχείται από ύλη στο 30% της κρίσιµης, ποιες είναι οι τιµές των Ω; Το προτιµώµενο σήµερα κοσµολογικό µοντέλο έχει προσεγγιστικές τιµές Ω m =0.3, Ω Λ =0.7, και µηδαµινή ακτινοβολία. Τι σηµαίνει αυτό για τη γεωµετρία του σύµπαντός; Είµαστε έτοιµοι να γράψουµε την εξίσωση Friedmann στη µορφή την οποία θα την λύνουµε. Αρχίζουµε από εδώ, a a 3 ρ kc a και αντικαθιστούµε την σταθερά kc µε την µορφή που βρήκαµε πιο πάνω, και γράφουµε το ρ σαν άθροισµα των αντίστοιχων συνεισφορών, µε βάση τα Ω, και περιλαµβάνοντας την χρονική εξέλιξη που συζητήσαµε πιο πάνω. a a 3 ( Ω m a 3 + Ω r a 4 + Ω Λ )ρ c,0 H 0 (Ω 1)a Τώρα αντικαθιστούµε το ρ c,0 µε την εξίσωση ορισµού του, και παίρνουµε a = H a 0 ( Ω m a 3 + Ω r a 4 + Ω Λ ) H 0 (Ω 1)a = H 0 [ Ω m a 3 + Ω r a 4 + Ω Λ (Ω 1)a ] Ας παίξουµε τώρα µε την βολική αυτή µορφή της εξίσωσης Friedmann. Για µια γενική κοσµολογία, ας γράψουµε το ολοκλήρωµα που συνδέει τον χρόνο µε τον παράγοντα κλίµακας Πώς τώρα συνδέουµε την απόσταση µε το redshift?
8 8 Ασκήσεις: 1. (16 β.) Γράψτε τη µετρική Robertson Walker σε επίπεδη γεωµετρία (που είναι, απ ότι φαίνεται, η γεωµετρία του δικού µας σύµπαντος). Για την περίπτωση αυτή: a. Πώς συνδέονται η συντεταγµένη απόσταση και η ιδιοαπόσταση; b. Πώς συνδέεται η ιδιοαπόσταση µε την απόσταση φωτεινότητας; c. Πώς συνδέεται η απόσταση φωτεινότητας µε την απόσταση γωνιακής διαµέτρου; d. Πώς συνδέεται η ιδιοαπόσταση µε την απόσταση γωνιακής διαµέτρου; e. Ποια είναι η επιφάνεια σφαίρας σε ιδιοαπόσταση r? f. Ποια είναι η µέγιστη συντεταγµένη απόσταση από την οποία µπορούµε να λάβουµε φωτόνια σήµερα; g. Ποια είναι µια ιδιοαπόσταση (οποιαδήποτε) από την οποία δεν µπορούµε να λάβουµε φωτόνια σήµερα;. (5β.) Γράψτε το ολοκλήρωµα που µας δίνει τη σχέση ανάµεσα στο redshift και την ιδιοαπόσταση 3. (β.) Ποιες παραµέτρους χρειαζόµαστε για να υπολογίσουµε το ολοκλήρωµα της άσκησης ; 4. (β.) Να βρείτε στη διεθνή βιβλιογραφία το τρέχον βέλτιστο κοσµολογικό µοντέλο που προέκυψε από ανάλυση δεδοµένων της ακτινοβολίας υποβάθρου µικροκυµάτων (του cosmic microwave background) από το δορυφόρο Planck συγκεκριµένα, να γράψετε τις τιµές των παραµέτρων που προσδιορίσατε στην άσκηση (1β.) Για το τρέχον βέλτιστο κοσµολογικό µοντέλο που βρήκατε στην άσκηση 4, να γράψετε τη σχέση η οποία προσδιορίζει την απόσταση γωνιακής διαµέτρου που αντιστοιχεί σε z= (β.)χρησιµοποιώντας την Wolfram Alpha, το δικό σας πρόγραµµα αριθµητικής ολοκλήρωσης, ή µια από τις πολλές διαθέσιµες online υπηρεσίες µετατροπής redshift σε (διαφόρων ειδών) απόσταση, να υπολογίσετε το αποτέλεσµα της σχέσης που γράψατε στην άσκηση 5 σε Mpc. 7. (3β.)Σε πόσα pc φυσικής απόστασης στο επίπεδο του ουρανού αντιστοιχεί παρατηρηµένη γωνιακή απόσταση ενός milli-arcsec για την πηγή σε z=0.595 που συζητήσαµε στις ασκήσεις 6 και 7? 8. (3β.) Αν για κάποιο κοσµολογικό µοντέλο η συντεταγµένη απόσταση µιας πηγής σε z=0.595 είναι R 0 ξ = 590 Mpc, σε πόσα pc φυσικής απόστασης στο επίπεδο του ουρανού αντιστοιχεί παρατηρηµένη γωνιακή απόσταση ενός milli-arcsec; 9. (1β.) Ποια είναι η ταχύτητα του φωτός σε pc/yr? 10. ΠΡΟΑΙΡΕΤΙΚΗ: Θεωρείστε κλειστό σύµπαν, µε µόνα συστατικά την ύλη και την σκοτεινή ενέργεια, οπότε Ω m +Ω Λ =Ω>1, το οποίο επί του παρόντος διαστέλλεται. Κάτω από ποιες προϋποθέσεις το σύµπαν αυτό θα συνεχίσει να διαστέλλεται για πάντα; Να βρείτε τη συνθήκη για την οποία το σύµπαν θα συνεχίσει να διαστέλλεται για πάντα, όµως ο παράγοντας κλίµακάς του δεν θα απειριστεί. Ποια θα είναι η µέγιστη τιµή που θα αποκτήσει ο παράγοντας κλίµακας στην τελευταία αυτή περίπτωση; Να δείξετε ότι ο παράγοντας κλίµακας θα αποκτήσει την τιµή αυτή µετά από άπειρο χρόνο. Βιβλιογραφία: Andrew Liddle, An Introduction to Modern Cosmology, πλέον βοηθητικά είναι τα κεφάλαια, 4, 5, 6, 7, Advance Topics 1 και. Θ. Τοµαρά, σηµειώσεις για το µάθηµα «Βαρύτητα και Κοσµολογία» [προσοχή: typo στον ορισµό της απόστασης d L, η επιφάνεια σφαίρας είναι 4πd p µόνον σε επίπεδο σύµπαν, στη γενική περίπτωση είναι 4π(συντεταγµένη απόσταση) ] Bernard Schutz, A First Course in General Relativity, κεφάλαια 1, 3 John A. Peacock, Cosmological Physics, chapter 3, The Isotropic Universe ( [προσοχή: ο Peacock γράφει τη µετρική Robertson Walker σε διαφορετική µορφή, απ όπου προκύπτουν διαφορές σε ορισµένους τύπους] Τελευταίο καταφύγιο: Misner Thorne Wheeler Gravitation
Εργαλειοθήκη I: Μετρήσεις σε κοσµολογικές αποστάσεις (µέρος 2 ο )
Αστροφυσική Υψηλών Ενεργειών Διδάσκ.: Β. Παυλίδου Μετρήσεις σε κοσμολογικές αποστάσεις, μέρος ο 1 Βιβλιογραφία Εργαλειοθήκη I: Μετρήσεις σε κοσµολογικές αποστάσεις (µέρος ο ) Θ. Τοµαρά, σηµειώσεις για
c 4 (1) Robertson Walker (x 0 = ct) , R 2 (t) = R0a 2 2 (t) (2) p(t) g = (3) p(t) g 22 p(t) g 33
ΤΟ ΚΑΘΙΕΡΩΜΕΝΟ ΠΡΟΤΥΠΟ ΤΗΣ ΚΟΣΜΟΛΟΓΙΑΣ Α. Η ΕΞΙΣΩΣΗ EINSTEIN Διδάσκων: Θεόδωρος Ν. Τομαράς G µν R µν 1 g µν R = κ T µν, κ 8πG N c 4 (1) Β. Η ΕΞΙΣΩΣΗ FRIEDMANN. Για ομογενή και ισότροπο χωρόχρονο έχουμε
ds 2 = 1 y 2 (dx2 + dy 2 ), y 0, < x < + (1) dx/(1 x 2 ) = 1 ln((1 + x)/(1 x)) για 1 < x < 1. l AB = dx/1 = 2 (2) (5) w 1/2 = ±κx + C (7)
ΒΑΡΥΤΗΤΑ ΚΑΙ ΚΟΣΜΟΛΟΓΙΑ Θ. Τομαράς 1. ΤΟ ΥΠΕΡΒΟΛΙΚΟ ΕΠΙΠΕΔΟ. Το υπερβολικό επίπεδο ορίζεται με τη μετρική ds = 1 y dx + dy ), y 0, < x < + 1) α) Να υπολογίσετε το μήκος της γραμμής της παράλληλης στον
ΚΟΣΜΟΛΟΓΙΑ ΚΟΣΜΟΛΟΓΙΑ είναι ο τομέας τις ϕυσικής που προσπαθεί να εξηγήσει την γένεση και την εξέλιξη του σύμπαντος χρησιμοποιώντας παρατηρήσεις και τ
ΗΡΑΚΛΕΙΟ, 10 Οκτωβρίου, 2017 ΚΟΣΜΟΛΟΓΙΑ ΓΙΑ ΑΡΧΑΡΙΟΥΣ Πανεπιστήμιο Κρήτης 1- ΚΟΣΜΟΛΟΓΙΑ ΚΟΣΜΟΛΟΓΙΑ είναι ο τομέας τις ϕυσικής που προσπαθεί να εξηγήσει την γένεση και την εξέλιξη του σύμπαντος χρησιμοποιώντας
1 Ο παράγοντας κλίμακας και ο Νόμος του Hubble
ΤΟ ΚΑΘΙΕΡΩΜΕΝΟ ΠΡΟΤΥΠΟ ΤΗΣ ΚΟΣΜΟΛΟΓΙΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς Ο παράγοντας κλίμακας και ο Νόμος του Hubble Σύμφωνα με την Κοσμολογική Αρχή το Σύμπαν είναι σε μεγάλες κλίμακες ομογενές και ισότροπο.
ΚΟΣΜΟΓΡΑΦΙΑ. 1 Τα χαρακτηριστικά του Σύμπαντος. 1.1 Μονάδες - Τυπικά μεγέθη. 1.2 Η Διαστολή και η Ηλικία του Σύμπαντος. Διδάσκων: Θεόδωρος Ν.
ΚΟΣΜΟΓΡΑΦΙΑ Διδάσκων: Θεόδωρος Ν. Τομαράς Τα χαρακτηριστικά του Σύμπαντος. Μονάδες - Τυπικά μεγέθη light year =.95 6 m AU =.5 m = 4.85 6 rad pc parsec AU/( in rad) = 3. 6 m = 3.26 light years Διαστάσεις
Λέανδρος Περιβολαρόπουλος Καθηγητής Παν/μίου Ιωαννίνων
Open page Λέανδρος Περιβολαρόπουλος http://leandros.physics.uoi.gr Καθηγητής Παν/μίου Ιωαννίνων Αρχείο παρουσίασης διαθέσιμο μέσω του συνδέσμου: https://dl.dropbox.com/u/20653799/talks/eie.ppt Κλίμακες
Ενότητα 2: Υπέρφωτες κινήσεις σε πίδακες αερίων Φύλλο Φοιτητή
1 Ενότητα 2: Υπέρφωτες κινήσεις σε πίδακες αερίων Φύλλο Φοιτητή Σκοπός της ενότητας αυτής: Πολλοί ενεργοί γαλαξιακές πυρήνες έχουν πίδακες αερίων οι οποίοι εκπεµπουν σε όλο ουσιαστικά το ηλεκτροµαγνητικό
( ) { } ( ) ( ( ) 2. ( )! r! e j ( ) Κίνηση στερεών σωμάτων. ω 2 2 ra. ω j. ω i. ω = ! ω! r a. 1 2 m a T = T = 1 2 i, j. I ij. r j. d 3! rρ. r! e!
Κίνηση στερεών σωμάτων ΦΥΣ 11 - Διαλ.30 1 q Κίνηση στερεού σώµατος: Ø Υπολογισµός της κινητικής ενέργειας Ø Θεωρήσαµε ότι ένα σώµα διακριτής ή συνεχούς κατανοµής µάζας q Η κινητική ενέργεια δίνεται από
Ενότητα 3: Εργαλειοθήκη, µέρος 2 ο : Σχετικιστική Κινηµατική Φύλλο Φοιτητή
Αστροφυσική Υψηλών Ενεργειών! Διδάσκ.: Β. Παυλίδου! Ενότητα 3: Σχετικιστική Κινηματική 1 Ενότητα 3: Εργαλειοθήκη, µέρος 2 ο : Σχετικιστική Κινηµατική Φύλλο Φοιτητή Σκοπός της ενότητας αυτής: Δείξαµε στο
1 Βασικά Στοιχεία υναµικής Κοσµολογίας
1 Βασικά Στοιχεία υναµικής Κοσµολογίας Στα πλαίσια της Κοσµολογικής Αρχής µπορούµε να παράγουµε τις διαφορικές εξισώσεις της κοσµολογικής εξέλιξης είτε απέυθείας και µε αυστηρότητα από τις εξισώσεις πεδίου
Εισαγωγή στη Σχετικότητα και την Κοσμολογία ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΟΣ
Εισαγωγή στη Σχετικότητα και την Κοσμολογία Διδάσκων: Θεόδωρος Τομαράς, Πανεπιστήμιο Κρήτης ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΟΣ Εβδομάδα 1 Σχετικότητα 1.1 Η ανεπάρκεια της μηχανικής του Νεύτωνα V1.1.1 Σύντομη εισαγωγή
1 + Φ r /c 2 = 1 (1) (2) c 2 k y 1 + (V/c) 1 + tan 2 α = sin α (3) tan α = k y k x
ΛΥΣΕΙΣ ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ 6 Θ. Τομαράς 1. Πρωτόνια στις κοσμικές ακτίνες φτάνουν ακόμα και ενέργειες της τάξης των 10 20 ev. Να συγκρίνετε την ενέργεια αυτή με την ενέργεια που έχει μια πέτρα που πετάτε με
1 Μονάδες - Τυπικά μεγέθη. 2 Η Διαστολή και η Ηλικία του Σύμπαντος ΚΟΣΜΟΓΡΑΦΙΑ. 2.1 Ο νόμος του Hubble. Διδάσκων: Θεόδωρος Ν.
ΚΟΣΜΟΓΡΑΦΙΑ Διδάσκων: Θεόδωρος Ν. Τομαράς Α. ΤΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΟΥ ΣΥΜΠΑΝΤΟΣ 1 Μονάδες - Τυπικά μεγέθη 1 light year = 0.951 10 16 m 1 AU = 1.50 10 11 m 1 = 4.85 10 6 rad 1pc 1 parsec 1AU/(1 in rad) = 3.1
Κοσμολογία & Αστροσωματιδική Φυσική Μάγδα Λώλα CERN, 28/9/2010
Κοσμολογία & Αστροσωματιδική Φυσική Μάγδα Λώλα CERN, 28/9/2010 Η φυσική υψηλών ενεργειών µελετά το µικρόκοσµο, αλλά συνδέεται άµεσα µε το µακρόκοσµο Κοσµολογία - Μελέτη της δηµιουργίας και εξέλιξης του
Μάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους.
Μάθηµα 1 Κεφάλαιο 1o: Συστήµατα Θεµατικές Ενότητες: A. Συστήµατα Γραµµικών Εξισώσεων B. Συστήµατα 3x3 Α. ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Ορισµοί Κάθε εξίσωση της µορφής α x+β =γ, µε α, β, γ R παριστάνει
Κίνηση στερεών σωμάτων - περιστροφική
Κίνηση στερεών σωμάτων - περιστροφική ΦΥΣ 211 - Διαλ.29 1 q Ενδιαφέρουσα κίνηση: Ø Αρκετά περίπλοκη Ø Δεν καταλήγει σε κίνηση ενός βαθµού ελευθερίας q Τι είναι το στερεό σώµα: Ø Συλλογή υλικών σηµείων
ΑΣΚΗΣΗ 10. Η σταθερά του Hubble: µέτρηση αποστάσεων γαλαξιών
ΑΣΚΗΣΗ 10 Η σταθερά του Hubble: µέτρηση αποστάσεων γαλαξιών Περιεχόµενα Κηφείδες Ερυθρά µετατόπιση Φάσµατα γαλαξιών Σκοπός της άσκησης Η µέτρηση της ερυθρής µετατόπισης των γαλαξιών είναι η βασική µέθοδος
0λ έως. Εξάρτηση. ω και ο. του ω: mx x (1) με λύση. όπου το. ), Im. m ( 0 ( ) (2) Re x / ) ) ( / 0 και Im 20.
ΚΕΦ. 14.1 : ΚΟΣΜΟΛΟΓΙΑ Ι ΣΕΛ. 37 έως 5 ΤΟΥ ΒΙΒΛΙΟΥ ΚΣ. 4 Ο VIDEO, 9/1/14 λ έως 19:4λ Εξάρτηση ρόλος των συντονισμών της διηλεκτρικής συνάρτησης από τη συχνότητα ω και ο Παρουσιάζεται το γράφημα e(ε) και
Κοσµολογία. Το παρελθόν, το παρόν, και το µέλλον του Σύµπαντος.
Κοσµολογία Το παρελθόν, το παρόν, και το µέλλον του Σύµπαντος. Τι είναι όµως η Κοσµολογία; Ηκοσµολογία είναι ο κλάδος της φυσικής που µελετά την δηµιουργία και την εξέλιξη του Σύµπαντος. Με τον όρο Σύµπαν
Κοσμολογική ερυθρομετατόπιση Ιδιότητα του διαστελλόμενου χώρου. Όπως το Σύμπαν διαστέλλεται το μήκος κύματος του φωτονίου διαστέλλεται ανάλογα με τον παράγοντα διαστολής [συντελεστής Κοσμικής κλίμακας,
Εργαστήριο 2008. Yπολογισμός της ταχύτητα διαστολής του Σύμπαντος, της ηλικίας του καθώς και της απόστασης μερικών κοντινών γαλαξιών.
Υπολογισμός σταθεράς Hubble Εργαστήριο 2008 Yπολογισμός της ταχύτητα διαστολής του Σύμπαντος, της ηλικίας του καθώς και της απόστασης μερικών κοντινών γαλαξιών. Εισαγωγή Το 1929, ο Edwin Hubble (με βάση
Κίνηση πλανητών Νόµοι του Kepler
ΦΥΣ 111 - Διαλ.29 1 Κίνηση πλανητών Νόµοι του Keple! Θα υποθέσουµε ότι ο ήλιος είναι ακίνητος (σχεδόν σωστό αφού έχει τόσο µεγάλη µάζα και η γη δεν τον κινεί).! Οι τροχιές των πλανητών µοιάζουν κάπως σα
ξ i (t) = v i t + ξ i (0) (9) c (t t 0). (10) t = t, z = z 1 2 gt 2 (12)
Η ΓΕΝΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς 1 Κίνηση σώματος σε πεδίο βαρύτητας Εδώ θα εφαρμόσουμε την Ι.Α.Ι. και τις γνώσεις μας από την Ειδική Θεωρία της Σχετικότητας για να παράγουμε
Το ελαστικο κωνικο εκκρεμε ς
Το ελαστικο κωνικο εκκρεμε ς 1. Εξισώσεις Euler -Lagrange x 0 φ θ z F l 0 y r m B Το ελαστικό κωνικό εκκρεμές αποτελείται από ένα ελατήριο με σταθερά επαναφοράς k, το οποίο αναρτάται από ένα σταθερό σημείο,
ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας
ΚΕΦΑΛΑΙΑ,4. Συστήµατα ενός Βαθµού ελευθερίας. Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα ' O για την απωστική δύναµη F, > και για ενέργεια Ε. (α) Είναι V και οι επιτρεπτές περιοχές της κίνησης
Ερευνητική Εργασία με θέμα: «Ερευνώντας τα χρονικά μυστικά του Σύμπαντος»
Ερευνητική Εργασία με θέμα: «Ερευνώντας τα χρονικά μυστικά του Σύμπαντος» Σωτήρης Τσαντίλας (PhD, MSc), Μαθηματικός Αστροφυσικός Σύντομη περιγραφή: Χρησιμοποιώντας δεδομένα από το διαστημικό τηλεσκόπιο
Ενέργεια στην περιστροφική κίνηση
ΦΥΣ 111 - Διαλ.31 1 Ενέργεια στην περιστροφική κίνηση q Ένα περιστρεφόµενο στερεό αποτελεί µια µάζα σε κίνηση. Εποµένως υπάρχει κινητική ενέργεια. v i θ i r i m i Θεωρείστε ένα στερεό σώµα περιστρεφόµενο
H ΚΟΣΜΟΛΟΓΙΑ ΜΕΤΑ ΑΠΟ 100 ΧΡΟΝΙΑ ΓΕΝΙΚΗΣ ΘΕΩΡΙΑΣ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΟΣ
H ΚΟΣΜΟΛΟΓΙΑ ΜΕΤΑ ΑΠΟ 100 ΧΡΟΝΙΑ ΓΕΝΙΚΗΣ ΘΕΩΡΙΑΣ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΟΣ ΔΡ. ΣΠΥΡΟΣ ΒΑΣΙΛΑΚΟΣ ΚΕΝΤΡΟ ΕΡΕΥΝΩΝ ΑΣΤΡΟΝΟΜΙΑΣ ΑΚΑΔΗΜΙΑ ΑΘΗΝΩΝ ΑΚΑΔΗΜΙΑ ΑΘΗΝΩΝ 25/11/2015 Η ΧΡΥΣΗ ΠΕΡΙΟΔΟΣ ΤΗΣ ΚΟΣΜΟΛΟΓΙΑΣ 96% του Σύμπαντος
Σύγχρονη Φυσική 1, Διάλεξη 12, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Διαγράμματα Minkowski
1 Διαγράμματα Minkowski Σκοποί της διάλεξης 12: Να εισάγει τα διαγράμματα Minkowski. 18.1.2012 Να περιγράψει την ιδέα του ταυτοχρονισμού στην θεωρία της σχετικότητας με μεθόδους γεωμετρίας. Να εισάγει
Κοσμολογία. Η δημιουργία και η εξέλιξη του Σύμπαντος. Κοσμάς Γαζέας. Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών
Κοσμολογία Η δημιουργία και η εξέλιξη του Σύμπαντος Κοσμάς Γαζέας Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Οι σχετικές αποστάσεις στο Σύμπαν Hubble Deep Field Hubble Ultra Deep Field Το φαινόμενο
5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών
Κεφάλαιο 5 ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Οταν ένα µεταβλητό µέγεθος εξαρτάται αποκλειστικά από τις µεταβολές ενός άλλου µεγέθους, τότε η σχέση που συνδέει
Από τι αποτελείται το Φως (1873)
Από τι αποτελείται το Φως (1873) Ο James Maxwell έδειξε θεωρητικά ότι το ορατό φως αποτελείται από ηλεκτρομαγνητικά κύματα. Ηλεκτρομαγνητικό κύμα είναι η ταυτόχρονη διάδοση, μέσω της ταχύτητας του φωτός
Aναλαµπές ακτίνων -γ
Aναλαµπές ακτίνων -γ Gamma Ray Bursts (GRB) Λουκάς Βλάχος 18/5/2004 1 Γενική παρατήρηση Η αστροφυσική διανύει αυτήν την εποχή τη δηµιουργικότερη περίοδο της ιστορίας της. Η πληθώρα των επίγειων αλλά και
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Θέµα 1 (25 µονάδες) Ένα εκκρεµές µήκους l κρέµεται έτσι ώστε η σηµειακή µάζα να βρίσκεται ακριβώς
Ακουστικό Ανάλογο Μελανών Οπών
Ακουστικό Ανάλογο Μελανών Οπών ιάδοση ηχητικών κυµάτων σε ρευστά. Ηχητικά κύµατα σε ακίνητο ρευστό. Εξίσωση συνέχειας: ρ t + ~ (ρ~v) =0 Εξίσωση Euler: ~v t +(~v ~ )~v = 1 ρ ~ p ( ~ Φ +...) Μικρές διαταραχές:
ΠΑΡΑΤΗΡΗΣΙΑΚΗ ΚΟΣΜΟΛΟΓΙΑ
Ελένη Πετράκου - National Taiwan University ΠΑΡΑΤΗΡΗΣΙΑΚΗ ΚΟΣΜΟΛΟΓΙΑ Πρόγραμμα επιμόρφωσης ελλήνων εκπαιδευτικών CERN, 7 Νοεμβρίου 2014 You are here! 1929: απομάκρυνση γαλαξιών θεωρία της μεγάλης έκρηξης
Πρακτική µε στοιχεία στατιστικής ανάλυσης
Πρακτική µε στοιχεία στατιστικής ανάλυσης 1. Για να υπολογίσουµε µια ποσότητα q = x 2 y xy 2, µετρήσαµε τα µεγέθη x και y και βρήκαµε x = 3.0 ± 0.1και y = 2.0 ± 0.1. Να βρεθεί η ποσότητα q και η αβεβαιότητά
Σύγχρονη Φυσική 1, Διάλεξη 4, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Η Αρχές της Ειδικής Θεωρίας της Σχετικότητας και οι μετασχηματισμοί του Lorentz
1 Η Αρχές της Ειδικής Θεωρίας της Σχετικότητας και οι μετασχηματισμοί του Lorentz Σκοποί της τέταρτης διάλεξης: 25.10.2011 Να κατανοηθούν οι αρχές με τις οποίες ο Albert Einstein θεμελίωσε την ειδική θεωρία
ΑΝΑΚΟΙΝΩΣΗ. Διευκρινίσεις για την ύλη του μαθήματος ΚΟΣΜΟΛΟΓΙΑ
ΑΝΑΚΟΙΝΩΣΗ Διευκρινίσεις για την ύλη του μαθήματος ΚΟΣΜΟΛΟΓΙΑ Η ύλη του μαθήματος «Κοσμολογία» περιέχεται στις νέες σημειώσεις του μαθήματος (ανάρτηση 2016) και στο βιβλίο γενικής σχετικότητας που έχετε
Ενότητα 5: Μη θερµική ακτινοβολία σε blazars: Ακτινοβολία Σύγχροτρον Φύλλο Φοιτητή
ΑστροφυσικήΥψηλώνΕνεργειών Διδάσκ.:Β.Παυλίδου Ενότητα5:Σύγχροτρον 1 Ενότητα 5: Μη θερµική ακτινοβολία σε blazars: Ακτινοβολία Σύγχροτρον Φύλλο Φοιτητή Σκοπός της ενότητας αυτής: Η ακτινοβολία σύγχροτρον
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Πτυχιακή Εργασία. Σχολή Θετικών Επιστημών. Τμήμα Φυσικής
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Πτυχιακή Εργασία Επιταχυνόμενη διαστολή του σύμπαντος - Πειραματικά δεδομένα Διδασκάλου Στυλιανός AEM: 13269 Επιβλέπων καθηγητής
Ο Μετασχηµατισµός του Λόρεντς για τις Συντεταγµένες Θέσης Ενός Συµβάντος
3 ΣΧΕΤΙΚΙΣΤΙΚΗ ΚΙΝΗΜΑΤΙΚΗ Ο Μετασχηµατισµός του Λόρεντς για τις Συντεταγµένες Θέσης Ενός Συµβάντος Έστω ένα αδρανειακό σύστηµα S, και ένα δεύτερο, S, το οποίο κινείται µε ταχύτητα ως προς το πρώτο Επιλέγουµε
Συνταγολόγιο Φυσικής Μηχανική Στερεού Σώµατος. Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός.
Συνταγολόγιο Φυσικής Μηχανική Στερεού Σώµατος Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός http://perifysikhs.wordpress.com 1 Κίνηση Ράβδου σε κατακόρυφο επίπεδο Εστω µια οµογενής ϱάβδος ΟΑ µάζας Μ
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών. Κοσμάς Γαζέας
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Κοσμάς Γαζέας Η γέννηση της Αστροφυσικής Οι αστρονόμοι μελετούν τα ουράνια σώματα βασισμένοι στο φως, που λαμβάνουν από αυτά. Στα πρώτα χρόνια των παρατηρήσεων,
ΑΣΤΡΟΝΟΜΙΑ ΚΑΙ ΑΣΤΡΟΦΥΣΙΚΗ 7 ο ΕΞΑΜΗΝΟ ΤΜΗΜΑ ΦΥΣIΚΗΣ ΑΠΘ
ΑΣΤΡΟΝΟΜΙΑ ΚΑΙ ΑΣΤΡΟΦΥΣΙΚΗ 7 ο ΕΞΑΜΗΝΟ 2016-2017 ΤΜΗΜΑ ΦΥΣIΚΗΣ ΑΠΘ 1ο Σ Ε Τ Α Σ Κ Η Σ Ε Ω Ν 1. Να κατασκευαστεί η ουράνια σφαίρα για έναν παρατηρητή που βρίσκεται σε γεωγραφικό πλάτος 25º και να τοποθετηθούν
3α. ΣΧΕΤΙΚΙΣΤΙΚΗ ΚΙΝΗΜΑΤΙΚΗ ΠΑΡΑ ΕΙΓΜΑΤΑ «ΠΑΡΑ ΟΞΑ» ΑΣΚΗΣΕΙΣ
3α. ΣΧΕΤΙΚΙΣΤΙΚΗ ΚΙΝΗΜΑΤΙΚΗ ΠΑΡΑ ΕΙΓΜΑΤΑ «ΠΑΡΑ ΟΞΑ» ΑΣΚΗΣΕΙΣ Παράδειγµα: Το τρένο του Άινστάιν Ένα τρένο κινείται ως προς έναν αδρανειακό παρατηρητή Ο µε σταθερή ταχύτητα V. Στο µέσο ακριβώς του τρένου
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας 7 Οκτωβρίου 2014 (περίοδος Σεπτεμβρίου 2013-14)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας 7 Οκτωβρίου 2014 περίοδος Σεπτεμβρίου 2013-14 Αν θέλετε μπορείτε να επεξεργαστείτε όλα τα προβλήματα σε σύστημα μονάδων όπου
Ενότητα 6: Μη θερµική ακτινοβολία σε blazars: Αντίστροφη Σκέδαση Compton Φύλλο Φοιτητή
ΑστροφυσικήΥψηλώνΕνεργειών Διδάσκ.:Β.Παυλίδου Ενότητα6:ΑντίστροφηΣκέδασηCompton 1 Ενότητα 6: Μη θερµική ακτινοβολία σε blazars: Αντίστροφη Σκέδαση Compton Φύλλο Φοιτητή Σκοπός της ενότητας αυτής: Όπως
Αριθμητικός υπολογισμός τροχιών σωμάτων στη γεωμετρία Schwarzschild. Κουλούρης Κωνσταντίνος
Αριθμητικός υπολογισμός τροχιών σωμάτων στη γεωμετρία Schwarzschild Κουλούρης Κωνσταντίνος Σύνοψη Σχετικότητα Ειδική και γενική θεωρία Γεωμετρία Swarzschild Μετρική και εξισώσεις γεωδαιτικών τροχιών Υπολογιστική
ΕΞΕΡΕΥΝΩΝΤΑΣ ΤΟ ΣΥΜΠΑΝ ΜΕ ΤΑ ΚΥΜΑΤΑ ΤΗΣ ΒΑΡΥΤΗΤΑΣ
ΕΞΕΡΕΥΝΩΝΤΑΣ ΤΟ ΣΥΜΠΑΝ ΜΕ ΤΑ ΚΥΜΑΤΑ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Κατερίνη, 7/5/2016 14 Σεπτεµβρίου 2015 14 Σεπτεµβρίου 2015 14 Σεπτεµβρίου 2015
Doppler, ηλεκτρομαγνητικά κύματα και μερικές εφαρμογές τους!
1 Doppler, ηλεκτρομαγνητικά κύματα και μερικές εφαρμογές τους! Με αφορμή τις συχνές ερωτήσεις μαθητών για το Doppler και το φως και κυρίως λόγω της επιμονής ενός άριστου μαθητή που από την Β Λυκείου ενθουσιάζονταν
Εισαγωγή στην αστρονοµία Αστρικά πτώµατα (Λευκοί Νάνοι, αστέρες νε. µαύρες τρύπες) Η ϕυσική σε ακρέες καταστάσεις
τρονίων, µαύρες τρύπες) Η φυσική σε ακρέες καταστάσεις Εισαγωγή στην αστρονοµία Αστρικά πτώµατα (Λευκοί Νάνοι, αστέρες νετρονίων, µαύρες τρύπες) Η ϕυσική σε ακρέες καταστάσεις Λουκάς Βλάχος Τµήµα Φυσικής,
ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1
ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 00 ΘΕΜΑ : (α) Ταχύτητα ΚΜ: u KM = mu + mu m = u + u Εποµένως u = u u + u = u u, u = u u + u = u u (β) Διατήρηση ορµής στο ΚΜ: mu + mu = mv + mv u + u = V + V = 0 V = V
1 Ω(t) = k c2 (1) 1 Ω(t 0 ) = ) z RM = O(10 4 ) (2) = a RM. 1 Ω(t bbn ) 1 Ω(t RM ) = = = O(10 10 ) (3)
ΤΟ ΠΛΗΘΩΡΙΣΤΙΚΟ ΣΥΜΠΑΝ ΠΡΟΣΟΧΗ: ΟΧΙ ΑΡΚΕΤΑ ΕΠΕΞΕΡΓΑΣΜΕΝΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΥΡΙΑ ΓΙΑ ΝΑ ΕΧΕΤΕ ΤΟ ΤΙ ΘΕΜΑΤΑ ΣΥΖΗΤΗΣΑΜΕ ΣΤΗ ΤΑΞΗ Διδάσκων: Θεόδωρος Ν. Τομαράς 1 Το πρόβλημα των αρχικών συνθηκών της Κοσμολογίας
Τμήμα Φυσικής, Παν/μιο Ιωαννίνων, Ειδική Σχετικότητα, Διάλεξη 5 Οι Μετασχηματισμοί του Lorentz και η Συστολή του μήκους
1 Οι Μετασχηματισμοί του Lorentz και η Συστολή του μήκους Σκοποί της πέμπτης διάλεξης: 10.11.2011 Εξοικείωση με τους μετασχηματισμούς του Lorentz και τις διάφορες μορφές που μπορούν να πάρουν για την επίλυση
Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις
Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Έστω F=f κεντρικό πεδίο δυνάμεων. Είναι εύκολο να δείξουμε ότι F=0, δηλ. είναι διατηρητικό: F= V. Σε σφαιρικές συντεταγμένες, γενικά: V ma = F =, V maθ = Fθ =,
Άσκηση Ανάλυσης Δεδομένων: (Cosmological model via SNIa), Πτολεμαίος 2014
Άσκηση Ανάλυσης Δεδομένων: (Cosmological model via SNIa), Πτολεμαίος 2014 Ένας υπερκαινοφανής αστέρας τύπου Ια (Supernova type I, SN-Iα) προκαλείται απο τη θερμοπυρινική έκρηξη Λευκού Νάνου (ΛΝ), όταν
RT = σταθ. (1) de de de
ΚΕΦ. 14.2 : ΚΟΣΜΟΛΟΓΙΑ ΙΙ ΣΕΛ. 2 έως 2 ΤΟΥ ΒΙΒΛΙΟΥ ΚΣ. 2 Ο VIDEO, 1/14 λ έως 1λ Επαναληψη E o E K E B H Εντροπία των φωτονίων που είναι ανάλογη τουvt διατηρείται. Επομένως και το γινόμενο Επιπλέον, λόγω
7.2. ΠΑΡΑΤΗΡΗΣΕΙΣ (ΚΑΤΑ ΣΕΙΡΑ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ)
7. Κοσμολογία 7.1 ΓΕΝΙΚΑ Έχει υποστηριχθεί ότι η πιο σπουδαία επιστημονική ανακάλυψη που έγινε ποτέ είναι ότι το Σύμπαν ολόκληρο, δηλαδή ο,τιδήποτε υπάρχει και είναι δυνατό να υποπέσει στην αντίληψη μας,
ΠΕΡΙΕΧΟΜΕΝΑ ΓΕΝΙΚΗ ΘΕΩΡΙΑ ΣΧΕΤΙΚΟΤΗΤΑΣ ΒΑΡΥΤΙΚΑ ΚΥΜΑΤΑ ΣΤΟ ΚΕΝΟ ΠΑΡΑΓΩΓΗ ΒΑΡΥΤΙΚΩΝ ΚΥΜΑΤΩΝ ΑΠΟ ΠΗΓΕΣ ΑΝΙΧΝΕΥΣΗ ΒΑΡΥΤΙΚΩΝ ΚΥΜΑΤΩΝ
ΒΑΡΥΤΙΚΑ ΚΥΜΑΤΑ ΤΖΩΡΤΖΗΣ ΔΗΜΗΤΡΗΣ Επιβλέπων καθηγητής:αναγνωστοπουλοσ Κ. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ-ΣΕΜΦΕ 26 Σεπτεμβρίου 2016 ΠΕΡΙΕΧΟΜΕΝΑ ΓΕΝΙΚΗ ΘΕΩΡΙΑ ΣΧΕΤΙΚΟΤΗΤΑΣ ΒΑΡΥΤΙΚΑ ΚΥΜΑΤΑ ΣΤΟ ΚΕΝΟ ΠΑΡΑΓΩΓΗ ΒΑΡΥΤΙΚΩΝ
p& i m p mi i m Με τη ίδια λογική όπως αυτή που αναπτύχθηκε προηγουµένως καταλήγουµε στην έκφραση της κινητικής ενέργειας του ρότορα i,
Κινητική Ενέργεια Κινητήρων Περνάµε τώρα στη συνεισφορά κινητικής ενέργειας λόγω της κίνησης & ϑ m του κινητήρα που κινεί την άρθρωση µε q& και, προφανώς όπως φαίνεται στο παρακάτω σχήµα, ευρίσκεται στον
ΤΟ ΠΛΗΘΩΡΙΣΤΙΚΟ ΜΟΝΤΕΛΟ ΔΥΝΑΤΟΤΗΤΑ ΕΠΙΛΥΣΗΣ ΚΟΣΜΟΛΟΓΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ Κ. Ν. ΓΟΥΡΓΟΥΛΙΑΤΟΣ ΧΕΙΜΩΝΑΣ 2004
ΤΟ ΠΛΗΘΩΡΙΣΤΙΚΟ ΜΟΝΤΕΛΟ ΔΥΝΑΤΟΤΗΤΑ ΕΠΙΛΥΣΗΣ ΚΟΣΜΟΛΟΓΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ Κ. Ν. ΓΟΥΡΓΟΥΛΙΑΤΟΣ ΧΕΙΜΩΝΑΣ 2004 ΣΥΝΟΨΗ ΔΕΔΟΜΕΝΩΝ Το μοντέλο της Μεγάλης έκρηξης εξηγεί με ακρίβεια
Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ε π α ν α λ η π τ ι κ ά θ έ µ α τ α 0 0 5 Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΘΕΜΑ 1 o Για τις ερωτήσεις 1 4, να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που
k 3/5 P 3/5 ρ = cp 3/5 (1) dp dr = ρg (2) P 3/5 = cgdz (3) cgz + P0 cg(z h)
Αριστοτελειο Πανεπιστημιο Θεσσαλονικης ΤΜΗΜΑ ΦΥΣΙΚΗΣ 3ο Σετ Ασκήσεων Αστρονομίας Author: Σταμάτης Βρετινάρης Supervisor: Νικόλαος Στεργιούλας Λουκάς Βλάχος December 5, 215 1 Άσκηση Σφαιρικός αστέρας με
Επαναληπτικές Ερωτήσεις Θεωρίας. Κεφάλαιο 1 ο (ταλαντώσεις)
Επαναληπτικές Ερωτήσεις Θεωρίας Κεφάλαιο 1 ο (ταλαντώσεις) 1. Να αποδείξεις ότι για να εκτελέσει ένα σώµα Α.Α.Τ., η δύναµη που δέχεται πρέπει να είναι της µορφής: ΣF=-D.x 2. Να αποδείξεις ότι στο σύστηµα
ιάθλαση. Ολική ανάκλαση. ιάδοση µέσα σε κυµατοδηγό.
ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 91 9. Άσκηση 9 ιάθλαση. Ολική ανάκλαση. ιάδοση µέσα σε κυµατοδηγό. 9.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε τα φαινόµενα
Καρτεσιανό Σύστηµα y. y A. x A
Στη γενική περίπτωση µπορούµε να ορίσουµε άπειρα συστήµατα συντεταγ- µένων τα οποία να µας επιτρέπουν να προσδιορίσουµε τη θέση ενός σηµείου. Στη Φυσική χρησιµοποιούνται αρκετά. Τα βασικά από αυτά θα εξετάσουµε
Σφαιρικά σώµατα και βαρύτητα
ΦΥΣ 131 - Διαλ.28 1 Σφαιρικά σώµατα και βαρύτητα q Χρησιµοποιήσαµε τις εκφράσεις F() =! GMm που ισχύουν για σηµειακές µάζες Μ και m. 2 και V () =! GMm q Ένα χαρακτηριστικό γεγονός, που κάνει τους υπολογισµούς
Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000
Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα 1ο Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Σύµφωνα
ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017
Πανεπιστηµιο Πατρων Πολυτεχνικη Σχολη Τµηµα Μηχανικων Η/Υ & Πληροφορικης ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 217 Θ1. Θεωρούµε την συνάρτηση f(x, y, z) = 1 + x 2 + 2y 2 z. (αʹ) Να ϐρεθεί
Παραµόρφωση σε Σηµείο Σώµατος. Μεταβολή του σχήµατος του στοιχείου (διατµητική παραµόρφωση)
Παραµόρφωση σε Σηµείο Σώµατος Η ολική παραµόρφωση στερεού σώµατος στη γειτονιά ενός σηµείου, Ο, δηλαδή η συνολική παραµόρφωση ενός µικρού τµήµατος (στοιχείου) του σώµατος γύρω από το σηµείο µπορεί να αναλυθεί
ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ
ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ Κ. Ν. Γουργουλιάτος ΜΑΥΡΕΣ ΤΡΥΠΕΣ Η ΒΑΣΙΚΗ ΙΔΕΑ Αντικείμενα που εμποδίζουν την διάδοση φωτός από αυτά Πρωτοπροτάθηκε γύρω στα 1783 (John( John Michell) ως αντικείμενο
2. Στο ηλιακό στέµµα η ϑερµότητα διαδίδεται µε αγωγιµότητα και η ϱοή ϑερµικής ενέργειας (heat flux)είναι
4.6 Ασκήσεις 51 4.6 Ασκήσεις 1. Μελετήστε τον στάσιµο ( t = 0) ισόθερµο άνεµο σε επίπεδο, χρησιµοποιώντας πολικές συντεταγµένες και (α) Βρείτε τη χαρακτηριστική απόσταση από τον αστέρα r στην οποία γίνεται
website:
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 3 Μαρτίου 2019 1 Τανυστής Παραμόρφωσης Συνοδεύον σύστημα ονομάζεται το σύστημα συντεταγμένων ξ i το οποίο μεταβάλλεται
ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ
ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς 1. Μετασχηματισμοί συντεταγμένων και συμμετρίες. 1α. Στροφές στο επίπεδο. Θεωρείστε δύο καρτεσιανά συστήματα συντεταγμένων στο επίπεδο, στραμμένα
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο. Σεμινάριο Φυσικής Ενότητα 14
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Σεμινάριο Φυσικής Ενότητα 14 Γεωργακίλας Αλέξανδρος Ζουμπούλης Ηλίας Μακροπούλου Μυρσίνη Πίσσης Πολύκαρπος Άδεια Χρήσης
ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ
ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΘΕΜΑ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ α) Η f ( ) έχει πραγµατικό µέρος φανταστικό µέρος u( x, y) x y = και v( x, y) = ( x + y xy), όπου = x+
ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12,
ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ, - Οι παρακάτω λύσεις των ασκήσεων της 6 ης εργασίας που καλύπτει το µεγαλύτερο µέρος της ύλης της θεµατικής ενότητας ΠΛΗ) είναι αρκετά εκτεταµένες καθώς έχει δοθεί αρκετή έµφαση
Ταλαντώσεις 6.1 Απλή Αρµονική Ταλάντωση σε µία ιάσταση Ελατήριο σε οριζόντιο επίπεδο Σχήµα 6.1
6 Ταλαντώσεις 6.1 Απλή Αρµονική Ταλάντωση σε µία ιάσταση 6.1.1 Ελατήριο σε οριζόντιο επίπεδο Υποθέτουµε ότι το ελατήριο έχει αρχικό µήκος µηδέν, ιδανικό ελατήριο. F=-kx x K M x Σχήµα 6.1 ιαστάσεις µεγεθών
Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000
Ζήτηµα 1ο Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2 Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Σύµφωνα µε το πρότυπο
EΦΑΡΜΟΓΕΣ ΥΠΟΛΟΓΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ ΙΙ
ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ EΦΑΡΜΟΓΕΣ ΥΠΟΛΟΓΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ ΙΙ ΑΣΤΡΟΦΥΣΙΚΗ ΚΟΣΜΟΛΟΓΙΑ ΣΤΟΙΧΕΙΩ Η ΣΩΜΑΤΙΑ Χ. ΒΑΡΒΟΓΛΗΣ Χ. ΕΛΕΥΘΕΡΙΑ ΗΣ Α. ΝΙΚΟΛΑΪ ΗΣ Ν. ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ Α.Π.Θ. ΙΑΝΟΥΑΡΙΟΣ 5 ΠΡΟΛΟΓΟΣ
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Σχολή Θετικών Επιστημών, Τμήμα Φυσικής Τομέας Αστροφυσικής-Αστρονομίας-Μηχανικής Η μελέτη της φύσης της σκοτεινής ενέργειας χρησιμοποιώντας εξωγαλαξιακές πηγές
θεμελιακά Ερωτήματα Κοσμολογίας & Αστροφυσικής
θεμελιακά Ερωτήματα Απόστολος Δ. Παναγιώτου Ομότιμος Καθηγητής Πανεπιστημίου Αθηνών Επιστημονικός Συνεργάτης στο CERN Σχολή Αστρονομίας και Διαστήματος Βόλος, 5 Απριλίου, 2014 1 BIG BANG 10 24 μ 10-19
Κεφάλαιο M3. Διανύσµατα
Κεφάλαιο M3 Διανύσµατα Διανύσµατα Διανυσµατικά µεγέθη Φυσικά µεγέθη που έχουν τόσο αριθµητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούµε µε τις µαθηµατικές πράξεις των
Σχολικός Σύµβουλος ΠΕ03
Ασκήσεις Μαθηµατικών Θετικής & Τεχνολογικής Κατεύθυνσης Γ Λυκείου ρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις
5 Γενική µορφή εξίσωσης ευθείας
5 Γενική µορφή εξίσωσης ευθείας Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρηµα Κάθε ευθεία έχει εξίσωση της µορφής: Ax + By +Γ= 0, µε Α 0 ηβ 0 () και αντιστρόφως κάθε εξίσωση της µορφής () παριστάνει ευθεία γραµµή.
Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων
4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές
Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις
Κεφάλαιο M4 Κίνηση σε δύο διαστάσεις Κινηµατική σε δύο διαστάσεις Θα περιγράψουµε τη διανυσµατική φύση της θέσης, της ταχύτητας, και της επιτάχυνσης µε περισσότερες λεπτοµέρειες. Θα µελετήσουµε την κίνηση
Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2
ΦΥΣ 131 - Διαλ.22 1 Ροπή αδράνειας q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: m (α) m (β) m r r 2r 2 2 I =! m i r i = 2mr 2 1 I = m(2r) 2 = 4mr 2 Ø Είναι δυσκολότερο να προκαλέσεις περιστροφή
ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση
ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση Hamilton:, όπου κάποια σταθερά και η κανονική θέση και ορµή
Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων.
Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων. Θεωρώντας τα αέρια σαν ουσίες αποτελούμενες από έναν καταπληκτικά μεγάλο αριθμό μικροσκοπικών
The 38 th International Physics Olympiad Iran Theory Competition Sunday, 15 July 2007
The 38 th International Physics Olympiad Iran Theory Competition Sunday, 15 July 2007 1. Αυτός ο φάκελος περιέχει 3 φύλλα Ερωτήσεων (Q), 3 φύλλα Απαντήσεων (Α) και έναν αριθμό φύλλων Γραψίματος (W) 2.
L = T V = 1 2 (ṙ2 + r 2 φ2 + ż 2 ) U (3)
ΥΠΟΛΟΓΙΣΤΙΚΗ ΑΣΤΡΟΔΥΝΑΜΙΚΗ 3): Κινήσεις αστέρων σε αστρικά συστήματα Βασικές έννοιες Θεωρούμε αστρικό σύστημα π.χ. γαλαξία ή αστρικό σμήνος) αποτελούμενο από μεγάλο αριθμό αστέρων της τάξης των 10 8 10
ds ds ds = τ b k t (3)
Γενικά Μαθηματικά ΙΙΙ Πρώτο σετ ασκήσεων, Λύσεις Άσκηση 1 Γνωρίζουμε ότι το εφαπτόμενο διάνυσμα ( t), ορίζεται ως: t = r = d r ds (1) και επιπλέον το διάνυσμα της καμπυλότητας ( k), ορίζεται ως: d t k
14 Εφαρµογές των ολοκληρωµάτων
14 Εφαρµογές των ολοκληρωµάτων 14.1 Υπολογισµός εµβαδών µε την µέθοδο των παράλληλων διατοµών Θεωρούµε µια ϕραγµένη επίπεδη επιφάνεια A µε οµαλό σύνορο, δηλαδή που περιγράφεται από µια συνεχή συνάρτηση.
5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ
Α Τόγκας - ΑΜ333: Ειδική Θεωρία Σχετικότητας Σχετικιστική μάζα 5 Σχετικιστική μάζα Όπως έχουμε διαπιστώσει στην ειδική θεωρία της Σχετικότητας οι μετρήσεις των χωρικών και χρονικών αποστάσεων εξαρτώνται
9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ
ΚΕΦΑΛΑΙ 3 ο : KΩΝΙΚΕΣ ΤΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΥ ( 3.) ΚΥΚΛΣ Γνωρίζουµε ότι ένας κύκλος (, ρ) είναι ο γεωµετρικός τόπος των σηµείων του επιπέδου τα οποία απέχουν µια ορισµένη απόσταση ρ από ένα
ΕΚΦΩΝΗΣΕΙΣ. Στις παρακάτω ερωτήσεις 1-4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα, το γράµµα που αντιστοιχεί στη σωστή απάντηση.
Γ' ΛΥΚΕΙΟΥ ΕΠΙΛΟΓΗΣ ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Στις παρακάτω ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα, το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Ο λαµπτήρας φθορισµού: