Τα Βασικά Μεγέθη της Κυκλοφοριακής Ροής Φόρτος Πυκνότητα - Ταχύτητα

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Τα Βασικά Μεγέθη της Κυκλοφοριακής Ροής Φόρτος Πυκνότητα - Ταχύτητα"

Transcript

1 Τα Βασικά Μεγέθη της Κυκλοφοριακής Ροής Φόρτος Πυκνότητα - Ταχύτητα Τα Βασικά Μεγέθη της Κυκλοφοριακής Ροής φόρτος (): ο αριθµός των οχηµάτων του διέρχονται από µια διατοµή, στην µονάδα του χρόνου Ταχύτητα ( Ταχύτητα (): ): Μέση χρονική ταχύτητα: ο αριθµητικός µέσος όρος των στιγµιαίων ταχυτήτων των οχηµάτων που διέρχονται από µια διατοµή του δρόµου Μέση χωρική ταχύτητα: ο αριθµητικός µέσος των στιγµιαίων ταχυτήτων των οχηµάτων που κινούνται σε ένα τµήµα του δρόµου σε µια συγκεκριµένη χρονική στιγµή.

2 Τα Βασικά Μεγέθη της Κυκλοφοριακής Ροής Συγκέντρωση Πυκνότητα (): ο αριθµός οχηµάτων στην µονάδα µήκους του δρόµου Χρονική κατάληψη (o): το ποσοστό της µονάδας χρόνου που ένα σηµείο του δρόµου καταλαµβάνεται από διερχόµενα οχήµατα ιαχωρισµός Χωρικός διαχωρισµός (s): η απόσταση µεταξύ δύο διαδοχικών οχηµάτων Χρονικός διαχωρισµός (h): ο χρόνος µεταξύ των διελεύσεων δύο διαδοχικών οχηµάτων από µια συγκεκριµένη διατοµή. ιάγραµµα χρόνου απόστασης : Ανάλυση σε σταθερή θέση (διατοµή) Απεικόνιση της θέσης κάθε οχήµατος σε διαφορετικές χρονικές στιγµές θέση D x 3 x 2 x 2 3 χρόνος 2

3 ιάγραµµα χρόνου απόστασης : χαρακτηριστικά µεγέθη απόσταση προσπέρασµα Στιγµιαία ταχύτητα x Χρονικός διαχωρισµός Χωρικός διαχωρισµός χρόνος ιάγραµµα χρόνου απόστασης : Ανάλυση σε σταθερή θέση (διατοµή) θέση D x h h 2 h 3 h 4 χρόνος 3

4 Φόρτος και Χρονικός ιαχωρισµός Ν(x) : ο αριθµός των οχηµάτων από την διατοµή x την χρονική περίοδο [, +] (δηλ. N(x) = 5) απόσταση x L h h 2 h 3 h 4 Φόρτος: ( x) = h N( x) Χρονικός διαχωρισµός µεταξύ διαδοχικών οχηµάτων : h j (x) Μέσος χρονικός διαχωρισµός = N ( x) j= N( x) h ( x) j χρόνος Ποια είναι η σχέση µεταξύ φόρτου και µέσου χρονικού διαχωρισµού? + Φόρτος και Μέσος Χρονικός ιαχωρισµός Εάν η χρονική περίοδος Τ είναι µεγάλη N ( x) j= h j ( x) ( x) = N( x) N( x) N ( x) j= h j ( x) ( x) h( x) Ο φόρτος αποτελεί την µέση συχνότητα διέλευσης από µία διατοµή 4

5 ιάγραµµα χρόνου απόστασης : Ανάλυση σε συγκεκριµένη χρονική στιγµή θέση ΑΕΡΟ- ΦΩΤΟ- ΓΡΑΦΙΑ την χρονική στιγµή D s s 2 s 3 χρόνος Πυκνότητα και Χωρικός ιαχωρισµός Μ() : ο αριθµός των οχηµάτων στο τµήµα του δρόµου από έως D, την χρονική στιγµή θέση D 2 3 s Πυκνότητα ( ) = M( ) D Χωρικός διαχωρισµός µεταξύ διαδοχικών οχηµάτων : s () Μέσος χωρικός διαχωρισµός s( ) = M ( ) s = ( ) M( ) s 2 s 3 χρόνος Ποια είναι η σχέση µεταξύ πυκνότητας και µέσου χωρικού διαχωρισµού? 5

6 Πυκνότητα και Μέσος Χωρικός ιαχωρισµός Εάν το τµήµα D είναι µεγάλo D M ( ) = s ( ) M( ) M( ) ( ) = M ( ) D s ( ) ( ) s( ) = Μέγιστες Τιµές της Πυκνότητας Η Πυκνότητα µεταβάλλεται από την µηδενική τιµή (όταν κανένα όχηµα δεν υπάρχει στο οδικό τµήµα), µέχρι µια µέγιστη τιµή όταν το τµήµα είναι πλήρες και τα οχήµατα πλησιάζουν το ένα στο άλλο ενώ βρίσκονται σε στάση. Μεταξύ ποιων τιµών κυµαίνεται η µέγιστη πυκνότητα ανά λωρίδα κυκλοφορίας? Ο µέσος χωρικός διαχωρισµός = το µέσο µήκος του οχήµατος + το χωρικό διάκενο µεταξύ δύο διαδοχικών οχηµάτων 5,5 µ +, µ = 6,5 µ jam = /6,5 5 οχήµατα/χλµ. jam 5 οχ. s 7 9 µ/οχ. 6

7 Χαρακτηριστική Τιµή Πυκνότητας µεταξύ της µέγιστης και της ελάχιστης τιµής υπάρχει η χαρακτηριστική τιµή της πυκνότητας που παρατηρείται στις συνθήκες µέγιστου φόρτου και κυµαίνεται από οχ/χλµ ανά λωρίδα κυκλοφορίας, που αντιστοιχεί σε χωρικό διάκενο µ/όχηµα. Μέση Χρονική Ταχύτητα Μετρήσεις: Σε µια συγκεκριµένη θέση x κατά την διάρκεια µιας χρονικής περιόδου [, +] θέση x L Μέση χρονική ταχύτητα: ο αριθµητικός µέσος όρος των στιγµιαίων ταχυτήτων των οχηµάτων που διέρχονται από µια διατοµή του δρόµου χρόνος + Μέση χρονική ταχύτητα ( x) = N( x) N ( x) = ( x) Ν(x) : ο αριθµός των οχηµάτων από την διατοµή x την χρονική περίοδο [, +] 7

8 Μέση Χωρική Ταχύτητα - στιγµιαία Στιγµιαία Μέση χωρική ταχύτητα: ο αριθµητικός µέσος των στιγµιαίων ταχυτήτων των οχηµάτων που κινούνται σε ένα τµήµα του δρόµου σε µια συγκεκριµένη χρονική στιγµή. Στιγµιαία Μέση xωρική ταχύτητα D s ( ) = M( ) M ( ) = ( ) Μετρήσεις: Αεροφοτωγραφία µετρήσεις ταχύτητας στις διατοµές όπου διέρχονται τα οχήµατα την χρονική στιγµή. => Θεωρητικό µέγεθος µη µετρήσιµο 2 3 χρόνος Μέση Χωρική Ταχύτητα - ορισµός Μέση χωρική ταχύτητα: Η ταχύτητα που θα έπρεπε να αναπτυχθεί για να διανυθεί ένα τµήµα του δρόµου D D σε ένα χρόνο ίσο µε τον µέσο χρόνο διαδροµής όλων των οχηµάτων που κινήθηκαν στο τµήµα αυτό, κατά την διάρκεια µιας περιόδου Τ 2 3 Η µέση χωρική ταχύτητα υπολογίζεται από τούς χρόνους διαδροµής των οχηµάτων 2 3 8

9 Μέση Χωρική Ταχύτητα s = D =. N = D N D s D D = = = N N D. N. N Η µέση χωρική ταχύτητα είναι ο αρµονικός µέσος όρος των στιγµιαίων ταχυτήτων των οχηµάτων Σχέση µεταξύ Μέσης Χωρικής & Μέσης Χρονικής Ταχύτητας = s σ + 2 s s Υπολογίσθηκε από τον Wardrop Στην πράξη όµως είναι χρήσιµο να µπορούµε να υπολογίσουµε την µέση χωρική ταχύτητα από τις µετρήσεις της ταχύτητας οχηµάτων που διέρχονται από µια διατοµή s σ 2 Υπολογίσθηκε από τους Hagh and Mosher και ισχύει υπό συγκεκριµένες παραδοχές για την κατανοµή της ταχύτητας (Pearson III) 9

10 Χρονική Κατάληψη κυκλοφοριακό µέγεθος που χρησιµοποιείται εναλλακτικά ως προς την πυκνότητα Προέκυψε µε την χρήση ανιχνευτών επαγωγικού βρόγχου για την µέτρηση του φόρτου Οανιχνευτής αποτελείται από ένα βρόγχο από σύρµα που τοποθετείται στο κατάστρωµα (κάτω από την τελευταία ασφαλτική στρώση) και δηµιουργεί ένα µαγνητικό πεδίο. Όταν ένα όχηµα διέρχεται πάνω από τον ανιχνευτή, παρενοχλεί το πεδίο και κατά συνέπεια γίνεται αντιληπτό από τον ανιχνευτή. Μπορεί να προσδιορισθεί ο χρόνος εισόδου του πρόσθιου τµήµατος του οχήµατος και ο χρόνος εξόδου του οπισθίου τµήµατος του Χρονική Κατάληψη : ο συνολικός χρόνος που ο ανιχνευτής καλύπτεται από οχήµατα κατά την διάρκεια µιας περιόδου Τ. Χρονική Κατάληψη Indcve loop

11 Χρονική Κατάληψη Å l d l occ Χρονική Κατάληψη : occ = ( occ ) ( l + l = d )/ Αν θεωρηθεί ότι όλα τα οχήµατα έχουν µήκος l occ = ( l + l d ).. Χρονική Κατάληψη occ = ( l + ld ).. occ ( = ( l + ld ). = l + ld ). N.. N s Μπορεί να υπολογισθεί από τα µεγέθη occ και που µετρώνται από τον ανιχνευτή Από την θεµελιώδη σχέση της κυκλοφορίας Προκύπτει η σχέση κατάληψης - Πυκνότητας = s. occ = ( l + ld ).

12 Μαθηµατικές σχέσεις των Βασικών Κυκλοφοριακών Μεγεθών Θεµελιώδης Σχέση της Κυκλοφοριακής Ροής s φόρτος = s µέση χωρική ταχύτητα πυκνότητα Προϋποθέσεις Τα κυκλοφοριακά µεγέθη είναι στοχαστικά και µόνο σαν µέσοι όροι µπορούν να εισαχθούν στην σχέση Ικανοποιητικά αποτελέσµατα µόνο όταν επικρατούν σταθερές συνθήκες σε όλο το οδικό τµήµα Συνθήκες ελεύθερης ροής οχηµάτων, χωρίς επιδράσεις από διασταυρώσεις, σηµατοδότηση κλπ. π.χ. ελεύθεροι λεωφόροι, ή τµήµατα αρτηριών έξω από το κέντρο αστικών περιοχών Ακατάλληλη για αστικά δίκτυα 2

13 Σχέση Ταχύτητας και Πυκνότητας θεωρητική µορφή Όταν s = ταχύτητα ελεύθερης ροής Ο οδηγός µπορεί να επιλέξει την ταχύτητα που θα αναπτύξει Ηταχύτητα αυτή δεν είναι απεριόριστη, αλλά εξαρτάται από τα χαρακτηριστικά του οδικού χώρου Οριζοντιογραφία ακτίνες καµπυλότητας Μηκοτοµή κατά µήκος κλίσεις ιατοµή λωρίδες κυκλοφορίας Παράπλευρα εµπόδια Ηταχύτητα αυτή λέγεται ταχύτητα ελεύθερης ροής Όταν s Ο οδηγός πρέπει να διατηρεί ικανοποιητικές αποστάσεις από έµπροσθεν, όπισθεν και παράπλευρα κινούµενα οχήµατα (ιδίως εάν στο αντίθετο ρεύµα). Επίσης κάνει ελιγµούς προσπέρασης, αλλαγής λωρίδας κλπ. Όταν = max s = Τα οχήµατα βρίσκονται σε στάση Μείωση ταχύτητας Σχέση Ταχύτητας και Πυκνότητας θεωρητική µορφή s Ταχύτητα Ελεύθερης f ροής Πως µπορούµε να υπολογίσουµε τον φόρτο όταν η πυκνότητα είναι ΤΑΧΥΤΗΤΑ =. ΠΥΚΝΟΤΗΤΑ max jam Μέγιστη πυκνότητα 3

14 Σχέση Ταχύτητας και Πυκνότητας εµπειρικά στοιχεία Ταχύητα (χλµ/ ωρα) Πυκνότητα (οχ/χλµ) Holland nnel, NY Edde e al. 963 Σχέση Φόρτου και Ταχύτητας Μη συµφορηµένη περιοχή Όταν s = ταχύτητα ελεύθερης ροής Όταν s Καθώς αυξάνεται ο κυκλοφοριακός φόρτος η ταχύτητα µειώνεται µέχρι το σηµείο που ο φόρτος φθάνει την µέγιστη τιµή του max Κατάσταση Κυκλοφ. συµφόρησης s & s = = Στη συνέχεια (στην κατάσταση κυκλοφοριακής συµφόρησης) µειώνεται περαιτέρω η ταχύτητα και ταυτόχρονα και η ροή της κυκλοφορίας δηλ. ο φόρτος. Μέχρι την κατάσταση όπου η ταχύτητα µηδενίζεται και η κυκλοφορία διακόπτεται 4

15 Σχέση Φόρτου και Ταχύτητας θεωρητική µορφή s Ταχύτητα Ελεύθερης ροής f ΤΑΧΥΤΗΤΑ m µη συµφορηµένη περιοχή Κατάσταση κυκλοφοριακής συµφόρησης ΦΟΡΤΟΣ max Μέγιστος φόρτος Σχέση Φόρτου και Ταχύτητας εµπειρικά στοιχεία Holland nnel, NY Edde e al. 963 Ταχύτητα (χλµ/ώρα) , 5,, 5, φόρτος (οχ/ώρα) 5

16 Σχέση Φόρτου και Πυκνότητας Μη συµφορηµένη περιοχή δεν υπάρχει κυκλοφορία Όταν Καθώς αυξάνεται πυκνότητα, αυξάνεται και ο φόρτος µέχρι το σηµείο που ο φόρτος φθάνει την µέγιστη τιµή του max Κατάσταση Κυκλοφ. συµφόρησης Στη συνέχεια (στην κατάσταση κυκλοφοριακής συµφόρησης) περαιτέρω αύξηση της πυκνότητας, συνεπάγεται µείωση του φόρτου. = max = Μέχρι την κατάσταση όπου η κυκλοφορία διακόπτεται ο φόρτος µηδενίζεται και η πυκνότητα φθάνει στην µέγιστη τιµή της max Σχέση Φόρτου και Πυκνότητας θεωρητική µορφή ΘΕΜΕΛΙΩ ΕΣ ΙΑΓΡΑΜΜΑ ΤΗΣ ΚΥΚΛΟΦΟΡΙΑΣ ΦΟΡΤΟΣ µη συµφορηµένη περιοχή Κατάσταση κυκλοφοριακής συµφόρησης Πως µπορούµε να υπολογίσουµε την ταχύτητα όταν η πυκνότητα είναι? an(θ) = ΠΥΚΝΟΤΗΤΑ m Χαρακτηριστική τιµή της πυκνότητας jam 6

17 Σχέση Φόρτου και Πυκνότητας εµπειρικά στοιχεία 4, Holland nnel, NY Edde e al. 963 Φόρτος (χλµ/ώρα) 2,, 8, 6, 4, 2,, Πυκνότητα (οχ/χλµ) Μακροσκοπικά µοντέλα κυκλοφορίας Αναπαριστούν τις θεµελιώδεις σχέσεις µεταξύ των µακροσκοπικών χαρακτηριστικών της κυκλοφορίας για συνθήκες µη διακοπτόµενης ροής Ταχύτητα - Πυκνότητα Φόρτος - Πυκνότητα Ταχύτητα - Πυκνότητα 7

18 Σχέσεις βασικών κυκλοφοριακών µεγεθών f m ιάγραµµα Ταχύτητας - Πυκνότητας 3 Θεµελιώδες διάγραµµα της Κυκλοφορίας max 3 3 m 2 jam m ιάγραµµα Φόρτου - Ταχύτητας 2 jam m max Σχέσεις βασικών κυκλοφοριακών µεγεθών f m ιάγραµµα Ταχύτητας - Πυκνότητας 3 Greensheld: f. = jam Θεµελιώδες διάγραµµα της Κυκλοφορίας max 3 3 m 2 jam m 2 jam jam : µέγιστη πυκνότητα (τα οχήµατα είναι σταθµευµένα jam = / ( µήκος οχήµατος + χωρικό διάκενο ) =. max = ( m ) ο µέγιστος φόρτος, ή κυκλοφοριακή ικανότητα m = ( m ) = max / m : η ταχύτητα για µέγιστη παραγωγικότητα 8

19 Σχέσεις βασικών κυκλοφοριακών µεγεθών f m ιάγραµµα Ταχύτητας - Πυκνότητας 3 Greensheld: f. = jam Θεµελιώδες διάγραµµα της Κυκλοφορίας max 3 3 = m 2 jam m 2 jam X [ m, jam ] : συµβαίνει όταν η κυκλοφοριακή ροή σε κατάντη οδικό τµήµα είναι «αργή» λόγω κυκλοφοριακής στένωσης (λιγότερες λωρίδες κυκλοφορίας), αργό όχηµα κα. m : η χαρακτηριστική τιµή της πυκνότητας αποτελεί κρίσιµο µέγεθος γιατί ορίζει την αρχή της «ασταθούς» περιοχής της κυκλοφοριακής συµφόρησης. Επιπλέον οχήµατα συνεπάγονται µείωση του φόρτου που εξυπηρετείται το διάγραµµα (,) λέγεται θεµελιώδες γιατί αναπαριστά τις σχέσεις µεταξύ και των τριών µεγεθών Μακροσκοπικά µοντέλα κυκλοφορίας Μοντέλα µε µονή συναρτησιακή σχέση Μοντέλο του Greensheld = f. jam =. =. f. = f ( ) = = f ( ) jam j j f f, j, jam εκτιµώνται από στοιχεία µετρήσεων parameers o be calbraed 9

20 Μακροσκοπικά µοντέλα κυκλοφορίας Μοντέλα απλής συναρτησιακής σχέσης Μοντέλο του Greenberg = m. ln jam = f ( ) = = f ( ) j j m : η ταχύτητα στην κατάσταση µέγιστου φόρτου Μοντέλο του Underwood. m = f e f, j, parameers o be calbraed f jam m εκτιµώνται από στοιχεία µετρήσεων m : η πυκνότητα στην κατάσταση µέγιστου φόρτου Παραδείγµατα Μοντέλων Ταχύτητας - Πυκνότητας 2

21 Παραδείγµατα Μοντέλων Φόρτου - Πυκνότητας Παραδείγµατα Μοντέλων Φόρτου - Ταχύτητας 2

22 Σχέση Φόρτου και ρυθµού κίνησης εµπειρικά στοιχεία Ρυθµός Κίνησης (pace) = χρόνος που απαιτείται για να διανυθεί µια µονάδα µήκους Ρυθµός Κίνησης (pace) = ταχύτητα Ρυθµός ροής (ώρες/χλµ),4,2,,8,6,4,2 Ρυθµός ροής - Φόρτος Holland nnel, NY Edde e al. 963,, 5,, 5, Φόρτος (οχήµατα/ώρα) Σχέση Χρόνου Μετακίνησης Φόρτου ιάγραµµα Φόρτου - Ταχύτητας Χρόνος διαδροµής ιάγραµµα Φόρτου Χρόνου ιαδροµής f m η κλασσική συνάρτηση φόρτου χρόνου διαδροµής max max Γενικά ο φόρτος δεν µπορεί να χρησιµοποιηθεί σαν ανεξάρτητη µεταβλητή µπορεί όµως να χρησιµοποιηθεί στην συνάρτηση φόρτου χρόνου διαδροµής 22

23 Κλασσική συνάρτηση φόρτου χρόνου διαδροµής Ησυνάρτηση του Davdson Ησυνάρτηση του US Brea of Pblc Roads ( ) = (). + a. c ( ) = (). + a. c b 23

Οδοποιία ΙΙ ΤΑ ΒΑΣΙΚΑ ΜΕΓΕΘΗ ΤΗΣ ΚΥΚΛΟΦΟΡΙΑΚΗΣ ΡΟΗΣ

Οδοποιία ΙΙ ΤΑ ΒΑΣΙΚΑ ΜΕΓΕΘΗ ΤΗΣ ΚΥΚΛΟΦΟΡΙΑΚΗΣ ΡΟΗΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Αγρονό ων Το ογράφων Μηχανικών ΕΜΠ Εργαστήριο Συγκοινωνιακής Τεχνικής Οδοποιία ΙΙ Κωνσταντίνος Αντωνίου Αναπληρωτής Καθηγητής ΕΜΠ antoniou@central.ntua.gr Ιωάννα Σπυροπούλου

Διαβάστε περισσότερα

Οδοποιία ΙΙ ΚΡΟΥΣΤΙΚΑ ΚΥΜΑΤΑ. Κωνσταντίνος Αντωνίου Αναπληρωτής Καθηγητής ΕΜΠ

Οδοποιία ΙΙ ΚΡΟΥΣΤΙΚΑ ΚΥΜΑΤΑ. Κωνσταντίνος Αντωνίου Αναπληρωτής Καθηγητής ΕΜΠ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Αγρονό ων Το ογράφων Μηχανικών ΕΜΠ Εργαστήριο Συγκοινωνιακής Τεχνικής Οδοποιία ΙΙ Κωνσταντίνος Αντωνίου Αναπληρωτής Καθηγητής ΕΜΠ antoniou@central.ntua.gr ΚΡΟΥΣΤΙΚΑ ΚΥΜΑΤΑ

Διαβάστε περισσότερα

Κυκλοφοριακή Ικανότητα Υπεραστικών Οδών

Κυκλοφοριακή Ικανότητα Υπεραστικών Οδών Κυκλοφοριακή Ικανότητα Υπεραστικών Οδών Κυκλοφοριακή ικανότητα ενός οδικού τµήµατος ορίζεται ως ο µέγιστος φόρτος που µπορεί να εξυπηρετηθεί όταν πληρούνται συγκεκριµένες λειτουργικές συνθήκες Κυκλοφοριακή

Διαβάστε περισσότερα

και κινηµατικά µοντέλα της κυκλοφοριακής ροής

και κινηµατικά µοντέλα της κυκλοφοριακής ροής Κρουστικά κύµατα Yδροδυναµικά και κινηµατικά µοντέλα της κυκλοφοριακής ροής Επειδή η οδική κυκλοφορία εκφράζεται µε ροές οχηµάτων, πυκνότητες και ταχύτητες ροής, βασικές έννοιες της θεωρίας ρευστών µπορούν

Διαβάστε περισσότερα

ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ - ΠΑΡΑΜΕΤΡΟΙ ΙΜΕ

ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ - ΠΑΡΑΜΕΤΡΟΙ ΙΜΕ ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ - ΠΑΡΑΜΕΤΡΟΙ ΙΜΕ ΙΚΑΝΟΤΗΤΑ ΜΕΤΑΦΟΡΑΣ ΕΠΙΒΑΤΩΝ ΜΙΠ ΜΕΤΑΦΟΡΙΚΗ ΙΚΑΝΟΤΗΤΑ ΠΡΟΣΩΠΩΝ ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ (1/3) Ικανότητα οχήματος: Ο μέγιστος αριθμός επιβατών που μπορεί να εξυπηρετηθεί

Διαβάστε περισσότερα

Intersection Control

Intersection Control Κυκλοφοριακή Ικανότητα Σηµατοδοτούµενων κόµβων Intersecton Control Traffc Control Sgnals hgh volume streets Pedestran Sgnals Full Sgnals Warrants nclude volume, peds, accdents, lanes, operatng speeds,

Διαβάστε περισσότερα

Κεφάλαιο 2. Βασικά Μεγέθη Κυκλοφοριακής Τεχνικής

Κεφάλαιο 2. Βασικά Μεγέθη Κυκλοφοριακής Τεχνικής Κεφάλαιο 2. Βασικά Μεγέθη Κυκλοφοριακής Τεχνικής Σύνοψη Βασικό προαπαιτούµενο για τη µελέτη της κυκλοφορίας αποτελεί η γνώση των βασικών µεγεθών της κυκλοφοριακής τεχνικής. Στο παρόν κεφάλαιο παρουσιάζονται

Διαβάστε περισσότερα

ΣΥΓΧΡΟΝΕΣ ΤΕΧΝΙΚΕΣ ΜΙΚΡΟΡΥΘΜΙΣΗΣ ΚΥΚΛΟΦΟΡΙΑΣ Κ. ΣΚΙΑ ΟΠΟΥΛΟΣ Α.ΖΕΙΜΠΕΚΗ Υ.Π.Ε.Χ.Ω..Ε.

ΣΥΓΧΡΟΝΕΣ ΤΕΧΝΙΚΕΣ ΜΙΚΡΟΡΥΘΜΙΣΗΣ ΚΥΚΛΟΦΟΡΙΑΣ Κ. ΣΚΙΑ ΟΠΟΥΛΟΣ Α.ΖΕΙΜΠΕΚΗ Υ.Π.Ε.Χ.Ω..Ε. ΣΥΓΧΡΟΝΕΣ ΤΕΧΝΙΚΕΣ ΜΙΚΡΟΡΥΘΜΙΣΗΣ ΚΥΚΛΟΦΟΡΙΑΣ Κ. ΣΚΙΑ ΟΠΟΥΛΟΣ Α.ΖΕΙΜΠΕΚΗ Υ.Π.Ε.Χ.Ω..Ε. ΕΙΣΑΓΩΓΗ Τα σηµατοδοτικά συστήµατα σε επίπεδο ρύθµισης κόµβου είναι: 1) Σηµατοδοτηση σταθερού χρόνου 2) Σηµατοδοτηση

Διαβάστε περισσότερα

Συγκοινωνιακός Σχεδιασµός κόµβος Σχήµα.. Αναπαράσταση σε χάρτη του οδικού δικτύου µιας περιοχής... Μέθοδοι καταµερισµού των µετακινήσεων.. Εύρεση βέλτ

Συγκοινωνιακός Σχεδιασµός κόµβος Σχήµα.. Αναπαράσταση σε χάρτη του οδικού δικτύου µιας περιοχής... Μέθοδοι καταµερισµού των µετακινήσεων.. Εύρεση βέλτ Καταµερισµός των µετακινήσεων στο οδικό δίκτυο.. Εισαγωγή Το τέταρτο και τελευταίο στάδιο στη διαδικασία του αστικού συγκοινωνιακού σχεδιασµού είναι ο καταµερισµός των µετακινήσεων στο οδικό δίκτυο (λεωφόρους,

Διαβάστε περισσότερα

Ανάλυση της συµπεριφοράς των πεζών ως προς τη διάσχιση οδών σε αστικές περιοχές

Ανάλυση της συµπεριφοράς των πεζών ως προς τη διάσχιση οδών σε αστικές περιοχές Ανάλυση της συµπεριφοράς των πεζών ως προς τη διάσχιση οδών σε αστικές περιοχές Ε.Παπαδηµητρίου Γ.Γιαννής Ι.Γκόλιας ΕΜΠ - Τοµέας Μεταφορών και Συγκοινωνιακής Υποδοµής 5ο ιεθνές Συνέδριο Έρευνα στις Μεταφορές

Διαβάστε περισσότερα

ΣΥΓΚΟΙΝΩΝΙΑΚΗ ΤΕΧΝΙΚΗ ΜΕΓΕΘΗ ΚΥΚΛΟΦΟΡΙΑΚΗΣ ΡΟΗΣ ΘΕΜΕΛΙΩΔΗΣ ΣΧΕΣΗ ΚΥΚΛΟΦΟΡΙΑΚΗΣ ΡΟΗΣ

ΣΥΓΚΟΙΝΩΝΙΑΚΗ ΤΕΧΝΙΚΗ ΜΕΓΕΘΗ ΚΥΚΛΟΦΟΡΙΑΚΗΣ ΡΟΗΣ ΘΕΜΕΛΙΩΔΗΣ ΣΧΕΣΗ ΚΥΚΛΟΦΟΡΙΑΚΗΣ ΡΟΗΣ ΣΥΓΚΟΙΝΩΝΙΑΚΗ ΤΕΧΝΙΚΗ ΜΕΓΕΘΗ ΚΥΚΛΟΦΟΡΙΑΚΗΣ ΡΟΗΣ ΘΕΜΕΛΙΩΔΗΣ ΣΧΕΣΗ ΚΥΚΛΟΦΟΡΙΑΚΗΣ ΡΟΗΣ Κυκλοφοριακός Φόρτος Ποσοτικά και Ποιοτικά Μεγέθη Κυκλοφοριακής Τεχνικής Ταχύτητα κίνησης Πυκνότητα κυκλοφορίας μέσος

Διαβάστε περισσότερα

Σιδηροδροµικοί σταθµοί

Σιδηροδροµικοί σταθµοί 7. Σιδηροδροµικοί σταθµοί 7.1 Εισαγωγή Στον γενικό όρο σιδηροδροµικοί σταθµοί περιλαµβάνονται: Σιδηροδροµικοί σταθµοί Τα σηµεία στάθµευσης Οι στάσεις Σιδηροδροµικοί σταθµοί: οι σιδηροδροµικές εγκαταστάσεις

Διαβάστε περισσότερα

Σιδηροδροµικοί σταθµοί

Σιδηροδροµικοί σταθµοί 7. Σιδηροδροµικοί σταθµοί Κύριες διερχόµενες: είναι η προέκταση στο χώρο του σιδηροδροµικού σταθµού των κύριων σιδηροδροµικών γραµµών του ελευθέρου τµήµατος Γραµµές προσπέρασης χωρίζονται σε γραµµές λειτουργικής

Διαβάστε περισσότερα

Κεφάλαιο 5. Λειτουργία οδικών στοιχείων: Υπεραστικές οδοί

Κεφάλαιο 5. Λειτουργία οδικών στοιχείων: Υπεραστικές οδοί Κεφάλαιο 5. Λειτουργία οδικών στοιχείων: Υπεραστικές οδοί Σύνοψη Η παρούσα ενότητα αφορά τη λειτουργία υπεραστικών οδών µε δύο ή περισσότερες λωρίδες κυκλοφορίας. Αρχικά θα περιγραφεί η κίνηση των οχηµάτων

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ. Οδοποιία Ι

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ. Οδοποιία Ι ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Οδοποιία Ι Ενότητα 3: Ανάλυση Κυκλοφοριακής Ικανότητας της Διατομής της Οδού Επιλογή Διατομής (Σύμφωνα με τις Οδηγίες Μελετών Οδικών Έργων

Διαβάστε περισσότερα

Οδοποιία ΙΙ ΡΟΗ ΚΟΡΕΣΜΟΥ- ΦΩΤΕΙΝΗ ΣΗΜΑΤΟΔΟΤΗΣΗ. Κωνσταντίνος Αντωνίου Αναπληρωτής Καθηγητής ΕΜΠ

Οδοποιία ΙΙ ΡΟΗ ΚΟΡΕΣΜΟΥ- ΦΩΤΕΙΝΗ ΣΗΜΑΤΟΔΟΤΗΣΗ. Κωνσταντίνος Αντωνίου Αναπληρωτής Καθηγητής ΕΜΠ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Αγρονό ων Το ογράφων Μηχανικών ΕΜΠ Εργαστήριο Συγκοινωνιακής Τεχνικής Οδοποιία ΙΙ Κωνσταντίνος Αντωνίου Αναπληρωτής Καθηγητής ΕΜΠ antoniou@central.ntua.gr ΡΟΗ ΚΟΡΕΣΜΟΥ-

Διαβάστε περισσότερα

Στοχαστικές κατανοµές των κυκλοφοριακών µεγεθών Στοχαστικές κατανοµές της κυκλοφορίας

Στοχαστικές κατανοµές των κυκλοφοριακών µεγεθών Στοχαστικές κατανοµές της κυκλοφορίας Στοχαστικές κατανοµές των κυκλοφοριακών µεγεθών Στοχαστικές κατανοµές της κυκλοφορίας Στοχαστικές κατανοµές άφιξης οχηµάτων Κατανοµή Poion ιωνυµική κατανοµή Αρνητική ιωνυµική Στοχαστική κατανοµή χρονικού

Διαβάστε περισσότερα

Εξωτερικές αλληλεπιδράσεις

Εξωτερικές αλληλεπιδράσεις η αποτυχία των νόµων της αγοράς Εξωτερικές αλληλεπιδράσεις Εξαιρέσεις και η αποτυχία των νόµων της αγοράς στον τοµέα των µεταφορών 1. Ο ανταγωνισµός είναι αρκετά ισχυρός έτσι ώστε να ωθήσει την τιµή στο

Διαβάστε περισσότερα

Μεγέθη Κυκλοφοριακής Ροής

Μεγέθη Κυκλοφοριακής Ροής ΚΕΦΑΛΑΙΟ 2 Μεγέθη Κυκλοφοριακής Ροής 2.1 ΕΙΣΑΓΩΓΗ Η κυκλοφορική ροή (traffic flow) αφορά στην κίνηση οχημάτων ή πεζών σε μια οδό και προσδιορίζεται από μεγέθη κυκλοφορικής ροής (traffic flow variables)

Διαβάστε περισσότερα

ΠΡΟΝΟΜΙΑΚΗ ΜΕΤΑΧΕΙΡΙΣΗ ΔΗΜΟΣΙΩΝ ΑΣΤΙΚΩΝ ΜΜΜ

ΠΡΟΝΟΜΙΑΚΗ ΜΕΤΑΧΕΙΡΙΣΗ ΔΗΜΟΣΙΩΝ ΑΣΤΙΚΩΝ ΜΜΜ ΠΡΟΝΟΜΙΑΚΗ ΜΕΤΑΧΕΙΡΙΣΗ ΔΗΜΟΣΙΩΝ ΑΣΤΙΚΩΝ ΜΜΜ ΣΤΟΧΟΙ ΟΛΟΚΛΗΡΩΜΕΝΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΥΛΟΠΟΙΗΣΗΣ - ΛΕΙΤΟΥΡΓΙΑΣ ΕΙΔΙΚΩΝ ΔΙΑΔΡΟΜΩΝ : ΛΩΡΙΔΕΣ ΚΑΙ ΟΔΟΙ ΑΠΟΚΛΕΙΣΤΙΚΗΣ ΚΥΚΛΟΦΟΡΙΑΣ ΛΕΩΦΟΡΕΙΩΝ Αύξηση της ταχύτητας των

Διαβάστε περισσότερα

Χάραξη κόμβου. 10/11/09 Μάθημα Θέμα Οδοποιίας

Χάραξη κόμβου. 10/11/09 Μάθημα Θέμα Οδοποιίας Χάραξη κόμβου 10/11/09 Μάθημα Θέμα Οδοποιίας 1 Τύποι ισόπεδων κόμβων Με τρία σκέλη Με τέσσερα σκέλη Με πάνω από τέσσερα σκέλη 10/11/09 Μάθημα Θέμα Οδοποιίας 2 Απλή διασταύρωση τύπου Τ Προσφέρεται όταν

Διαβάστε περισσότερα

10 παραδείγματα-ασκήσεις. υπολογισμού στάθμης εξυπηρέτησης

10 παραδείγματα-ασκήσεις. υπολογισμού στάθμης εξυπηρέτησης 10 παραδείγματα-ασκήσεις υπολογισμού στάθμης εξυπηρέτησης Σύνοψη Στο παρόν κεφάλαιο παρατίθενται λυμένα παραδείγματα-ασκήσεις με στόχο την καλύτερη κατανόηση των μεθοδολογιών υπολογισμού στάθμης εξυπηρέτησης

Διαβάστε περισσότερα

Οδοποιία ΙΙ. Ανάλυση κυκλοφοριακής ικανότητας σε υπεραστικές οδούς περισσοτέρων των δύο λωρίδων κυκλοφορίας

Οδοποιία ΙΙ. Ανάλυση κυκλοφοριακής ικανότητας σε υπεραστικές οδούς περισσοτέρων των δύο λωρίδων κυκλοφορίας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Αγρονό ων Το ογράφων Μηχανικών ΕΜΠ Εργαστήριο Συγκοινωνιακής Τεχνικής Οδοποιία ΙΙ Κωνσταντίνος Αντωνίου Αναπληρωτής Καθηγητής ΕΜΠ antoniou@central.ntua.gr Ιωάννα Σπυροπούλου

Διαβάστε περισσότερα

Οδοποιία ΙΙ ΚΥΚΛΟΦΟΡΙΑΚΗ ΙΚΑΝΟΤΗΤΑ. Κωνσταντίνος Αντωνίου Αναπληρωτής Καθηγητής ΕΜΠ

Οδοποιία ΙΙ ΚΥΚΛΟΦΟΡΙΑΚΗ ΙΚΑΝΟΤΗΤΑ. Κωνσταντίνος Αντωνίου Αναπληρωτής Καθηγητής ΕΜΠ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Αγρονό ων Το ογράφων Μηχανικών ΕΜΠ Εργαστήριο Συγκοινωνιακής Τεχνικής Οδοποιία ΙΙ Κωνσταντίνος Αντωνίου Αναπληρωτής Καθηγητής ΕΜΠ antoniou@central.ntua.gr ΚΥΚΛΟΦΟΡΙΑΚΗ

Διαβάστε περισσότερα

η αποδοτική κατανοµή των πόρων αποδοτική κατανοµή των πόρων Οικονοµική αποδοτικότητα Οικονοµία των µεταφορών Η ανεπάρκεια των πόρων &

η αποδοτική κατανοµή των πόρων αποδοτική κατανοµή των πόρων Οικονοµική αποδοτικότητα Οικονοµία των µεταφορών Η ανεπάρκεια των πόρων & 5 η αποδοτική κατανοµή των πόρων Οικονοµική αποδοτικότητα: Η αποτελεί θεµελιώδες πρόβληµα σε κάθε σύγχρονη οικονοµία. Το πρόβληµα της αποδοτικής κατανοµής των πόρων µπορεί να εκφρασθεί µε 4 βασικά ερωτήµατα

Διαβάστε περισσότερα

Φ t Το επαγωγικό ρεύμα έχει τέτοια φορά ώστε το μαγνητικό του πεδίο να αντιτίθεται στην αιτία που το προκαλεί. E= N

Φ t Το επαγωγικό ρεύμα έχει τέτοια φορά ώστε το μαγνητικό του πεδίο να αντιτίθεται στην αιτία που το προκαλεί. E= N Επίδειξη του φαινομένου της επαγωγής αμοιβαίας επαγωγής με την κλασική μέθοδο Α) Επαγωγή Σύμφωνα με το νόμο του Faraday όταν από ένα πηνίο με Ν σπείρες διέρχεται μαγνητική ροή Φ που μεταβάλλεται με το

Διαβάστε περισσότερα

ΣΥΣΧΕΤΙΣΗ ΚΥΚΛΟΦΟΡΙΑΚΩΝ ΜΕΓΕΘΩΝ ΜΕ ΤΗ ΣΟΒΑΡΟΤΗΤΑ ΚΑΙ ΤΗΝ ΠΙΘΑΝΟΤΗΤΑ ΟΔΙΚΩΝ ΑΤΥΧΗΜΑΤΩΝ. Απόστολος Ζιακόπουλος

ΣΥΣΧΕΤΙΣΗ ΚΥΚΛΟΦΟΡΙΑΚΩΝ ΜΕΓΕΘΩΝ ΜΕ ΤΗ ΣΟΒΑΡΟΤΗΤΑ ΚΑΙ ΤΗΝ ΠΙΘΑΝΟΤΗΤΑ ΟΔΙΚΩΝ ΑΤΥΧΗΜΑΤΩΝ. Απόστολος Ζιακόπουλος 1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΜΕΤΑΦΟΡΩΝ ΚΑΙ ΣΥΓΚΟΙΝΩΝΙΑΚΗΣ ΥΠΟΔΟΜΗΣ ΣΥΣΧΕΤΙΣΗ ΚΥΚΛΟΦΟΡΙΑΚΩΝ ΜΕΓΕΘΩΝ ΜΕ ΤΗ ΣΟΒΑΡΟΤΗΤΑ ΚΑΙ ΤΗΝ ΠΙΘΑΝΟΤΗΤΑ ΟΔΙΚΩΝ ΑΤΥΧΗΜΑΤΩΝ Απόστολος Ζιακόπουλος

Διαβάστε περισσότερα

ηλεκτρικό ρεύµα ampere

ηλεκτρικό ρεύµα ampere Ηλεκτρικό ρεύµα Το ηλεκτρικό ρεύµα είναι ο ρυθµός µε τον οποίο διέρχεται ηλεκτρικό φορτίο από µια περιοχή του χώρου. Η µονάδα µέτρησης του ηλεκτρικού ρεύµατος στο σύστηµα SI είναι το ampere (A). 1 A =

Διαβάστε περισσότερα

Απελευθέρωση Κατευθύνσεις της Ε.Ε. για τις εμπορευματικές οδικές μεταφορές 5

Απελευθέρωση Κατευθύνσεις της Ε.Ε. για τις εμπορευματικές οδικές μεταφορές 5 ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 ΠΟΛΙΤΙΚΗ ΤΩΝ ΜΕΤΑΦΟΡΩΝ ΚΑΙ ΔΙΕΥΡΩΠΑΙΚΑ ΔΙΚΤΥΑ.. 1 1.1. Σχεδιασμός των μεταφορών... 1 1.2. Κατηγοριοποίηση Δομικά στοιχεία των μεταφορών.. 2 1.3. Βασικοί άξονες της Ευρωπαϊκής πολιτικής

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Αγρονό ων Το ογράφων Μηχανικών ΕΜΠ Εργαστήριο Συγκοινωνιακής Τεχνικής

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Αγρονό ων Το ογράφων Μηχανικών ΕΜΠ Εργαστήριο Συγκοινωνιακής Τεχνικής ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Αγρονό ων Το ογράφων Μηχανικών ΕΜΠ Εργαστήριο Συγκοινωνιακής Τεχνικής Συστήματα Μεταφορών Κωνσταντίνος Αντωνίου Αναπληρωτής Καθηγητής ΕΜΠ anoniou@cenral.nua.gr ΚΑΤΑΜΕΡΙΣΜΟΣ

Διαβάστε περισσότερα

Σήµατα Τροχονόµων και Οδηγών

Σήµατα Τροχονόµων και Οδηγών Οδική σήµανση και σηµατοδότηση Κατακόρυφη σήµανση 1. Φωτεινοί Σηµατοδότες ( Φανάρια) 2. Πινακίδες Σήµανσης Οριζόντια σήµανση Κυκλοφοριακά Βοηθήµατα ιαγραµµίσεις στους δρόµους Σήµατα Τροχονόµων και Οδηγών

Διαβάστε περισσότερα

καταµερισµός στα µεταφορικά µέσα

καταµερισµός στα µεταφορικά µέσα 5 καταµερισµός στα µεταφορικά µέσα πόσες µετακινήσεις από την ζώνη i στην ζώνη j γίνονται µε κάθε µεταφορικό µέσο? το υπό διερεύνηση θέµα : εισαγωγή Ποιο µεταφορικό µέσο θα επιλέξει ένας µετακινούµενος

Διαβάστε περισσότερα

Κίνηση σε φθηνότερη διαδροµή µε µη γραµµικό κόστος

Κίνηση σε φθηνότερη διαδροµή µε µη γραµµικό κόστος υποδο?ών?εταφράζεταισε?ίαγενικότερηεξοικονό?ησηπαραγωγικώνπόρωνγιατηκοινωνία. τεχνικέςυποδο?ές,όπωςείναιαυτοκινητόδρο?οι,γέφυρεςκ.λ.π.ηκατασκευήτέτοιων Μιααπ τιςβασικέςλειτουργίεςτουκράτουςείναιοεφοδιασ?όςτηςκοινωνίας?εβασικές

Διαβάστε περισσότερα

Ανάλυση και Σχεδιασμός Μεταφορών Ι Εισαγωγή

Ανάλυση και Σχεδιασμός Μεταφορών Ι Εισαγωγή Εισαγωγή Παναγιώτης Παπαντωνίου Δρ. Πολιτικός Μηχανικός, Συγκοινωνιολόγος ppapant@upatras.gr Πάτρα, 2017 Εισαγωγή στο σχεδιασμό των Μεταφορών Βασικές έννοιες και αρχές των Μεταφορών Διαδικασία Ορθολογικού

Διαβάστε περισσότερα

ΜΕΛΕΤΗ: ΣΚΟΠΙΜΟΤΗΤΑ ΓΙΑ ΤΗΝ ΕΦΑΡΜΟΓΗ ΚΥΚΛΟΦΟΡΙΑΚΩΝ ΕΠΕΜΒΑΣΕΩΝ ΣΤΙΣ Ο ΟΥΣ Γ. ΧΑΛΚΙ Η ΚΑΙ ΜΕΓ. ΑΛΕΞΑΝ ΡΟΥ ΤΩΝ ΑΜΠΕΛΟΚΗΠΩΝ

ΜΕΛΕΤΗ: ΣΚΟΠΙΜΟΤΗΤΑ ΓΙΑ ΤΗΝ ΕΦΑΡΜΟΓΗ ΚΥΚΛΟΦΟΡΙΑΚΩΝ ΕΠΕΜΒΑΣΕΩΝ ΣΤΙΣ Ο ΟΥΣ Γ. ΧΑΛΚΙ Η ΚΑΙ ΜΕΓ. ΑΛΕΞΑΝ ΡΟΥ ΤΩΝ ΑΜΠΕΛΟΚΗΠΩΝ ΜΕΛΕΤΗ: ΣΚΟΠΙΜΟΤΗΤΑ ΓΙΑ ΤΗΝ ΕΦΑΡΜΟΓΗ ΚΥΚΛΟΦΟΡΙΑΚΩΝ ΕΠΕΜΒΑΣΕΩΝ ΣΤΙΣ Ο ΟΥΣ Γ. ΧΑΛΚΙ Η ΚΑΙ ΜΕΓ. ΑΛΕΞΑΝ ΡΟΥ ΤΩΝ ΑΜΠΕΛΟΚΗΠΩΝ ΠΕΡΙΛΗΨΗ ΤΕΧΝΙΚΗΣ ΕΚΘΕΣΗΣ Α ΣΤΑ ΙΟΥ ΜΕΛΕΤΗΣ ΑΝΤΙΚΕΙΜΕΝΟ ΜΕΛΕΤΗΣ Η µελέτη έχει ως

Διαβάστε περισσότερα

ΧΡΗΣΗ ΚΙΝΗΤΟΥ ΤΗΛΕΦΩΝΟΥ ΚΑΙ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΚΥΚΛΟΦΟΡΙΑΣ

ΧΡΗΣΗ ΚΙΝΗΤΟΥ ΤΗΛΕΦΩΝΟΥ ΚΑΙ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΚΥΚΛΟΦΟΡΙΑΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΜΕΤΑΦΟΡΩΝ ΚΑΙ ΣΥΓΚΟΙΝΩΝΙΑΚΗΣ ΥΠΟ ΟΜΗΣ ΧΡΗΣΗ ΚΙΝΗΤΟΥ ΤΗΛΕΦΩΝΟΥ ΚΑΙ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΚΥΚΛΟΦΟΡΙΑΣ Παπαντωνίου Παναγιώτης και Πετρέλλης Νικόλαος Επιβλέπων:

Διαβάστε περισσότερα

Σύνοψη Προαπαιτούμενη γνώση

Σύνοψη Προαπαιτούμενη γνώση 4 αστικά οδικά δίκτυα Σύνοψη Η ανάπτυξη των αστικών περιοχών πριν από την εξάπλωση του ΙΧ αυτοκινήτου δεν δημιούργησε τις απαραίτητες προϋποθέσεις για τη διαμόρφωση ενός οδικού δικτύου με την κατάλληλη

Διαβάστε περισσότερα

4. Βασικοί κανόνες τοποθέτησης των πινακίδων

4. Βασικοί κανόνες τοποθέτησης των πινακίδων 4. Βασικοί κανόνες τοποθέτησης των πινακίδων 4.1 Γενικά (1) Η σωστή επιλογή της θέσης των πληροφοριακών πινακίδων είναι βασικής σηµασίας για την έγκαιρη παρατήρηση της πληροφοριακής σήµανσης καθώς επίσης

Διαβάστε περισσότερα

Κυκλοφοριακή Τεχνική με Στοιχεία Οδοποιίας 8. Χαρακτηριστικά μεγέθη της κυκλοφορίας Κυκλοφοριακοί κόμβοι Κυκλοφοριακή ικανότητα

Κυκλοφοριακή Τεχνική με Στοιχεία Οδοποιίας 8. Χαρακτηριστικά μεγέθη της κυκλοφορίας Κυκλοφοριακοί κόμβοι Κυκλοφοριακή ικανότητα Κυκλοφοριακή Τεχνική με Στοιχεία Οδοποιίας 8. Χαρακτηριστικά μεγέθη της κυκλοφορίας Κυκλοφοριακοί κόμβοι Κυκλοφοριακή ικανότητα Πανεπιστήμιο Θεσσαλίας, Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας

Διαβάστε περισσότερα

12-13 Μαρτίου 2015 Αθήνα. Εντοπισμός δυνητικών θέσεων τροχαίων ατυχημάτων σε υφιστάμενο οδικό δίκτυο αναφορικά με τη γεωμετρία της οδού

12-13 Μαρτίου 2015 Αθήνα. Εντοπισμός δυνητικών θέσεων τροχαίων ατυχημάτων σε υφιστάμενο οδικό δίκτυο αναφορικά με τη γεωμετρία της οδού 12-13 Μαρτίου 2015 Αθήνα Εντοπισμός δυνητικών θέσεων τροχαίων ατυχημάτων σε υφιστάμενο οδικό δίκτυο αναφορικά με τη γεωμετρία της οδού Κωνσταντίνος Αποστολέρης Πολιτικός Μηχανικός, MSc Φώτης Μερτζάνης

Διαβάστε περισσότερα

Τυπολόγιο υπολογισµού Κυκλοφοριακής Ικανότητας Ισόπεδου Κόµβου

Τυπολόγιο υπολογισµού Κυκλοφοριακής Ικανότητας Ισόπεδου Κόµβου Τυπολόγιο υπολογισµού Κυκλοφοριακής Ικανότητας Ισόπεδου Κόµβου Κυκλοφοριακό σύστηµα: Παροχή προτεραιότητας µε STOP ιάγραµµα κόµβου (επισήµανση ρευµάτων) Επίπεδα προτεραιότητας Ρεύµατα Επίπεδο 1 2, 3, 5,

Διαβάστε περισσότερα

Καταµερισµός. µεταφορικό µέσο. Καταµερισµός στα µέσα. το υπό διερεύνηση θέµα :

Καταµερισµός. µεταφορικό µέσο. Καταµερισµός στα µέσα. το υπό διερεύνηση θέµα : καταµερισµός στα µεταφορικά µέσα προς ζώνη.... ν 00 00 από ζώνη 0πίνακας Π-Π....... ν 0 00 00 00 0 Μελλοντικές Ελκόµενες µετακινήσεις Μελλοντικές Παραγόµενες µετακινήσεις 0 00 70 ΚΑΤΑΜΕΡΙΣΜΟΣ ΣΤΑ ΜΕΣΑ

Διαβάστε περισσότερα

Από τα πρακτικά της µε αριθ. 21/2012 συνεδρίασης της Επιτροπής Ποιότητας Ζωής του ήµου Τρικκαίων. Αριθµ. Απόφ. 223/2012 ΠΕΡΙΛΗΨΗ

Από τα πρακτικά της µε αριθ. 21/2012 συνεδρίασης της Επιτροπής Ποιότητας Ζωής του ήµου Τρικκαίων. Αριθµ. Απόφ. 223/2012 ΠΕΡΙΛΗΨΗ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΤΡΙΚΑΛΩΝ ΗΜΟΣ ΤΡΙΚΚΑΙΩΝ ΕΠΙΤΡΟΠΗ ΠΟΙΟΤΗΤΑΣ ΖΩΗΣ ΑΠΟΣΠΑΣΜΑ Από τα πρακτικά της µε αριθ. 21/2012 συνεδρίασης της Επιτροπής Ποιότητας Ζωής του ήµου Τρικκαίων. Αριθµ. Απόφ. 223/2012

Διαβάστε περισσότερα

ΟΔΟΠΟΙΪΑ Ι - ΧΑΡΑΞΕΙΣ & ΥΠΟΛΟΓΙΣΜΟΣ ΧΩΜΑΤΙΣΜΩΝ : ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΚΤΙΚΗ

ΟΔΟΠΟΙΪΑ Ι - ΧΑΡΑΞΕΙΣ & ΥΠΟΛΟΓΙΣΜΟΣ ΧΩΜΑΤΙΣΜΩΝ : ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΚΤΙΚΗ ΠΕΡΙΕΧΟΜΕΝΑ 1. ΕΙΣΑΓΩΓΗ 1.1. Περιεχόμενο της Οδοποιΐας 1 1.2. Κανονισμοί 2 1.2.1. Ιστορικό 2 1.2.2. Ισχύοντες Κανονισμοί στην Ελλάδα 5 1.2.3. Διαδικασία Εκπόνησης Μελετών Οδοποιΐας 6 1.3. Ανάπτυξη του

Διαβάστε περισσότερα

ηλεκτρικό ρεύμα ampere

ηλεκτρικό ρεύμα ampere Ηλεκτρικό ρεύμα Το ηλεκτρικό ρεύμα είναι ο ρυθμός με τον οποίο διέρχεται ηλεκτρικό φορτίο από μια περιοχή του χώρου. Η μονάδα μέτρησης του ηλεκτρικού ρεύματος στο σύστημα SI είναι το ampere (A). 1 A =

Διαβάστε περισσότερα

ΚΥΚΛΟΦΟΡΙΑΚΗ ΜΕΛΕΤΗ ΚΟΜΒΩΝ ΠΕΡΙΟΧΗΣ Ν. ΚΡΗΝΗΣ, ΔΗΜΟΥ ΚΑΛΑΜΑΡΙΑΣ

ΚΥΚΛΟΦΟΡΙΑΚΗ ΜΕΛΕΤΗ ΚΟΜΒΩΝ ΠΕΡΙΟΧΗΣ Ν. ΚΡΗΝΗΣ, ΔΗΜΟΥ ΚΑΛΑΜΑΡΙΑΣ ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΚΥΚΛΟΦΟΡΙΑΚΗ ΜΕΛΕΤΗ ΚΟΜΒΩΝ ΠΕΡΙΟΧΗΣ Ν. ΚΡΗΝΗΣ, ΔΗΜΟΥ ΚΑΛΑΜΑΡΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΓΚΟΡΤΣΙΛΑ

Διαβάστε περισσότερα

Οδοποιία Ι. Ενότητα 7 : Κύριες Αστικές Οδοί σύμφωνα με το τεύχος Κύριες Αστικές Οδοί των ΟΜΟΕ (ΟΜΟΕ ΚΑΟ)

Οδοποιία Ι. Ενότητα 7 : Κύριες Αστικές Οδοί σύμφωνα με το τεύχος Κύριες Αστικές Οδοί των ΟΜΟΕ (ΟΜΟΕ ΚΑΟ) ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Οδοποιία Ι Ενότητα 7 : Κύριες Αστικές Οδοί σύμφωνα με το τεύχος Κύριες Αστικές Οδοί των ΟΜΟΕ (ΟΜΟΕ ΚΑΟ) Γεώργιος Μίντσης Άδειες Χρήσης

Διαβάστε περισσότερα

στατιστική θεωρεία της δειγµατοληψίας

στατιστική θεωρεία της δειγµατοληψίας στατιστική θεωρεία της δειγµατοληψίας ΕΙΓΜΑΤΟΛΗΨΙΑ : Εισαγωγή δειγµατοληψία Τα στοιχεία που απαιτούνται τόσο για την ανάλυση των µεταφορικών συστηµάτων και όσο και για την ανάπτυξη των συγκοινωνιακών µοντέλων

Διαβάστε περισσότερα

Οδοποιία ΙΙ ΑΝΑΛΥΣΗ ΚΥΚΛΟΦΟΡΙΑΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΣΕ ΑΥΤΟΚΙΝΗΤΟΔΡΟΜΟΥΣ

Οδοποιία ΙΙ ΑΝΑΛΥΣΗ ΚΥΚΛΟΦΟΡΙΑΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΣΕ ΑΥΤΟΚΙΝΗΤΟΔΡΟΜΟΥΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Αγρονό ων Το ογράφων Μηχανικών ΕΜΠ Εργαστήριο Συγκοινωνιακής Τεχνικής Οδοποιία ΙΙ Κωνσταντίνος Αντωνίου Αναπληρωτής Καθηγητής ΕΜΠ antoniou@central.ntua.gr Ιωάννα Σπυροπούλου

Διαβάστε περισσότερα

Κεφάλαιο Η2. Ο νόµος του Gauss

Κεφάλαιο Η2. Ο νόµος του Gauss Κεφάλαιο Η2 Ο νόµος του Gauss Ο νόµος του Gauss Ο νόµος του Gauss µπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού του ηλεκτρικού πεδίου. Ο νόµος του Gauss βασίζεται στο γεγονός ότι η ηλεκτρική

Διαβάστε περισσότερα

Προσφορά και κόστος. Κατηγορίες κόστους. Οριακό κόστος και µεγιστοποίηση του κέρδους. Μέσο κόστος. TC MC = q TC AC ) AC

Προσφορά και κόστος. Κατηγορίες κόστους. Οριακό κόστος και µεγιστοποίηση του κέρδους. Μέσο κόστος. TC MC = q TC AC ) AC Μέσο κόστος µέσο συνολικό κόστος (AC) 3 Προσφορά και κόστος µέσο µεταβλητό κόστος (AVC) µέσο σταθερό κόστος (AFC) Το µέσο σταθερό κόστος µειώνεται, διότι το συνολικό σταθερό κόστος κατανέµεται σε περισσότερη

Διαβάστε περισσότερα

Ανάλυση και Σχεδιασμός Μεταφορών Ι Δειγματοληψία - Μέθοδοι συλλογής στοιχείων

Ανάλυση και Σχεδιασμός Μεταφορών Ι Δειγματοληψία - Μέθοδοι συλλογής στοιχείων Δειγματοληψία - Μέθοδοι συλλογής στοιχείων Παναγιώτης Παπαντωνίου Δρ. Πολιτικός Μηχανικός, Συγκοινωνιολόγος ppapant@upatras.gr Πάτρα, 2017 Στόχοι Βασικές έννοιες στατιστικής Μέθοδοι συλλογής στοιχείων

Διαβάστε περισσότερα

2. ΓΕΝΝΗΤΡΙΕΣ ΕΝΑΛΛΑΣΣΟΜΕΝΟΥ ΡΕΥΜΑΤΟΣ

2. ΓΕΝΝΗΤΡΙΕΣ ΕΝΑΛΛΑΣΣΟΜΕΝΟΥ ΡΕΥΜΑΤΟΣ 28 2. ΓΕΝΝΗΤΡΙΕΣ ΕΝΑΛΛΑΣΣΟΜΕΝΟΥ ΡΕΥΜΑΤΟΣ Οι γεννήτριες εναλλασσόµενου ρεύµατος είναι δύο ειδών Α) οι σύγχρονες γεννήτριες ή εναλλακτήρες και Β) οι ασύγχρονες γεννήτριες Οι σύγχρονες γεννήτριες παράγουν

Διαβάστε περισσότερα

6. Σχηµατισµοί και όργανα γραµµής

6. Σχηµατισµοί και όργανα γραµµής 6. Σχηµατισµοί και όργανα γραµµής 6.1 Εισαγωγή Απαραίτητη προϋπόθεση για την οικονοµική εκµετάλλευση ενός σιδηροδροµικού δικτύου αποτελεί η δυνατότητα ένωσης, τοµής, διχασµού και σύνδεσης των γραµµών σε

Διαβάστε περισσότερα

Κατάλογος Ελέγχου Οδικής Ασφάλειας Επιθεώρηση συντήρησης σε υφιστάμενες οδούς

Κατάλογος Ελέγχου Οδικής Ασφάλειας Επιθεώρηση συντήρησης σε υφιστάμενες οδούς Κατάλογος Ελέγχου Οδικής Ασφάλειας Επιθεώρηση συντήρησης σε υφιστάμενες οδούς Αντικείμενο Ελέγχου Ναι Όχι Παρατηρήσεις 1 Χάραξη της οδού και διατομή 1.1 Ορατότητα και μήκη ορατότητας To διαθέσιμο μήκος

Διαβάστε περισσότερα

ΤΕΥΧΗ ΔΗΜΟΠΡΑΤΗΣΗΣ ΤΕΧΝΙΚΗ ΠΕΡΙΓΡΑΦΗ

ΤΕΥΧΗ ΔΗΜΟΠΡΑΤΗΣΗΣ ΤΕΧΝΙΚΗ ΠΕΡΙΓΡΑΦΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΔΗΜΟΣ ΛΕΒΑΔΕΩΝ ΕΡΓΟ: ΚΟΜΒΟΣ ΕΠΙ ΤΗΣ ΣΥΜΒΟΛΗΣ ΤΩΝ ΟΔΩΝ ΧΑΙΡΩΝΕΙΑΣ ΚΑΙ ΑΙΣΧΥΛΟΥ ΤΕΧΝΙΚΗ ΠΕΡΙΓΡΑΦΗ Γενικά Ο προς αναδιαμόρφωση κόμβος των οδών Χρ. Παλαιολόγου (τέως Αισχύλου), Χαιρωνείας

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΚΟΣ ΣΧΕ ΙΑΣΜΟΣ ΑΝΙΣΟΠΕ ΩΝ ΚΟΜΒΩΝ

ΓΕΩΜΕΤΡΙΚΟΣ ΣΧΕ ΙΑΣΜΟΣ ΑΝΙΣΟΠΕ ΩΝ ΚΟΜΒΩΝ ΓΕΩΜΕΤΡΙΚΟΣ ΣΧΕ ΙΑΣΜΟΣ ΑΝΙΣΟΠΕ ΩΝ ΚΟΜΒΩΝ Β. Ψαριανός Ακαδ. Έτος 2002-2003 ΕΡΓΑΣΤΗΡΙΟ ΣΥΓΚΟΙΝΩΝΙΑΚΗΣ ΤΕΧΝΙΚΗΣ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ Βασικές Αρχές ιαµόρφωσης Ανισόπεδων Κόµβων Όλες οι

Διαβάστε περισσότερα

Καταµερισµός στο δίκτυο - στο δίκτυο. καταµερισµός. στα δίκτυο. ορισµός του προβλήµατος. Κωδικοποίηση ιασταυρώσεων ν

Καταµερισµός στο δίκτυο - στο δίκτυο. καταµερισµός. στα δίκτυο. ορισµός του προβλήµατος. Κωδικοποίηση ιασταυρώσεων ν καταµερισµός στο δίκτυο µε δεδοµένα :. Αναπαράσταση του οδικού δικτύου µε ένα χάρτη κόµβων - συνδέσµων. Συναρτήσεις χρόνου για κάθε σύνδεσµο του δικτύου. Πίνακα Προέλευσης Προορισµού Καταµερισµός στο δίκτυο

Διαβάστε περισσότερα

καταµερισµός στο δίκτυο

καταµερισµός στο δίκτυο 7 καταµερισµός στο δίκτυο Καταµερισµός στα δίκτυο H διαδικασία µε την οποία, από τον πινάκα Π-Π των µετακινήσεων που γίνονται µε ΙΧ εκτιµώνται: Οι διαδροµές που θα ακολουθήσουν οι µετακινούµενοι µεταξύ

Διαβάστε περισσότερα

Οδοποιία ΙΙ Η ΧΩΡΙΚΗ ΚΑΙ Η ΧΡΟΝΙΚΗ ΔΙΑΣΤΑΣΗ ΤΟΥ ΦΟΡΤΟΥ. Κωνσταντίνος Αντωνίου Αναπληρωτής Καθηγητής ΕΜΠ

Οδοποιία ΙΙ Η ΧΩΡΙΚΗ ΚΑΙ Η ΧΡΟΝΙΚΗ ΔΙΑΣΤΑΣΗ ΤΟΥ ΦΟΡΤΟΥ. Κωνσταντίνος Αντωνίου Αναπληρωτής Καθηγητής ΕΜΠ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Αγρονό ων Το ογράφων Μηχανικών ΕΜΠ Εργαστήριο Συγκοινωνιακής Τεχνικής Οδοποιία ΙΙ Κωνσταντίνος Αντωνίου Αναπληρωτής Καθηγητής ΕΜΠ antoniou@central.ntua.gr Η ΧΩΡΙΚΗ ΚΑΙ

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΜΕΘΟ ΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΜΟΥ ΕΠΙΠΕ ΟΥ ΕΞΥΠΗΡΕΤΗΣΗΣ ΠΕΖΩΝ ΣΤΟ ΠΛΑΙΣΙΟ ΤΩΝ ΠΟΛΥΤΡΟΠΙΚΩΝ ΜΕΤΑΚΙΝΗΣΕΩΝ

ΑΝΑΠΤΥΞΗ ΜΕΘΟ ΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΜΟΥ ΕΠΙΠΕ ΟΥ ΕΞΥΠΗΡΕΤΗΣΗΣ ΠΕΖΩΝ ΣΤΟ ΠΛΑΙΣΙΟ ΤΩΝ ΠΟΛΥΤΡΟΠΙΚΩΝ ΜΕΤΑΚΙΝΗΣΕΩΝ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΓΙΑ ΤΗ ΛΗΨΗ Ι ΑΚΤΟΡΙΚΟΥ ΙΠΛΩΜΑΤΟΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ ΑΝΑΠΤΥΞΗ ΜΕΘΟ ΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΜΟΥ

Διαβάστε περισσότερα

Σύνθεση Ειδικών Κατασκευών Σκυροδέματος

Σύνθεση Ειδικών Κατασκευών Σκυροδέματος Σύνθεση Ειδικών Κατασκευών Σκυροδέματος 4. Φορείς Καταστρώματος Γεφυρών Τηλέμαχος Παναγιωτάκος 4. Φορείς Καταστρώματος Γεφυρών Στην ενότητα αυτή θα γίνει περιγραφή των φορέων καταστρώματος γεφυρών η οποία

Διαβάστε περισσότερα

PP οι στατικές πιέσεις στα σημεία Α και Β. Re (2.3) 1. ΑΝΤΙΚΕΙΜΕΝΟ ΚΑΙ ΣΚΟΠΟΣ ΤΟΥ ΠΕΙΡΑΜΑΤΟΣ

PP οι στατικές πιέσεις στα σημεία Α και Β. Re (2.3) 1. ΑΝΤΙΚΕΙΜΕΝΟ ΚΑΙ ΣΚΟΠΟΣ ΤΟΥ ΠΕΙΡΑΜΑΤΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2: ΡΟΗ ΣΕ ΑΓΩΓΟΥΣ 1. ΑΝΤΙΚΕΙΜΕΝΟ ΚΑΙ ΣΚΟΠΟΣ ΤΟΥ ΠΕΙΡΑΜΑΤΟΣ Η πειραματική εργασία περιλαμβάνει 4 διαφορετικά πειράματα που σκοπό έχουν: 1. Μέτρηση απωλειών πίεσης σε αγωγό κυκλικής διατομής.

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΝΕΑΣ Ο ΟΥ ΚΑΡ ΙΑΣ-ΜΗΧΑΝΙΩΝΑΣ

ΜΕΛΕΤΗ ΝΕΑΣ Ο ΟΥ ΚΑΡ ΙΑΣ-ΜΗΧΑΝΙΩΝΑΣ «ΚΥΚΛΟΦΟΡΙΑΚΗ ΜΕΛΕΤΗ ΝΕΑΣ Ο ΟΥ ΚΑΡ ΙΑΣ-ΜΗΧΑΝΙΩΝΑΣ ΜΗΧΑΝΙΩΝΑΣ» Πτυχιακή Εργασία των φοιτητριών : Γιουλδούρη Σωτηρία Γερακούδη Μαρία Γρούιου Φανή Ιούνιος 2008 ΕΙΣΑΓΩΓΗ Οι οικισµοί της νότιας περιοχής του

Διαβάστε περισσότερα

1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 120 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει:

1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 120 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει: ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΩΝ ΕΠΙΛΟΓΩΝ Ηλεκτρικό φορτίο Ηλεκτρικό πεδίο 1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 10 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει: (α)

Διαβάστε περισσότερα

ΕΞΑΝΑΓΚΑΣΜΕΝΗ ΗΛΕΚΤΡΙΚΗ ΤΑΛΑΝΤΩΣΗ Ο ΣΥΝΤΟΝΙΣΜΟΣ ΚΑΙ ΟΙ ΕΚ ΟΧΕΣ ΤΟΥ

ΕΞΑΝΑΓΚΑΣΜΕΝΗ ΗΛΕΚΤΡΙΚΗ ΤΑΛΑΝΤΩΣΗ Ο ΣΥΝΤΟΝΙΣΜΟΣ ΚΑΙ ΟΙ ΕΚ ΟΧΕΣ ΤΟΥ η ΠΕΡΙΠΤΩΣΗ ΕΞΑΝΑΓΚΑΣΜΕΝΗ ΗΛΕΚΤΡΙΚΗ ΤΑΛΑΝΤΩΣΗ Ο ΣΥΝΤΟΝΙΣΜΟΣ ΚΑΙ ΟΙ ΕΚ ΟΧΕΣ ΤΟΥ ΣΥΝΤΟΝΙΣΜΟΣ ΣΕ ΚΥΚΛΩΜΑ -L-C ΣΕ ΣΕΙΡΑ Κύκλωµα που αποτελείται από ωµική αντίσταση,ιδανικό πηνίο µε συντελεστή αυτεπαγωγής L

Διαβάστε περισσότερα

6 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ

6 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΑEI ΠΕΙΡΑΙΑ(ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 6 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ ΕΣΩΤΕΡΙΚΗ ΡΟΗ ΣΕ ΑΓΩΓΟ Σκοπός της άσκησης Σκοπός της πειραματικής

Διαβάστε περισσότερα

Συνιστώσες της Σιδηροδροµικής Γραµµής

Συνιστώσες της Σιδηροδροµικής Γραµµής 4 Συνιστώσες της Σιδηροδροµικής Γραµµής 4.1. Εισαγωγή Ο σιδηρόδροµος ως µέσο µεταφοράς ορίζεται από δύο συνιστώσες: Το τροχαίο υλικό και τη σιδηροδροµική υποδοµή. Με τον όρο τροχαίο υλικό εννοούµε όλα

Διαβάστε περισσότερα

ΙΣΟΠΕ ΟΙ ΚΟΜΒΟΙ. Στοιχεία Μελέτης Β. Ψαριανός. Κόµβων

ΙΣΟΠΕ ΟΙ ΚΟΜΒΟΙ. Στοιχεία Μελέτης Β. Ψαριανός. Κόµβων ΙΣΟΠΕ ΟΙ ΚΟΜΒΟΙ Στοιχεία Μελέτης Β. Ψαριανός 1 Γενικές Αρχές Εκτός κατοικηµένων περιοχών ορατότητα από απόσταση ίση περίπου µε την απόσταση προσπέρασης Εντός κατοικηµένων περιοχών σκόπιµες οι ασυνέχειες

Διαβάστε περισσότερα

Συστηματοποίηση Δυναμικής Σήμανσης Σήμανση στις προσβάσεις σηράγγων

Συστηματοποίηση Δυναμικής Σήμανσης Σήμανση στις προσβάσεις σηράγγων Συστηματοποίηση Δυναμικής Σήμανσης Σήμανση στις προσβάσεις σηράγγων 1 Για τη σήμανση των προσβάσεων στην Ελλάδα εφαρμόζεται το κεφάλαιο 20 των ΟΜΟΕ-ΚΣΑ, μέρος 1 Με αυτές τις οδηγίες αντιμετωπίζεται η σήμανση

Διαβάστε περισσότερα

ΕΠΙΡΡΟΗ ΤΗΣ ΧΡΗΣΗΣ ΤΟΥ ΚΙΝΗΤΟΥ ΤΗΛΕΦΩΝΟΥ ΣΤΗΝ ΤΑΧΥΤΗΤΑ ΚΥΚΛΟΦΟΡΙΑΣ

ΕΠΙΡΡΟΗ ΤΗΣ ΧΡΗΣΗΣ ΤΟΥ ΚΙΝΗΤΟΥ ΤΗΛΕΦΩΝΟΥ ΣΤΗΝ ΤΑΧΥΤΗΤΑ ΚΥΚΛΟΦΟΡΙΑΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΜΕΤΑΦΟΡΩΝ ΚΑΙ ΣΥΓΚΟΙΝΩΝΙΑΚΗΣ ΥΠΟ ΟΜΗΣ ΕΠΙΡΡΟΗ ΤΗΣ ΧΡΗΣΗΣ ΤΟΥ ΚΙΝΗΤΟΥ ΤΗΛΕΦΩΝΟΥ ΣΤΗΝ ΤΑΧΥΤΗΤΑ ΚΥΚΛΟΦΟΡΙΑΣ Φρόσω Γ. Κοντοδήµα και Ξένια Γ. Καρεκλά

Διαβάστε περισσότερα

κατανοµή των µετακινήσεων

κατανοµή των µετακινήσεων κατανοµή των µετακινήσεων πόσες µετακινήσεις ξεκινούν από την ζώνη και καταλήγουν στην ζώνη? το υπό διερεύνηση θέµα: εισαγωγή Ποιόν προορισµό θα επιλέξει ένας µετακινούµενος που ξεκινάει από την ζώνη?

Διαβάστε περισσότερα

ΙΣΟΠΕ ΟΙ ΚΟΜΒΟΙ ΠΡΟΒΛΗΜΑΤΑ ΕΠΙΣΗΜΑΝΣΕΙΣ. Εισηγήτρια: κ. Εύα Κασάπη, Προισταµένη ΜΕΟ/ε. Πηγή: Οδική Ασφάλεια (PIARC)

ΙΣΟΠΕ ΟΙ ΚΟΜΒΟΙ ΠΡΟΒΛΗΜΑΤΑ ΕΠΙΣΗΜΑΝΣΕΙΣ. Εισηγήτρια: κ. Εύα Κασάπη, Προισταµένη ΜΕΟ/ε. Πηγή: Οδική Ασφάλεια (PIARC) ΙΣΟΠΕ ΟΙ ΚΟΜΒΟΙ ΠΡΟΒΛΗΜΑΤΑ ΕΠΙΣΗΜΑΝΣΕΙΣ Εισηγήτρια: κ. Εύα Κασάπη, Προισταµένη ΜΕΟ/ε Πηγή: Οδική Ασφάλεια (PIARC) ΕΙΣΑΓΩΓΗ Οι Κόµβοι αποτελούν κρίσιµα σηµεία του οδικού δικτύου. Είναι τα σηµεία όπου οι

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (16/06/2010, 18:00)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (16/06/2010, 18:00) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών Θεματική Ενότητα Διοίκηση Επιχειρήσεων & Οργανισμών ΔΕΟ 13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος 2009-2010 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (16/06/2010, 18:00) Να απαντηθούν

Διαβάστε περισσότερα

8 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

8 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 8.1 8 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΩΣΤΙΚΟ ΕΔΡΑΝΟ ΟΛΙΣΘΗΣΗΣ 8.1. Εισαγωγή Το απλό επίπεδο ωστικό έδρανο ολίσθησης (Σχήμα 8.1) είναι ίσως η απλούστερη περίπτωση εφαρμογής της εξίσωσης Reynolds που περιγράφει τη

Διαβάστε περισσότερα

5 Μετρητές παροχής. 5.1Εισαγωγή

5 Μετρητές παροχής. 5.1Εισαγωγή 5 Μετρητές παροχής 5.Εισαγωγή Τρεις βασικές συσκευές, με τις οποίες μπορεί να γίνει η μέτρηση της ογκομετρικής παροχής των ρευστών, είναι ο μετρητής Venturi (ή βεντουρίμετρο), ο μετρητής διαφράγματος (ή

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΤΟΜΟΣ Ι ΕΙΣΑΓΩΓΗ 1

ΠΕΡΙΕΧΟΜΕΝΑ ΤΟΜΟΣ Ι ΕΙΣΑΓΩΓΗ 1 ΤΟΜΟΣ Ι ΕΙΣΑΓΩΓΗ 1 1 ΟΙ ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΤΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟΥ ΠΕΔΙΟΥ 7 1.1 Μονάδες και σύμβολα φυσικών μεγεθών..................... 7 1.2 Προθέματα φυσικών μεγεθών.............................. 13 1.3 Αγωγοί,

Διαβάστε περισσότερα

«ΣΥΣΤΗΜΑΤΑ ΑΣΤΙΚΩΝ ΣΥΓΚΟΙΝΩΝΙΩΝ»

«ΣΥΣΤΗΜΑΤΑ ΑΣΤΙΚΩΝ ΣΥΓΚΟΙΝΩΝΙΩΝ» ΣΤΑΣΕΙΣ ΛΕΩΦΟΡΕΙΩΝ ΣΤΑΣΕΙΣ ΛΕΩΦΟΡΕΙΩΝ & ΤΕΡΜΑΤΙΚΟΙ ΣΤΑΘΜΟΙ Στάσεις Λεωφορείων Στάσεις κατά μήκος της γραμμής Στάσεις στα σημεία συμβολής δύο ή περισσοτέρων λεωφορειακών γραμμών (πιθανά σημεία μετεπιβίβασης).

Διαβάστε περισσότερα

ΣΥΜΒΟΥΛΟΣ: Κ/ΞΙΑ ΝΑΜΑ - ΜΑRNET - ΣΑΛΦΩ Κωδ. Αρ. Τεύχους : ΠΕ-Β-1.0 Σελίδα Κατάστ. Εγγρ. : Σχέδιο YPETHO/EP9/PE-B-1.0.doc Ηµεροµηνία : 02/12/2002

ΣΥΜΒΟΥΛΟΣ: Κ/ΞΙΑ ΝΑΜΑ - ΜΑRNET - ΣΑΛΦΩ Κωδ. Αρ. Τεύχους : ΠΕ-Β-1.0 Σελίδα Κατάστ. Εγγρ. : Σχέδιο YPETHO/EP9/PE-B-1.0.doc Ηµεροµηνία : 02/12/2002 Κωδικός: ΠΠΕΜ-ΣΥΓΚ-1 Αναθ. : Ηµερ/νία: Σελίδα : από ΜΕΛΕΤΕΣ ΣΥΓΚΟΙΝΩΝΙΑΚΩΝ ΕΡΓΩΝ Πίνακας Ελέγχου Ποιότητας Μελέτης Υπηρεσία: ΜΕΛΕΤΗ: Υπηρεσία: ΑΝΑ ΟΧΟΣ: Υπηρεσία: ΕΠΙΒΛΕΠΩΝ: Υπηρεσία: ΑΝΤΙΚΛΗΤΟΣ: 1. ΣΤΑ

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΠΛΗΜΜΥΡΕΣ ΚΑΙ ΑΝΤΙΠΛΗΜΜΥΡΙΚΑ ΕΡΓΑ

ΜΑΘΗΜΑ ΠΛΗΜΜΥΡΕΣ ΚΑΙ ΑΝΤΙΠΛΗΜΜΥΡΙΚΑ ΕΡΓΑ ΜΑΘΗΜΑ ΠΛΗΜΜΥΡΕΣ ΚΑΙ ΑΝΤΙΠΛΗΜΜΥΡΙΚΑ ΕΡΓΑ Μελέτη χαρτογράφησης πληµµύρας (flood mapping) µε χρήση του υδραυλικού µοντέλου HEC RAS Εργαστήριο Υδρολογίας και Αξιοποίησης Υδατικών Πόρων Μάϊος 2006 1 Εκτίµηση

Διαβάστε περισσότερα

Αυτά τα πειράµατα έγιναν από τους Michael Faraday και Joseph Henry.

Αυτά τα πειράµατα έγιναν από τους Michael Faraday και Joseph Henry. Επαγόµενα πεδία Ένα µαγνητικό πεδίο µπορεί να µην είναι σταθερό, αλλά χρονικά µεταβαλλόµενο. Πειράµατα που πραγµατοποιήθηκαν το 1831 έδειξαν ότι ένα µεταβαλλόµενο µαγνητικό πεδίο µπορεί να επάγει ΗΕΔ σε

Διαβάστε περισσότερα

δ. έχουν πάντα την ίδια διεύθυνση.

δ. έχουν πάντα την ίδια διεύθυνση. Διαγώνισμα ΦΥΣΙΚΗ Κ.Τ Γ ΛΥΚΕΙΟΥ ΖΗΤΗΜΑ 1 ον 1.. Σφαίρα, μάζας m 1, κινούμενη με ταχύτητα υ1, συγκρούεται μετωπικά και ελαστικά με ακίνητη σφαίρα μάζας m. Οι ταχύτητες των σφαιρών μετά την κρούση α. έχουν

Διαβάστε περισσότερα

ΖΩΝΕΣ ΠΕΡΙΟΡΙΣΜΕΝΗΣ ΚΥΚΛΟΦΟΡΙΑΣ (ΖΠΚ) Αναβάθµιση λειτουργίας Ιστορικών Εµπορικών κέντρων. Περιορισµός κυκλοφορίας οχηµάτων

ΖΩΝΕΣ ΠΕΡΙΟΡΙΣΜΕΝΗΣ ΚΥΚΛΟΦΟΡΙΑΣ (ΖΠΚ) Αναβάθµιση λειτουργίας Ιστορικών Εµπορικών κέντρων. Περιορισµός κυκλοφορίας οχηµάτων ΖΩΝΕΣ ΠΕΡΙΟΡΙΣΜΕΝΗΣ ΚΥΚΛΟΦΟΡΙΑΣ (ΖΠΚ) Αναβάθµιση λειτουργίας Ιστορικών Εµπορικών κέντρων Περιορισµός κυκλοφορίας οχηµάτων Σχέδια λειτουργίας Κέντρου Πόλεων Οι λύσεις της Kapsch για τον κυκλοφοριακό σχεδιασµό

Διαβάστε περισσότερα

ΘΕΜΑ 1ο 1.1 Να γράψετε στο τετράδιό σας τα φυσικά µεγέθη από τη Στήλη Ι και, δίπλα σε καθένα, τη µονάδα της Στήλης ΙΙ που αντιστοιχεί σ' αυτό.

ΘΕΜΑ 1ο 1.1 Να γράψετε στο τετράδιό σας τα φυσικά µεγέθη από τη Στήλη Ι και, δίπλα σε καθένα, τη µονάδα της Στήλης ΙΙ που αντιστοιχεί σ' αυτό. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 5 ΙΟΥΝΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΠΤΑ (7) ΘΕΜΑ 1ο 1.1 Να γράψετε στο τετράδιό σας τα

Διαβάστε περισσότερα

των µετακινήσεων κατανοµή των µετακινήσεων Κατανοµή το υπό διερεύνηση θέµα: παραγόµενων µετακινήσεων ελκόµενων Γένεση Μετακινήσεων

των µετακινήσεων κατανοµή των µετακινήσεων Κατανοµή το υπό διερεύνηση θέµα: παραγόµενων µετακινήσεων ελκόµενων Γένεση Μετακινήσεων εισαγωγή κατανοµή των µετακινήσεων Γένεση Μετακινήσεων Παραγόµενες ελκόµενες πόσες µετακινήσεις ξεκινούν από την ζώνη και καταλήγουν στην ζώνη? το υπό διερεύνηση θέµα: εισαγωγή Ποιόν προορισµό θα επιλέξει

Διαβάστε περισσότερα

Κεφάλαιο 4. Λειτουργία οδικών στοιχείων: αυτοκινητόδροµοι

Κεφάλαιο 4. Λειτουργία οδικών στοιχείων: αυτοκινητόδροµοι Κεφάλαιο 4. Λειτουργία οδικών στοιχείων: αυτοκινητόδροµοι Σύνοψη Στο κεφάλαιο αυτό παρουσιάζονται βασικές έννοιες σχετικά µε τη λειτουργία τµηµάτων αυτοκινητοδρόµων. Επίσης, παρουσιάζεται µια αναλυτική

Διαβάστε περισσότερα

Τμήμα Ηλεκτρολόγων Μηχανικών ΧΑΡΑΚΤΗΡΙΣΤΙΚΕΣ ΡΟΠΗΣ ΤΑΧΥΤΗΤΑΣ ΕΠΑΓΩΓΙΚΩΝ ΚΙΝΗΤΗΡΩΝ

Τμήμα Ηλεκτρολόγων Μηχανικών ΧΑΡΑΚΤΗΡΙΣΤΙΚΕΣ ΡΟΠΗΣ ΤΑΧΥΤΗΤΑΣ ΕΠΑΓΩΓΙΚΩΝ ΚΙΝΗΤΗΡΩΝ Αν είναι γνωστή η συμπεριφορά των μαγνητικών πεδίων στη μηχανή, είναι δυνατός ο προσεγγιστικός προσδιορισμός της χαρακτηριστικής ροπής-ταχύτητας του επαγωγικού κινητήρα Όπως είναι γνωστό η επαγόμενη ροπή

Διαβάστε περισσότερα

Χρήση Προσοµοίωσης για τη ιερεύνηση των Επιπτώσεων από την Κυκλοφορία Βαρέων Οχηµάτων στην Αθήνα

Χρήση Προσοµοίωσης για τη ιερεύνηση των Επιπτώσεων από την Κυκλοφορία Βαρέων Οχηµάτων στην Αθήνα Χρήση Προσοµοίωσης για τη ιερεύνηση των Επιπτώσεων από την Κυκλοφορία Βαρέων Οχηµάτων στην Αθήνα Ματθαίος Καρλαύτης, Λέκτορας Ιωάννης Γκόλιας, Καθηγητής Γιώργος Γιαννής, Λέκτορας Τοµέας Μεταφορών και Συγκοινωνιακής

Διαβάστε περισσότερα

1. Εγκρίνουµε την Πρότυπη Τεχνική Προδιαγραφή Σηµάνσεως Εκτελουµένων Έργων σε Ο ΥΠΟΥΡΓΟΣ ΗΜΟΣΙΩΝ ΕΡΓΩΝ

1. Εγκρίνουµε την Πρότυπη Τεχνική Προδιαγραφή Σηµάνσεως Εκτελουµένων Έργων σε Ο ΥΠΟΥΡΓΟΣ ΗΜΟΣΙΩΝ ΕΡΓΩΝ ΥΠΟΥΡΓΙΚΗ ΑΠΟΦΑΣΗ: Αριθ. ΒΜ 5/30058/83 Έγκριση Πρότυπης Τεχνικής Προδιαγραφής Σηµάνσεως Εκτελουµένων Έργων σε οδούς εντός κατοικηµένων περιοχών. (ΦΕΚ 121/Β/23-3-83) Έχοντας υπόψη: Ο ΥΠΟΥΡΓΟΣ ΗΜΟΣΙΩΝ ΕΡΓΩΝ

Διαβάστε περισσότερα

ψψαριαα0001.jpg ψψαριαα0001.jpg Κ.-Α. Θ. Θωμά

ψψαριαα0001.jpg ψψαριαα0001.jpg Κ.-Α. Θ. Θωμά Οι διαφάνειες που ακολουθούν είναι βοηθητικές για το μάθημα της Φυσικής που διδάσκεται στους φοιτητές του Βιολογικού Τμήματος του Πανεπιστημίου Πατρών. Επειδή, στο καλωσόρισμα, ακόμη και όταν πρόκειται

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΜΕΤΑΦΟΡΩΝ ΚΑΙ ΣΥΓΚΟΙΝΩΝΙΑΚΗΣ ΥΠΟΔΟΜΗΣ. Ελένη Β. Χαρωνίτη

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΜΕΤΑΦΟΡΩΝ ΚΑΙ ΣΥΓΚΟΙΝΩΝΙΑΚΗΣ ΥΠΟΔΟΜΗΣ. Ελένη Β. Χαρωνίτη ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΜΕΤΑΦΟΡΩΝ ΚΑΙ ΣΥΓΚΟΙΝΩΝΙΑΚΗΣ ΥΠΟΔΟΜΗΣ ΑΝΑΛΥΣΗ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕΝΑΡΙΩΝ ΔΙΑΧΕΙΡΙΣΗΣ ΚΥΚΛΟΦΟΡΙΑΚΟΥ ΣΥΜΒΑΝΤΟΣ ΜΕΣΩ ΜΙΚΡΟΣΚΟΠΙΚΗΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Ελένη

Διαβάστε περισσότερα

ΡΥΘΜΙΣΤΙΚΕΣ ΠΙΝΑΚΙ ΕΣ (Ρ)

ΡΥΘΜΙΣΤΙΚΕΣ ΠΙΝΑΚΙ ΕΣ (Ρ) ΡΥΘΜΙΣΤΙΚΕΣ ΠΙΝΑΚΙ ΕΣ (Ρ) Made by Nikouba!!! Οι ρυθµιστικές πινακίδες επιβάλλουν στον οδηγό την τήρηση ορισµένων κανόνων κυκλοφορίας (π.χ. απαγόρευση στροφής, υποχρεωτική πορεία, όριο ταχύτητας κλπ.).

Διαβάστε περισσότερα

Τμήμα Ηλεκτρολόγων Μηχανικών ΧΑΡΑΚΤΗΡΙΣΤΙΚΕΣ ΡΟΠΗΣ ΤΑΧΥΤΗΤΑΣ ΕΠΑΓΩΓΙΚΩΝ ΚΙΝΗΤΗΡΩΝ

Τμήμα Ηλεκτρολόγων Μηχανικών ΧΑΡΑΚΤΗΡΙΣΤΙΚΕΣ ΡΟΠΗΣ ΤΑΧΥΤΗΤΑΣ ΕΠΑΓΩΓΙΚΩΝ ΚΙΝΗΤΗΡΩΝ Ένας που κατασκευάζεται ώστε να παρουσιάζει μεγάλη αντίσταση δρομέα η ροπή εκκίνησης του είναι αρκετά υψηλή αλλά το ίδιο υψηλή είναι και η ολίσθηση του στις κανονικές συνθήκες λειτουργίας Όμως επειδή Pconv=(1-s)PAG,

Διαβάστε περισσότερα

Οδηγίες προς υποψηφίους ΚΑΛΗ ΕΠΙΤΥΧΙΑ!

Οδηγίες προς υποψηφίους ΚΑΛΗ ΕΠΙΤΥΧΙΑ! ΠΡΟΣΟΜΟΙΩΣΗ ΕΞΕΤΑΣΕΩΝ Β ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 26 ΑΠΡΙΛΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς αϖό τις ϖαρακάτω ερωτήσεις 1-4 και δίϖλα το γράµµα

Διαβάστε περισσότερα

Ιεράρχηση του αστικού οδικού δικτύου και οδική ασφάλεια

Ιεράρχηση του αστικού οδικού δικτύου και οδική ασφάλεια ΠΣ ΑΤΜ - ΤΕΕ Επιστηµονική Ηµερίδα Παρόδιες χρήσεις γης και διαχείριση προσβάσεων Αθήνα, 26-27 Απριλίου 2001 Ιεράρχηση του αστικού οδικού δικτύου και οδική ασφάλεια Γιώργος Γιαννής Μαθιός Καρλαύτης Ιωάννης

Διαβάστε περισσότερα

Τμήμα Ηλεκτρολόγων Μηχανικών ΑΝΑΛΥΣΗ ΣΓ ΠΟΥ ΛΕΙΤΟΥΡΓΟΥΝ ΠΑΡΑΛΛΗΛΑ

Τμήμα Ηλεκτρολόγων Μηχανικών ΑΝΑΛΥΣΗ ΣΓ ΠΟΥ ΛΕΙΤΟΥΡΓΟΥΝ ΠΑΡΑΛΛΗΛΑ Πολύ συχνά όταν μία ΣΓ συνδεθεί σε κάποιο μεγάλο σύστημα ισχύος, καμία μεταβολή στα χαρακτηριστικά της γεννήτριας δεν μπορεί να προκαλέσει εμφανή αλλαγή στη συχνότητα του συστήματος Η παρατήρηση αυτή εκφράζει

Διαβάστε περισσότερα

ΘΕΜΑ 1ο 1.1 Να γράψετε στο τετράδιό σας τα φυσικά μεγέθη από τη Στήλη Ι και, δίπλα σε καθένα, τη μονάδα της Στήλης ΙΙ που αντιστοιχεί σ' αυτό.

ΘΕΜΑ 1ο 1.1 Να γράψετε στο τετράδιό σας τα φυσικά μεγέθη από τη Στήλη Ι και, δίπλα σε καθένα, τη μονάδα της Στήλης ΙΙ που αντιστοιχεί σ' αυτό. ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 5 ΙΟΥΝΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΦΥΣΙΚΗ ΘΕΜΑ 1ο 1.1 Να γράψετε στο τετράδιό σας τα φυσικά μεγέθη από τη Στήλη Ι και,

Διαβάστε περισσότερα

ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ.

ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. Ν. Ε. Ηλιού Επίκουρος Καθηγητής Τµήµατος Πολιτικών Μηχανικών Πανεπιστηµίου Θεσσαλίας Γ.. Καλιαµπέτσος Επιστηµονικός

Διαβάστε περισσότερα

Μηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville

Μηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 16/5/2000 Μηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville Στη Χαµιλτονιανή θεώρηση η κατάσταση του συστήµατος προσδιορίζεται κάθε στιγµή από ένα και µόνο σηµείο

Διαβάστε περισσότερα

ΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΠΙΠΤΩΣΕΩΝ ΤΗΣ ΜΕΤΑΒΟΛΗΣ ΤΗΣ ΤΑΧΥΤΗΤΑΣ ΜΕΛΕΤΗΣ ΣΤΟΝ ΟΓΚΟ ΤΩΝ ΧΩΜΑΤΙΣΜΩΝ.

ΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΠΙΠΤΩΣΕΩΝ ΤΗΣ ΜΕΤΑΒΟΛΗΣ ΤΗΣ ΤΑΧΥΤΗΤΑΣ ΜΕΛΕΤΗΣ ΣΤΟΝ ΟΓΚΟ ΤΩΝ ΧΩΜΑΤΙΣΜΩΝ. ΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΠΙΠΤΩΣΕΩΝ ΤΗΣ ΜΕΤΑΒΟΛΗΣ ΤΗΣ ΤΑΧΥΤΗΤΑΣ ΜΕΛΕΤΗΣ ΣΤΟΝ ΟΓΚΟ ΤΩΝ ΧΩΜΑΤΙΣΜΩΝ. Φωτεινή Κεχαγιά Πολιτικός Μηχανικός, Υποψ. ιδάκτωρ Α.Π.Θ. Νίκος Ηλιού Επίκουρος Καθηγητής Τµ. Πολιτικών Μηχανικών

Διαβάστε περισσότερα