Πρακτικές μέθοδοι αποδιαμόρφωσης FM. Ανίχνευση μηδενισμών Διευκρίνιση ολίσθησης φάσης Μετατροπή FM σε ΑΜ Ανάδραση συχνότητας

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Πρακτικές μέθοδοι αποδιαμόρφωσης FM. Ανίχνευση μηδενισμών Διευκρίνιση ολίσθησης φάσης Μετατροπή FM σε ΑΜ Ανάδραση συχνότητας"

Transcript

1 Αποδιαμόρφωση FM

2 Πρακτικές μέθοδοι αποδιαμόρφωσης FM Ανίχνευση μηδενισμών Διευκρίνιση ολίσθησης φάσης Μετατροπή FM σε ΑΜ Ανάδραση συχνότητας

3 Ανίχνευση μηδενισμών Η έξοδος είναι ανάλογη του ρυθμού των μηδενισμών, δηλαδή, της συχνότητας

4 Διευκρίνιση ολίσθησης φάσης Μια πρακτική λύση είναι ο ορθογωνικός αποδιαμορφωτής Το κύκλωμα καθυστέρησης φάσης εισάγει καθυστέρηση ομάδος t 1 και καθυστέρηση φέροντος t 0 που αντιστοιχεί σε διαφορά φάσης 2 ft 90 c 0 o και παράγει στην έξοδο sin ( t) ( t t1) ( t) ( t t1) t d 1 ( t) dt

5 Μετατροπή FM σε ΑΜ Οποιοδήποτε στοιχείο παράγει ως έξοδο την παράγωγο της εισόδου προκαλεί μετατροπή FM σε AM t s( t) Accos 2 fct 2 f x( ) d d f t s( t) 2 Ac fc 1 x( t) cos(2 fct 2 f x( ) d ) dt f c 2 οπότε ο φωρατής περιβάλλουσας ανακτά το σήμα m(t) Μια πρακτική υλοποίηση είναι το κύκλωμα κλίσης

6 Κύκλωμα κλίσης H ( f) 1 j H ( f ) 1 j f c B 2 T f c BT 2 Κλίση= 2πα f H 1 ( f) BT B j2 a f fc f fc 2 2 BT B j2 a f fc f fc αλλού T T H ( f f ) H ( f ) f 0 1 c 1 B T 2 B T 2 f H 1 BT B j2 a f f ( f) αλλού T

7 Συμπληρωματικό κύκλωμα κλίσης H ( f ) 2 j Κλίση=- 2πα f c B 2 T f c BT 2 f H ( f ) 2 j H ( f ) H ( f ) 2 1 B T 2 B T 2 f

8 Έξοδος κυκλώματος κλίσης Έστω διαμορφωμένο σήμα FM, t s( t) Ac cos 2 fct 2 k f m( ) d η μιγαδική περιβάλλουσα είναι t s( t) Acexp j2 k f m( ) d η έξοδος του κυκλώματος κλίσης βάση της θεωρίας ζωνοπερατών συστημάτων ευρίσκεται μέσω των μιγαδικών περιβαλλουσών και του ισοδύναμου βαθυπερατού φίλτρου S ( f ) H ( f ) S( f ) 1 1 BT B j2 a f S( f ) f αλλού T

9 Έξοδος κυκλώματος κλίσης δηλαδή επομένως s ( t) Re s ( t)exp( j2 f t) 1 1 και εφόσον k fm t BT φωρατή περιβάλλουσας ds() t s1( t) a j BT s( t) dx 2k t f s1( t) jabt 1 m( t) exp j2 k f m( ) d B T c 2k t f abt Ac 1 m( t) cos 2 fct 2 k f m( ) d B T 2 2 ( )/ 1 2k f s1( t) abtac1 m( t) B T το σήμα μπορεί να ληφθεί από

10 Συμπληρωματικό κύκλωμα κλίσης Αντίστοιχα H ( f ) H ( f ) άρα 2 1 2k f s2( t) abtac1 m( t) B T οπότε αφαιρώντας s( t) s ( t) s ( t) 4 ak A m( t) 1 2 f c

11 Συντονισμένο κύκλωμα Σε συχνότητες έξω από τη συχνότητα συντονισμού έχουμε σχεδόν γραμμική απόκριση

12 Απόκριση πλάτους-συχνότητας κυκλώματος κλίσης

13 Ισοσταθμισμένος αποδιαμορφωτής FM Χρησιμοποιούνται δύο κυκλώματα φωρατών περιβάλλουσας, όπου τα ζωνοπερατά φίλτρα είναι αποσυντονισμένα...

14 Μετατροπή συχνότητας σε τάση Στον ισοσταθμισμένο αποδιαμορφωτή FM έχουμε μετατροπή συχνότητας σε τάση

15 Βρόχος κλειδωμένης φάσης

16 Phase Locked Loop (PLL) Βρόχος αρνητικής ανάδρασης Συγχρονισμός (κλείδωμα) της γωνίας (συχνότητα και φάση) του εισερχόμενου σήματος με τη γωνία τοπικά παραγόμενου φέροντος Υψηλές επιδόσεις, χαμηλό κόστος

17 Phase Locked Loop (PLL) Τρία βασικά στοιχεία Συγκριτής φάσης Φίλτρο βρόχου Ταλαντωτής ελεγχόμενος από τάση Voltage Controlled Oscillator (VCO)

18 Γενικό διάγραμμα PLL Παράδειγμα ολοκληρωμένου κυκλώματος LM 565

19 Σύγκριση φάσης Αναλογική σύγκριση φάσης Ψηφιακή σύγκριση φάσης

20 Δομικό διάγραμμα st () X et () h(t) () t rt () VCO s( t) A sin 2 f t ( t) c c 1 ( t) 2 k m( ) d 1 f r( t) A cos 2 f t ( t) t c 2 ( t) 2 k ( ) d 2 t

21 Λάθος φάσης Ο πολλαπλασιαστής παράγει μια συνιστώσα υψηλής συχνότητας που απορρίπτεται (k m το κέρδος πολλαπλασιασμού) k A A sin 4 f t ( t) ( t) m c c 1 2 και μια συνιστώσα χαμηλής συχνότητας (το σήμα λάθους) που αποτελεί την είσοδο στο φίλτρο e( t) kmac A sin e ( t) όπου το λάθος φάσης ορίζεται ως t ( t e ) 1 ( t ) 2( t ) 1( t ) 2 k ( ) d

22 Λάθος φάσης Το φίλτρο με είσοδο το σήμα λάθους παράγει ως έξοδο ( t) e( ) h( t ) d οπότε τελικά το λάθος φάσης προκύπτει από την ακόλουθη διαφορική εξίσωση d d ( t) ( t) 2 K sin ( t) h( t ) d dt όπου η σταθερά K 0 (ως φυσικό μέγεθος έχει διαστάσεις συχνότητας) είναι K e 1 0 e dt k k A A 0 m c

23 Ισοδύναμο κύκλωμα με φάσεις Εάν αντί για τα σήματα ασχοληθούμε με τις φάσεις έχουμε το ακόλουθο δομικό διάγραμμα 2 K k () t 1 + e() t Σ sin( ) X h(t) X () t - () t 2

24 Γραμμικοποιημένο ισοδύναμο κύκλωμα Όταν το λάθος φάσης είναι μηδέν ο βρόχος είναι κλειδωμένος sin ( t) ( t) Εάν e e ο βρόχος είναι σχεδόν κλειδωμένος και το δομικό διάγραμμα απλοποιείται 1 2 K 0 2 k () t 1 + e() t Σ X h(t) X () t - () t 2

25 Ανάλυση γραμμικοποιημένου κυκλώματος Το λάθος φάσης υπολογίζεται από d d e( t) 2 K 0 e( t) h( t ) d 1( t) dt dt 1 e( f) 1( f) 1 L( f) L( f ) K 0 H( f) jf όπου L(f) είναι η συνάρτηση μεταφοράς ανοικτού βρόχου

26 Έξοδος γραμμικοποιημένου κυκλώματος Η έξοδος του βρόχου είναι K0 jf L( f ) V ( f ) H( f ) e( f ) 1( f ) k k 1 L( f ) Η απλούστερη περίπτωση προκύπτει όταν H(f)=1, δηλαδή, καταργήσουμε το φίλτρο PLL πρώτης τάξης Ο βαθμός του παρονομαστή καθορίζει την τάξη του βρόχου

27 Προσεγγιστικό κύκλωμα Εάν η συνάρτηση μεταφοράς ανοικτού βρόχου είναι πολύ μεγάλη jf V ( f ) 1( f ) k 1 d ( t) 1 ( t) 2 k dt Τελικά k f ( t) m( t) k

28 Προσεγγιστικό κύκλωμα Στην προσέγγιση μεγάλου κέρδος ανοικτού βρόχου, η έξοδος είναι (υπό κλίμακα) το αρχικό σήμα διαμόρφωσης 1 2 k () t d 1 () dt X () t

29 Περιοχή κλειδώματος Έστω ότι η κανονική συχνότητα του VCO στο βρόχο πρώτης τάξης διαφέρει από τη συχνότητα του σήματος εισόδου κατά Δf, τότε s( t) A sin2 f t ( t) r( t) A cos2 ( f f ) t ( t) c c 1 c 2 ( t) ( t) ( t) 2ft e 1 2 ( t) 2 k ( ) d 2 ( t) k A A sin ( t) d d d d e( t) 1( t) 2( t) 2 f 1( t) 2 k ( t) 2f dt dt dt dt d d e( t) 2 K0sin e( t) 1( t) 2f dt dt t m c e

30 Περιοχή κλειδώματος Εάν η είσοδος του βρόχου είναι το αδιαμόρφωτο φέρον, τότε 1 d 1( t) 0 e( t) sin e( t) 2 K dt και στη μόνιμη κατάσταση d e( t) 0, e( t) e e arcsin dt Ο βρόχος κλειδώνει εάν f K 0 0 f K 0 f K 0

31 Περιοχή κλειδώματος Όταν το κέρδος K 0 είναι μεγάλο ώστε να δικαιολογούνται μικρές τιμές της γωνίας λάθους στη μόνιμη κατάσταση, τότε 1 d 2 K0( tt0) e( t) e( t) 0 e( t) e( t0)e 2 K dt 0 Το μεταβατικό φαινόμενο παύει όταν δηλαδή, μετά 5 χρονικές σταθερές Ο βρόχος θα κλειδώνει εάν η μεταβολή της φάσης είναι αργή σε σχέση με τη σταθερά χρόνου και η στιγμιαία συχνότητα είναι εντός της περιοχής f K c t t K 0

32 Ψηφιακή αποδιαμόρφωση QAM

33 st () Δέκτης QAM A cos 2 f t ( t) c c x ~ cos(2 ft) c sin(2 ft) c -W W y( t) LBF s( t) e Ae c j () t I( t) jq( t) It () j2 f t c x -W W Qt ()

34 Αποδιαμόρφωση με DSP Το σήμα μπορεί να αποδιαμορφωθεί με ψηφιακή επεξεργασία, αφού Qt () ( t) arctan It () 1 d m( t) ( t) k dt 2 f

35 Εμπορική FM

36 Στερεοφωνικός πομπός FM

37 Σύνθετο ακουστικό σήμα RDS (Radio Data System) Εναλλακτικές συχνότητες (AF) Κίνηση στους δρόμους (TA) Είδος προγράμματος (PTY) SCA (Subsidiary Communications Authorization) Μετάδοση δεδομένων (τιμές μετοχών) Μετάδοση σε άλλη γλώσσα Ανάγνωση κειμένου (για τυφλούς)

38 Στερεοφωνικός δέκτης FM

39 Παρεμβολές

40 Παρεμβολή από ημιτονοειδή Έστω ότι έχουμε υπέρθεση φέροντος με σήμα FM παραπλήσιας συχνότητας s( t) A cos(2 f t) A cos 2 ( f f ) t Ai, i( t) 2 fit i A 2 ( ) c 1 2 cos i( ) () t c c c i c i i A t A t sin i( t) arctan 1 cos ( t) i

41 Παρεμβολή από ημιτονοειδή Έστω ότι το σήμα που παρεμβάλει είναι ασθενές, τότε 1 A ( t) A 1 cos(2 f t ) c i i ( t) sin(2 f t ) i δηλαδή, προκύπτει τόσο διαμόρφωση AM (με δείκτη διαμόρφωσης ρ) όσο και διαμόρφωση FM/PM (με δείκτη διαμόρφωσης ρ) από απλό τόνο συχνότητας f i i

42 Παρεμβολή από ημιτονοειδή Έστω ότι το παρεμβάλον σήμα είναι ισχυρό, τότε A t A f t ( t) 2 f t 1 ( ) 1 i cos(2 i i) 1 i i οπότε έχουμε και πάλι μια διαμόρφωση AM, αλλά η φάση αντιστοιχεί σε μετατοπισμένη συχνότητα φέροντος f c f i

43 Αποδιαμόρφωση παρεμβολής H έξοδος, ανάλογα με το είδος φωρατή, σε ασθενή παρεμβολή είναι 1 cos(2 ft i i) AM ( t) sin(2 fit i) PM fi cos(2 fit i ) FM με την προϋπόθεση ότι διαφορετικά η i παρεμβολή απορρίπτεται από το βαθυπερατό φίλτρο στην έξοδο f W

44 Αποδιαμόρφωση παρεμβολής Στην PM η ασθενής παρεμβολή εμφανίζεται ως μια κίβδηλη (spurious) συχνότητα με πλάτος ανάλογο του ρ Το ίδιο συμβαίνει και στην FM μόνο που το πλάτος της παρεμβολής είναι ανάλογο της παρεμβάλουσας συχνότητας f i Η FM είναι λιγότερο ευαίσθητη σε ενδοκαναλική (co-channel) παρεμβολή f i 0 και περισσότερο ευαίσθητη σε διακαναλική (adjacent channel) παρεμβολή f i 0

45 Φαινόμενο σύλληψης Έστω ότι έχουμε δύο σήματα FM το ένα εκ των οποίων είναι αδιαμόρφωτο, τότε 2 d d sin i( t) cos i( t) d ( t) ( t) arctan ( ) 2 i t dt dt 1 cos i( t) 1 2 cos i( t) dt d a(, i) i( t) dt Η παρουσία της παραγώγου της φάσης στην έξοδο υποδηλώνει δυνητική αποδιαμόρφωση κατανοητού σήματος, εάν το α(ρ,φ i ) είναι περίπου σταθερό [α(ρ,φ i ) 1, εάν ρ >> 1] Η παρεμβολή εμφανίζεται με τη μορφή διαφωνίας (crosstalk) στην έξοδο

46 Φαινόμενο σύλληψης Εάν όμως τα πλάτη των σημάτων είναι περίπου ίδια, 1, και η α(ρ,φ i ) δεν απλοποιείται αμέσως όμως i 0, 2, a(, i), 3,... 2 i i, 3,... 1 και α(ρ,φ i ) =0.5, εάν ρ 1

47 Φαινόμενο σύλληψης Η έξοδος του αποδιαρμορφωτή είναι περίπου 0.5φ i (t) όταν ρ 1

48 Φαινόμενο σύλληψης Για ρ < 1, η ένταση της παρεμβολής μετά την αποδιαμόρφωση ουσιατικά εξαρτάται από τον όρο 2 a a(,0) a(, ) 2 /(1 ) pp Για ρ<0,7 η παρεμβολή σχεδόν χάνεται, Για ρ>0,7 επικρατεί η παρεμβολή Το παρεμβάλον σήμα καταλαμβάνει την έξοδο (capture effect)

Διαμόρφωση Συχνότητας. Frequency Modulation (FM)

Διαμόρφωση Συχνότητας. Frequency Modulation (FM) Διαμόρφωση Συχνότητας Frequency Modulation (FM) Παραγωγή σημάτων FM Διαμόρφωση FM στενής ζώνης [ π φ π ] st () A cos(2 ft) ()sin(2 t ft) c c c Διαμορφωτής PM m (t) + s(t) A c sin(2 π ft) c +90 0 ~ A c

Διαβάστε περισσότερα

Διαμόρφωση FM στενής ζώνης. Διαμορφωτής PM

Διαμόρφωση FM στενής ζώνης. Διαμορφωτής PM Παραγωγή σημάτων FM Διαμόρφωση FM στενής ζώνης [ π φ π ] st () A cos(2 ft) ()sin(2 t ft) c c c Διαμορφωτής PM m (t) + s(t) A c sin(2 π ft) c +90 0 ~ A c cos(2 π ft) c Διαμόρφωση PM στενής ζώνης 2f c Άμεση

Διαβάστε περισσότερα

Κύριες λειτουργίες ραδιοφωνικών δεκτών

Κύριες λειτουργίες ραδιοφωνικών δεκτών Εμπορικοί δέκτες Κύριες λειτουργίες ραδιοφωνικών δεκτών Αποδιαμόρφωση λήψη του σήματος πληροφορίας Συντονισμός φέροντος επιλογή του σταθμού Φιλτράρισμα απαλοιφή θορύβου και παρεμβολών Ενίσχυση αντιμετώπιση

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Γωνίας (Angle Modulation) - 3

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Γωνίας (Angle Modulation) - 3 ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Γωνίας (Angle Modulaion) - 3 4.4: Βρόχος Κλειδωμένης Φάσης (Phase-Locked Loop - PLL) 4.5: Μη Γραμμικά Φαινόμενα

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών Ι

Συστήματα Επικοινωνιών Ι + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών Ι Διαμορφώσεις γωνίας Διαμόρφωση Συχνότητας Στενής Ζώνης + Περιεχόμενα n Διαμορφώσεις γωνίας n Διαμόρφωση φάσης PM n Διαμόρφωση

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Συστήματα ΙΙ

Τηλεπικοινωνιακά Συστήματα ΙΙ Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 9: Ο συγχρονισμός στις ψηφιακές επικοινωνίες Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Σκοπός Εισαγωγή Βρόχος κλειδώματος φάσης (Phase Locked Loop - PLL)

Διαβάστε περισσότερα

Διαμόρφωση Συχνότητας. Frequency Modulation (FM)

Διαμόρφωση Συχνότητας. Frequency Modulation (FM) Διαμόρφωση Συχνότητας Frequency Modulation (FM) Τι συμβαίνει με τις γραμμικές διαμορφώσεις; Στη γραμμική διαμόρφωση CW (Carrier Wave) δηλαδή, AM, DSB, SSB, VSB Το πλάτος ενός ημιτονικού φέροντος μεταβάλλεται

Διαβάστε περισσότερα

Μοντέλο συστήματος αποδιαμόρφωσης παρουσία θορύβου

Μοντέλο συστήματος αποδιαμόρφωσης παρουσία θορύβου Μοντέλο συστήματος αποδιαμόρφωσης παρουσία θορύβου Επίδοση παρουσία θορύβου Η ανάλυση της επίδοσης των συστημάτων διαμόρφωσης παρουσία θορύβου είναι εξαιρετικά σημαντική για τη σχεδίαση των διαφόρων επικοινωνιακών

Διαβάστε περισσότερα

x(t) = m(t) cos(2πf c t)

x(t) = m(t) cos(2πf c t) Διαμόρφωση πλάτους (διπλής πλευρικής) Στοχαστικά συστήματα & επικοινωνίες 8 Νοεμβρίου 2012 1/27 2/27 Γιατί και πού χρειάζεται η διαμόρφωση Για τη χρήση πολυπλεξίας (διέλευση πολλών σημάτων μέσα από το

Διαβάστε περισσότερα

Αποδιαμόρφωση γωνίας με θόρυβο

Αποδιαμόρφωση γωνίας με θόρυβο Αποδιαμόρφωση γωνίας με θόρυβο SNR στην είσοδο του δέκτη Εάν η διαμόρφωση είναι PM ή FM mt ( ) PM s( t) A ccos fct ( t), ( t) t f m( ) d FM Η ισχύς του σήματος στην είσοδο του δέκτη είναι S R Ac / Η ισχύς

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Συστήματα Ι

Τηλεπικοινωνιακά Συστήματα Ι Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 5: Διαμόρφωση Πλάτους (1/2) Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Ορισμοί Είδη Διαμόρφωσης Διαμόρφωση Διπλής Πλευρικής Ζώνης (DSB) Κανονική (συνήθης)

Διαβάστε περισσότερα

Αρχές Τηλεπικοινωνιών

Αρχές Τηλεπικοινωνιών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Αρχές Τηλεπικοινωνιών Ενότητα #10: Διαμόρφωση συχνότητας (FM) Χ. ΚΑΡΑΪΣΚΟΣ Τμήμα Μηχανικών Αυτοματισμών Τ.Ε. Άδειες Χρήσης Το

Διαβάστε περισσότερα

FM & PM στενής ζώνης. Narrowband FM & PM

FM & PM στενής ζώνης. Narrowband FM & PM FM & PM στενής ζώνης Narrowband FM & PM Διαμόρφωση γωνίας στενής ζώνης Το διαμορφωμένο κατά γωνία σήμα μπορεί να γραφεί ως [ π φ ] st () = Acos2 ft+ () t c όπου η στιγμιαία φάση είναι φ() t c Δφxt () PM

Διαβάστε περισσότερα

7 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΑΥΤΟΕΞΕΤΑΣΗΣ. 1) Ποιος είναι ο ρόλος του δέκτη στις επικοινωνίες.

7 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΑΥΤΟΕΞΕΤΑΣΗΣ. 1) Ποιος είναι ο ρόλος του δέκτη στις επικοινωνίες. 7 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΑΥΤΟΕΞΕΤΑΣΗΣ 1) Ποιος είναι ο ρόλος του δέκτη στις επικοινωνίες. Ρόλος του δέκτη είναι να ενισχύει επιλεκτικά και να επεξεργάζεται το ωφέλιμο φέρον σήμα που λαμβάνει και να αποδίδει

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών Ι

Συστήματα Επικοινωνιών Ι + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών Ι Διαμόρφωση και αποδιαμόρφωση πλάτους AM-DSB-SC και QAM + Περιεχόμενα Διαμόρφωση AM-DSB-SC Φάσμα διαμορφωμένου σήματος

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I SSB Παραγωγή - Αποδιαμόρφωση FM Διαμόρφωση

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I SSB Παραγωγή - Αποδιαμόρφωση FM Διαμόρφωση Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I SSB Παραγωγή - Αποδιαμόρφωση FM Διαμόρφωση ΔΙΠΛΟΠΛΕΥΡΙΚΕΣ - ΜΟΝΟΠΛΕΥΡΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΑΜ 0 f DSB 0 f SSB 0 f SINGLE

Διαβάστε περισσότερα

Αποδιαμόρφωση σημάτων CW με θόρυβο

Αποδιαμόρφωση σημάτων CW με θόρυβο Αποδιαμόρφωση σημάτων CW με θόρυβο Ορισμοί Το σήμα στη λήψη (μετά το φίλτρο προ-ανίχνευσης) είναι r( t) s( t) n( t) όπου s S, n N R Οι σηματοθορυβικές σχέσεις είναι S S W S SNR SNRb, SNRo N N0B B N Ο ζωνοπερατός

Διαβάστε περισσότερα

FM & PM στενής ζώνης. Narrowband FM & PM

FM & PM στενής ζώνης. Narrowband FM & PM FM & PM στενής ζώνης Narrowband FM & PM Διαμόρφωση γωνίας στενής ζώνης Το διαμορφωμένο κατά γωνία σήμα μπορεί να γραφεί ως [ π φ ] st () = Acos2 ft+ () t c όπου η στιγμιαία φάση είναι φ() t c Δφxt () PM

Διαβάστε περισσότερα

Γιατί Διαμόρφωση; Μια κεραία για να είναι αποτελεσματική πρέπει να είναι περί το 1/10 του μήκους κύματος

Γιατί Διαμόρφωση; Μια κεραία για να είναι αποτελεσματική πρέπει να είναι περί το 1/10 του μήκους κύματος Γιατί Διαμόρφωση; Μετάδοση ενός σήματος χαμηλών συχνοτήτων μέσω ενός ζωνοπερατού καναλιού Παράλληλη μετάδοση πολλαπλών σημάτων πάνω από το ίδιο κανάλι - Διαχωρισμός συχνότητας (Frequency Division Multiplexing)

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών Ι

Συστήματα Επικοινωνιών Ι + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών Ι Διαμόρφωση Συχνότητας Ευρείας Ζώνης Εύρος ζώνης μετάδοσης διαμορφωμένων κατά γωνία σημάτων Παραγωγή σημάτων FM + Περιεχόμενα

Διαβάστε περισσότερα

Μαθηµατική Παρουσίαση των FM και PM Σηµάτων

Μαθηµατική Παρουσίαση των FM και PM Σηµάτων Μαθηµατική Παροσίαση των FM και PM Σηµάτων Ένα γωνιακά διαµορφωµένο σήµα, πο αναφέρεται επίσης και ως εκθετικά διαµορφωµένο σήµα, έχει τη µορφή u os j [ ] { π + jφ π + φ Re e } Σεραφείµ Καραµπογιάς Ορίζοµε

Διαβάστε περισσότερα

«0» ---> 0 Volts (12.1) «1» ---> +U Volts

«0» ---> 0 Volts (12.1) «1» ---> +U Volts 12. ΔΙΑΜΟΡΦΩΣΗ ΚΛΕΙΔΩΜΑΤΟΣ ΣΥΧΝΟΤΗΤΑΣ (Frequency Shift Keying ή FSK) 12.1. Αναπαράσταση του ψηφιακού σήματος πληροφορίας m(t) To σήμα πληροφορίας m(t) πρέπει να είναι μονοπολικό (uni-polar) της μορφής:

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σχολή Οικονομίας Διοίκησης και Πληροφορικής Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Αρχές Τηλ/ων Συστημάτων Μπατιστάτος Μιχάλης Εργαστήριο 8 ο : Διαμόρφωση

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών Ι

Συστήματα Επικοινωνιών Ι + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: demestihas@uowm.gr Συστήματα Επικοινωνιών Ι Θόρυβος σε συστήματα διαμόρφωσης συνεχούς κυματομορφής (CW) + Περιεχόμενα n Θόρυβος σε συστήματα διαμόρφωσης συνεχούς κυματομορφής

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες

Εισαγωγή στις Τηλεπικοινωνίες ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες Ενότητα : Εισαγωγή στη Διαμόρφωση Συχνότητας (FΜ) Όνομα Καθηγητή: Δρ. Ηρακλής Σίμος Τμήμα: Ηλεκτρονικών

Διαβάστε περισσότερα

Διαμόρφωση Συχνότητας. Frequency Modulation (FM)

Διαμόρφωση Συχνότητας. Frequency Modulation (FM) Διαμόρφωση Συχνότητας Frequency Modulation (FM) Τι συμβαίνει με τις γραμμικές διαμορφώσεις; Στη γραμμική διαμόρφωση CW (Carrier Wave) δηλαδή, AM, DSB, SSB, VSB Το πλάτος ενός ημιτονικού φέροντος μεταβάλλεται

Διαβάστε περισσότερα

Τηλεπικοινωνικακά Συστήματα Ι - Ενδεικτικές Ερωτήσεις Ασκήσεις 1)

Τηλεπικοινωνικακά Συστήματα Ι - Ενδεικτικές Ερωτήσεις Ασκήσεις 1) Τηλεπικοινωνικακά Συστήματα Ι - Ενδεικτικές Ερωτήσεις Ασκήσεις Δ.Ευσταθίου Τμήμα Μηχανικών Πληροφορικής ΤΕ, ΤΕΙ Κεντρικής Μακεδονίας 1) 1. Ποια από τις παρακάτω συχνότητες δεν εμφανίζεται στην έξοδο ενός

Διαβάστε περισσότερα

Επικοινωνίες I FM ΔΙΑΜΟΡΦΩΣΗ. Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών

Επικοινωνίες I FM ΔΙΑΜΟΡΦΩΣΗ. Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ FM ΔΙΑΜΟΡΦΩΣΗ Σήμα FM Η ακόλουθη εξίσωση δίδει την ισοδύναμη για τη διαμόρφωση συχνότητας έκφραση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 15 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15

Διαβάστε περισσότερα

Διαμόρφωση Παλμών. Pulse Modulation

Διαμόρφωση Παλμών. Pulse Modulation Διαμόρφωση Παλμών Pulse Modulation Συστήματα διαμόρφωσης παλμών Είδη διαμόρφωσης παλμών Pulse Amplitude Modulation (PAM): A m(t) Pulse Position Modulation (PPM): T d m(t) Pulse Duration Modulation (PDM)

Διαβάστε περισσότερα

Επικοινωνίες I FM ΔΙΑΜΟΡΦΩΣΗ. Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών

Επικοινωνίες I FM ΔΙΑΜΟΡΦΩΣΗ. Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ FM ΔΙΑΜΟΡΦΩΣΗ Σήμα FM Η ακόλουθη εξίσωση δίδει την ισοδύναμη για τη διαμόρφωση συχνότητας έκφραση

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σχολή Θετικών Επιστημών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ Ι Μπατιστάτος Μιχάλης Εργαστήριο 8 ο : Διαμόρφωση Γωνίας Βασική Θεωρία

Διαβάστε περισσότερα

4. Ποιο από τα παρακάτω δεν ισχύει για την ευαισθησία ενός δέκτη ΑΜ; Α. Ευαισθησία ενός δέκτη καθορίζεται από την στάθμη θορύβου στην είσοδό του.

4. Ποιο από τα παρακάτω δεν ισχύει για την ευαισθησία ενός δέκτη ΑΜ; Α. Ευαισθησία ενός δέκτη καθορίζεται από την στάθμη θορύβου στην είσοδό του. Τηλεπικοινωνικακά Συστήματα Ι - Ενδεικτικές Ερωτήσεις Ασκήσεις Δ.Ευσταθίου Τμήμα Μηχανικών Πληροφορικής ΤΕ, ΤΕΙ Κεντρικής Μακεδονίας 1) 1. Ποιο από τα παρακάτω δεν ισχύει για το χρονικό διάστημα που μηδενίζεται

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 1

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 1 ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 1 3.2: Διαμόρφωση Πλάτους (Amplitude Modulation, AM) 3.3: Διαμόρφωση Πλευρικής Ζώνης με Καταπιεσμένο

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Αναλογικές Διαμορφώσεις Αθανάσιος Κανάτας

Διαβάστε περισσότερα

Κύριες λειτουργίες δεκτών

Κύριες λειτουργίες δεκτών Δέκτες Κύριες λειτουργίες δεκτών Αποδιαμόρφωση λήψη του σήματος πληροφορίας Συντονισμός φέροντος επιλογή του σταθμού Φιλτράρισμα απαλοιφή θορύβου και παρεμβολών Ενίσχυση αντιμετώπιση των απωλειών κατά

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Γωνίας (Angle Modulation) - 2

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Γωνίας (Angle Modulation) - 2 ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Γωνίας (Angle Modulaion) - 4.3: Διαμόρφωση Συχνότητας (Frequency Modulaion FM) καθ. Βασίλης Μάγκλαρης maglaris@nemode.nua.gr

Διαβάστε περισσότερα

Κύριες λειτουργίες ραδιοφωνικών δεκτών

Κύριες λειτουργίες ραδιοφωνικών δεκτών Εμπορικοί δέκτες Κύριες λειτουργίες ραδιοφωνικών δεκτών Αποδιαμόρφωση λήψη του σήματος πληροφορίας Συντονισμός φέροντος επιλογή του σταθμού Φιλτράρισμα απαλοιφή θορύβου και παρεμβολών Ενίσχυση αντιμετώπιση

Διαβάστε περισσότερα

ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε.

ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Ι 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δρ ΒΑΣΙΛΕΙΟΣ ΜΠΟΖΑΝΤΖΗΣ Διαμόρφωση Γωνίας Τα είδη διαμόρφωσης γωνίας τα

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες

Εισαγωγή στις Τηλεπικοινωνίες ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες Ενότητα : Εισαγωγή στη Διαμόρφωση Πλάτους (AΜ) Όνομα Καθηγητή: Δρ. Ηρακλής Σίμος Τμήμα: Ηλεκτρονικών

Διαβάστε περισσότερα

ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ. () t. Διαμόρφωση Γωνίας. Περιεχόμενα:

ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ. () t. Διαμόρφωση Γωνίας. Περιεχόμενα: ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ Περιεχόμενα: Διαμόρφωση Φάσης (PM) και Συχνότητας (FM) Διαμόρφωση FM από Απλό Τόνο - - Στενής Ζώνης - - Ευρείας Ζώνης - - από Πολλούς Τόνους Εύρος Ζώνης Μετάδοσης Κυματομορφών FM Απόκριση

Διαβάστε περισσότερα

Γραμμική διαμόρφωση φέροντος κύματος

Γραμμική διαμόρφωση φέροντος κύματος Γραμμική διαμόρφωση φέροντος κύματος Επικοινωνία στη βασική ζώνη Επικοινωνία στη βασική ζώνη (baseband) χρησιμοποιείται σε Συνδρομητικούς βρόχους (PSTN) Συστήματα PCM μεταξύ τηλεφωνικών κέντρων ισχύς φέρον

Διαβάστε περισσότερα

Δέκτες ΑΜ ΘΟΡΥΒΟΣ ΣΕ ΔΙΑΜΟΡΦΩΣΗ CW

Δέκτες ΑΜ ΘΟΡΥΒΟΣ ΣΕ ΔΙΑΜΟΡΦΩΣΗ CW ΘΟΡΥΒΟΣ ΣΕ ΔΙΑΜΟΡΦΩΣΗ Στα συστήματα διαμόρφωσης (otiuou-ve) το κριτήριο της συμπεριφοράς τους ως προς το θόρυβο, είναι ο λόγος σήματος προς θόρυβο στην έξοδο (output igl-tooie rtio). λόγος σήματος προς

Διαβάστε περισσότερα

ΕΠΙΔΡΑΣΗ ΤΟΥ ΘΟΡΥΒΟΥ ΣΤΑ ANΑΛΟΓΙΚΑ ΣΥΣΤΗΜΑΤΑ ΔΙΑΒΙΒΑΣΗΣ ΣΗΜΑΤΟΣ. Προσθετικός Λευκός Gaussian Θόρυβος (Additive White Gaussian Noise-AWGN

ΕΠΙΔΡΑΣΗ ΤΟΥ ΘΟΡΥΒΟΥ ΣΤΑ ANΑΛΟΓΙΚΑ ΣΥΣΤΗΜΑΤΑ ΔΙΑΒΙΒΑΣΗΣ ΣΗΜΑΤΟΣ. Προσθετικός Λευκός Gaussian Θόρυβος (Additive White Gaussian Noise-AWGN ΡΗ 009-10 16/1/009 3:4 μμ ΕΠΙΔΡΑΣΗ ΤΟΥ ΘΟΡΥΒΟΥ ΣΤΑ ANΑΛΟΓΙΚΑ ΣΥΣΤΗΜΑΤΑ ΔΙΑΒΙΒΑΣΗΣ ΣΗΜΑΤΟΣ Προσθετικός Λευκός Gaussian Θόρυβος (Additive White Gaussian Noise-AWGN AWGN) ΕΠΙΔΡΑΣΗ ΤΟΥ ΘΟΡΥΒΟΥ ΣΕ ΜΕΤΑΔΟΣΗ

Διαβάστε περισσότερα

FSK Διαμόρφωση και FSK Αποδιαμόρφωση (FSK Modulation-FSK Demodulation)

FSK Διαμόρφωση και FSK Αποδιαμόρφωση (FSK Modulation-FSK Demodulation) FSK Διαμόρφωση και FSK Αποδιαμόρφωση (FSK Modulation-FSK Demodulation) ΣΚΟΠΟΙ ΤΗΣ ΑΣΚΗΣΗΣ Η εκμάθηση της αρχής λειτουργίας της ψηφιακής διαμόρφωσης συχνότητας (Frequency Shift Keying, FSK) και της αποδιαμόρφωσής

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ

ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΕΦΑΛΑΙΟ 3ο ΣΥΣΤΗΜΑΤΑ ΕΚΠΟΜΠΗΣ & ΛΗΨΗΣ Ρ/Τ ΣΥΣΤΗΜΑΤΩΝ Γενικό διάγραμμα πομπού ΕΠΕΞΕΡΓΑΣΙΑ ΥΨΗΛΕΣ ΣΥΧΝΟΤΗΤΕΣ Δημιουργία φέροντος σήματος Το φέρον σήμα (fo) παράγεται από ημιτονικούς

Διαβάστε περισσότερα

Ορθογωνική διαμόρφωση πλάτους. Quadrature Amplitude Modulation (QAM)

Ορθογωνική διαμόρφωση πλάτους. Quadrature Amplitude Modulation (QAM) Ορθογωνική διαμόρφωση πλάτους Quadrature Amplitude Modulation (QAM) Ορθογωνική διαμόρφωση πλάτους (QAM) Στη διαμόρφωση QAM δύο σήματα διαμορφώνονται από δύο φέροντα που διαφέρουν σε φάση κατά 90 ο Το φέρον

Διαβάστε περισσότερα

ΔΙΑΒΙΒΑΣΗ ΑΝΑΛΟΓΙΚΟΥ ΣΗΜΑΤΟΣ ΜΕ ΔΙΑΜΟΡΦΩΣΗ ΦΕΡΟΝΤΟΣ

ΔΙΑΒΙΒΑΣΗ ΑΝΑΛΟΓΙΚΟΥ ΣΗΜΑΤΟΣ ΜΕ ΔΙΑΜΟΡΦΩΣΗ ΦΕΡΟΝΤΟΣ ΔΙΑΒΙΒΑΣΗ ΑΝΑΛΟΓΙΚΟΥ ΣΗΜΑΤΟΣ ΜΕ ΔΙΑΜΟΡΦΩΣΗ ΦΕΡΟΝΤΟΣ Συστήματα Διαμόρφωσης Φέροντος ΔΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ (ΑΜPLITUDE MODULATION - AM) ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ (ANGLE( MODULATION - FM-PM PM) u(t)=a (1+m(t))os(πf t)

Διαβάστε περισσότερα

Ψηφιακές Επικοινωνίες

Ψηφιακές Επικοινωνίες Ψηφιακές Επικοινωνίες Ενότητα 6: Συγχρονισμός στις Ψηφιακές Επικοινωνίες Παναγιώτης Μαθιόπουλος Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Συγχρονισμός στις Ψηφιακές Επικοινωνίες Συγχρονισμός

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΟΥ ΒΡΟΧΟΥ ΕΛΕΓΧΟΥ ΦΑΣΗΣ PLL Του Καθηγητή Αθανάσιου Νασιόπουλου Τμήμα Ηλεκτρονικής ΤΕΙ Αθήνας

ΜΕΛΕΤΗ ΤΟΥ ΒΡΟΧΟΥ ΕΛΕΓΧΟΥ ΦΑΣΗΣ PLL Του Καθηγητή Αθανάσιου Νασιόπουλου Τμήμα Ηλεκτρονικής ΤΕΙ Αθήνας ΜΕΛΕΤΗ ΤΟΥ ΒΡΟΧΟΥ ΕΛΕΓΧΟΥ ΦΑΣΗΣ PLL Του Καθηγητή Αθανάσιου Νασιόπουλου Τμήμα Ηλεκτρονικής ΤΕΙ Αθήνας. Εισαγωγή Στο προηγούμενο μάθημα - εισήγηση ασχοληθήκαμε με τους ταλαντωτές VO. Εξετάσαμε τις βασικές

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σχολή Θετικών Επιστημών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ Ι Μπατιστάτος Μιχάλης Εργαστήριο ο : Διαμόρφωση ΑΜ Βασική Θεωρία Εισαγωγή

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών

Συστήματα Επικοινωνιών Συστήματα Επικοινωνιών Ενότητα 5: Διαμορφώσεις γωνίας Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Παρουσίαση της διαμόρφωσης συχνότητας και

Διαβάστε περισσότερα

Κύριες λειτουργίες ραδιοφωνικών δεκτών

Κύριες λειτουργίες ραδιοφωνικών δεκτών Εμπορικοί δέκτες Κύριες λειτουργίες ραδιοφωνικών δεκτών Αποδιαμόρφωση λήψη του σήματος πληροφορίας Συντονισμός φέροντος επιλογή του σταθμού Φιλτράρισμα απαλοιφή θορύβου και παρεμβολών Ενίσχυση αντιμετώπιση

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών ΙI

Συστήματα Επικοινωνιών ΙI + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI FSK, MSK Πυκνότητα φάσματος ισχύος βασικής ζώνης + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο

Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο Εργαστηριακή Άσκηση 4: Πειραματική μελέτη συστημάτων διαμόρφωσης συχνότητας (FΜ) Δρ.

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών ΙI

Συστήματα Επικοινωνιών ΙI + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI Συστήματα διαμόρφωσης παλμών Πολυπλεξία + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/

Διαβάστε περισσότερα

Διαμόρφωση Γωνίας. Η διαμόρφωση γωνίας (angle modulation) είναι ένας. Έχει καλύτερη συμπεριφορά ως προς το θόρυβο και την

Διαμόρφωση Γωνίας. Η διαμόρφωση γωνίας (angle modulation) είναι ένας. Έχει καλύτερη συμπεριφορά ως προς το θόρυβο και την ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ Περιεχόμενα: Διαμόρφωση Φάσης (PM) και Συχνότητας (FM) Διαμόρφωση FM από Απλό Τόνο - - Στενής Ζώνης - - Ευρείας Ζώνης - - από Πολλούς Τόνους Απόκριση Γραμμικών Φίλτρων σε Κυματομορφές

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών

Συστήματα Επικοινωνιών Συστήματα Επικοινωνιών Ενότητα 3: Μαθιόπουλος Παναγιώτης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιγραφή ενότητας Διαμόρφωση Πλάτους: Διπλής πλευρικής ζώνης με συνολικό φέρον,

Διαβάστε περισσότερα

Επανάληψη Μιγαδικών Αριθμών

Επανάληψη Μιγαδικών Αριθμών Σήματα και Συστήματα ΗΜΥ0 //006 Επανάληψη Μιγαδικών Αριμών Δημήτρης Ηλιάδης, eldemet@ucy.ac.cy Που χρησιμεύει: Από τη εωρία των Σειρών Fourier, γνωρίζουμε πως οποιοδήποτε περιοδικό σήμα ανεξαρτήτως πολυπλοκότητας,

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες. Βέλτιστος Δέκτης

Ψηφιακές Τηλεπικοινωνίες. Βέλτιστος Δέκτης Ψηφιακές Τηλεπικοινωνίες Βέλτιστος Δέκτης Σύνδεση με τα Προηγούμενα Επειδή το πραγματικό κανάλι είναι αναλογικό, κατά τη διαβίβαση ψηφιακής πληροφορίας, αντιστοιχίζουμε τα σύμβολα σε αναλογικές κυματομορφές

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών Ι

Συστήματα Επικοινωνιών Ι + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: demestihas@uowm.gr Συστήματα Επικοινωνιών Ι Διαμόρφωση και αποδιαμόρφωση πλάτους SSB και VSB Μετατόπιση συχνότητας Πολυπλεξία FDM + Περιεχόμενα n n n n n n n Διαμόρφωση

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών

Συστήματα Επικοινωνιών Συστήματα Επικοινωνιών Ενότητα 6: Συστήματα Αναλογικής Διαμόρφωσης Σαγκριώτης Εμμανουήλ Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Σκοποί ενότητας 1. Η αναγνώριση της ανάγκης διαμόρφωσης

Διαβάστε περισσότερα

ΜΕΤΑΔΟΣΗ ΠΛΗΡΟΦΟΡΙΑΣ

ΜΕΤΑΔΟΣΗ ΠΛΗΡΟΦΟΡΙΑΣ ΜΕΤΑΔΟΣΗ ΠΛΗΡΟΦΟΡΙΑΣ ΚΕΦΑΛΑΙΟ. ΔΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ ΑΜ DSB-LC (DOUBLE SIDEBAND-LARGE CARRIER) 006 ΜΕΤΑΔΟΣΗ ΠΛΗΡΟΦΟΡΙΑΣ Γ. Οικονόμου ΠΜΣ-ΗΕΠ 1/13 Διαμόρφωση ΑΜ DSB-LC (Large Carrier) Ένα σημαντικό πρόβλημα

Διαβάστε περισσότερα

ΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ. ιαµόρφωση Πλάτους. Περιεχόµενα:

ΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ. ιαµόρφωση Πλάτους. Περιεχόµενα: ΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ Περιεχόµενα: ιαµόρφωση/αποδιαµόρφωση Πλάτους ΑΜ ιαµόρφωση DSBS ΟµόδυνηΦώρασηΚυµατοµορφών DSBS ιαµόρφωση QAM ιαµόρφωση SSB ιαµόρφωση VSB Μετατόπιση Συχνότητας Πολυπλεξία ιαίρεσης Συχνότητας

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Συστήματα Ι

Τηλεπικοινωνιακά Συστήματα Ι Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 6: Διαμόρφωση Πλάτους (2/2) Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Διαμόρφωση Απλής Πλευρικής Ζώνης (SSB) Διαμόρφωση Υπολειπόμενης Πλευρικής Ζώνης (VSB)

Διαβάστε περισσότερα

Δέκτες ΑΜ. Υπερετερόδυνος (superheterodyne) δέκτης

Δέκτες ΑΜ. Υπερετερόδυνος (superheterodyne) δέκτης ΘΟΡΥΒΟ Ε ΔΙΑΜΟΡΦΩΗ τα συστήματα διαμόρφωσης (oiuou-ve) το κριτήριο της συμπεριφοράς τους ως προς το θόρυβο, είναι ο λόγος σήματος προς θόρυβο στην έξοδο (oupu igl-ooie rio). λόγος σήματος προς θόρυβο στην

Διαβάστε περισσότερα

To σήμα πληροφορίας m(t) πρέπει να είναι μονοπολικό (uni-polar) ΝRZ σήμα της μορφής: 0 ---> 0 Volts (11.1) 1 ---> +U Volts

To σήμα πληροφορίας m(t) πρέπει να είναι μονοπολικό (uni-polar) ΝRZ σήμα της μορφής: 0 ---> 0 Volts (11.1) 1 ---> +U Volts 11. ΔΙΑΜΟΡΦΩΣΗ ΚΛΕΙΔΩΜΑΤΟΣ ΠΛΑΤΟΥΣ (Amplitude Shift Keying - ΑSK) 11.1. Αναπαράσταση του ψηφιακού σήματος πληροφορίας To σήμα πληροφορίας πρέπει να είναι μονοπολικό (uni-polar) ΝZ σήμα της μορφής: 0 --->

Διαβάστε περισσότερα

Σύνδεση με τα Προηγούμενα. Προχωρημένα Θέματα Τηλεπικοινωνιών. Εισαγωγή (2) Εισαγωγή. Βέλτιστος Δέκτης. παρουσία AWGN.

Σύνδεση με τα Προηγούμενα. Προχωρημένα Θέματα Τηλεπικοινωνιών. Εισαγωγή (2) Εισαγωγή. Βέλτιστος Δέκτης. παρουσία AWGN. Προχωρημένα Θέματα Τηλεπικοινωνιών Βέλτιστος Δέκτης για Ψηφιακά Διαμορφωμένα Σήματα παρουσία AWGN Σύνδεση με τα Προηγούμενα Στις «Ψηφιακές Τηλεπικοινωνίες», αναφερθήκαμε στο βέλτιστο δέκτη ψηφιακά διαμορφωμένων

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Συστήματα Ι

Τηλεπικοινωνιακά Συστήματα Ι Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 7: Διαμόρφωση Γωνίας (1/2) Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Διαμόρφωση γωνίας Ορισμοί Η έννοια της Στιγμιαίας Συχνότητας Διαμόρφωση Φάσης (Phase

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σχολή Θετικών Επιστημών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ Ι Μπατιστάτος Μιχάλης Εργαστήριο 3 ο : Διαμόρφωση ΑΜ-DSBSC/SSB Βασική

Διαβάστε περισσότερα

1) Να σχεδιαστεί και να σχολιαστεί το γενικό ενός πομπού ΑΜ.

1) Να σχεδιαστεί και να σχολιαστεί το γενικό ενός πομπού ΑΜ. 5 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΑΥΤΟΕΞΕΤΑΣΗΣ 1) Να σχεδιαστεί και να σχολιαστεί το γενικό ενός πομπού ΑΜ. Με βάση το γενικό δομικό διάγραμμα ενός πομπού, όπως προέκυψε στο τρίτο κεφάλαιο (σχήμα 5.1.1), η διαδικασία

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σχολή Οικονομίας Διοίκησης και Πληροφορικής Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Αρχές Τηλ/ων Συστημάτων Μπατιστάτος Μιχάλης Εργαστήριο 5 ο : Διαμόρφωση

Διαβάστε περισσότερα

Θόρυβος στη διαμόρφωση CW

Θόρυβος στη διαμόρφωση CW Θόρυβος στη διαμόρφωση CW Εμπορικοί δέκτες Κύριες λειτουργίες ραδιοφωνικών δεκτών Αποδιαμόρφωση λήψη του σήματος πληροφορίας Συντονισμός φέροντος επιλογή του σταθμού Φιλτράρισμα απαλοιφή θορύβου και παρεμβολών

Διαβάστε περισσότερα

ΜΕΤΑΔΟΣΗ ΠΛΗΡΟΦΟΡΙΑΣ

ΜΕΤΑΔΟΣΗ ΠΛΗΡΟΦΟΡΙΑΣ ΜΕΤΑΔΟΣΗ ΠΛΗΡΟΦΟΡΙΑΣ ΚΕΦΑΛΑΙΟ.3 ΔΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ ΜΟΝΗΣ ΠΛΕΥΡΙΚΗΣ ΖΩΝΗΣ - ΑΜ SSB (SINGLE SIDEBAND) 1/18 Διαμόρφωση ΑΜ SSB (Single Sideband) Είδαμε ότι η DSB διαμόρφωση διπλασιάζει το εύρος ζώνης του σήματος.

Διαβάστε περισσότερα

f o = 1/(2π LC) (1) και υφίσταται απόσβεση, λόγω των ωμικών απωλειών του κυκλώματος (ωμική αντίσταση της επαγωγής).

f o = 1/(2π LC) (1) και υφίσταται απόσβεση, λόγω των ωμικών απωλειών του κυκλώματος (ωμική αντίσταση της επαγωγής). Συστήματα εκπομπής Το φέρον σήμα υψηλής συχνότητας (f o ) δημιουργείται τοπικά στον πομπό από κύκλωμα αρμονικού (ημιτονικού) ταλαντωτή. Η αρχή λειτουργίας των ταλαντωτών L-C στηρίζεται στην αυτοταλάντωση,

Διαβάστε περισσότερα

Τα ηλεκτρονικά σήματα πληροφορίας διακρίνονται ανάλογα με τη μορφή τους σε δύο κατηγορίες : Αναλογικά σήματα Ψηφιακά σήματα

Τα ηλεκτρονικά σήματα πληροφορίας διακρίνονται ανάλογα με τη μορφή τους σε δύο κατηγορίες : Αναλογικά σήματα Ψηφιακά σήματα ΕΝΟΤΗΤΑ 2 2.0 ΗΛΕΚΤΡΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΑΡΧΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΕΙΣΑΓΩΓΗ Ηλεκτρικό σήμα ονομάζεται η τάση ή το ρεύμα που μεταβάλλεται ως συνάρτηση του χρόνου. Στα ηλεκτρονικά συστήματα επικοινωνίας, οι πληροφορίες

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών

Συστήματα Επικοινωνιών Συστήματα Επικοινωνιών Ενότητα: Ασκήσεις για τις ενότητες 5 7 Διαμόρφωση Γωνίας FM/PM Ιωάννης Βαρδάκας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σελίδα Περιεχόμενα 1. Σκοποί ενότητας...5.

Διαβάστε περισσότερα

Εισαγωγή. Προχωρημένα Θέματα Τηλεπικοινωνιών. Ανάκτηση Χρονισμού. Τρόποι Συγχρονισμού Συμβόλων. Συγχρονισμός Συμβόλων. t mt

Εισαγωγή. Προχωρημένα Θέματα Τηλεπικοινωνιών. Ανάκτηση Χρονισμού. Τρόποι Συγχρονισμού Συμβόλων. Συγχρονισμός Συμβόλων. t mt Προχωρημένα Θέματα Τηλεπικοινωνιών Συγχρονισμός Συμβόλων Εισαγωγή Σε ένα ψηφιακό τηλεπικοινωνιακό σύστημα, η έξοδος του φίλτρου λήψης είναι μια κυματομορφή συνεχούς χρόνου y( an x( t n ) n( n x( είναι

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 2

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 2 ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 2 3.4: Πολυπλεξία Ορθογωνικών Φερόντων (Quadrature Amplitude Modulation, QAM) 3.5: Μέθοδοι Διαμόρφωσης

Διαβάστε περισσότερα

Μεταβατική Ανάλυση - Φάσορες. Κατάστρωση διαφορικών εξισώσεων. Μεταβατική απόκριση. Γενικό μοντέλο. ,, ( ) είναι γνωστές ποσότητες (σταθερές)

Μεταβατική Ανάλυση - Φάσορες. Κατάστρωση διαφορικών εξισώσεων. Μεταβατική απόκριση. Γενικό μοντέλο. ,, ( ) είναι γνωστές ποσότητες (σταθερές) Μεταβατική Ανάλυση - Φάσορες Πρόσθετες διαφάνειες διαλέξεων Αλέξανδρος Πίνο Δεκέμβριος 2017 Γενικό μοντέλο Απόκριση κυκλώματος πρώτης τάξης, δηλαδή με ένα μόνο στοιχείο C ή L 3 Μεταβατική απόκριση Ξαφνική

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Εφαρμογές της Ανάλυσης Fourier Αθανάσιος

Διαβάστε περισσότερα

Τηλεπικοινωνίες. Ενότητα 2.1: Ανάλυση Fourier. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ

Τηλεπικοινωνίες. Ενότητα 2.1: Ανάλυση Fourier. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Τηλεπικοινωνίες Ενότητα 2.1: Ανάλυση Fourier Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών ΙI

Συστήματα Επικοινωνιών ΙI + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI M-κά συστήματα διαμόρφωσης: Μ-PSK, M-FSK, M-QAM, DPSK + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες. Διαμόρφωση Παλμών κατά Πλάτος

Ψηφιακές Τηλεπικοινωνίες. Διαμόρφωση Παλμών κατά Πλάτος Ψηφιακές Τηλεπικοινωνίες Διαμόρφωση Παλμών κατά Πλάτος Διαμόρφωση Παλμών κατά Πλάτος Είπαμε ότι κατά την ψηφιακή μετάδοση μέσα από αναλογικό κανάλι κάθε σύμβολο αντιστοιχίζεται σε μια κυματομορφή σήματος

Διαβάστε περισσότερα

Άσκηση Να υπολογιστεί ο δείκτης διαμόρφωσης των συστημάτων ΑΜ και FM. Αναλογικές Τηλεπικοινωνίες Γ. Κ. Καραγιαννίδης Αν. Καθηγητής 14/1/2014

Άσκηση Να υπολογιστεί ο δείκτης διαμόρφωσης των συστημάτων ΑΜ και FM. Αναλογικές Τηλεπικοινωνίες Γ. Κ. Καραγιαννίδης Αν. Καθηγητής 14/1/2014 Άσκηση 4.16 Ένα ημιτνοειδές σήμα πληροφορίας με συχνότητα διαμορφώνεται κατά ΑΜ και Κατά FM. Το πλάτος του φέροντος είναι το ίδιο και στα δύο συστήματα. Η μέγιστη απόκλιση Συχνότητας στο FM είναι ίση με

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Εργαστήριο 9 ο : Διαμόρφωση BPSK & QPSK Βασική Θεωρία Εισαγωγή Κατά την μετάδοση ψηφιακών δεδομένων

Διαβάστε περισσότερα

Ορθογωνική ιαµόρφωση Πλάτους (QAM)

Ορθογωνική ιαµόρφωση Πλάτους (QAM) Ορθογωνική ιαµόρφωση Πλάτους (QAM) H πολυπλεξία ορθογωνικών φερόντων (quadraurearrier uliplexing) ή ορθογωνική διαµόρφωση πλάτους (quadraure-apliude odulaion, QAM) επιτρέπει σε δύο διαµορφωµένα DB να καταλάβουν

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Συστήματα ΙΙ

Τηλεπικοινωνιακά Συστήματα ΙΙ Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 3: Εισαγωγή στην Έννοια της Διαμόρφωσης Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Η ανάγκη για διαμόρφωση 2. Είδη διαμόρφωσης 3. Διαμόρφωση με ημιτονοειδές

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΙΑΜΟΡΦΩΣΗ ΑΠΟ ΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ (ΑΜ)

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΙΑΜΟΡΦΩΣΗ ΑΠΟ ΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ (ΑΜ) ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΙΑΜΟΡΦΩΣΗ ΑΠΟ ΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ (ΑΜ) 1. ιαµόρφωση Πλάτους. Στην άσκηση αυτή θα ασχοληθούµε µε τη ιαµόρφωση Πλάτους (Amplitude Modulation) χρησιµοποιώντας τον ολοκληρωµένο διαµορφωτή

Διαβάστε περισσότερα

ΧΡΟΝΙΚΗ ΚΑΙ ΑΡΜΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΤΩΝ ΚΥΚΛΩΜΑΤΩΝ. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής

ΧΡΟΝΙΚΗ ΚΑΙ ΑΡΜΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΤΩΝ ΚΥΚΛΩΜΑΤΩΝ. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής ΧΡΟΝΙΚΗ ΚΑΙ ΑΡΜΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΤΩΝ ΚΥΚΛΩΜΑΤΩΝ Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΤΩΝ ΚΥΚΛΩΜΑΤΩΝ Τα κυκλώματα που θεωρούμε εδώ είναι γραμμικά

Διαβάστε περισσότερα

Διαμόρφωση Παλμών. Pulse Modulation

Διαμόρφωση Παλμών. Pulse Modulation Διαμόρφωση Παλμών Pulse Modulation Δειγματοληψία Θεώρημα δειγματοληψίας Ένα βαθυπερατό σήμα πεπερασμένης ενέργειας που δεν περιέχει συχνότητες μεγαλύτερες των W Hertz μπορεί να περιγραφθεί πλήρως από τις

Διαβάστε περισσότερα

Ασκήσεις στα Συστήµατα Ηλεκτρονικών Επικοινωνιών Κεφάλαιο 3 ο : ΕΙΣΑΓΩΓΗ στις ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ και ΤΕΧΝΙΚΕΣ ΙΑΜΟΡΦΩΣΗΣ

Ασκήσεις στα Συστήµατα Ηλεκτρονικών Επικοινωνιών Κεφάλαιο 3 ο : ΕΙΣΑΓΩΓΗ στις ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ και ΤΕΧΝΙΚΕΣ ΙΑΜΟΡΦΩΣΗΣ Κεφάλαιο 3 ο : ΕΙΣΑΓΩΓΗ στις ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ και ΤΕΧΝΙΚΕΣ ΙΑΜΟΡΦΩΣΗΣ 1. Ποµπός ΑΜ εκπέµπει σε φέρουσα συχνότητα 1152 ΚΗz, µε ισχύ φέροντος 10KW. Η σύνθετη αντίσταση της κεραίας είναι

Διαβάστε περισσότερα

ΑΣΠΑΙΤΕ / Τμήμα Εκπαιδευτικών Ηλεκτρολόγων Μηχανικών & Εκπαιδευτικών Ηλεκτρονικών Μηχανικών

ΑΣΠΑΙΤΕ / Τμήμα Εκπαιδευτικών Ηλεκτρολόγων Μηχανικών & Εκπαιδευτικών Ηλεκτρονικών Μηχανικών 8. ΔΙΑΜΟΡΦΩΣΗ: ΓΕΝΙΚΗ ΘΕΩΡΗΣΗ 8.1. Ορισμoί Ως διαμόρφωση (modulation) χαρακτηρίζεται η μεταβολή μιας παραμέτρου (π.χ. πλάτους, συχνότητας, φάσης κλπ.) ενός σήματος που λέγεται φέρον εξαιτίας της επενέργειας

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες

Ψηφιακές Τηλεπικοινωνίες Ψηφιακές Τηλεπικοινωνίες Ψηφιακή Μετάδοση Σήματος σε Ζωνοπεριορισμένο Κανάλι AWGN (Μέχρι και τη διαφάνεια 32) Εισαγωγή Στα προηγούμενα μαθήματα θεωρήσαμε ότι ουσιαστικά το κανάλι AWGN είχε άπειρο εύρος

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Μετασχηματισμός Furier Αθανάσιος Κανάτας

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες. Γεωμετρική Αναπαράσταση Κυματομορφών Σήματος

Ψηφιακές Τηλεπικοινωνίες. Γεωμετρική Αναπαράσταση Κυματομορφών Σήματος Ψηφιακές Τηλεπικοινωνίες Γεωμετρική Αναπαράσταση Κυματομορφών Σήματος Ψηφιακό Τηλ/κό Σύστημα: Τι είδαμε ως τώρα; ΠΗΓΗ ΚΩΔΙΚΟΠΟΙΗΤΗΣ ΠΗΓΗΣ ΚΩΔΙΚΟΠΟΙΗΤΗΣ ΚΑΝΑΛΙΟΥ ΦΙΛΤΡΟ ΠΟΜΠΟΥ ΑΠΟΔΙΑΜΟΡΦΩΤΗΣ ΚΑΝΑΛΙ ΔΙΑΜΟΡΦΩΤΗΣ

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Συστήματα ΙΙ

Τηλεπικοινωνιακά Συστήματα ΙΙ Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 4: Ψηφιακή Διαμόρφωση Φάσης Phase Shift Keying (PSK) Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Μαθηματική περιγραφή δυαδικής PSK (BPSK) Φάσμα σήματος διαμορφωμένου

Διαβάστε περισσότερα

Αρχές Τηλεπικοινωνιών

Αρχές Τηλεπικοινωνιών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Αρχές Τηλεπικοινωνιών Ενότητα #11: Ψηφιακή Διαμόρφωση Χ. ΚΑΡΑΪΣΚΟΣ Τμήμα Μηχανικών Αυτοματισμών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΤΕΤΑΡΤΟ ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ

ΚΕΦΑΛΑΙΟ ΤΕΤΑΡΤΟ ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ ΚΕΦΑΛΑΙΟ ΤΕΤΑΡΤΟ ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ 4.1 Εισαγωγή Ένας ημιτονοειδής φορέας της μορφής c() = A c cos[θ()] είναι δυνατόν να διαμορφωθεί από ένα πληροφοριακό σήμα m(), όχι μόνο με μεταβολή του εύρους του (όπως

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σχολή Οικονομίας Διοίκησης και Πληροφορικής Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Αρχές Τηλ/ων Συστημάτων Μπατιστάτος Μιχάλης Εργαστήριο 6 ο : Διαμόρφωση

Διαβάστε περισσότερα