5. Γεννήτριες Τυχαίων Αριθµών.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "5. Γεννήτριες Τυχαίων Αριθµών."

Transcript

1 5. Γεννήτριες Τυχαίων Αριθµών Εισαγωγή. Στο Κεφάλαιο αυτό θα δούµε πώς µπορούµε να δηµιουργήσουµε τυχαίους αριθµούς από την οµοιόµορφη κατανοµή στο διάστηµα [0,1]. Την κατανοµή αυτή, συµβολίζουµε U(0,1). Αν και η οµοιόµορφη κατανοµή είναι η απλούστερη συνεχής κατανοµή, είναι σηµαντικό να µπορέσουµε να δηµιουργήσουµε τυχαίους αριθµούς από αυτήν, αφού στη συνέχεια έχουµε τη δυνατότητα να πάρουµε τυχαίες τιµές από όλες τις άλλες κατανοµές (εκθετική, κανονική, γάµµα, δυωνυµική κ.α.), καθώς και υλοποιήσεις διαφόρων στοχαστικών διαδικασιών (π.χ. διαδικασία Poisson), εφαρµόζοντας ένα µετασχηµατισµό στους τυχαίους αριθµούς της οµοιόµορφης κατανοµής. Το είδος του µετασχηµατισµού εξαρτάται από την κατανοµή ή τη διαδικασία από την οποία θέλουµε να πάρουµε τυχαίες τιµές. Στο επόµενο Κεφάλαιο θα ασχοληθούµε µε τη δηµιουργία τυχαίων τιµών από οποιαδήποτε κατανοµή ή διαδικασία. Οι µέθοδοι δηµιουργίας τυχαίων αριθµών που θα δούµε στη συνέχεια (όπως και όλες οι γεννήτριες τυχαίων αριθµών που έχουν υλοποιηθεί σε υπολογιστές), είναι αριθµητικές και εντελώς ντετερµινιστικές, αφού κάθε νέος τυχαίος αριθµός καθορίζεται από έναν ή περισσότερους από τους προηγούµενους αριθµούς σύµφωνα µε µια σταθερή µαθηµατική φόρµουλα. Το γεγονός αυτό µας οδηγεί στην παρατήρηση ότι ουσιαστικά δεν έχουµε τυχαίους αριθµούς, αλλά ψευδο-τυχαίους, όπως εξάλλου πολλές φορές ονοµάζονται. Παρ όλα αυτά, µία σωστά σχεδιασµένη γεννήτρια ψευδο-τυχαίων αριθµών, µπορεί να παράγει ακολουθίες αριθµών µε τυχαία στατιστικά χαρακτηριστικά, όπως µπορεί να αποδειχθεί αν οι ακολουθίες περάσουν µε επιτυχία µια σειρά από στατιστικά τεστ, όπως το χ 2 τεστ, το τεστ συσχέτισης, τεστ εκτελέσεων, το τεστ φάσµατος κ.α. Για το λόγο αυτό θα συνεχίσουµε να χρησιµοποιούµε τον όρο τυχαίοι αριθµοί. Μία καλή γεννήτρια τυχαίων αριθµών πρέπει να έχει ορισµένες ιδιότητες: Πάνω απ όλα, οι παραγόµενοι αριθµοί πρέπει να φαίνονται οµοιόµορφα κατανεµηµένοι στο διάστηµα [0,1] και δεν θα πρέπει να εµφανίζουν καµµιά συσχέτιση µεταξύ τους. Η γεννήτρια θα πρέπει να είναι γρήγορη και να µην απαιτεί πολύ χώρο αποθήκευσης στον υπολογιστή. Είναι επιθυµητό να µπορούµε να ξαναπάρουµε µια δεδοµένη ακολουθία τυχαίων αριθµών, µε την ίδια ακριβώς µορφή. Οι λόγοι είναι δύο: Πρώτον, µε τη χρήση ίδιας ακολουθίας, µπορεί να γίνει ευκολότερη η επιβεβαίωση και η διόρθωση λαθών του προσοµοιωτή. εύτερον, µπορεί να γίνει καλύτερη σύγκριση της προσοµοίωσης διαφορετικών συστηµάτων. Η γεννήτρια θα πρέπει να µπορεί να δηµιουργεί αρκετά διαφορετικά ρεύµατα τυχαίων αριθµών. Μπορούµε να θεωρήσουµε τα διαφορετικά ρεύµατα ως ξεχωριστές και ανεξάρτητες γεννήτριες, οι οποίες τροφοδοτούν µε τυχαίους αριθµούς διαφορετικές πηγές τυχαιότητας του προσοµοιωτή, όπως οι χρόνοι µεταξύ διαδοχικών αφίξεων και οι χρόνοι εξυπηρέτησης στο παράδειγµα που µελετήσαµε στο Κεφάλαιο 3.

2 5.2. Γραµµικές Αναλογικές Γεννήτριες. Η µεγάλη πλειονότητα των γεννητριών τυχαίων αριθµών που χρησιµοποιούνται σήµερα, είναι Γραµµικές Αναλογικές Γεννήτριες - Linear Congruential Generators (LCG). Στις γεννήτριες αυτές, ορίζεται µία ακολουθία ακεραίων Z1, Z2,K από την αναδροµική σχέση: Zi = ( azi 1 + c)( mod m) (6) όπου m (ο διαιρέτης), a (ο πολλαπλασιαστής), c (η αύξηση) και Z 0 (ο σπόρος ή αρχική τιµή), είναι όλα µη-αρνητικοί ακέραιοι. ηλαδή, η (6) ορίζει ότι για να πάρουµε το Z i, διαιρούµε το azi 1 + c µε m και κρατάµε το υπόλοιπο της διαίρεσης. Συνεπώς, 0 Zi m 1 και για να πάρουµε τους τυχαίους αριθµούς (για i = 12,,K) στο διάστηµα [0,1], θέτουµε: Zi U i = m Θα επικεντρώσουµε την προσοχή µας κυρίως στα Z i, αν και έχει σηµασία η φύση της διαίρεσης των Z i µε το m, λόγω του τρόπου χειρισµού της από τους διάφορους υπολογιστές και γλώσσες προγραµµατισµού. Για τους ακέραιους m, a, c και Z 0, εκτός από τη µη-αρνητικότητα, πρέπει να ισχύουν οι σχέσεις: 0 < m, a < m, c < m και Z0 < m. Με µια πρώτη µατιά, µπορούν να εγερθούν δύο ενστάσεις εναντίον των LCG. Η πρώτη είναι κοινή για όλες τις γεννήτριες (ψευδο) τυχαίων αριθµών: τα Z i όπως ορίζονται ατην (6), δεν είναι αληθινοί τυχαίοι αριθµοί. Στην πραγµα-τικότητα, µπορεί να αποδειχθεί µε επαγωγή, ότι για i = 12,,K, i i ca ( 1) Zi = a Zo + m a (mod ) 1 έτσι ώστε κάθε Z i είναι απολύτως ορισµένο από τα m, a, c και Z 0. Πάντως, µε προσεκτική επιλογή των τεσσάρων αυτών παραµέτρων, προσπαθούµε να έχουµε τέτοια Z i, ώστε τα αντίστοιχα να φαίνονται ότι είναι ανεξάρτητες, όµοια κατανεµηµένες U(0,1) τυχαίες µεταβλητές, όταν υποβληθούν στα κατάλληλα τεστ. Η δεύτερη ένσταση είναι ότι τα µπορούν να πάρουν µόνο τις τιµές 0, 1/m, 2/m,..., (m-1)/m. Πράγµατι, τα µπορούν να πάρουν µόνο ένα τµήµα από τις τιµές αυτές, το οποίο εξαρτάται από τον ορισµό των σταθερών m, a, c και Z 0 και από τη φύση της διαίρεσης µε m. ηλαδή, δεν υπάρχει δυνατότητα να πάρουµε τιµή για τα µεταξύ, ας πούµε, 0.1/m και 0.9/m, παρότι αυτό θα έπρεπε να εµφανίζεται µε πιθανότητα 0.8/m>0. Αυτό που γίνεται, είναι να επιλέγουµε συνήθως το m πολύ µεγάλο, π.χ και µεγαλύτερο, έτσι ώστε τα σηµεία του [0,1] στα οποία µπορεί να πέσουν τα να είναι πάρα πολλά. Για m 10 9, υπάρχουν τουλάχιστον ένα δισεκατοµµύριο πιθανές τιµές. Στο Σχήµα 29 φαίνονται οι τιµές των Z i και µίας LCG µε m = 16, a = 5, c = 3 και Z 0 =7, για i = 12,, K, 19. Μπορούµε να παρατηρήσουµε ότι Z17 = Z1 = 6, Z = Z = κ.ο.κ. ηλαδή, για i = 17 ως 32, θα παίρνουµε ακριβώς τις ίδιες τιµές

3 των Z i (και συνεπώς των ), που έχουµε πάρει για i = 1 µέχρι 16 και µε ακριβώς την ίδια σειρά. Φυσικά δεν θα χρησιµοποιήσουµε ποτέ µια γεννήτρια µε τόσο µικρό m, αλλά µπορούµε να δούµε εδώ τον τρόπο λειτουργίας µιας LCG ΣΧΗΜΑ 29. Η Γραµµική Αναλογική Γεννήτρια Z = ( 5Z + 3)( 16) Z 0 = 7. i i 1 mod, µε Η επαναληπτική αυτή συµπεριφορά της γεννήτριας, είναι φυσικά αναπόφευκτη, λόγω της µορφής της (6), σύµφωνα µε την οποία όποτε το Z i παίρνει µια τιµή που είχε πάρει και προηγουµένως, δηµιουργείται στη συνέχεια η ίδια ακριβώς ακολουθία τιµών. Ο κύκλος αυτός επαναλαµβάνεται συνεχώς. Το µήκος του κύκλου ονοµάζεται περίοδος της γεννήτριας. Στις LCG, το Z i εξαρτάται µόνο από την αµέσως προηγούµενη τιµή Z i 1 και όχι από παλιότερες τιµές. Αφού, λοιπόν, 0 Zi m 1, είναι σαφές ότι η µέγιστη τιµή της περιόδου είναι m. Αν µάλιστα, είναι ίση µε m, τότε λέµε ότι η LCG έχει πλήρη περίοδο, όπως η γεννήτρια του Σχήµατος 29. Αν µία γεννήτρια έχει πλήρη περίοδο, οποιαδήποτε επιλογή αρχικής τιµής Z 0 από το σύνολο των ακεραίων { 01,, K, m 1} θα παράγει τον πλήρη κύκλο µε κάποια σειρά. Αν όµως µία γεννήτρια έχει περίοδο µικρότερη της πλήρους, το µήκος της θα εξαρτάται από τη συγκεκριµένη τιµή του Z 0 που έχει επιλεγεί, οπότε ουσιαστικά θα µιλάµε για την περίοδο της αρχικής τιµής της γεννήτριας αυτής. Μία προσοµοίωση µπορεί να χρειασθεί εκατοντάδες χιλιάδων τυχαίους αριθµούς και κατά συνέπεια είναι επιθυµητό να έχουµε LCGs µε µεγάλες περιόδους. Επίσης, είναι βολικό να έχουµε LCGs µε πλήρη περίοδο, διότι έτσι είµαστε σίγουροι ότι κάθε ακέραιος µεταξύ 0 και m 1 θα εµφανισθεί ακριβώς µία φορά σε κάθε κύκλο, γεγονός που βοηθάει στην οµοιοµορφία της κατανοµής των. Το παρακάτω Θεώρηµα 1 µας δίνει τους περιορισµούς που πρέπει να ισχύουν στην επιλογή των m, a και c, έτσι ώστε η LCG που προσδιορίζουν, να έχει πλήρη περίοδο: Θεώρηµα 1. Η Γραµµική Αναλογική Γεννήτρια της Σχέσης (6), έχει πλήρη περίοδο αν και µόνο αν ισχύουν οι παρακάτω τρεις συνθήκες: Ο µόνος θετικός ακέραιος που διαιρεί ακριβώς και το m και το c, είναι το 1. Αν το q είναι ένας πρώτος αριθµός που διαιρεί ακριβώς το m, τότε το q διαιρεί ακριβώς και το a 1. Αν το 4 διαιρεί ακριβώς το m, τότε το 4 διαιρεί ακριβώς και το a 1. Η ύπαρξη πλήρους ή τουλάχιστον µεγάλης περιόδου, είναι µόνο µία από τις επιθυµητές ιδιότητες µιας καλής LCG. Όπως αναφέρθηκε στην προηγούµενη Παράγραφο, θέλουµε η γεννήτρια να έχει και καλές στατιστικές ιδιότητες, υπολογιστική και αποθηκευτική αποδοτικότητα, δυνατότητα αναπαραγωγής της ίδιας ακολουθίας και επίσης ξεχωριστών ρευµάτων τυχαίων αριθµών. Η αναπαραγωγή της

4 ίδιας ακολουθίας είναι εύκολη, αφού χρειάζεται να θυµόµαστε µόνο την αρχική τιµή Z 0 και να ξαναρχίσουµε τη γεννήτρια µε την τιµή αυτή, οπότε θα πάρουµε την ίδια ακολουθία τυχαίων αριθµών. Επίσης, µπορούµε εύκολα να επανέλθουµε στη δηµιουργία των Z i σε οποιοδήποτε σηµείο της ακολουθίας, αποθηκεύοντας το τελευταίο Z i που δηµιουργήθηκε και χρησιµοποιώντας ως τη νέα αρχική τιµή. Έτσι έχουµε έναν εύκολο τρόπο για να πάρουµε µη-επικαλυπτόµενες, ανεξάρτητες ακολουθίες τυχαίων αριθµών. Τα διαφορετικά ρεύµατα σε µια LCG, ορίζονται συνήθως µε τον καθορισµό της αρχικής τιµής για κάθε ρεύµα. Για παράδειγµα, αν θέλουµε ρεύµατα µήκους 100,000 το καθένα, θα δώσουµε κάποια τιµή στο Z 0 για το πρώτο ρεύµα, µετά θα χρησιµοποιήσουµε το Z 100, 000 ως αρχική τιµή για το δεύτερο ρεύµα, το Z 200, 000 ως αρχική τιµή για το τρίτο ρεύµα κ.ο.κ. Παρατηρούµε ότι έτσι, τα ρεύµατα είναι ουσιαστικά µη-επικαλυπτόµενες, γειτονικές, υπο-ακολουθίες µιας απλής ακολουθίας τυχαίων αριθµών. Αν, πάντως, χρειασθούν περισσότεροι από 100,000 τυχαίοι αριθµοί σε κάποιο ρεύµα, θα χρησιµοποιηθούν αριθµοί από την αρχή του εποµένου ρεύµατος, που µπορεί να έχουν ήδη χρησιµοποιηθεί αλλού, έτσι ώστε να καταλήξουµε σε απαράδεκτη συσχέτιση των ρευµάτων µεταξύ τους. Λόγω της συνθήκης (a) του Θεωρήµατος 1, οι LCGs τείνουν να συµπεριφέρονται διαφορετικά για c > 0 (οπότε ονοµάζονται µικτές LCGs) και διαφορετικά για c = 0 (οπότε ονοµάζονται πολλαπλασιαστικές LCGs). Στις επόµενες δύο παραγράφους θα εξετάσουµε σε συντοµία την επιλογή καταλλήλων παραµέτρων, ώστε να έχουµε καλές LCGs, για τις δύο αυτές κατηγορίες γεννητριών Μικτές Γραµµικές Αναλογικές Γεννήτριες. Για c > 0, η συνθήκη (a) του Θεωρήµατος 1, είναι πιθανόν να ικανοποιείται, οπότε έχουµε τη δυνατότητα να πάρουµε την πλήρη περίοδο m. Κατ αρχήν, όσον αφορά το m. Για να έχουµε µεγάλη περίοδο και υψηλή πυκνότητα των στο [0,1], το m πρέπει να είναι µεγάλο. Ακόµα, η διαίρεση µε m για να πάρουµε το υπόλοιπο από τη Σχέση (6), είναι µια σχετικά αργή αριθµητική λειτουργία στον υπολογιστή, οπότε θα ήταν επιθυµητό να αποφεύγαµε την πλήρη εκτέλεσή της. Μία επιλογή του m που ικανοποιεί τις παραπάνω προϋποθέσεις, είναι το m = 2, όπου είναι ο αριθµός των its της λέξης που χρησιµοποιεί το σύστηµα στο οποίο θα υλοποιηθεί η προσοµοίωση. Π.χ. για 32-it υπολογιστή ή γλώσσα προγραµµατισµού, όπου το πιο αριστερό it χρησιµοποιείται για το πρόσηµο, θα πάρουµε = 31. Αν το είναι αρκετά µεγάλο, ας πούµε 31, τότε 31 9 m 2 > Επίσης, η επιλογή m = 2, µας επιτρέπει να αποφύγουµε την πλήρη διαίρεση µε m στους περισσότερους υπολογιστές, εκµεταλλευόµενοι την υπερχείλιση ακεραίου. Ο µεγαλύτερος ακέραιος που µπορεί να αναπαρασταθεί είναι ο 2 1 και κάθε απόπειρα να αποθηκευθεί ένας µεγαλύτερος ακέραιος W (µε, έστω, h > δυαδικά ψηφία), θα έχει σαν αποτέλεσµα την απώλεια των h αριστερών (πιο σηµαντικών) its του ακεραίου. Τα υπόλοιπα its, θα έχουν τιµή ακριβώς W (mod 2 ).

5 Συνεπώς, το m = 2 φαίνεται να είναι µια καλή επιλογή για το m. Με την επιλογή αυτή, το Θεώρηµα 1 δηλώνει ότι θα πάρουµε πλήρη περίοδο αν το c είναι περιττός και το a 1 διαιρείται ακριβώς από το 4. Στην περίπτωση αυτή, το Z 0 µπορεί να είναι οποιοσδήποτε ακέραιος µεταξύ 0 και m 1, χωρίς να υπάρχει επίπτωση στην περίοδο της γεννήτριας. Σε σχέση τώρα µε την επιλογή του πολλαπλασιαστή a. Υπήρχε παλιότερα η εκτίµηση, ότι είναι αποδοτικό να επηρεάζουµε τον πολλαπλασιασµό του Z i 1 µε το a. l Η εκτίµηση αυτή οδήγησε σε πολλαπλασιαστές της µορφής a = 2 + 1, για κάποιο l θετικό ακέραιο l. Τότε, azi 1 = 2 Zi 1 + Zi 1, έτσι ώστε το az i 1 µπορεί να δηµιουργηθεί µε τη µετατόπιση της δυαδικής αναπαράστασης του Z i 1 κατά l its αριστερά και προσθέτοντας Z i 1. Συνεπώς, ο πολλαπλασιασµός µπορεί να αντικατασταθεί από λειτουργίες µετατόπισης και πρόσθεσης. Όµως πιο πρόσφατες ερευνητικές εργασίες έχουν δείξει ότι πρέπει να αποφεύγονται πολλαπλασιαστές της παραπάνω µορφής, διότι δίνουν γεννήτριες µε φτωχά στατιστικά χαρακτηριστικά. Τότε, πώς θα έπρεπε να επιλεγούν τα a και c, όταν m = 2, ώστε να πάρουµε µία καλή µικτή LCG; Η πραγµατική απάντηση είναι ότι πρέπει µάλλον να προτιµήσουµε µία πολλαπλασιαστική γεννήτρια (βλέπε επόµενη Παράγραφο), η οποία είναι απλούστερη, πιο κατανοητή, συµπεριφέρεται γενικά τόσο καλά όσο και µία µικτή LCG και για τους λόγους αυτούς χρησιµοποιείται πιο πολύ στην πράξη. Πάντως, δύο µικτές LCGs µε m = 2, που έχει αποδειχθεί ότι συµπεριφέρονται καλά, είναι οι παρακάτω: Για = 35, παίρνουµε a = 5 15 και c = 1. Για = 31, παίρνουµε a = 314, 159, 269 και c = 453, 806, Πολλαπλασιαστικές Γραµµικές Αναλογικές Γεννήτριες. Οι πολλαπλασιαστικές LCGs έχουν το πλεονέκτηµα ότι δεν χρειάζεται η πρόσθεση του c, αλλά όµως δεν µπορούν να έχουν πλήρη περίοδο, αφού δεν είναι δυνατόν να ικανοποιηθεί η συνθήκη (a) του Θεωρήµατος 1. Όµως, µπορούµε να πάρουµε περίοδο ίση µε m 1, αν τα m και a επιλεγούν µε προσοχή. Όπως και στις µικτές γεννήτριες, είναι υπολογιστικά αποδοτικό να επιλέξουµε m = 2. Στην περίπτωση αυτή, έχει αποδειχθεί ότι η περίοδος είναι το πολύ 2 2, δηλαδή µπορούν να δηµιουργηθούν µόνο το 1/4 των ακεραίων από 0 έως m 1, ως τιµές των Z i. (Στην πραγµατικότητα, η περίοδος είναι 2 2, αν το Z 0 είναι περιττός και το a είναι της µορφής 8k + 3 ή 8k + 5, για κάποιο k = 01,,K). Ακόµα, δεν θα µπορούµε γενικά να ξέρουµε πού θα πέσουν αυτοί οι m 4 ακέραιοι. ηλαδή, µπορεί να υπάρχουν απαράδεκτα µεγάλα κενά στις τιµές των Z i. Επίσης, αν επιλέξουµε a της µορφής 2 l + j (έτσι ώστε ο πολλαπλασιασµός του Z i 1 µε το a να αντικαθίσταται από µια µετατόπιση και j προσθέσεις), θα έχουµε φτωχές στατιστικές ιδιότητες της γεννήτριας. Η γεννήτρια που είναι γνωστή µε το όνοµα RANDU και είναι αυτής της µορφής ( m= 2, a = = 65, 539, c = 0 ), έχει αποδειχθεί ότι

6 έχει ανεπιθύµητες στατιστικές ιδιότητες και κατά συνέπεια πρέπει να αποφεύγεται η χρήση της. Λόγω των δυσκολιών αυτών που σχετίζονται µε την επιλογή m = 2 στις πολλαπλασιαστικές LCGs, έχει γίνει προσπάθεια να βρεθούν άλλοι τρόποι προσδιορισµού του m. Μία τέτοια µέθοδος προτείνει το m να είναι ο µεγαλύτερος πρώτος αριθµός που είναι µικρότερος από 2. Για παράδειγµα, στην περίπτωση = 31, ο µεγαλύτερος πρώτος αριθµός µικρότερος από 2 31 είναι ο = 2, 147, 483, 647. Όταν το m είναι πρώτος, µπορεί να αποδειχθεί ότι η περίοδος είναι m 1 αν το a είναι primitive element modulo m. ηλαδή, ο µικρότερος ακέραιος l για τον οποίο το a l 1 διαιρείται ακριβώς από το m, είναι ο l = m 1. Με τα m και a επιλεγµένα µε τον τρόπο αυτό, θα πάρουµε τους ακεραίους 12,, K, m 1ακριβώς µία φορά σε κάθε κύκλο, έτσι ώστε το Z 0 µπορεί να είναι οποιοσδήποτε ακέραιος από 1 έως m 1, ενώ θα έχουµε πάντα περίοδο ίση µε m 1. Οι γεννήτριες αυτές ονοµάζονται Prime Modulus Multiplicative LCGs (PMMLCGs). ύο θέµατα που αφορούν τις PMMLCGs είναι τα εξής: (1) Πώς µπορούµε να βρούµε ένα primitive element modulo m; Η διαδικασία αυτή είναι πολύπλοκη υπολογιστικά και δεν θα ασχοληθούµε µαζί της. Θα ξεπεράσουµε το σηµείο αυτό, χρησιµοποιώντας µερικές PMMLCGs που έχουν δοκιµασθεί και έχει αποδειχθεί ότι συµπεριφέρονται καλά. Τις παρουσιάζουµε στο τέλος της παραγράφου. (2) Από τη στιγµή που δεν έχουµε επιλέξει m = 2, δεν µπορούµε να χρησιµοποιήσουµε απευθείας το µηχανισµό υπερχείλισης για να επηρεάσουµε τη διαίρεση µε το m. Μία τεχνική που έχει αναπτυχθεί για την αποφυγή της εξαντλητικής διαίρεσης στην περίπτωση αυτή, η οποία χρησιµοποιεί µία µορφή υπερχείλισης, ονοµάζεται προσοµοιωµένη διαίρεση. Η γεννήτρια της οποίας παρουσιάζουµε τον κώδικα στο Κεφάλαιο αυτό, χρησιµοποιεί την τεχνική της προσοµοιωµένης διαίρεσης. Ολοκληρώνουµε την παράγραφο αυτή, µε παραδείγµατα δοκιµασµένων PMMLCGs, οι οποίες έχουν διαιρέτη m ίσο µε m 31 = 2 1 και πολλαπλασιαστές a οι οποίοι είναι primitive element modulo m και γνωρίζουµε ότι συµπεριφέρονται καλά. Η περίοδος των γεννητριών αυτών είναι m 31 1= 2 2 και είναι αρκετά µεγάλη ώστε µε ένα ρυθµό δηµιουργίας 1,000 τυχαίων αριθµών ανά δευτερόλεπτο, να χρειάζεται χρόνος περισσότερος από 3 εβδοµάδες για να ολοκληρωθεί ένας κύκλος. ύο συγκεκριµένες τιµές του πολλαπλασιαστή a που χρησιµοποιούνται ευρέως µε το διαιρέτη m 5, είναι οι a 1 = 7 = 16, 807 και a 2 = 630, 360, 016. Και οι δύο είναι primitive element modulo m. Έχει αποδειχθεί ότι το a 2 συµπεριφέρεται πολύ καλύτερα στατιστικά από το a 1 και κατά συνέπεια χρησιµοποιείται περισσότερο. Η PMMLCG που παρουσιάζεται στη συνέχεια του Κεφαλαίου, έχει 31 m= m = 2 1 και a = a2 = 630, 360, 016 και είναι µια γεννήτρια τυχαίων αριθµών που µπορεί να χρησιµοποιηθεί σε µεγάλα πειράµατα προσοµοίωσης.

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 Μικρό Θεώρηµα του Fermat, η συνάρτηση του Euler και Μαθηµατικοί ιαγωνισµοί Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Αύγουστος 2008 Αλεξανδρος Γ. Συγκελακης

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

Πρόβληµα 2 (15 µονάδες)

Πρόβληµα 2 (15 µονάδες) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2013-2014 ΔΙΔΑΣΚΩΝ: Ε. Μαρκάκης Πρόβληµα 1 (5 µονάδες) 2 η Σειρά Ασκήσεων Προθεσµία Παράδοσης: 19/1/2014 Υπολογίστε

Διαβάστε περισσότερα

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι:

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: Κατανοµές ειγµατοληψίας 1.Εισαγωγή Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: 1. Στατιστικής και 2. Κατανοµής ειγµατοληψίας

Διαβάστε περισσότερα

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής. 2.6 ΟΡΙΑ ΑΝΟΧΗΣ Το διάστηµα εµπιστοσύνης παρέχει µία εκτίµηση µιας άγνωστης παραµέτρου µε την µορφή διαστήµατος και ένα συγκεκριµένο βαθµό εµπιστοσύνης ότι το διάστηµα αυτό, µε τον τρόπο που κατασκευάσθηκε,

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή.

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή. Η Αριθµητική Ανάλυση χρησιµοποιεί απλές αριθµητικές πράξεις για την επίλυση σύνθετων µαθηµατικών προβληµάτων. Τις περισσότερες φορές τα προβλήµατα αυτά είναι ή πολύ περίπλοκα ή δεν έχουν ακριβή αναλυτική

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

Είναι το ηλεκτρικό ρεύµα διανυσµατικό µέγεθος;

Είναι το ηλεκτρικό ρεύµα διανυσµατικό µέγεθος; Είναι το ηλεκτρικό ρεύµα διανυσµατικό µέγεθος; Για να εξετάσουµε το κύκλωµα LC µε διδακτική συνέπεια νοµίζω ότι θα πρέπει να τηρήσουµε τους ορισµούς που δώσαµε στα παιδιά στη Β Λυκείου. Ας ξεκινήσουµε

Διαβάστε περισσότερα

1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί δυαδικοί αριθμοί 4. Αριθμητικές πράξεις δυαδικών αριθμών

1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί δυαδικοί αριθμοί 4. Αριθμητικές πράξεις δυαδικών αριθμών ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ MHXANIKOI Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΥΑ ΙΚΟΙ ΑΡΙΘΜΟΙ (ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ) Γ. Τσιατούχας Παράρτηµα A ιάρθρωση 1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί

Διαβάστε περισσότερα

Κεφάλαιο 5 Οι χώροι. Περιεχόµενα 5.1 Ο Χώρος. 5.3 Ο Χώρος C Βάσεις Το Σύνηθες Εσωτερικό Γινόµενο Ασκήσεις

Κεφάλαιο 5 Οι χώροι. Περιεχόµενα 5.1 Ο Χώρος. 5.3 Ο Χώρος C Βάσεις Το Σύνηθες Εσωτερικό Γινόµενο Ασκήσεις Σελίδα 1 από 6 Κεφάλαιο 5 Οι χώροι R και C Περιεχόµενα 5.1 Ο Χώρος R Πράξεις Βάσεις Επεξεργασµένα Παραδείγµατα Ασκήσεις 5. Το Σύνηθες Εσωτερικό Γινόµενο στο Ορισµοί Ιδιότητες Επεξεργασµένα Παραδείγµατα

Διαβάστε περισσότερα

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ)

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) ΜΙΧΑΛΗΣ ΤΖΟΥΜΑΣ ΕΣΠΟΤΑΤΟΥ 3 ΑΓΡΙΝΙΟ. ΠΕΡΙΛΗΨΗ Η έννοια της συνάρτησης είναι στενά συνυφασµένη µε τον πίνακα τιµών και τη γραφική παράσταση.

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΜΕΤΑΒΛΗΤΩΝ

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΜΕΤΑΒΛΗΤΩΝ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΜΕΤΑΒΛΗΤΩΝ Όπως έχει αποδειχθεί (βλέπε π.χ. Ε. Ξεκαλάκη και Ι. Πανάρετο 993) οι αναµενόµενες τιµές E( ) και E( m ) παρέχουν σηµαντικές πληροφορίες σχετικά µε την κατανοµή µιας πραγµατικής

Διαβάστε περισσότερα

Κεφάλαιο 5ο: Εντολές Επανάληψης

Κεφάλαιο 5ο: Εντολές Επανάληψης Χρήστος Τσαγγάρης ΕΕ ΙΠ Τµήµατος Μαθηµατικών, Πανεπιστηµίου Αιγαίου Κεφάλαιο 5ο: Εντολές Επανάληψης Η διαδικασία της επανάληψης είναι ιδιαίτερη συχνή, αφού πλήθος προβληµάτων µπορούν να επιλυθούν µε κατάλληλες

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

ΤΕΙ Κρήτης, Παράρτηµα Χανίων

ΤΕΙ Κρήτης, Παράρτηµα Χανίων ΠΣΕ, Τµήµα Τηλεπικοινωνιών & ικτύων Η/Υ Εργαστήριο ιαδίκτυα & Ενδοδίκτυα Η/Υ ( ηµιουργία συστήµατος µε ροint-tο-ροint σύνδεση) ρ Θεοδώρου Παύλος Χανιά 2003 Περιεχόµενα 1 ΕΙΣΑΓΩΓΗ...2 2 ΤΟ ΚΑΝΑΛΙ PΟINT-TΟ-PΟINT...2

Διαβάστε περισσότερα

Ο ΦΙΜΠΟΝΑΤΣΙ ΚΑΙ Η ΔΙΑΙΡΕΣΗ. Διαβάζουµε από το βιβλίο «Liber Abaci» κεφάλαιο 5ο «Για την διαίρεση των ακεραίων», ανάµεσα σε άλλα, και τα παρακάτω:

Ο ΦΙΜΠΟΝΑΤΣΙ ΚΑΙ Η ΔΙΑΙΡΕΣΗ. Διαβάζουµε από το βιβλίο «Liber Abaci» κεφάλαιο 5ο «Για την διαίρεση των ακεραίων», ανάµεσα σε άλλα, και τα παρακάτω: Ο ΦΙΜΠΟΝΑΤΣΙ ΚΑΙ Η ΔΙΑΙΡΕΣΗ Διαβάζουµε από το βιβλίο «Liber Abaci» κεφάλαιο 5ο «Για την διαίρεση των ακεραίων», ανάµεσα σε άλλα, και τα παρακάτω: - «Όταν κανείς επιθυµεί να ξέρει να διαιρεί οποιονδήποτε

Διαβάστε περισσότερα

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ Ελαχιστοποίηση κόστους διατροφής Ηεπιχείρηση ζωοτροφών ΒΙΟΤΡΟΦΕΣ εξασφάλισε µια ειδική παραγγελίααπό έναν πελάτη της για την παρασκευή 1.000 κιλών ζωοτροφής, η οποία θα πρέπει

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07)

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) Επιµέλεια Σηµειώσεων : Βασιλειάδης Γεώργιος Καστοριά, εκέµβριος 2006

Διαβάστε περισσότερα

Γραµµική Άλγεβρα. Εισαγωγικά. Μέθοδος Απαλοιφής του Gauss

Γραµµική Άλγεβρα. Εισαγωγικά. Μέθοδος Απαλοιφής του Gauss Γραµµική Άλγεβρα Εισαγωγικά Υπάρχουν δύο βασικά αριθµητικά προβλήµατα στη Γραµµική Άλγεβρα. Το πρώτο είναι η λύση γραµµικών συστηµάτων Aλγεβρικών εξισώσεων και το δεύτερο είναι η εύρεση των ιδιοτιµών και

Διαβάστε περισσότερα

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Γιώργος Αλογοσκούφης, Θέµατα Δυναµικής Μακροοικονοµικής, Αθήνα 0 Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης των εξισώσεων

Διαβάστε περισσότερα

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα; ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ 1. Τι ονοµάζουµε µονώνυµο Μονώνυµο ονοµάζεται κάθε γινόµενο το οποίο αποτελείται από γνωστούς και αγνώστους (µεταβλητές ) πραγµατικούς αριθµούς. Ο γνωστός πραγµατικός αριθµός ονοµάζεται

Διαβάστε περισσότερα

5.1 Θεωρητική εισαγωγή

5.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 5 ΚΩ ΙΚΟΠΟΙΗΣΗ BCD Σκοπός: Η κατανόηση της µετατροπής ενός τύπου δυαδικής πληροφορίας σε άλλον (κωδικοποίηση/αποκωδικοποίηση) µε τη µελέτη της κωδικοποίησης BCD

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ Η μελέτη διαφόρων στοχαστικών φαινομένων μπορεί γενικά να γίνει χρησιμοποιώντας

ΕΙΣΑΓΩΓΗ Η μελέτη διαφόρων στοχαστικών φαινομένων μπορεί γενικά να γίνει χρησιμοποιώντας ΕΙΣΑΓΩΓΗ Η μελέτη διαφόρων στοχαστικών φαινομένων μπορεί γενικά να γίνει χρησιμοποιώντας κυρίως τρεις μεθόδους:. Αναλυτικές Μέθοδοι: πραγματοποιείται κατάλληλη μαθηματική μοντελοποίηση του στοχαστικού

Διαβάστε περισσότερα

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall 3..2 Ο Συντελεστής Συσχέτισης τ Του Kendall Ο συντελεστής συχέτισης τ του Kendall μοιάζει με τον συντελεστή ρ του Spearman ως προς το ότι υπολογίζεται με βάση την τάξη μεγέθους των παρατηρήσεων και όχι

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 19 Hashing - Κατακερματισμός 1 / 23 Πίνακες απευθείας πρόσβασης (Direct Access Tables) Οι πίνακες απευθείας

Διαβάστε περισσότερα

Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση

Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση Αλέξανδρος Γ. Συγκελάκης 6 Απριλίου 2006 Περίληψη Θέµα της εργασίας αυτής, είναι η απόδειξη οτι η εξίσωση x 3 + y 3 = z 3 όπου xyz 0,

Διαβάστε περισσότερα

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1 Συστήματα αρίθμησης Δεκαδικό σύστημα αρίθμησης 1402 = 1000 + 400 +2 =1*10 3 + 4*10 2 + 0*10 1 + 2*10 0 Γενικά σε ένα σύστημα αρίθμησης με βάση το b N, ένας ακέραιος αριθμός με n ψηφία παριστάνεται ως:

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Η πλέον γνωστή και περισσότερο χρησιµοποιηµένη µέθοδος για την επίλυση ενός γενικού προβλήµατος γραµµικού προγραµµατισµού, είναι η µέθοδος Simplex η οποία αναπτύχθηκε

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ

ΜΑΘΗΜΑΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΤΟ EXCEL I K ΗΜΗΤΡΙΟΥ 17 1. Γράφηµα συνάρτησης µιας µεταβλητής ΜΑΘΗΜΑΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ Θα σχεδιάσοµε µε το Excel το γράφηµα της συνάρτησης y=sin(x), x [0,2π], για να επιδείξοµε γενικότερα τη

Διαβάστε περισσότερα

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις ΚΕΦΑΛΑΙΟ 2 Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις 2.1 ΕΙΣΑΓΩΓΗ Όπως έχουµε δει, για να προσδιορίσουµε τις αποκρίσεις ενός κυκλώµατος, πρέπει να λύσουµε ένα σύνολο διαφορικών

Διαβάστε περισσότερα

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος Έλεγχοι Υποθέσεων 1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος µ = 100 Κάθε υπόθεση συνοδεύεται από µια εναλλακτική: Ο

Διαβάστε περισσότερα

Αριθµητική Παραγώγιση και Ολοκλήρωση

Αριθµητική Παραγώγιση και Ολοκλήρωση Ιαν. 9 Αριθµητική Παραγώγιση και Ολοκλήρωση Είδαµε στο κεφάλαιο της παρεµβολής συναρτήσεων πώς να προσεγγίζουµε µια (συνεχή) συνάρτηση f από ένα πολυώνυµο, όταν γνωρίζουµε + σηµεία του γραφήµατος της συνάρτησης:

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις HY118- ιακριτά Μαθηµατικά Παρασκευή, 06/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/8/2015

Διαβάστε περισσότερα

Τα µπιτ και η σηµασία τους. Σχήµα bit. ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (1/2) 1.7 Αποθήκευση κλασµάτων 1.8 Συµπίεση δεδοµένων 1.9 Σφάλµατα επικοινωνίας

Τα µπιτ και η σηµασία τους. Σχήµα bit. ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (1/2) 1.7 Αποθήκευση κλασµάτων 1.8 Συµπίεση δεδοµένων 1.9 Σφάλµατα επικοινωνίας ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (1/2) ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (2/2) 1.1 Τα bits και ο τρόπος που αποθηκεύονται 1.2 Κύρια µνήµη 1.3 Αποθηκευτικά µέσα 1.4 Αναπαράσταση πληροφοριών ως σχηµάτων bits

Διαβάστε περισσότερα

1.1 Θεωρητική εισαγωγή

1.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΛΟΓΙΚΕΣ ΠΥΛΕΣ NOT, AND, NAND Σκοπός: Να εξοικειωθούν οι φοιτητές µε τα ολοκληρωµένα κυκλώµατα της σειράς 7400 για τη σχεδίαση και υλοποίηση απλών λογικών συναρτήσεων.

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

Σηµειώσεις στις συναρτήσεις

Σηµειώσεις στις συναρτήσεις Σηµειώσεις στις συναρτήσεις 4 Η έννοια της συνάρτησης Ο όρος «συνάρτηση» χρησιµοποιείται αρκετά συχνά για να δηλώσει ότι ένα µέγεθος, µια κατάσταση κτλ εξαρτάται από κάτι άλλο Και στα µαθηµατικά ο όρος

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ Στα πλαίσια της ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑΣ προσπαθούµε να προσεγγίσουµε τα χαρακτηριστικά ενός συνόλου (πληθυσµός) δια της µελέτης των χαρακτηριστικών αυτών επί ενός µικρού

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΕΠΕΡΑΣΜΕΝΗΣ ΑΚΡΙΒΕΙΑΣ (ΚΒΑΝΤΙΣΜΟΥ)

ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΕΠΕΡΑΣΜΕΝΗΣ ΑΚΡΙΒΕΙΑΣ (ΚΒΑΝΤΙΣΜΟΥ) ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΕΠΕΡΑΣΜΕΝΗΣ ΑΚΡΙΒΕΙΑΣ (ΚΒΑΝΤΙΣΜΟΥ) 0. Εισαγωγή Τα αποτελέσµατα πεπερασµένης ακρίβειας οφείλονται στα λάθη που προέρχονται από την παράσταση των αριθµών µε µια πεπερασµένη ακρίβεια. Τα αποτελέσµατα

Διαβάστε περισσότερα

Επιλογή και επανάληψη. Λογική έκφραση ή συνθήκη

Επιλογή και επανάληψη. Λογική έκφραση ή συνθήκη Επιλογή και επανάληψη Η ύλη που αναπτύσσεται σε αυτό το κεφάλαιο είναι συναφής µε την ύλη που αναπτύσσεται στο 2 ο κεφάλαιο. Όπου υπάρχουν διαφορές αναφέρονται ρητά. Προσέξτε ιδιαίτερα, πάντως, ότι στο

Διαβάστε περισσότερα

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΕΝΟΤΗΤΑ Μ1 ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Εκπαιδευτής: Γ. Π. ΠΑΤΣΗΣ, Επικ. Καθηγητής, Τμήμα Ηλεκτρονικών Μηχανικών, ΤΕΙ Αθήνας ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ 1. Ποια είναι η βάση

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β ηµήτρης Κουγιουµτζής http://users.auth.gr/dkugiu/teach/civilengineer E mail: dkugiu@gen.auth.gr 1/11/2009 2 Περιεχόµενα 1 ΠΕΡΙΓΡΑΦΙΚΗ

Διαβάστε περισσότερα

3 o Καλοκαιρινό Μαθηµατικό σχολείο Ε.Μ.Ε. Λεπτοκαρυά Πιερίας 2009

3 o Καλοκαιρινό Μαθηµατικό σχολείο Ε.Μ.Ε. Λεπτοκαρυά Πιερίας 2009 3 o Καλοκαιρινό Μαθηµατικό σχολείο Ε.Μ.Ε. Λεπτοκαρυά Πιερίας 2009 ιαιρετότητα και Ισοτιµίες Β και Γ Λυκείου Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Ιούλιος 2009 1 ιαιρετοτητα και Ισοτιµιες ΠΡΟΛΟΓΟΣ Το

Διαβάστε περισσότερα

Εισαγωγή ΕΙΣΑΓΩΓΗ ΣΤΑ ΓΣΠ

Εισαγωγή ΕΙΣΑΓΩΓΗ ΣΤΑ ΓΣΠ ΕΙΣΑΓΩΓΗ ΣΤΑ ΓΣΠ Τα τελευταία 25 χρόνια, τα προβλήµατα που σχετίζονται µε την διαχείριση της Γεωγραφικής Πληροφορίας αντιµετωπίζονται σε παγκόσµιο αλλά και εθνικό επίπεδο µε την βοήθεια των Γεωγραφικών

Διαβάστε περισσότερα

3. Στο Block Diagram αναπτύσουµε το υπολογιστικό µέρος του προγράµµατος. Σχήµα 1.1: Το Front Panel του LabVIEW.

3. Στο Block Diagram αναπτύσουµε το υπολογιστικό µέρος του προγράµµατος. Σχήµα 1.1: Το Front Panel του LabVIEW. Front Panel και Block Diagram 1. Το LAbVIEW αποτελείται από δύο καρτέλες. Το Front Panel και το Block Diagram. Εναλλασσόµαστε ανάµεσα στις δύο καρτέλες µε τη συντόµευση CTRL+E ή µε το µενού Windows / Show

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

Ενότητα 2: Η κρυφή µνήµη και η λειτουργία της

Ενότητα 2: Η κρυφή µνήµη και η λειτουργία της Ενότητα 2: Η κρυφή µνήµη και η λειτουργία της Στην ενότητα αυτή θα αναφερθούµε εκτενέστερα στη λειτουργία και την οργάνωση της κρυφής µνήµης. Θα προσδιορίσουµε τις βασικές λειτουργίες που σχετίζονται µε

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ

ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Οικονοµικό Πανεπιστήµιο Αθηνών Τµήµα ιοικητικής Επιστήµης & Τεχνολογίας ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Κεφάλαιο 2 Αριθµητικά Συστήµατα και Αριθµητική Υπολογιστών Γιώργος Γιαγλής Περίληψη Κεφαλαίου

Διαβάστε περισσότερα

Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. Λογάριθµοι ΛΟΓΑΡΙΘΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΛΟΓΑΡΙΘΜΟΥΣ

Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. Λογάριθµοι ΛΟΓΑΡΙΘΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΛΟΓΑΡΙΘΜΟΥΣ ΛΟΓΑΡΙΘΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΛΟΓΑΡΙΘΜΟΥΣ Παραθέτουµε αρχικά τις βασικές ιδιότητες των δυνάµεων µε βάση έ- ναν θετικό πραγµατικό αριθµό και εκθέτη έναν ρητό αριθµό. α x.α y = α x+y (α.β) x = α x.β x α x :α

Διαβάστε περισσότερα

Ο είκτης Συσχέτισης. Υπάρχουν πολλές οι έρευνες στις οποίες µας ενδιαφέρει να µελετήσουµε αν υπάρχει ΑΛΛΗΛΕΞΑΡΤΗΣΗ µεταξύ δύο µεταβλητών

Ο είκτης Συσχέτισης. Υπάρχουν πολλές οι έρευνες στις οποίες µας ενδιαφέρει να µελετήσουµε αν υπάρχει ΑΛΛΗΛΕΞΑΡΤΗΣΗ µεταξύ δύο µεταβλητών Κεφάλαιο 8 Ο είκτης Συσχέτισης 1 Η έννοια της Αλληλεξάρτησης Υπάρχουν πολλές οι έρευνες στις οποίες µας ενδιαφέρει να µελετήσουµε αν υπάρχει ΑΛΛΗΛΕΞΑΡΤΗΣΗ µεταξύ δύο µεταβλητών ηλαδή, µας ενδιαφέρει να

Διαβάστε περισσότερα

Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ. Εισαγωγή

Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ. Εισαγωγή Εισαγωγή Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ Ξεκινάµε την εργαστηριακή µελέτη της Ψηφιακής Λογικής των Η/Υ εξετάζοντας αρχικά τη µορφή των δεδοµένων που αποθηκεύουν και επεξεργάζονται οι υπολογιστές και προχωρώντας

Διαβάστε περισσότερα

Ολοκλήρωση - Μέθοδος Monte Carlo

Ολοκλήρωση - Μέθοδος Monte Carlo ΦΥΣ 145 - Διαλ.09 Ολοκλήρωση - Μέθοδος Monte Carlo Χρησιμοποίηση τυχαίων αριθμών για επίλυση ολοκληρωμάτων Η μέθοδος Monte Carlo δίνει μια διαφορετική προσέγγιση για την επίλυση ενός ολοκληρώμτατος Τυχαίοι

Διαβάστε περισσότερα

Κεφάλαιο M3. Διανύσµατα

Κεφάλαιο M3. Διανύσµατα Κεφάλαιο M3 Διανύσµατα Διανύσµατα Διανυσµατικά µεγέθη Φυσικά µεγέθη που έχουν τόσο αριθµητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούµε µε τις µαθηµατικές πράξεις των

Διαβάστε περισσότερα

3. Σηµειώσεις Access. # Εισαγωγή ψηφίου ή κενού διαστήµατος. Επιτρέπονται τα ση-

3. Σηµειώσεις Access. # Εισαγωγή ψηφίου ή κενού διαστήµατος. Επιτρέπονται τα ση- Μάθηµα 3 Προχωρηµένες ιδιότητες πεδίων Μάσκες εισαγωγής Οι ιδιότητες Μορφή και Μάσκα εισαγωγής περιγράφονται µαζί γιατί έχουν κοινά χαρακτηριστικά που αφορούν την εµφάνιση. Με την ιδιότητα Μορφή καθορίζουµε

Διαβάστε περισσότερα

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Κεφάλαιο 5 ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Οταν ένα µεταβλητό µέγεθος εξαρτάται αποκλειστικά από τις µεταβολές ενός άλλου µεγέθους, τότε η σχέση που συνδέει

Διαβάστε περισσότερα

ζωγραφίζοντας µε τον υπολογιστή

ζωγραφίζοντας µε τον υπολογιστή ζωγραφίζοντας µε τον υπολογιστή Μια από τις εργασίες που µπορούµε να κάνουµε µε τον υπολογιστή είναι και η ζωγραφική. Για να γίνει όµως αυτό πρέπει ο υπολογιστής να είναι εφοδιασµένος µε το κατάλληλο πρόγραµµα.

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών

Εισαγωγή στην επιστήμη των υπολογιστών Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 3ο Αναπαράσταση Αριθμών www.di.uoa.gr/~organosi 1 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα 2 3 Δεκαδικό και Δυαδικό Δυαδικό Σύστημα

Διαβάστε περισσότερα

4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ

4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ 1 4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ ΘΕΩΡΙΑ 1. Θεώρηµα Αν α, β ακέραιοι µε β 0, τότε υπάρχουν µοναδικοί ακέραιοι κ και υ, έτσι ώστε α = κβ + υ µε 0 υ < β. 2. Τέλεια διαίρεση Αν το υπόλοιπο υ της Ευκλείδειας

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 9 ο 9.1 ηµιουργία µοντέλων πρόβλεψης 9.2 Απλή Γραµµική Παλινδρόµηση 9.3 Αναλυτικά για το ιάγραµµα ιασποράς

Διαβάστε περισσότερα

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ .3 Ασκήσεις σχ. βιβλίου σελίδας 00 04 Α ΟΜΑ ΑΣ. Έξι διαδοχικοί άρτιοι αριθµοί έχουν µέση τιµή. Να βρείτε τους αριθµούς και τη διάµεσό τους. Αν είναι ο ποιο µικρός άρτιος τότε οι ζητούµενοι αριθµοί θα είναι

Διαβάστε περισσότερα

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ 20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ ΚΕΦΛΙΟ Ο ΠΙΘΝΟΤΗΤΕΣ. Εισαγωγή Στην Θεωρία Πιθανοτήτων, ξεκινάµε από το λεγόµενο πείραµα δηλαδή µια διαδικασία η οποία µπορεί να επαναληφθεί θεωρητικά άπειρες φορές, κάτω από τις ίδιες ουσιαστικά συνθήκες,

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Laplace Μετασχηµατισµός Z Εφαρµογές Παράδειγµα ενός ηλεκτρικού συστήµατος Σύστηµα Παράδειγµα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 7 Από τα κάτωθι Θέµατα καλείστε να λύσετε το ο που περιλαµβάνει ερωτήµατα από όλη την ύλη

Διαβάστε περισσότερα

a = 10; a = k; int a,b,c; a = b = c = 10;

a = 10; a = k; int a,b,c; a = b = c = 10; C: Από τη Θεωρία στην Εφαρµογή Κεφάλαιο 4 ο Τελεστές Γ. Σ. Τσελίκης Ν. Δ. Τσελίκας Ο τελεστής εκχώρησης = Ο τελεστής = χρησιµοποιείται για την απόδοση τιµής (ή αλλιώς ανάθεση τιµής) σε µία µεταβλητή Π.χ.

Διαβάστε περισσότερα

4.2 Μέθοδος Απαλοιφής του Gauss

4.2 Μέθοδος Απαλοιφής του Gauss 4.2 Μέθοδος Απαλοιφής του Gauss Θεωρούµε το γραµµικό σύστηµα α 11χ 1 + α 12χ 2 +... + α 1νχ ν = β 1 α 21χ 1 + α 22χ2 +... + α 2νχ ν = β 2... α ν1χ 1 + α ν2χ 2 +... + α ννχ ν = β ν Το οποίο µπορεί να γραφεί

Διαβάστε περισσότερα

του και από αυτόν επιλέγουµε το φάκελο εµφανίζεται ένα παράθυρο παρόµοιο µε το ακόλουθο:

του και από αυτόν επιλέγουµε το φάκελο εµφανίζεται ένα παράθυρο παρόµοιο µε το ακόλουθο: διαχείριση αρχείων Οι περισσότερες εφαρµογές των Windows είναι προγραµµατισµένες, από τον κατασκευαστή τους, να προτείνουν ως περιοχή αποθήκευσης των εργασιών το φάκελο «Τα έγγραφά µου», που δηµιουργείται

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

Ορισµοί και εξισώσεις κίνησης

Ορισµοί και εξισώσεις κίνησης Ορισµοί και εξισώσεις κίνησης Σκοπός του κειµένου είναι να υποστηριχθούν οι παρακάτω θέσεις εν έχουν κανένα απολύτως νόηµα φράσεις του τύπου «η φάση της ταλάντωσης είναι» ή «η αρχική φάση της ταλάντωσης

Διαβάστε περισσότερα

Αριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA

Αριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA Αριθµοθεωρητικοί Αλγόριθµοι και το Κρυπτοσύστηµα RSA Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Υπολογισµός Μέγιστου Κοινού ιαιρέτη Αλγόριθµος του Ευκλείδη Κλάσεις Ισοδυναµίας και Αριθµητική modulo

Διαβάστε περισσότερα

Κώδικες µεταβλητού µήκους

Κώδικες µεταβλητού µήκους 6 Κώδικες µεταβλητού µήκους Στο κεφάλαιο αυτό µελετώνται οι κώδικες µεταβλητού µήκους, στους οποίους όλες οι λέξεις δεν έχουν το ίδιο µήκος και δίνονται οι µέ- ϑοδοι Fano-Shannon και Huffman για την κατασκευή

Διαβάστε περισσότερα

6.ΣΥΣΤΗΜΑΤΙΚΗ ΕΙΓΜΑΤΟΛΗΨΙΑ (SYSTEMATIC SAMPLING)

6.ΣΥΣΤΗΜΑΤΙΚΗ ΕΙΓΜΑΤΟΛΗΨΙΑ (SYSTEMATIC SAMPLING) 6.ΣΥΣΤΗΜΑΤΙΚΗ ΕΙΓΜΑΤΟΛΗΨΙΑ (SYSTEMATIC SAMPLIG) ΣΧΗΜΑ 6.1 Συστηµατική δειγµατοληψία στον Πατραϊκό κόλπο (17 σταθµοί). Η συστηµατική δειγµατοληψία είναι µια στρατηγική που µοιάζει απλή και λογική και επιλέγεται

Διαβάστε περισσότερα

Ευστάθεια Συστηµάτων Αυτοµάτου Ελέγχου: Αλγεβρικά κριτήρια

Ευστάθεια Συστηµάτων Αυτοµάτου Ελέγχου: Αλγεβρικά κριτήρια ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ευστάθεια Συστηµάτων Αυτοµάτου Ελέγχου: Αλγεβρικά κριτήρια 6 Nicol Tptouli Ευστάθεια και θέση πόλων Σ.Α.Ε ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 1η Συνδυαστική-Σχέσεις-Συναρτήσεις Ε ρ ω τ ή µ α τ α

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 1η Συνδυαστική-Σχέσεις-Συναρτήσεις Ε ρ ω τ ή µ α τ α ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ Ε ρ γ α σ ί α η Συνδυαστική-Σχέσεις-Συναρτήσεις Ε ρ ω τ ή µ α τ α Ερώτηµα. Θεωρείστε τις συναρτήσεις f,g,h:z Z (Z το σύνολο των ακέραιων αριθµών που ορίζονται

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 3 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK

ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK ρ. Γεώργιος Φ. Φραγκούλης Καθηγητής Ver. 0.2 9/2012 ιανύσµατα & ισδιάστατοι πίνακες Ένα διάνυσµα u = (u1, u2,, u ) εισάγεται στη MATLAB ως εξής : u=[ u1, u2,, un ] ή u=[ u1

Διαβάστε περισσότερα

ιωνυµική Κατανοµή(Binomial)

ιωνυµική Κατανοµή(Binomial) ιωνυµική Κατανοµή(Binomial) ~B(n,p) n N και 0

Διαβάστε περισσότερα

Πληροφοριακά Συστήµατα ιοίκησης Τµήµα Χρηµατοοικονοµικής και Ελεγκτικής Management Information Systems Εργαστήριο 4 ΤΕΙ Ηπείρου (Παράρτηµα Πρέβεζας)

Πληροφοριακά Συστήµατα ιοίκησης Τµήµα Χρηµατοοικονοµικής και Ελεγκτικής Management Information Systems Εργαστήριο 4 ΤΕΙ Ηπείρου (Παράρτηµα Πρέβεζας) Πληροφοριακά Συστήµατα ιοίκησης Τµήµα Χρηµατοοικονοµικής και Ελεγκτικής Management Information Systems Εργαστήριο 4 ΤΕΙ Ηπείρου (Παράρτηµα Πρέβεζας) ΑΝΤΙΚΕΙΜΕΝΟ: Προσοµοίωση (Simulation) και Τυχαίες µεταβλητές

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

* τη µήτρα. Κεφάλαιο 1o

* τη µήτρα. Κεφάλαιο 1o Κεφάλαιο 1o Θεωρία Παιγνίων Η θεωρία παιγνίων εξετάζει καταστάσεις στις οποίες υπάρχει αλληλεπίδραση µεταξύ ενός µικρού αριθµού ατόµων. Άρα σε οποιαδήποτε περίπτωση, αν ο αριθµός των ατόµων που συµµετέχουν

Διαβάστε περισσότερα

ΗΜΙΟΥΡΓΙΑ ΠΑΙΧΝΙ ΙΟΥ ΣΤΟ SCRATCH ΒΗΜΑ ΠΡΟΣ ΒΗΜΑ

ΗΜΙΟΥΡΓΙΑ ΠΑΙΧΝΙ ΙΟΥ ΣΤΟ SCRATCH ΒΗΜΑ ΠΡΟΣ ΒΗΜΑ ΗΜΙΟΥΡΓΙΑ ΠΑΙΧΝΙ ΙΟΥ ΣΤΟ SCRATCH ΒΗΜΑ ΠΡΟΣ ΒΗΜΑ ΣΕΝΑΡΙΟ ΠΑΙΧΝΙ ΙΟΥ Το παιχνίδι θα αποτελείται από δυο παίκτες, οι οποίοι θα βρίσκονται αντικριστά στις άκρες ενός γηπέδου δεξιά και αριστερά, και µια µπάλα.

Διαβάστε περισσότερα

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΜΕΣΟΛΟΓΓΙΟΥ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΜΕΣΟΛΟΓΓΙΟΥ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ Α εξεταστική περίοδος χειµερινού εξαµήνου 4-5 ιάρκεια εξέτασης ώρες και 45 λεπτά Θέµατα Θέµα (α) Τα υποδείγµατα που χρησιµοποιούνται στην οικονοµική θεωρία ονοµάζονται ντετερµινιστικά ενώ τα οικονοµετρικά

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ησυνάρτησηφ(.) του Euler Για κάθε ακέραιο n> 0, έστω φ(n) το πλήθος των ακεραίων στο διάστημα

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 2000

Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 2000 Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 000 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα ο Α.α) ίνεται η συνάρτηση F() f() + g(). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F () f () + g

Διαβάστε περισσότερα

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM).

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM). Μνήμες Ένα από τα βασικά πλεονεκτήματα των ψηφιακών συστημάτων σε σχέση με τα αναλογικά, είναι η ευκολία αποθήκευσης μεγάλων ποσοτήτων πληροφοριών, είτε προσωρινά είτε μόνιμα Οι πληροφορίες αποθηκεύονται

Διαβάστε περισσότερα

ιαγράµµατα Ελέγχου Ιδιοτήτων (Control Charts for Attributes)

ιαγράµµατα Ελέγχου Ιδιοτήτων (Control Charts for Attributes) ιαγράµµατα Ελέγχου Ιδιοτήτων (Control Charts for Attributes) Πολλά ΧΠ δεν µπορούν να αναπαρασταθούν αριθµητικά. Τα ΧΠ χαρακτηρίζονται συµµορφούµενα και µη-συµµορφούµενα. Τα ΧΠ τέτοιου είδους ονοµάζονται

Διαβάστε περισσότερα

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua. Μέρος Β /Στατιστική Μέρος Β Στατιστική Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) Από τις Πιθανότητες στη Στατιστική Στα προηγούμενα, στο

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράγωγος

Κεφάλαιο 6 Παράγωγος Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της

Διαβάστε περισσότερα

ιατύπωση τυπικής µορφής προβληµάτων Γραµµικού

ιατύπωση τυπικής µορφής προβληµάτων Γραµµικού Ο αλγόριθµος είναι αλγεβρική διαδικασία η οποία χρησιµοποιείται για την επίλυση προβληµάτων (προτύπων) Γραµµικού Προγραµµατισµού (ΠΓΠ). Ο αλγόριθµος έχει διάφορες παραλλαγές όπως η πινακοποιηµένη µορφή.

Διαβάστε περισσότερα