Ευστάθεια και αστάθεια των ακραίων μελανών οπών

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ευστάθεια και αστάθεια των ακραίων μελανών οπών"

Transcript

1 Ευστάθεια και αστάθεια των ακραίων μελανών οπών κατά τον Στέφανο Αρετάκη (Cambridge/Princeton) Πάτρα, 19 Μαΐου 2012 κατά τον Στέφανο Αρετάκη(Cambridge/Princeton) 1

2 1. Σύντομη περίληψη της γενικής σχετικότητας 2. Ειδικές λύσεις: Minkowski, Schwarzschild, Kerr 3. Γραμμική ευστάθεια των μη ακραίων μελανών οπών Kerr 4. Ιδιότητες της Kerr 5. Η ακραία περίπτωση και μια εκπληκτική ανακάλυψη κατά τον Στέφανο Αρετάκη(Cambridge/Princeton) 2

3 Σύντομη περίληψη της γενικής σχετικότητας κατά τον Στέφανο Αρετάκη(Cambridge/Princeton) 3

4 Στη γενική σχετικότητα, μελετάμε 4-διάστατες πολλαπλότητες Lorentz (M, g) που ικανοποιούν τις εξισώσεις Einstein: Εδώ Ric µν 1 2 g µνr = 8πT µν. (1) οι g µν (µ,ν = 0,...,3)συμβολίζουντιςσυνιστώσεςτηςμετρικής g, οι Ric µν συμβολίζουντιςσυνιστώσεςτηςκαμπυλότητας Ricciτης g, οβαθμωτός Rτοίχνοςτουτανυστή Ric, καιοι T µν οισυνιστώσεςτουλεγόμενουτανυστήενέργειας-ορμήςτης ύλης. Στηνπερίπτωσητουκενού T µν = 0,οι (1)απλοποιούνταιστιςεξισώσεις Einstein στο κενό Ric = 0. (2) κατά τον Στέφανο Αρετάκη(Cambridge/Princeton) 4

5 Η συναλλοίωτη μορφή των εξισώσεων Ric = 0 (3) κρύβει τις αναλυτικές τους ιδιότητες, και μάλιστα, δημιούργησε σύγχυση ως προς κάποια πολύ βασικά φαινόμενα της θεωρίας, π.χ. ύπαρξη βαρυτικής ακτινοβολίας. Οιεξισώσειςείναιστηνουσίαυπερβολικές,καιοπιόαπλόςτρόποςνατοδεί κανείς αυτό είναι να επιλέξει αρμονικές συντεταγμένες: g µν Γ λ µν = 0. µ,ν Μ αυτήν την επιλογή οι (3) ανάγονται σ ένα σύστημα οιωνεί γραμμικών κυματοεξισώσεωνγιατιςσυνιστώσεςτηςαντίστροφηςμετρικής g αβ : g g αβ. = g µν µ ν g αβ = N αβ (g, g). µ,ν με καλώς ορισμένο πρόβλημα Cauchy(Choquet-Bruhat, 1952). κατά τον Στέφανο Αρετάκη(Cambridge/Princeton) 5

6 Ειδικές λύσεις: Minkowski, Schwarzschild, Kerr κατά τον Στέφανο Αρετάκη(Cambridge/Princeton) 6

7 Ειδικές λύσεις Ι: Χώρος Minkowski Πριν ακόμα τη θεμελίωση της γενικής σχετικότητας, ο Minkowski(1908) επαναδιατύπωσε την προηγούμενη«ειδική σχετικότητα» του Einstein ως την αρχή ότι οι εξισώσεις της φυσικής πρέπει να έχουν γεωμετρική περιγραφή στον τετραταδιάστατο R 4 μετημετρική g = dt 2 +dx 2 +dy 2 +dz 2. α Ετσι γεννήθηκε και η έννοια του χωρόχρονου. Ονομάζουμετονπαραπάνωχωρόχρονο (R 4,g)χώρο Minkowski.Είναιτοπιο απλό παράδειγμα μετρικής Lorentz και προφανώς είναι και η απλούστερη λύση των εξισώσεων Ric = 0. α σεσυνιστώσες: g 00 = 1, g ii = 1, i = 1,...3, g ij = 0, i j(όπου x 0 = t, x 1 = x, x 2 = y, x 3 = z) κατά τον Στέφανο Αρετάκη(Cambridge/Princeton) 7

8 Ειδικές λύσεις ΙΙ: Schwarzschild Οιλύσεις Schwarzschildαπαρτίζουνμιαοικογένεια (M,g M )(πουεξαρτάται από την παράμετρο M) σφαιρικά συμμετρικών, στατικών λύσεων των Ric = 0. Ανακαλύφθηκαν το Σε τοπικές συντεταγμένες, η μετρική μπορεί να γραφεί ( g M = 1 2M ) ( dt M ) 1 dr 2 +r 2 dσ S 2. r r Αρχικά,φαινότανότιηπαραπάνωμετρικήείναιιδιόμορφηεκείπουοr=2M. Οπως πρωτοανακάλυψε ο Lemaitre(1932) όμως, μπορεί να επεκταθεί (χρησιμοποιώνταςμιαμηπροφανήδιαφορίσιμηδομή),σεμιαπεριοχή 0 < r 2M. Πολύαργότερα,αυτήηπεριοχή 0 < r 2Mονομάστηκε(απότον Wheeler) μαύρη τρύπα, διότι δεν«επικοινωνεί» με παρατηρητές έξω απ αυτήν. Η επιφάνεια r = 2M στην επέκταση αυτή ονομάζεται ορίζοντας γεγονότων. κατά τον Στέφανο Αρετάκη(Cambridge/Princeton) 8

9 Ειδικές λύσεις ΙΙΙ: Kerr Οι μετρικές Kerr απαρτίζουν μια οικογένεια δύο παραμέτρων στάσιμων, αξισυμμετρικών μετρικών που ικανοποιούν τις εξισώσεις Ric = 0. Ανακαλύφθηκαν το Οι παράμετροι ονομάζονται μάζα M και ειδική στροφορμή a. Σε τοπικές συντεταγμένες, η μετρική παίρνει την εξής μορφή: g M,a = ρ 2 ( dt asin 2 θdφ ) 2 + ρ 2 + sin2 θ ρ 2 ( adt (r 2 +a 2 )dφ ) 2 dr2 +ρ 2 dθ 2 ρ 2 = r 2 +a 2 cos 2 θ, = r 2 2Mr +a 2 = (r r )(r r + ), a < Mυποακραίαμελανήοπή, a = Mακραίαμελανήοπή, a > M περίπτωση«γυμνής ιδιομορφίας» κατά τον Στέφανο Αρετάκη(Cambridge/Princeton) 9

10 Γραμμική ευστάθεια των μη ακραίων μελανών οπών Kerr κατά τον Στέφανο Αρετάκη(Cambridge/Princeton) 10

11 Οπως και σε κάθε θεωρία της μαθηματικής φυσικής, έτσι και στη γενική σχετικότητα, οι ειδικές λύσεις των εξισώσεων Einstein έχουν φυσική σημασία μόνο στην περίπτωση που είναι ευσταθείς ως λύσεις του προβλήματος Cauchy. Τοπρόβληματηςευστάθειαςτωνλύσεων Kerrείναιένααπότα μεγάλα άλυτα προβλήματα της γενικής σχετικότητας! Ενα πιο απλό πρόβλημα είναι αυτό της γραμμικής ευστάθειας. Αν θυμηθούμε τη μορφή των εξισώσεων σε αρμονικές συντεταγμένες: g g µν = N(g, g) τότε μια απλουστευμένη γραμμικοποίηση γύρω από μια δεδομένη μετρική-λύση g είναι η μελέτη της βαθμωτής κυματοεξίσωσης: g ψ = 0. κατά τον Στέφανο Αρετάκη(Cambridge/Princeton) 11

12 Το τελευταίο πρόβλημα έγινε αντικείμενο πολλής μελέτης(και έντονου συναγωνισμού!) τα τελευταία χρόνια, και στη λύση του έχουν συμβάλλει μεταξύ άλλων οι Μ.Δ. Rodnianski, Schlag et al, Tataru et al, Andersson Blue, Melrose et al, Zworski et al. Το τελικό απότελεσμα αυτής της προσπάθειας συνόψιζεται στο εξής: Θεώρημα. (Μ.Δ. Rodnianski 2011) Εστω (M, g) ο χωρόχρονος μιας μη ακραίαςμετρικής Kerrμεπαραμέτρους a < M.Τότεοιλύσειςτης κυματοξίσωσης g ψ = 0 μειώνονται αντιστρόφως πολυωνυμικά στο εξωτερικό της μαύρης τρύπας συμπεριλαμβανομένου και του ορίζοντα γεγονότων. κατά τον Στέφανο Αρετάκη(Cambridge/Princeton) 12

13 Ιδιότητες της Kerr κατά τον Στέφανο Αρετάκη(Cambridge/Princeton) 13

14 Η μελέτη της κυματοεξίσωσης g ψ = 0 στον χωρόχρονο Kerr (M, g) είναι συνυφασμένη με την κατανόηση διαφόρων γεωμετρικών/φυσικών ιδιοτήτων της μετρικής g. Οι πιο σημαντικές ιδιότητες είναι: 1. Η μετατόπιση προς το ερυθρό. 2. Η υπερακτινοβολία 3. Ο εγκλωβισμός των φωτοειδών γεωδαισιακών 4. Η σύζευξη των άνω τριών δυσκολιών! κατά τον Στέφανο Αρετάκη(Cambridge/Princeton) 14

15 Ιδιότητες της Kerr Ι: μετατόπιση προς το ερυθρό Κατά την προσέγγιση της γεωμετρικής οπτικής, η μετατόπιση προς το ερυθρό κατανοείται με βάση το σήμα που εκπέμπει ένας παρατηρητής A(που διασχίζειτονορίζονταγεγονότων H + )σ ένανάλλονπαρατηρητή B. H + I + B A Πρωτοανακαλύφθηκε από τους Oppenheimer Snyder, κατά τον Στέφανο Αρετάκη(Cambridge/Princeton) 15

16 Ιδιότητες της Kerr ΙΙ: Υπερακτινοβολία Στηνπερίπτωσητης Schwarzschild(a = 0),τοδιάνυσμα Killing t είναι χρονοειδές στο εξωτερικό της μαύρης τρύπας, και φωτοειδές ακριβώς στον ορίζοντα. Συνεπώς, υπάρχει μια διατηρήσιμη(σύμφωνα με το θεώρημα της Noether) θετικά ορισμένη ενέργεια. Η μόνη δυσκολία είναι ότι η ενέργεια αυτή εκφυλίζεται ακριβώς στον ορίζοντα. Στηνοικογένεια Kerrόμως,γιακάθε 0 a M,τοδιάνυσμα t γίνεται χωροειδές σε μια περιοχή του ορίζοντα. Η σχετική ενέργεια διατηρείται αλλά δεν έχει πρόσημο. Στην κίνηση σωματιδίων, αυτό οδηγεί στο φαινόμενο της διαδικασίας Penrose. Για τα κύματα, οδηγεί στο φαινόμενο της υπερακτινοβολίας (Zeldovich). Κατάσυνέπεια,χρησιμοποιώνταςμόνοτοννόμοδιατήρησηςτου t δενμπορούμε να αποδείξουμε ότι τα κύματα ψ παραμένουν ομοιόμορφα φραγμένα, ούτε καν μακρυά από τον ορίζοντα. κατά τον Στέφανο Αρετάκη(Cambridge/Princeton) 16

17 Ιδιότητες της Kerr ΙΙΙ: εγκλωβισμός των φωτοειδών γεωδαισιακών Στη Schwarzschild, η λεγόμενη«φωτονόσφαιρα» r = 3M έχει την ιδιότητα ότι κάποιες φωτοειδείς γεωδαισιακές μένουν σ αυτήν. Συνεπώς,αυτέςούτεξεφεύγουνστοάπειροούτεδιασχίζουντονορίζοντα H +. Στην Kerr, υπάρχει παρόμοια συμπεριφορά, ακόμα πιο περίπλοκη! Συνεπώς, η ενέργεια μπορεί να συγκεντρωθεί για πολύ χρόνο κοντά σε τέτοιες γεωδαισιακές, και πρέπει να ποσοτικοποιηθεί αυτό το φαινόμενο για να αποδειχθεί ότι τελικά τα κύματα μειώνονται.(πβ. Ralston). κατά τον Στέφανο Αρετάκη(Cambridge/Princeton) 17

18 Ιδιότητες της Kerr IV: η(φαινομενική) σύζευξη των άνω δυσκολιών Στη Schwarzschild, η δυσκολία της υπερακτινοβολίας δεν υφίσταται, η μετατόπιση προς το ερυθρό χρειάζεται μόνο πολύ κοντά στον ορίζοντα γεγονότων, και οι εκγλωβισμένες γεωδαισιακές βρίσκονται μακρυά απ αυτήν. Οπωςαυξάνεταιόμωςηπαράμετρος a προςτο Mστηνοικογένεια Kerrτότεοι τρεις δυσκολίες φαίνονται να ανακατεύονται, μιάς και συνυπάρχουν στην ίδια περιοχή του φυσικού χώρου. Αυτό που επέτρεψε να αποδειχθεί το παραπάνω θεώρημα για όλες τις μη ακραίες παραμέτρους a < M είναι ότι οι δυσκολίες διαζευγνύονται στον χώρο των φάσεων. Αυτό απαιτεί μια αρκετά περίπλοκη αρμονική ανάλυση προσαρμοσμένη στη γεωμετρία των λύσεων Kerr. κατά τον Στέφανο Αρετάκη(Cambridge/Princeton) 18

19 Η ακραία περίπτωση και μια εκπληκτική ανακάλυψη! κατά τον Στέφανο Αρετάκη(Cambridge/Princeton) 19

20 Η αδυναμία του παραπάνω θεωρήματος να εξετάσει και την ακραία περίπτωση φαινόταν μάλλον τεχνική. Γι αυτό και το εξής θεώρημα προκάλεσε φοβερή έκπληξη Θεώρημα 1(Στεφ. Αρετάκης(2012)). Στην ακραία Kerr, ακριβώς πάνω στον ορίζοντα γεγονότων, οι πρώτες παράγωγοι των γενικών( generic ) λύσεων της κυματοεξίσωσης g ψ = 0 δεν μηδενίζονται ασυμπτωτικά προς το χρόνο, και οι δεύτερες παράγωγοι αυξάνονται πολυωνυμικά ως προς το χρόνο. κατά τον Στέφανο Αρετάκη(Cambridge/Princeton) 20

21 Η«αστάθεια» του προηγούμενου θεωρήματος συμπληρώνεται από το εξής θεώρημα ευστάθειας: Θεώρημα 2(Στεφ. Αρετάκης(2011, 12)). Στην ακραία Kerr, έξω από τον ορίζοντα γεγονότων, όλες οι παράγωγοι των λύσεων της κυματοεξίσωσης g ψ = 0 μειώνονται αντιστρόφως πολυωνυμικά ως προς τον χρόνο(αλλά με άλλο χαρακτηριστικό ρυθμό μείωσης από την μη ακραία περίπτωση). κατά τον Στέφανο Αρετάκη(Cambridge/Princeton) 21

22 Είχαν προηγηθεί αποτελέσματα για την ακραία Reissner Nordström, ένα πιο απλό παράδειγμα ακραίας μαύρης τρύπας που δεν ικανοποιεί όμως τις εξισώσεις του κενού Ric(g) = 0, αλλά το σύστημα Einstein Maxwell. Αυτά ήδη έχουν δημοσιευτεί εδώ: S. Aretakis Stability and instability of extreme Reissner-Nordstrom black hole spacetimes for linear scalar perturbations I, Comm. Math. Phys. 307 (2011), S. Aretakis Stability and instability of extreme Reissner-Nordstrom black hole spacetimes for linear scalar perturbations II, Ann. Henri Poincaré 8 (2011), κατά τον Στέφανο Αρετάκη(Cambridge/Princeton) 22

23 Γιατί είναι δύσκολη η μελέτη της κυματοεξίσωσης στην ακραία περίπτωση; Υπενθυμίζω τις σημαντικές για μάς ιδιότητες της μη ακραίας περίπτωσης: 1. Η μετατόπιση προς το ερυθρό. 2. Η υπερακτινοβολία 3. Ο εγκλωβισμός των φωτοειδών γεωδαισιακών 4. Η(φαινομενική τουλάχιστον) σύζευξη των άνω τριών δυσκολιών Στην ακραία περίπτωση η μετατόπιση προς το ερυθρό εκφυλίζεται, κι αυτό δυσχεραίνει τα πράγματα στον ορίζοντα. Αυτό είναι το κλειδί καί της αστάθειας, καί του διαφορετικού ρυθμού μείωσης. Επιπλέον όμως, η τέταρτη δυσκολία, που όπως είδαμε στην μη ακραία περίπτωση ξεπερνιέται με τη διάζευξη των προβηλμάτων στο χώρο των φάσεων, τώρα παραμένει. Γι αυτό και τα όποια αποτελεσμάτα ευστάθειας είναι πιο ασθενή. Μάλιστα, το τελευταίο ανοίγει μερικά παρά πολύ ενδιαφέροντα πεδία ερεύνης στη γενική θεωρία της γεωμετρικής σκέδασης. κατά τον Στέφανο Αρετάκη(Cambridge/Princeton) 23

24 Συμπέρασμα Το αποτέλεσμα αστάθειας του Αρετάκη για τις λύσεις της g ψ = 0 στην ακραία Kerr μάς λέει ότι οι ακραίες μαύρες τρύπες είναι μάλλον ασταθείς. Παρά το γεγονός ότι οι χωρόχρονοι αυτοί μελετώνται εντατικά στη βιβλιογραφία της φυσικής υψηλών ενεργειών και της αστροφυσικής, αυτή η αστάθεια δεν είχε παρατηρηθεί προηγουμένως, έστω και ευριστικά. Ενδεχομένως να πρέπει να αναθεωρηθεί ριζικά ο ρόλος αυτών των ακραίων μελανών οπών στη σημερινή κοσμοθεώρηση της θεωρητικής φυσικής. κατά τον Στέφανο Αρετάκη(Cambridge/Princeton) 24

Η εσωτερική δομή των μελανών οπών και η εικασία της ισχυρής κοσμικής λογοκρισίας στη γενική σχετικότητα

Η εσωτερική δομή των μελανών οπών και η εικασία της ισχυρής κοσμικής λογοκρισίας στη γενική σχετικότητα Η εσωτερική δομή των μελανών οπών και η εικασία της ισχυρής κοσμικής λογοκρισίας στη γενική σχετικότητα Μιχάλης Δαφέρμος Πανεπιστήμιο Princeton/ Πανεπιστήμιο του Cambridge Γενικό Σεμινάριο, Μαθηματικό

Διαβάστε περισσότερα

Φαινόμενο Unruh. Δημήτρης Μάγγος. Εθνικό Μετσόβιο Πολυτεχνείο September 26, / 20. Δημήτρης Μάγγος Φαινόμενο Unruh 1/20

Φαινόμενο Unruh. Δημήτρης Μάγγος. Εθνικό Μετσόβιο Πολυτεχνείο September 26, / 20. Δημήτρης Μάγγος Φαινόμενο Unruh 1/20 Φαινόμενο Unruh Δημήτρης Μάγγος Εθνικό Μετσόβιο Πολυτεχνείο September 26, 2012 1 / 20 Δημήτρης Μάγγος Φαινόμενο Unruh 1/20 Outline Σχετικότητα Ειδική & Γενική Θεωρία Κβαντική Θεωρία Πεδίου Πεδία Στον Χωρόχρονο

Διαβάστε περισσότερα

ξ i (t) = v i t + ξ i (0) (9) c (t t 0). (10) t = t, z = z 1 2 gt 2 (12)

ξ i (t) = v i t + ξ i (0) (9) c (t t 0). (10) t = t, z = z 1 2 gt 2 (12) Η ΓΕΝΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς 1 Κίνηση σώματος σε πεδίο βαρύτητας Εδώ θα εφαρμόσουμε την Ι.Α.Ι. και τις γνώσεις μας από την Ειδική Θεωρία της Σχετικότητας για να παράγουμε

Διαβάστε περισσότερα

Ακτινοβολία Hawking. Πιέρρος Ντελής. Εθνικό Μετσόβιο Πολυτεχνείο Σ.Ε.Μ.Φ.Ε. July 3, / 29. Πιέρρος Ντελής Ακτινοβολία Hawking 1/29

Ακτινοβολία Hawking. Πιέρρος Ντελής. Εθνικό Μετσόβιο Πολυτεχνείο Σ.Ε.Μ.Φ.Ε. July 3, / 29. Πιέρρος Ντελής Ακτινοβολία Hawking 1/29 Ακτινοβολία Hawking Πιέρρος Ντελής Εθνικό Μετσόβιο Πολυτεχνείο ΣΕΜΦΕ July 3, 2013 1 / 29 Πιέρρος Ντελής Ακτινοβολία Hawking 1/29 Outline Σχετικότητα Ειδική & Γενική Θεωρία Κβαντική Θεωρία Πεδίου Πεδία

Διαβάστε περισσότερα

ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ

ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς 1. Μετασχηματισμοί συντεταγμένων και συμμετρίες. 1α. Στροφές στο επίπεδο. Θεωρείστε δύο καρτεσιανά συστήματα συντεταγμένων στο επίπεδο, στραμμένα

Διαβάστε περισσότερα

Αριθμητικός υπολογισμός τροχιών σωμάτων στη γεωμετρία Schwarzschild. Κουλούρης Κωνσταντίνος

Αριθμητικός υπολογισμός τροχιών σωμάτων στη γεωμετρία Schwarzschild. Κουλούρης Κωνσταντίνος Αριθμητικός υπολογισμός τροχιών σωμάτων στη γεωμετρία Schwarzschild Κουλούρης Κωνσταντίνος Σύνοψη Σχετικότητα Ειδική και γενική θεωρία Γεωμετρία Swarzschild Μετρική και εξισώσεις γεωδαιτικών τροχιών Υπολογιστική

Διαβάστε περισσότερα

ΑΝΑΚΟΙΝΩΣΗ. Διευκρινίσεις για την ύλη του μαθήματος ΚΟΣΜΟΛΟΓΙΑ

ΑΝΑΚΟΙΝΩΣΗ. Διευκρινίσεις για την ύλη του μαθήματος ΚΟΣΜΟΛΟΓΙΑ ΑΝΑΚΟΙΝΩΣΗ Διευκρινίσεις για την ύλη του μαθήματος ΚΟΣΜΟΛΟΓΙΑ Η ύλη του μαθήματος «Κοσμολογία» περιέχεται στις νέες σημειώσεις του μαθήματος (ανάρτηση 2016) και στο βιβλίο γενικής σχετικότητας που έχετε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΕΝΙΚΗΣ ΘΕΩΡΙΑΣ ΣΧΕΤΙΚΟΤΗΤΑΣ

ΑΣΚΗΣΕΙΣ ΓΕΝΙΚΗΣ ΘΕΩΡΙΑΣ ΣΧΕΤΙΚΟΤΗΤΑΣ ΚΩΣΤΑΣ ΚΟΚΚΟΤΑΣ ΑΣΚΗΣΕΙΣ ΓΕΝΙΚΗΣ ΘΕΩΡΙΑΣ ΣΧΕΤΙΚΟΤΗΤΑΣ Σηµειώσεις για τους ϕοιτητές 3 Μαρτίου 2005 Περιεχόµενα 1 ΙΑΦΟΡΙΚΗ ΓΕΩΜΕΤΡΙΑ.................................... 1 1.1 ΤΑΝΥΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ.................................

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΓΕΝΙΚΗ ΘΕΩΡΙΑ ΣΧΕΤΙΚΟΤΗΤΑΣ ΒΑΡΥΤΙΚΑ ΚΥΜΑΤΑ ΣΤΟ ΚΕΝΟ ΠΑΡΑΓΩΓΗ ΒΑΡΥΤΙΚΩΝ ΚΥΜΑΤΩΝ ΑΠΟ ΠΗΓΕΣ ΑΝΙΧΝΕΥΣΗ ΒΑΡΥΤΙΚΩΝ ΚΥΜΑΤΩΝ

ΠΕΡΙΕΧΟΜΕΝΑ ΓΕΝΙΚΗ ΘΕΩΡΙΑ ΣΧΕΤΙΚΟΤΗΤΑΣ ΒΑΡΥΤΙΚΑ ΚΥΜΑΤΑ ΣΤΟ ΚΕΝΟ ΠΑΡΑΓΩΓΗ ΒΑΡΥΤΙΚΩΝ ΚΥΜΑΤΩΝ ΑΠΟ ΠΗΓΕΣ ΑΝΙΧΝΕΥΣΗ ΒΑΡΥΤΙΚΩΝ ΚΥΜΑΤΩΝ ΒΑΡΥΤΙΚΑ ΚΥΜΑΤΑ ΤΖΩΡΤΖΗΣ ΔΗΜΗΤΡΗΣ Επιβλέπων καθηγητής:αναγνωστοπουλοσ Κ. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ-ΣΕΜΦΕ 26 Σεπτεμβρίου 2016 ΠΕΡΙΕΧΟΜΕΝΑ ΓΕΝΙΚΗ ΘΕΩΡΙΑ ΣΧΕΤΙΚΟΤΗΤΑΣ ΒΑΡΥΤΙΚΑ ΚΥΜΑΤΑ ΣΤΟ ΚΕΝΟ ΠΑΡΑΓΩΓΗ ΒΑΡΥΤΙΚΩΝ

Διαβάστε περισσότερα

Ασκήσεις Γενικής Σχετικότητας

Ασκήσεις Γενικής Σχετικότητας Ασκήσεις Γενικής Σχετικότητας 14 Δεκεμβρίου 014 1 Αστέρας νετρονίων Σχετική θεωρία: στατικές, σφαιρικά συμμετρικές λύσεις των εξισώσεων Einstein, εξίσωση Oppenheimer- Volkoff. Μια στατική σφαιρικά συμμετρική

Διαβάστε περισσότερα

ds 2 = 1 y 2 (dx2 + dy 2 ), y 0, < x < + (1) dx/(1 x 2 ) = 1 ln((1 + x)/(1 x)) για 1 < x < 1. l AB = dx/1 = 2 (2) (5) w 1/2 = ±κx + C (7)

ds 2 = 1 y 2 (dx2 + dy 2 ), y 0, < x < + (1) dx/(1 x 2 ) = 1 ln((1 + x)/(1 x)) για 1 < x < 1. l AB = dx/1 = 2 (2) (5) w 1/2 = ±κx + C (7) ΒΑΡΥΤΗΤΑ ΚΑΙ ΚΟΣΜΟΛΟΓΙΑ Θ. Τομαράς 1. ΤΟ ΥΠΕΡΒΟΛΙΚΟ ΕΠΙΠΕΔΟ. Το υπερβολικό επίπεδο ορίζεται με τη μετρική ds = 1 y dx + dy ), y 0, < x < + 1) α) Να υπολογίσετε το μήκος της γραμμής της παράλληλης στον

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας Ιούνιος 2010

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας Ιούνιος 2010 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας Ιούνιος Αν θέλετε μπορείτε να επεξεργαστείτε όλα τα προβλήματα σε σύστημα μονάδων όπου η ταχύτητα του φωτός είναι c. Να λύσετε

Διαβάστε περισσότερα

Ακουστικό Ανάλογο Μελανών Οπών

Ακουστικό Ανάλογο Μελανών Οπών Ακουστικό Ανάλογο Μελανών Οπών ιάδοση ηχητικών κυµάτων σε ρευστά. Ηχητικά κύµατα σε ακίνητο ρευστό. Εξίσωση συνέχειας: ρ t + ~ (ρ~v) =0 Εξίσωση Euler: ~v t +(~v ~ )~v = 1 ρ ~ p ( ~ Φ +...) Μικρές διαταραχές:

Διαβάστε περισσότερα

Σύγχρονη Φυσική 1, Διάλεξη 4, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Η Αρχές της Ειδικής Θεωρίας της Σχετικότητας και οι μετασχηματισμοί του Lorentz

Σύγχρονη Φυσική 1, Διάλεξη 4, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Η Αρχές της Ειδικής Θεωρίας της Σχετικότητας και οι μετασχηματισμοί του Lorentz 1 Η Αρχές της Ειδικής Θεωρίας της Σχετικότητας και οι μετασχηματισμοί του Lorentz Σκοποί της τέταρτης διάλεξης: 25.10.2011 Να κατανοηθούν οι αρχές με τις οποίες ο Albert Einstein θεμελίωσε την ειδική θεωρία

Διαβάστε περισσότερα

dy df(x) y= f(x) y = f (x), = dx dx θ x m= 1

dy df(x) y= f(x) y = f (x), = dx dx θ x m= 1 I. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ d df() = f() = f (), = d d.κλίση ευθείας.μεταολές 3.(Οριακός) ρυθμός μεταολής ή παράγωγος 4.Παράγωγοι ασικών συναρτήσεων 5. Κανόνες παραγώγισης 6.Αλυσωτή παράγωγος 7.Μονοτονία 8.Στάσιμα

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες

Διαβάστε περισσότερα

,..., xn) Οι συναρτήσεις που ορίζουν αυτό το σύστημα υποτίθενται παραγωγίσιμες με συνεχείς παραγώγους:

,..., xn) Οι συναρτήσεις που ορίζουν αυτό το σύστημα υποτίθενται παραγωγίσιμες με συνεχείς παραγώγους: ΜΑΘΗΜΑ 6 ο : ΕΥΣΤΑΘΕΙΑ ΤΩΝ ΚΑΤΑΣΤΑΣΕΩΝ ΙΣΟΡΡΟΠΙΑΣ (ΣΥΝΑΡΤΗΣΕΙΣ LYAPUNOV) O Aleksadr Lyapuv (857-98) έθεσε τις βάσεις της μαθηματικής θεωρίας της ευστάθειας που φέρει το όνομά του εμπνευσμένος από μια απλή

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας 7 Οκτωβρίου 2014 (περίοδος Σεπτεμβρίου 2013-14)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας 7 Οκτωβρίου 2014 (περίοδος Σεπτεμβρίου 2013-14) ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας 7 Οκτωβρίου 2014 περίοδος Σεπτεμβρίου 2013-14 Αν θέλετε μπορείτε να επεξεργαστείτε όλα τα προβλήματα σε σύστημα μονάδων όπου

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης

Διαβάστε περισσότερα

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες

Διαβάστε περισσότερα

Ο ειδικός μετασχηματισμός του Lorentz

Ο ειδικός μετασχηματισμός του Lorentz Ο ειδικός μετασχηματισμός του Lorentz Με αφετηρία τις δυο απαιτήσεις της Ειδικής Θεωρίας Σχετικότητας του Einstein θα βρούμε τον ειδικό μετασχηματισμό του Lorentz Πρώτη απαίτηση: Όλοι οι αδρανειακοί παρατηρητές

Διαβάστε περισσότερα

Υπάρχουν οι Μελανές Οπές;

Υπάρχουν οι Μελανές Οπές; Υπάρχουν οι Μελανές Οπές; ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Θεσσαλονίκη, 10/2/2014 Σκοτεινοί αστέρες 1783: Ο John Michell ανακαλύπτει την έννοια ενός σκοτεινού αστέρα,

Διαβάστε περισσότερα

c 4 (1) Robertson Walker (x 0 = ct) , R 2 (t) = R0a 2 2 (t) (2) p(t) g = (3) p(t) g 22 p(t) g 33

c 4 (1) Robertson Walker (x 0 = ct) , R 2 (t) = R0a 2 2 (t) (2) p(t) g = (3) p(t) g 22 p(t) g 33 ΤΟ ΚΑΘΙΕΡΩΜΕΝΟ ΠΡΟΤΥΠΟ ΤΗΣ ΚΟΣΜΟΛΟΓΙΑΣ Α. Η ΕΞΙΣΩΣΗ EINSTEIN Διδάσκων: Θεόδωρος Ν. Τομαράς G µν R µν 1 g µν R = κ T µν, κ 8πG N c 4 (1) Β. Η ΕΞΙΣΩΣΗ FRIEDMANN. Για ομογενή και ισότροπο χωρόχρονο έχουμε

Διαβάστε περισσότερα

(i) f(x, y) = xy + iy (iii) f(x, y) = e y e ix. f(z) = U(r, θ) + iv (r, θ) ; z = re iθ

(i) f(x, y) = xy + iy (iii) f(x, y) = e y e ix. f(z) = U(r, θ) + iv (r, θ) ; z = re iθ ΜΑΘΗΜΑΤΙΚΗ ΦΥΣΙΚΗ (ΜΕΤΑΠΤΥΧΙΑΚΟ) 6 Νοεμβρίου 07 Αναλυτικές συναρτήσεις Άσκηση (i) Δείξτε ότι η συνάρτηση f(z) είναι αναλυτική σε χωρίο D του μιγαδικού επιπέδου εάν και μόνο εάν η if(z) είναι αναλυτική

Διαβάστε περισσότερα

Βαρυτικά Κύματα ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Βαρυτικά Κύματα ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Βαρυτικά Κύματα ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Θεσσαλονίκη, 6/4/2014 Νευτώνεια βαρύτητα 1687: Ο Νεύτωνας θεωρούσε ότι η βαρύτητα δρα ακαριαία σε οσοδήποτε μεγάλες

Διαβάστε περισσότερα

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Στροφορµή στην Κβαντική Μηχανική 1.1.1 Τροχιακή Στροφορµή Η Τροχιακή Στροφορµή στην Κβαντική

Διαβάστε περισσότερα

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Ο Μονοδιάστατος Γραµµικός Αρµονικός Ταλαντωτής 1.1.1 Εύρεση των ιδιοτοµών και ιδιοσυναρτήσεων

Διαβάστε περισσότερα

Σχετικιστικές συμμετρίες και σωμάτια

Σχετικιστικές συμμετρίες και σωμάτια Κεφάλαιο 1 Σχετικιστικές συμμετρίες και σωμάτια 1.1 Η συμμετρία Πουανκαρέ 1.1.1 Βασικοί ορισμοί και ιδιότητες Η θεμελιώδης κινηματική συμμετρία για ένα φυσικό σύστημα είναι η συμμετρία των μετασχηματισμών

Διαβάστε περισσότερα

Τμήμα Φυσικής, Παν/μιο Ιωαννίνων, Ειδική Σχετικότητα, Διάλεξη 5 Οι Μετασχηματισμοί του Lorentz και η Συστολή του μήκους

Τμήμα Φυσικής, Παν/μιο Ιωαννίνων, Ειδική Σχετικότητα, Διάλεξη 5 Οι Μετασχηματισμοί του Lorentz και η Συστολή του μήκους 1 Οι Μετασχηματισμοί του Lorentz και η Συστολή του μήκους Σκοποί της πέμπτης διάλεξης: 10.11.2011 Εξοικείωση με τους μετασχηματισμούς του Lorentz και τις διάφορες μορφές που μπορούν να πάρουν για την επίλυση

Διαβάστε περισσότερα

ΠΡΟΣΟΧΗ : Nέα Ύλη για τις Κατατακτήριες από 2012 και μετά στην Φυσική Ι. Για το 3ο εξάμηνο. ΕΞΕΤΑΣΤΕΑ ΥΛΗ στο μάθημα ΦΥΣΙΚΗ Ι - ΜΗΧΑΝΙΚΗ

ΠΡΟΣΟΧΗ : Nέα Ύλη για τις Κατατακτήριες από 2012 και μετά στην Φυσική Ι. Για το 3ο εξάμηνο. ΕΞΕΤΑΣΤΕΑ ΥΛΗ στο μάθημα ΦΥΣΙΚΗ Ι - ΜΗΧΑΝΙΚΗ ΠΡΟΣΟΧΗ : Nέα Ύλη για τις Κατατακτήριες από 2012 και μετά στην Φυσική Ι ΕΞΕΤΑΣΤΕΑ ΥΛΗ στο μάθημα ΦΥΣΙΚΗ Ι - ΜΗΧΑΝΙΚΗ 1. Κινηματική (ευθύγραμμη και καμπυλόγραμμη κίνηση) 2. Σχετική κίνηση-μετασχηματισμοί

Διαβάστε περισσότερα

ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Θερμοδυναμική Μελανών Οπών Σε Χωροχρόνους Anti-de Sitter Σταύρος Χριστοδούλου ΜΑΪΟΣ 2017 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Θερμοδυναμική Μελανών Οπών

Διαβάστε περισσότερα

ds ds ds = τ b k t (3)

ds ds ds = τ b k t (3) Γενικά Μαθηματικά ΙΙΙ Πρώτο σετ ασκήσεων, Λύσεις Άσκηση 1 Γνωρίζουμε ότι το εφαπτόμενο διάνυσμα ( t), ορίζεται ως: t = r = d r ds (1) και επιπλέον το διάνυσμα της καμπυλότητας ( k), ορίζεται ως: d t k

Διαβάστε περισσότερα

ΕΞΕΡΕΥΝΩΝΤΑΣ ΤΟ ΣΥΜΠΑΝ ΜΕ ΤΑ ΚΥΜΑΤΑ ΤΗΣ ΒΑΡΥΤΗΤΑΣ

ΕΞΕΡΕΥΝΩΝΤΑΣ ΤΟ ΣΥΜΠΑΝ ΜΕ ΤΑ ΚΥΜΑΤΑ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΕΞΕΡΕΥΝΩΝΤΑΣ ΤΟ ΣΥΜΠΑΝ ΜΕ ΤΑ ΚΥΜΑΤΑ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Κατερίνη, 7/5/2016 14 Σεπτεµβρίου 2015 14 Σεπτεµβρίου 2015 14 Σεπτεµβρίου 2015

Διαβάστε περισσότερα

Αθανάσιος Χρ.Τζέμος (Α.Μ 286) Μεταπτυχιακός Φοιτητής Θεωρητικής Φυσικής «Γενική Σχετικότητα» 11/3/2008

Αθανάσιος Χρ.Τζέμος (Α.Μ 286) Μεταπτυχιακός Φοιτητής Θεωρητικής Φυσικής «Γενική Σχετικότητα» 11/3/2008 Αθανάσιος Χρ.Τζέμος (Α.Μ 86) Μεταπτυχιακός Φοιτητής Θεωρητικής Φυσικής «Γενική Σχετικότητα» /3/008 Μια νέα απόδειξη του θεωρήματος της θετικής ενέργειας Στο παρόν πόνημα θα γίνει προσπάθεια να σκιαγραφηθεί

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1.

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1. ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: Οι Εξισώσεις Διαφορών (ε.δ.) είναι εξισώσεις που περιέχουν διακριτές αλλαγές και διαφορές των αγνώστων συναρτήσεων Εμφανίζονται σε μαθηματικά μοντέλα, όπου η μεταβλητή παίρνει

Διαβάστε περισσότερα

A2. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ

A2. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ A. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ d df() = f() = f (), = d d.κλίση ευθείας.μεταβολές 3.(Οριακός) ρυθµός µεταβολής ή παράγωγος 4.Παράγωγοι βασικών συναρτήσεων 5. Κανόνες παραγώγισης 6.Αλυσωτή παράγωγος 7.Μονοτονία

Διαβάστε περισσότερα

Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις

Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις ẋ 1 f 1 (x 1 x 2 ) ẋ 2 f 2 (x 1 x 2 ) (501) Το σύστημα αυτό γράφεται σε διανυσματική

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ Επιμέλεια: Βασίλης Κράνιας wwwe-mathsgr ΑΝΑΛΥΣΗ Τι ονομάζουμε πραγματική συνάρτηση Έστω Α ένα υποσύνολο

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2 ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2. ΜΑΘΗΜΑΤΙΚΩΝ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ

Διαβάστε περισσότερα

Κανόνας της αλυσίδας. J ανοικτά διαστήματα) ώστε ( ), ( ) ( ) ( ) fog ' x = f ' g x g ' x, x I (2)

Κανόνας της αλυσίδας. J ανοικτά διαστήματα) ώστε ( ), ( ) ( ) ( ) fog ' x = f ' g x g ' x, x I (2) 8 Κανόνας της αλυσίδας Από τον Απειροστικό Λογισμό για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι: Αν g : I R R και f : J R R είναι συναρτήσεις ( όπου I, J ανοικτά διαστήματα ώστε, g( τότε η : I g I J

Διαβάστε περισσότερα

Μεθοδική Επανα λήψή. Επιμέλεια Κων/νος Παπασταματίου. Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.

Μεθοδική Επανα λήψή. Επιμέλεια Κων/νος Παπασταματίου. Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Μεθοδική Επανα λήψή Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 Βόλος Τηλ. 4 598 Επιμέλεια Κων/νος Παπασταματίου Περιεχόμενα Συνοπτική Θεωρία με Ερωτήσεις Απαντήσεις...

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στην Ειδική Θεωρία Σχετικότητας 19 Ιουνίου 2013

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στην Ειδική Θεωρία Σχετικότητας 19 Ιουνίου 2013 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στην Ειδική Θεωρία Σχετικότητας 19 Ιουνίου 213 Τα δεδομένα όλων των ερωτημάτων αναφέρονται σε σύστημα μονάδων όπου η ταχύτητα του φωτός c είναι ίση με 1. Σας προτρέπουμε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις Επιμέλεια Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Το ο Θέμα στις πανελλαδικές εξετάσεις Ερωτήσεις+Απαντήσεις

Διαβάστε περισσότερα

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 10, 12 Μαρτίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Παρεμβολή 2. Παράσταση και υπολογισμός του πολυωνύμου παρεμβολής

Διαβάστε περισσότερα

5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ

5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ Α Τόγκας - ΑΜ333: Ειδική Θεωρία Σχετικότητας Σχετικιστική μάζα 5 Σχετικιστική μάζα Όπως έχουμε διαπιστώσει στην ειδική θεωρία της Σχετικότητας οι μετρήσεις των χωρικών και χρονικών αποστάσεων εξαρτώνται

Διαβάστε περισσότερα

Διάλεξη 3: Το άτομο του Υδρογόνου. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για το κεντρικό δυναμικό

Διάλεξη 3: Το άτομο του Υδρογόνου. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για το κεντρικό δυναμικό Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schöding για το κεντρικό δυναμικό Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 3 k V ) Αποδεικνύεται ότι οι λύσεις της ακτινικής εξίσωσης

Διαβάστε περισσότερα

Van Swinderen Institute

Van Swinderen Institute Συμμετρίες και Δυισμοί Θανάσης Χατζησταυρακίδης Van Swinderen Institute @ Κέρκυρα 13η Σεπτεμβρίου 2016 Γιατί συμμετρία; Συμμετρία Αισθητική Ομορφιά Στην Φύση Η συμμετρία στα φυσικά αντικείμενα συνήθως

Διαβάστε περισσότερα

8. Πολλαπλές μερικές παράγωγοι

8. Πολλαπλές μερικές παράγωγοι 94 8 Πολλαπλές μερικές παράγωγοι Οι μερικές παράγωγοι,,, αν υπάρχουν, μιας συνάρτησης : U R R ( U ανοικτό είναι αυτές συναρτήσεις από το U στο R, επομένως μπορεί να ορισθεί για αυτές η έννοια της μερικής

Διαβάστε περισσότερα

ΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Ο Α1. Έστω η συνάρτηση f ( x,,1. Nα αποδείξετε ότι η f είναι παραγωγίσιμη στο. v v 1 και ισχύει : x vx A2. Να διατυπώσετε και να ερμηνεύσετε γεωμετρικά το Θεώρημα Bolzano.

Διαβάστε περισσότερα

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Η Γενικευμένη Γεωμετρία, που θα αναπτύξουμε στα παρακάτω κεφάλαια, είναι μία «Νέα Γεωμετρία», η οποία προέκυψε από την ανάγκη να γενικεύσει ορισμένα σημεία της Ευκλείδειας

Διαβάστε περισσότερα

Ο Πυρήνας του Ατόμου

Ο Πυρήνας του Ατόμου 1 Σκοποί: Ο Πυρήνας του Ατόμου 15/06/12 I. Να δώσει μία εισαγωγική περιγραφή του πυρήνα του ατόμου, και της ενέργειας που μπορεί να έχει ένα σωματίδιο για να παραμείνει δέσμιο μέσα στον πυρήνα. II. III.

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο

Εθνικό Μετσόβιο Πολυτεχνείο Εθνικό Μετσόβιο Πολυτεχνείο Σχολη Εϕαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεας Φυσικης «Σκέδαση Βαθμωτών Πεδίων σε Μελανές Οπές» ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ του Στυλογιάννη Αντώνη Επιβλέπων: Κεχαγιάς

Διαβάστε περισσότερα

Ζητείται να εξεταστεί η ευστάθειά του κατά BIBO. Η κρουστική απόκριση του συστήματος είναι L : =

Ζητείται να εξεταστεί η ευστάθειά του κατά BIBO. Η κρουστική απόκριση του συστήματος είναι L : = . Δίνεται το ΓΧΑ σύστημα με συνάρτηση μεταφοράς ++2 Ζητείται να εξεταστεί η ευστάθειά του κατά BIBO. Λύση : Α) +3 +2 ++2 2 + + 2+2 Η κρουστική απόκριση του συστήματος είναι L : 2 + 2 H είναι φραγμένη καθώς.

Διαβάστε περισσότερα

1 ο Τεστ προετοιμασίας Θέμα 1 ο

1 ο Τεστ προετοιμασίας Θέμα 1 ο ο Τεστ προετοιμασίας Θέμα ο Σε κάθε μια από τις ακόλουθες προτάσεις αφού πρώτα σημειώσετε το Σ (σωστή) ή το Λ (λανθασμένη), στη συνέχεια να δώσετε μια σύντομη τεκμηρίωση της όποιας απάντησή σας Αν για

Διαβάστε περισσότερα

1 Η ΑΡΧΗ ΤΗΣ ΙΣΟΔΥΝΑΜΙΑΣ

1 Η ΑΡΧΗ ΤΗΣ ΙΣΟΔΥΝΑΜΙΑΣ 1 Η ΑΡΧΗ ΤΗΣ ΙΣΟΔΥΝΑΜΙΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς 1.1 Newton s law A. Newton s law: Περιγράφει τη κίνηση υλικού σημείου μάζας m σε χωρο-χρονικά μεταβαλλόμενο πεδίο δυνάμεων F. Σε Αδρανειακό Σύστημα

Διαβάστε περισσότερα

Μελανές Οπές: λύζεις, ταρακηηριζηικά και νόμοι ποσ ηις διέποσν

Μελανές Οπές: λύζεις, ταρακηηριζηικά και νόμοι ποσ ηις διέποσν ΔΘΝΙΚΟ ΜΔΣΟΒΙΟ ΠΟΛΤΣΔΥΝΔΙΟ ΥΟΛΗ ΔΦΑΡΜΟΜΔΝΩΝ ΜΑΘΗΜΑΣΙΚΩΝ ΚΑΙ ΦΤΙΚΩΝ ΔΠΙΣΗΜΩΝ ΥΟΛΗ ΜΗΥΑΝΟΛΟΓΩΝ ΜΗΥΑΝΙΚΩΝ ΔΚΔΦΔ «ΓΗΜΟΚΡΙΣΟ» ΙΝΣΙΣΟΤΣΟ ΝΑΝΟΔΠΙΣΗΜΗ ΚΑΙ ΝΑΝΟΣΔΥΝΟΛΟΓΙΑ ΙΝΣΙΣΟΤΣΟ ΠΤΡΗΝΙΚΗ ΚΑΙ ΩΜΑΣΙΓΙΑΚΗ ΦΤΙΚΗ

Διαβάστε περισσότερα

Μηχανική Πετρωμάτων Τάσεις

Μηχανική Πετρωμάτων Τάσεις Μηχανική Πετρωμάτων Τάσεις Δρ Παντελής Λιόλιος Σχολή Μηχανικών Ορυκτών Πόρων Πολυτεχνείο Κρήτης http://minelabmredtucgr Τελευταία ενημέρωση: 28 Φεβρουαρίου 2017 Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου

Διαβάστε περισσότερα

Ορισμοί (Σημείο ισορροπίας - Ευστάθεια κατά Lyapunov)

Ορισμοί (Σημείο ισορροπίας - Ευστάθεια κατά Lyapunov) Ορισμοί (ημείο ισορροπίας - Ευστάθεια κατά Lyapuo) Έστω ότι στη γενική περίπτωση το σύστημα περιγράφεται στο χώρο κατάστασης με το μαθηματικό πρότυπο: = f(, t), (t 0 ) = 0 () όπου είναι ένα διάστατο διάνυσμα

Διαβάστε περισσότερα

Γενική Θεωρία της Σχετικότητας

Γενική Θεωρία της Σχετικότητας Κώστας. Κόκκοτας Γενική Θεωρία της Σχετικότητας Σηµειώσεις για τους ϕοιτητές 13 Φεβρουαρίου 2008 Περιεχόµενα 1 Η ΓΕΩΜΕΤΡΙΑ ΤΩΝ ΚΑΜΠΥΛΩΝ ΧΩΡΩΝ...................... 1 1.1 ΠΟΛΛΑΠΛΟΤΗΤΕΣ......................................

Διαβάστε περισσότερα

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΠΥΡΗΝΙΚΗΣ ΦΥΣΙΚΗΣ ΚΑΙ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΜΙΧΑΗΛ Ε.

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΠΥΡΗΝΙΚΗΣ ΦΥΣΙΚΗΣ ΚΑΙ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΜΙΧΑΗΛ Ε. ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΠΥΡΗΝΙΚΗΣ ΦΥΣΙΚΗΣ ΚΑΙ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΚΟΣΜΟΛΟΓΙΑ ΣΤΗΝ ΘΕΩΡΙΑ ΑΙΘΕΡΑ ΤΟΥ

Διαβάστε περισσότερα

Το ελαστικο κωνικο εκκρεμε ς

Το ελαστικο κωνικο εκκρεμε ς Το ελαστικο κωνικο εκκρεμε ς 1. Εξισώσεις Euler -Lagrange x 0 φ θ z F l 0 y r m B Το ελαστικό κωνικό εκκρεμές αποτελείται από ένα ελατήριο με σταθερά επαναφοράς k, το οποίο αναρτάται από ένα σταθερό σημείο,

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική

Κλασική Ηλεκτροδυναμική Κλασική Ηλεκτροδυναμική Ενότητα 18: Νόμοι Maxwell Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παρουσίασει τις εξισώσεις Maxwell. 2 Περιεχόμενα ενότητας

Διαβάστε περισσότερα

Λέανδρος Περιβολαρόπουλος Καθηγητής Παν/μίου Ιωαννίνων

Λέανδρος Περιβολαρόπουλος  Καθηγητής Παν/μίου Ιωαννίνων Open page Λέανδρος Περιβολαρόπουλος http://leandros.physics.uoi.gr Καθηγητής Παν/μίου Ιωαννίνων Αρχείο παρουσίασης διαθέσιμο μέσω του συνδέσμου: https://dl.dropbox.com/u/20653799/talks/eie.ppt Κλίμακες

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου A A N A B P Y A 9 5 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου Στερεό σώμα με κυλινδρική συμμετρία (κύλινδρος, σφαίρα, σφαιρικό κέλυφος, κυκλική στεφάνη κλπ) μπορεί να

Διαβάστε περισσότερα

3.5 Το θεώρημα Hahn-Banach σε τοπολογικούς διανυσματικούς χώρους.

3.5 Το θεώρημα Hahn-Banach σε τοπολογικούς διανυσματικούς χώρους. 7 3.5 Το θεώρημα Hah-Baach σε τοπολογικούς διανυσματικούς χώρους. Εξετάζουμε καταρχήν τη σχέση μεταξύ ενός μιγαδικού διανυσματικού χώρου E και του υποκείμενου πραγματικού χώρου E R. Έστω E μιγαδικός διανυσματικός

Διαβάστε περισσότερα

Συνήθεις Διαφορικές Εξισώσεις

Συνήθεις Διαφορικές Εξισώσεις ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Μεταπτυχιακό Μάθημα: Συνήθεις Διαφορικές Εξισώσεις Καθηγητές: Α Μπούντης - Σ Πνευματικός Ακαδημαϊκό έτος 11-1 ΕΞΕΤΑΣΗ ΙΟΥΝΙΟΥ ΤΟ ΜΑΘΗΜΑΤΙΚΟ ΠΡΟΤΥΠΟ ΤΩΝ LOKA-VOLERRA

Διαβάστε περισσότερα

ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ

ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ Κ. Ν. Γουργουλιάτος ΜΑΥΡΕΣ ΤΡΥΠΕΣ Η ΒΑΣΙΚΗ ΙΔΕΑ Αντικείμενα που εμποδίζουν την διάδοση φωτός από αυτά Πρωτοπροτάθηκε γύρω στα 1783 (John( John Michell) ως αντικείμενο

Διαβάστε περισσότερα

Κλασικη ιαφορικη Γεωµετρια

Κλασικη ιαφορικη Γεωµετρια Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Σχολη Θετικων Επιστηµων, Τµηµα Μαθηµατικων, Τοµεας Γεωµετριας Κλασικη ιαφορικη Γεωµετρια Πρώτη Εργασία, 2018-19 1 Προαπαιτούµενες γνώσεις και ϐασική προετοιµασία

Διαβάστε περισσότερα

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 15. Ευστάθεια Συστημάτων (Ευστάθεια Lyapunov - Ασυμπτωτική Ευστάθεια) Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

1 + Φ r /c 2 = 1 (1) (2) c 2 k y 1 + (V/c) 1 + tan 2 α = sin α (3) tan α = k y k x

1 + Φ r /c 2 = 1 (1) (2) c 2 k y 1 + (V/c) 1 + tan 2 α = sin α (3) tan α = k y k x ΛΥΣΕΙΣ ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ 6 Θ. Τομαράς 1. Πρωτόνια στις κοσμικές ακτίνες φτάνουν ακόμα και ενέργειες της τάξης των 10 20 ev. Να συγκρίνετε την ενέργεια αυτή με την ενέργεια που έχει μια πέτρα που πετάτε με

Διαβάστε περισσότερα

Δύο Συνταρακτικές Ανακαλύψεις

Δύο Συνταρακτικές Ανακαλύψεις Δύο Συνταρακτικές Ανακαλύψεις στα Όρια των Διαστάσεων του Χώρου Απόστολος Δ. Παναγιώτου Ομότιμος Καθηγητής Πανεπιστημίου Αθηνών Επιστημονικός Συνεργάτης στο CERN Σώμα Ομοτίμων Καθηγητών Πανεπιστήμιου Αθηνών

Διαβάστε περισσότερα

f(x) = lim f n (t) = d(t, x n ) d(t, x) = f(t)

f(x) = lim f n (t) = d(t, x n ) d(t, x) = f(t) Κεφάλαιο 7 Ακολουθίες και σειρές συναρτήσεων 7.1 Ακολουθίες συναρτήσεων: κατά σημείο σύγκλιση Ορισμός 7.1.1. Εστω X σύνολο, (Y, ρ) μετρικός χώρος και f n, f : X Y (n = 1, 2,...). Λέμε ότι η ακολουθία συναρτήσεων

Διαβάστε περισσότερα

4.6 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ

4.6 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ 174 46 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ Εισαγωγή Ένα από τα αρχαιότερα προβλήματα της Θεωρίας Αριθμών είναι η αναζήτηση των ακέραιων αριθμών που ικανοποιούν κάποιες δεδομένες σχέσεις Με σύγχρονη ορολογία

Διαβάστε περισσότερα

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις πρώτου φυλλαδίου ασκήσεων.

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις πρώτου φυλλαδίου ασκήσεων. Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 208-9.. Για καθεμία από τις ανισότητες Λύσεις πρώτου φυλλαδίου ασκήσεων. x + > 2, x x +, x x+2 > x+3 3x+, (x )(x 3) (x 2) 2 0 γράψτε ως διάστημα ή ως ένωση διαστημάτων

Διαβάστε περισσότερα

3α. ΣΧΕΤΙΚΙΣΤΙΚΗ ΚΙΝΗΜΑΤΙΚΗ ΠΑΡΑ ΕΙΓΜΑΤΑ «ΠΑΡΑ ΟΞΑ» ΑΣΚΗΣΕΙΣ

3α. ΣΧΕΤΙΚΙΣΤΙΚΗ ΚΙΝΗΜΑΤΙΚΗ ΠΑΡΑ ΕΙΓΜΑΤΑ «ΠΑΡΑ ΟΞΑ» ΑΣΚΗΣΕΙΣ 3α. ΣΧΕΤΙΚΙΣΤΙΚΗ ΚΙΝΗΜΑΤΙΚΗ ΠΑΡΑ ΕΙΓΜΑΤΑ «ΠΑΡΑ ΟΞΑ» ΑΣΚΗΣΕΙΣ Παράδειγµα: Το τρένο του Άινστάιν Ένα τρένο κινείται ως προς έναν αδρανειακό παρατηρητή Ο µε σταθερή ταχύτητα V. Στο µέσο ακριβώς του τρένου

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Το άτομο του Υδρογόνου Διδάσκων : Επίκ. Καθ. Μ. Μπενής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Το άτομο του Υδρογόνου Διδάσκων : Επίκ. Καθ. Μ. Μπενής ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγxρονη Φυσική II Το άτομο του Υδρογόνου Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cetive

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Μαθηματικών ΒΑΡΥΤΙΚΑ ΚΥΜΑΤΑ. Διπλωματική εργασία της: Ελένης-Άννας Φαλλίδα. Επιβλέπων καθηγητής: Βασίλειος Παπαγεωργίου

Πανεπιστήμιο Πατρών Τμήμα Μαθηματικών ΒΑΡΥΤΙΚΑ ΚΥΜΑΤΑ. Διπλωματική εργασία της: Ελένης-Άννας Φαλλίδα. Επιβλέπων καθηγητής: Βασίλειος Παπαγεωργίου Πανεπιστήμιο Πατρών Τμήμα Μαθηματικών ΒΑΡΥΤΙΚΑ ΚΥΜΑΤΑ Διπλωματική εργασία της: Ελένης-Άννας Φαλλίδα Επιβλέπων καθηγητής: Βασίλειος Παπαγεωργίου Πάτρα, Σεπτέμβριος 2016 Ευχαριστίες Θα ήθελα να ευχαριστήσω

Διαβάστε περισσότερα

Η «ΠΡΟΣΘΕΤΙΚΗ ΙΔΙΟΤΗΤΑ» ΤΗΣ ΚΙΝΗΤΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

Η «ΠΡΟΣΘΕΤΙΚΗ ΙΔΙΟΤΗΤΑ» ΤΗΣ ΚΙΝΗΤΙΚΗΣ ΕΝΕΡΓΕΙΑΣ Η «ΠΡΟΣΘΕΤΙΚΗ ΙΔΙΟΤΗΤΑ» ΤΗΣ ΚΙΝΗΤΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΑΘΗΝΑ,ΜΑΡΤΗΣ 2011 ΑΝΤΙ ΠΡΟΛΟΓΟΥ Αφορμή για την παρακάτω εργασία αποτέλεσε μια παρατήρηση του συνάδελφου (και φίλου) Διονύση Μητρόπουλου, για την «προσθετική

Διαβάστε περισσότερα

Το Θεώρημα Stone - Weierstrass

Το Θεώρημα Stone - Weierstrass Το Θεώρημα Stone - Weierstrass Θεώρημα 1 Έστω ¹ X συμπαγής χώρος Hausdorff και έστω C R (X η πραγματική άλγεβρα όλων των συνεχών συναρτήσεων f : X R. Έστω ότι ένα υποσύνολο A C R (X (1 το A είναι υπάλγεβρα

Διαβάστε περισσότερα

α β. M x f x. f x x x = = =.

α β. M x f x. f x x x = = =. Κυρτές συναρτήσεις σηµεία καµπής, Έστω συνάρτηση f συνεχής στο [ α β ] και παραγωγίσιµη στο ( α, β ) (α) Αν η f είναι γνησίως αύξουσα στο ( α, β ), τότε η fείναι κυρτή ή στρέφει τα κοίλα πάνω στο [ α,

Διαβάστε περισσότερα

V. Διαφορικός Λογισμός. math-gr

V. Διαφορικός Λογισμός. math-gr V Διαφορικός Λογισμός Παντελής Μπουμπούλης, MSc, PhD σελ blospotcom, bouboulismyschr ΜΕΡΟΣ Η έννοια της Παραγώγου Α Ορισμός Εφαπτομένη καμπύλης συνάρτησης: Έστω μια συνάρτηση και A, ένα σημείο της C Αν

Διαβάστε περισσότερα

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών Φ ρ ο ν τ ι σ τ ή ρ ι α δ υ α δ ι κ ό ΦΡΟΝΤΙΣΤΗΡΙΑ δυαδικό Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς 6 Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών Τα θέματα επεξεργάστηκαν οι καθηγητές των Φροντιστηρίων

Διαβάστε περισσότερα

ΚΟΣΜΟΛΟΓΙΑ ΚΟΣΜΟΛΟΓΙΑ είναι ο τομέας τις ϕυσικής που προσπαθεί να εξηγήσει την γένεση και την εξέλιξη του σύμπαντος χρησιμοποιώντας παρατηρήσεις και τ

ΚΟΣΜΟΛΟΓΙΑ ΚΟΣΜΟΛΟΓΙΑ είναι ο τομέας τις ϕυσικής που προσπαθεί να εξηγήσει την γένεση και την εξέλιξη του σύμπαντος χρησιμοποιώντας παρατηρήσεις και τ ΗΡΑΚΛΕΙΟ, 10 Οκτωβρίου, 2017 ΚΟΣΜΟΛΟΓΙΑ ΓΙΑ ΑΡΧΑΡΙΟΥΣ Πανεπιστήμιο Κρήτης 1- ΚΟΣΜΟΛΟΓΙΑ ΚΟΣΜΟΛΟΓΙΑ είναι ο τομέας τις ϕυσικής που προσπαθεί να εξηγήσει την γένεση και την εξέλιξη του σύμπαντος χρησιμοποιώντας

Διαβάστε περισσότερα

y 1 (x) f(x) W (y 1, y 2 )(x) dx,

y 1 (x) f(x) W (y 1, y 2 )(x) dx, Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 07/1/017 Μέρος 1ο: Μη Ομογενείς Γραμμικές Διαφορικές Εξισώσεις Δεύτερης Τάξης Θεωρούμε τη γραμμική μή-ομογενή διαφορική εξίσωση y + p(x) y + q(x) y = f(x), x

Διαβάστε περισσότερα

Μέϑοδοι Εφαρμοσμένων Μαϑηματιϰών (ΜΕΜ 274) Φυλλάδιο 8

Μέϑοδοι Εφαρμοσμένων Μαϑηματιϰών (ΜΕΜ 274) Φυλλάδιο 8 Μέϑοδοι Εφαρμοσμένων Μαϑηματιϰών (ΜΕΜ 274) Φυλλάδιο 8 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΤΟΠΙΚΗ ΑΝΑΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Θεωρούμε τη γενιϰή ομογενή γραμμιϰή διαφοριϰή εξίσωση τάξης n N στην ϰανονιϰή μορφή της

Διαβάστε περισσότερα

Η μέθοδος του κινουμένου τριάκμου

Η μέθοδος του κινουμένου τριάκμου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών Πρόγραμμα Μεταπτυχιακών Σπουδών Ειδίκευση Θεωρητικών Μαθηματικών Σ Σταματάκη Η μέθοδος του κινουμένου τριάκμου Σημειώσεις

Διαβάστε περισσότερα

F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται

F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται 6-04-011 1. Όχημα μάζας m ξεκινά από την αρχή του άξονα x χωρίς αρχική ταχύτητα και κινείται στον άξονα x υπό την επίδραση της δυνάμεως t F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται επίσης αντίσταση

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 13

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 13 Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τομέας Συστημάτων και Αυτομάτου Ελέγχου ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ Διάλεξη 13 Πάτρα 28 Προσαρμοστικός έλεγχος με μοντέλο αναφοράς

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας 23 Μαρτίου 2015 (πτυχιακή περίοδος)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας 23 Μαρτίου 2015 (πτυχιακή περίοδος) ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας 23 Μαρτίου 25 (πτυχιακή περίοδος) Αν θέλετε μπορείτε να επεξεργαστείτε όλα τα προβλήματα σε σύστημα μονάδων όπου η ταχύτητα

Διαβάστε περισσότερα

M. J. Lighthill. g(y) = f(x) e 2πixy dx, (1) d N. g (p) (y) =

M. J. Lighthill. g(y) = f(x) e 2πixy dx, (1) d N. g (p) (y) = Εισαγωγή στην ανάλυση Fourier και τις γενικευμένες συναρτήσεις * M. J. Lighthill μετάφραση: Γ. Ευθυβουλίδης ΚΕΦΑΛΑΙΟ 2 Η ΘΕΩΡΙΑ ΤΩΝ ΓΕΝΙΚΕΥΜΕΝΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΚΑΙ ΤΩΝ ΜΕΤΑΣΧΗΜΑΤΙΣΜΩΝ ΤΟΥΣ FOURIER 2.1. Καλές

Διαβάστε περισσότερα

ΦΥΕ14-5 η Εργασία Παράδοση

ΦΥΕ14-5 η Εργασία Παράδοση ΦΥΕ4-5 η Εργασία Παράδοση.5.9 Πρόβληµα. Συµπαγής οµογενής κύλινδρος µάζας τυλιγµένος µε λεπτό νήµα αφήνεται να κυλίσει από την κορυφή κεκλιµένου επιπέδου µήκους l και γωνίας φ (ϐλέπε σχήµα). Το ένα άκρο

Διαβάστε περισσότερα

III.9 ΑΚΡΟΤΑΤΑ ΣΕ ΠΕΡΙΟΧΗ

III.9 ΑΚΡΟΤΑΤΑ ΣΕ ΠΕΡΙΟΧΗ III.9 ΑΚΡΟΤΑΤΑ ΣΕ ΠΕΡΙΟΧΗ.Ολικά και τοπικά ακρότατα..εσωτερικά και συνοριακά ακρότατα 3.Χωριζόμενες μεταβλητές 4.Συνθήκες για ακρότατα 5.Ολικά ακρότατα κυρτών/κοίλων συναρτήσεων 6.Περισσότερες μεταβλητές.

Διαβάστε περισσότερα

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Ατοµο του Υδρογόνου 1.1.1 Κατάστρωση του προβλήµατος Ας ϑεωρήσουµε πυρήνα ατοµικού αριθµού Z

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Κεφάλαιο Β.5.1: Μελέτη Συνάρτησης Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Β.5.1: Μελέτη

Διαβάστε περισσότερα

Τα μαθήματα του 2 ου έτους

Τα μαθήματα του 2 ου έτους Χειμερινό εξάμηνο (Γ εξάμηνο) ΚΩΔ. ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ Τα μαθήματα του 2 ου έτους Μονάδες ΕCTS Θεωρία (ώρες/εβ δ.) Φροντιστήριο (ώρες/εβδ.) Εργαστή ριο 1 ΜΗΧΑΝΙΚΗ Ι 6 2 2-2 33 38 4 5 ΦΥΣΙΚΗ ΙΙΙ (Ηλεκτρομαγνητισμός)

Διαβάστε περισσότερα

Παράρτημα Αʹ. Ασκησεις. Αʹ.1 Ασκήσεις Κεϕαλαίου 1: Εισαγωγή στη κβαντική ϕύση του ϕωτός.

Παράρτημα Αʹ. Ασκησεις. Αʹ.1 Ασκήσεις Κεϕαλαίου 1: Εισαγωγή στη κβαντική ϕύση του ϕωτός. Παράρτημα Αʹ Ασκησεις Αʹ.1 Ασκήσεις Κεϕαλαίου 1: Εισαγωγή στη κβαντική ϕύση του ϕωτός. Άσκηση 1. Συμβατικά στην περιοχή του ηλεκτρομαγνητικού ϕάσματος μακρινό υπέρυθρο (far infrared, FIR) έχουμε μήκος

Διαβάστε περισσότερα

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( )

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( ) Συνεχείς συναρτήσεις πολλών µεταβλητών 7 Η Ευκλείδεια απόσταση που ορίσαµε στον R επιτρέπει ( εκτός από τον ορισµό των ορίων συναρτήσεων και ακολουθιών και τον ορισµό της συνέχειας συναρτήσεων της µορφής

Διαβάστε περισσότερα

REISSNER - NORDSTRÖM: Η ΑΓΝΩΣΤΗ ΘΑΥΜΑΤΟΥΡΓΗ ΜΑΥΡΗ ΤΡΥΠΑ

REISSNER - NORDSTRÖM: Η ΑΓΝΩΣΤΗ ΘΑΥΜΑΤΟΥΡΓΗ ΜΑΥΡΗ ΤΡΥΠΑ REISSNER - NORDSTRÖM: Η ΑΓΝΩΣΤΗ ΘΑΥΜΑΤΟΥΡΓΗ ΜΑΥΡΗ ΤΡΥΠΑ Μία πύλη προς ένα «δίκτυο από παράλληλα σύμπαντα»...υπάρχει στην πραγματικότητα; Ελλοχεύει αόρατη στο διάστημα. Μόνο η επίδρασή της στα γειτονικά

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος.. προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF:.4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων.

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος.. προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF:.4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος.. προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF:.4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων.) ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ TEXΝΟΛΟΓ. 5... ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα