ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε."

Transcript

1 ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Ι 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δρ ΒΑΣΙΛΕΙΟΣ ΜΠΟΖΑΝΤΖΗΣ

2 Διαμόρφωση Γωνίας Τα είδη διαμόρφωσης γωνίας τα οποία θα μελετήσουμε αυτήν την ενότητα είναι: Διαμόρφωση Συχνότητας (Frequency Modulation FM) Διαμόρφωση Φάσης (Phase Modulation-PM) Έστω σήμα πληροφορίας m(t). Το σήμα πληροφορίας είναι αναλογικό βαθυπερατό σήμα εύρους ζώνης έως W Hz με φάσμα ως ακολούθως: ΕΠΟΜΕΝΩΣ: M(f)=0, για f >W

3 Διαμόρφωση Γωνίας Στην διαμόρφωση γωνίας, σε αντίθεση με την διαμόρφωση πλάτους, το πλάτος του διαμορφωμένου σήματος παραμένει αμετάβλητο. Αυτό το οποίο μεταβάλλεται είναι η συνολική γωνία του διαμορφωμένου σήματος. Στην διαμόρφωση γωνίας, δεν προκύπτει αναλυτική σχέση μεταξύ φάσματος διαμορφωμένου σήματος s(t) και φάσματος σήματος πληροφορίας m(t), όπως στην διαμόρφωση πλάτους. Ο σηματοθορυβικός λόγος στην έξοδο του δέκτη μπορεί να αυξηθεί αν αυξηθεί το εύρους ζώνης. Δεν χρειάζεται επομένως να αυξήσουμε την ισχύ μετάδοσης, την οποία μπορούμε να κρατήσουμε σταθερή. Σε αντιδιαστολή, ο σηματοθορυβικός λόγος στην έξοδο του δέκτη στην τεχνική της διαμόρφωσης πλάτους μπορούσε να αυξηθεί μόνο αν αυξάνονταν η ισχύς μετάδοσης, επειδή εκεί το εύρος ζώνης παρέμενε σταθερό (Β=2W για διπλής πλευρικής και Β=W για μονής πλευρικής) Εδώ το εύρος ζώνης είναι Β>2W και μπορούμε να το αυξήσουμε κατά βούληση προκειμένου να αυξήσουμε τον σηματοθορυβικό λόγο στην έξοδο του δέκτη

4 Διαμόρφωση Γωνίας Έστω ότι το φέρον έχει την μορφή: Γενικοί Ορισμοί c t = A c cos 2πf c t + φ c = A c cos θ c (t) όπου A c είναι το πλάτος του φέροντος, f c η συχνότητα του φέροντος, φ c είναι η αρχική φάση του φέροντος και θ c είναι η ΣΥΝΟΛΙΚΗ φάση του φέροντος: θ c t = 2πf c t + φ c Το διαμορφωμένο σήμα ορίζεται ως: s t = A c cos θ i t = A c Re{exp θ i t } όπου θ i t είναι η στιγμιαία (instant) φάση του διαμορφωμένου σήματος, εξαρτώμενη από τον χρόνο, και Re{exp θ i t } είναι το πραγματικό μέρος του εκθετικού exp θ i t. Υπενθυμίζουμε τον νόμο του De Moivre: e jθ = cosθ + jsinθ

5 Διαμόρφωση Γωνίας Γενικοί Ορισμοί Η στιγμιαία γωνιακή συχνότητα ω i (t) του διαμορφωμένου σήματος είναι ο ρυθμός μεταβολής της στιγμιαίας φάσης: ω i t = dθ i(t) dt Επομένως, η στιγμιαία κυκλική συχνότητα f i (t) του διαμορφωμένου σήματος θα είναι: f i t = 1 2π ω i t = 1 dθ i (t) 2π dt

6 Διαμόρφωση Φάσης (Phase Modulation PM) Στην διαμόρφωση φάσης αυτό το οποίο διαμορφώνουμε είναι η αρχική φάση του φέροντος. Επομένως, αν η συνολική φάση του φέροντος ήταν: θ c t = 2πf c t + φ c Τότε η συνολική φάση του διαμορφωμένου σήματος θα γίνει: θ i t = 2πf c t + k p m(t) όπου m(t) είναι το σήμα πληροφορίας και k p είναι η σταθερά ευαισθησίας φάσης. Το διαμορφώμενο σήμα θα είναι λοιπόν: s t = A c cos[2πf c t + k p m(t)]

7 Απόκλιση φάσης (phase deviation) είναι η μέγιστη διαφορά φάσης μεταξύ διαμορφωμένου σήματος και φέροντος: Δφ = max θ i t 2πf c t = max k p m t = k p A m όπου A m = max{ m(t) } Διαμόρφωση Φάσης (Phase Modulation PM) Έχοντας ορίσει την απόκλιση φάσης και ορίζοντας το κανονικοποιημένο σήμα πληροφορίας x(t) ως m(t) x t = max{ m t } μπορούμε εύκολα να διατυπώσουμε το διαμορφωμένο σήμα ως: s t = A c cos[2πf c t + Δφ x t ]

8 Διαμόρφωση Φάσης (Phase Modulation PM) Διαμόρφωση από απλό τόνο: Αν υποθέσουμε ότι m t = Α m cos(2πf m t) θα έχουμε: x t = cos(2πf m t) και s t = A c cos 2πf c t + Δφ cos 2πf m t = A c cos 2πf c t + β p cos 2πf m t όπου β p = Δφ = k p A m Λόγος διαμόρφωσης: D = Δφ max = k p max{ m t }

9 Διαμόρφωση Φάσης (Phase Modulation PM) (1) Η στιγμιαία αρχική φάση του διαμορφωμένου σήματος είναι η συνολική φάση του διαμορφωμένου σήματος την χρονική στιγμή t=0. Αυτή θα είναι: θ 0,i t = k p m(t) (2) H στιγμιαία συχνότητα του διαμορφωμένου σήματος είναι: f i t = 1 dθ i (t) 2π dt = 1 2π = 1 2πf 2π c + k p dm(t) 2π dt d dt [2πf ct + k p m t ]= => f i t = f c + k p 2π dm(t) dt

10 Διαμόρφωση Φάσης (Phase Modulation PM) Παράδειγμα διαμόρφωσης φάσης m(t): Το σήμα χρώματος κόκκινου c(t): To σήμα χρώματος πράσινου s(t): Το σήμα χρώματος μπλε

11 Διαμόρφωση Συχνότητας (Frequency Modulation FM) Στην διαμόρφωση συχνότητας αυτό το οποίο διαμορφώνουμε είναι η συχνότητα του φέροντος. Επομένως, η στιγμιαία συχνότητα του φέροντος γίνεται: f i t = f c + k f m(t) Τότε η συνολική φάση του διαμορφωμένου σήματος θα γίνει: θ i t = 2π t f i t dt = 2πf c t + 2πk f t m τ dτ όπου m(t) είναι το σήμα πληροφορίας και k f είναι η σταθερά ευαισθησίας συχνότητας. Το διαμορφωμένο σήμα s(t) θα είναι λοιπόν: t s t = A c cos[2πf c t + 2πk f m τ dτ]

12 Διαμόρφωση Συχνότητας (Frequency Modulation FM) Απόκλιση Συχνότητας (frequency deviation) είναι η μέγιστη διαφορά μεταξύ συχνότητας διαμορφωμένου σήματος και φέροντος Δf = max f i t f c = max k f m t = k f A m όπου A m = max{ m(t) } Έχοντας ορίσει την απόκλιση φάσης και ορίζοντας το κανονικοποιημένο σήμα πληροφορίας x(t) ως m(t) x t = max{ m t } μπορούμε εύκολα να διατυπώσουμε το διαμορφωμένο σήμα ως: s t = A c cos[2πf c t + 2πΔf t x τ dτ]

13 Διαμόρφωση Συχνότητας (Frequency Modulation FM) Διαμόρφωση από απλό τόνο: Αν υποθέσουμε ότι m t = Α m cos(2πf m t) θα έχουμε: t s t = A c cos 2πf c t + 2πΔf x t = cos(2πf m t) και cos(2πf m τ)dτ = A c cos 2πf c t + Δf f m sin 2πf m t = =A c cos 2πf c t + β f sin 2πf m t όπου β f = Δf f m = k fa m f m Λόγος Διαμόρφωσης: D = Δf max W = k fmax{ m(t) } W

14 Διαμόρφωση Συχνότητας (Frequency Modulation FM) (1) Η στιγμιαία αρχική φάση του διαμορφωμένου σήματος είναι η συνολική φάση του διαμορφωμένου σήματος την χρονική στιγμή t=0. Αυτή θα είναι: θ 0,i t = 2πk f t m τ dτ (2) H στιγμιαία συχνότητα του διαμορφωμένου σήματος είναι: f i t = 1 dθ i (t) 2π dt = 1 2πf 2π c + 2πk f d 2π = 1 d 2π [ t dt [2πf dt ct + 2πk f m τ dτ]= m τ dτ] => f i t = f c + k f m(t) t

15 Διαμόρφωση Συχνότητας (Frequency Modulation FM) Παράδειγμα διαμόρφωσης φάσης m(t): Το σήμα χρώματος κόκκινου c(t): To σήμα χρώματος πράσινου s(t): Το σήμα χρώματος μπλε

16 Το πλάτος του διαμορφωμένου σήματος για την PM και την FM παραμένει σταθερό και ίσο με Α c Η ισχύς του διαμορφωμένου σήματος είναι και στις δύο περιπτώσεις: P s = lim 1 T T T/2 T/2 Α c 2 cos 2 θ i t Παρατηρήσεις dt = Α c 2 lim 1 T T T/2 cos 2 θ i t dt = Α c 2 T/2 2 Η διαμόρφωση PM ισοδυναμεί με παραγώγιση του σήματος πληροφορίας και στην συνέχεια διαμόρφωση FM Η διαμόρφωση FM ισοδυναμεί με ολοκλήρωση του σήματος πληροφορίας και στην συνέχεια διαμόρφωση PM

Διαμόρφωση Συχνότητας. Frequency Modulation (FM)

Διαμόρφωση Συχνότητας. Frequency Modulation (FM) Διαμόρφωση Συχνότητας Frequency Modulation (FM) Τι συμβαίνει με τις γραμμικές διαμορφώσεις; Στη γραμμική διαμόρφωση CW (Carrier Wave) δηλαδή, AM, DSB, SSB, VSB Το πλάτος ενός ημιτονικού φέροντος μεταβάλλεται

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σχολή Θετικών Επιστημών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ Ι Μπατιστάτος Μιχάλης Εργαστήριο 8 ο : Διαμόρφωση Γωνίας Βασική Θεωρία

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών

Συστήματα Επικοινωνιών Συστήματα Επικοινωνιών Ενότητα 5: Διαμορφώσεις γωνίας Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Παρουσίαση της διαμόρφωσης συχνότητας και

Διαβάστε περισσότερα

ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ. () t. Διαμόρφωση Γωνίας. Περιεχόμενα:

ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ. () t. Διαμόρφωση Γωνίας. Περιεχόμενα: ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ Περιεχόμενα: Διαμόρφωση Φάσης (PM) και Συχνότητας (FM) Διαμόρφωση FM από Απλό Τόνο - - Στενής Ζώνης - - Ευρείας Ζώνης - - από Πολλούς Τόνους Εύρος Ζώνης Μετάδοσης Κυματομορφών FM Απόκριση

Διαβάστε περισσότερα

Επικοινωνίες I FM ΔΙΑΜΟΡΦΩΣΗ. Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών

Επικοινωνίες I FM ΔΙΑΜΟΡΦΩΣΗ. Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ FM ΔΙΑΜΟΡΦΩΣΗ Σήμα FM Η ακόλουθη εξίσωση δίδει την ισοδύναμη για τη διαμόρφωση συχνότητας έκφραση

Διαβάστε περισσότερα

Επικοινωνίες I FM ΔΙΑΜΟΡΦΩΣΗ. Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών

Επικοινωνίες I FM ΔΙΑΜΟΡΦΩΣΗ. Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ FM ΔΙΑΜΟΡΦΩΣΗ Σήμα FM Η ακόλουθη εξίσωση δίδει την ισοδύναμη για τη διαμόρφωση συχνότητας έκφραση

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I SSB Παραγωγή - Αποδιαμόρφωση FM Διαμόρφωση

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I SSB Παραγωγή - Αποδιαμόρφωση FM Διαμόρφωση Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I SSB Παραγωγή - Αποδιαμόρφωση FM Διαμόρφωση ΔΙΠΛΟΠΛΕΥΡΙΚΕΣ - ΜΟΝΟΠΛΕΥΡΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΑΜ 0 f DSB 0 f SSB 0 f SINGLE

Διαβάστε περισσότερα

ΑΣΠΑΙΤΕ / Τμήμα Εκπαιδευτικών Ηλεκτρολόγων Μηχανικών & Εκπαιδευτικών Ηλεκτρονικών Μηχανικών

ΑΣΠΑΙΤΕ / Τμήμα Εκπαιδευτικών Ηλεκτρολόγων Μηχανικών & Εκπαιδευτικών Ηλεκτρονικών Μηχανικών 8. ΔΙΑΜΟΡΦΩΣΗ: ΓΕΝΙΚΗ ΘΕΩΡΗΣΗ 8.1. Ορισμoί Ως διαμόρφωση (modulation) χαρακτηρίζεται η μεταβολή μιας παραμέτρου (π.χ. πλάτους, συχνότητας, φάσης κλπ.) ενός σήματος που λέγεται φέρον εξαιτίας της επενέργειας

Διαβάστε περισσότερα

Μοντέλο συστήματος αποδιαμόρφωσης παρουσία θορύβου

Μοντέλο συστήματος αποδιαμόρφωσης παρουσία θορύβου Μοντέλο συστήματος αποδιαμόρφωσης παρουσία θορύβου Επίδοση παρουσία θορύβου Η ανάλυση της επίδοσης των συστημάτων διαμόρφωσης παρουσία θορύβου είναι εξαιρετικά σημαντική για τη σχεδίαση των διαφόρων επικοινωνιακών

Διαβάστε περισσότερα

Επομένως το εύρος ζώνης του διαμορφωμένου σήματος είναι 2.

Επομένως το εύρος ζώνης του διαμορφωμένου σήματος είναι 2. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΠΛΗ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑ Το φέρον σε ένα σύστημα DSB διαμόρφωσης είναι c t A t μηνύματος είναι το m( t) sin c( t) sin c ( t) ( ) cos 4 c και το σήμα. Το διαμορφωμένο σήμα διέρχεται

Διαβάστε περισσότερα

Πρακτικές μέθοδοι αποδιαμόρφωσης FM. Ανίχνευση μηδενισμών Διευκρίνιση ολίσθησης φάσης Μετατροπή FM σε ΑΜ Ανάδραση συχνότητας

Πρακτικές μέθοδοι αποδιαμόρφωσης FM. Ανίχνευση μηδενισμών Διευκρίνιση ολίσθησης φάσης Μετατροπή FM σε ΑΜ Ανάδραση συχνότητας Αποδιαμόρφωση FM Πρακτικές μέθοδοι αποδιαμόρφωσης FM Ανίχνευση μηδενισμών Διευκρίνιση ολίσθησης φάσης Μετατροπή FM σε ΑΜ Ανάδραση συχνότητας Ανίχνευση μηδενισμών Η έξοδος είναι ανάλογη του ρυθμού των μηδενισμών,

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο

Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο Εργαστηριακή Άσκηση 3: Εισαγωγή στη διαμόρφωση συχνότητας (FΜ) Προσομοίωση σε Η/Υ Δρ.

Διαβάστε περισσότερα

3 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΑΥΤΟΕΞΕΤΑΣΗΣ. 1) Nα αναφερθούν κάποια είδη πληροφοριών που χρησιμοποιούνται για επικοινωνία.

3 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΑΥΤΟΕΞΕΤΑΣΗΣ. 1) Nα αναφερθούν κάποια είδη πληροφοριών που χρησιμοποιούνται για επικοινωνία. 3 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΑΥΤΟΕΞΕΤΑΣΗΣ 1) Nα αναφερθούν κάποια είδη πληροφοριών που χρησιμοποιούνται για επικοινωνία. απ. Μπορεί να είναι ακουστικά μηνύματα όπως ομιλία, μουσική. Μπορεί να είναι μια φωτογραφία,

Διαβάστε περισσότερα

Γραμμική διαμόρφωση φέροντος κύματος

Γραμμική διαμόρφωση φέροντος κύματος Γραμμική διαμόρφωση φέροντος κύματος Επικοινωνία στη βασική ζώνη Επικοινωνία στη βασική ζώνη (baseband) χρησιμοποιείται σε Συνδρομητικούς βρόχους (PSTN) Συστήματα PCM μεταξύ τηλεφωνικών κέντρων ισχύς φέρον

Διαβάστε περισσότερα

Άσκηση. υπολογιστούν τα Ω, F, T, φ, So, και P. Λύση: Το σήμα πρέπει να τροποποιηθεί ώστε να έλθει στη μορφή S(t)=So sin(ωt+φ)

Άσκηση. υπολογιστούν τα Ω, F, T, φ, So, και P. Λύση: Το σήμα πρέπει να τροποποιηθεί ώστε να έλθει στη μορφή S(t)=So sin(ωt+φ) Ένα σήμα περιγράφεται από τις σχέσεις: S(t)= sin(ωt+φ) (πλάτος) με Ω κυκλική συχνότητα Ω = πf = /R (ισχύς) με R αντίσταση φόρτου. Επίσης ισχύει Ι(t) = Io sin (Ωt +φ) και = Io R. και Άσκηση Δίνεται σήμα

Διαβάστε περισσότερα

ΔΙΑΒΙΒΑΣΗ ΑΝΑΛΟΓΙΚΟΥ ΣΗΜΑΤΟΣ ΜΕ ΔΙΑΜΟΡΦΩΣΗ ΦΕΡΟΝΤΟΣ

ΔΙΑΒΙΒΑΣΗ ΑΝΑΛΟΓΙΚΟΥ ΣΗΜΑΤΟΣ ΜΕ ΔΙΑΜΟΡΦΩΣΗ ΦΕΡΟΝΤΟΣ ΔΙΑΒΙΒΑΣΗ ΑΝΑΛΟΓΙΚΟΥ ΣΗΜΑΤΟΣ ΜΕ ΔΙΑΜΟΡΦΩΣΗ ΦΕΡΟΝΤΟΣ Συστήματα Διαμόρφωσης Φέροντος ΔΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ (ΑΜPLITUDE MODULATION - AM) ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ (ANGLE( MODULATION - FM-PM PM) u(t)=a (1+m(t))os(πf t)

Διαβάστε περισσότερα

Τηλεπικοινωνίες. Ενότητα 6: Ψηφιακή Διαμόρφωση. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ

Τηλεπικοινωνίες. Ενότητα 6: Ψηφιακή Διαμόρφωση. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Τηλεπικοινωνίες Ενότητα 6: Ψηφιακή Διαμόρφωση Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο

Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο Εργαστηριακή Άσκηση 1: Εισαγωγή στη διαμόρφωση πλάτους (ΑΜ) Προσομοίωση σε Η/Υ Δρ.

Διαβάστε περισσότερα

Ηλεκτρονικές Επικοινωνίες - Μάθημα 2 Θεωρία και ασκήσεις για την ύλη στις σελίδες

Ηλεκτρονικές Επικοινωνίες - Μάθημα 2 Θεωρία και ασκήσεις για την ύλη στις σελίδες Ηλεκτρονικές Επικοινωνίες - Μάθημα 2 Θεωρία και ασκήσεις για την ύλη στις σελίδες 102-107 (Να απαντηθούν γραπτά και να παραδοθούν το αργότερο μέχρι την Παρασκευή 28 Νοεμβρίου). Διαμόρφωση πλάτους ΑΜ με

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σχολή Οικονομίας Διοίκησης και Πληροφορικής Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Αρχές Τηλ/ων Συστημάτων Μπατιστάτος Μιχάλης Εργαστήριο 5 ο : Διαμόρφωση

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ

ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΕΦΑΛΑΙΟ 1ο ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ & ΤΕΧΝΙΚΕΣ ΔΙΑΜΟΡΦΩΣΗΣ Τηλεπικοινωνίες Είναι το σύνολο των μέσων και τεχνικών για τη μεταβίβαση πληροφοριών (φωνή, εικόνα, δεδομένα υπολογιστών)

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΤΕΤΑΡΤΟ ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ

ΚΕΦΑΛΑΙΟ ΤΕΤΑΡΤΟ ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ ΚΕΦΑΛΑΙΟ ΤΕΤΑΡΤΟ ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ 4.1 Εισαγωγή Ένας ημιτονοειδής φορέας της μορφής c() = A c cos[θ()] είναι δυνατόν να διαμορφωθεί από ένα πληροφοριακό σήμα m(), όχι μόνο με μεταβολή του εύρους του (όπως

Διαβάστε περισσότερα

ΜΕΤΑΔΟΣΗ ΠΛΗΡΟΦΟΡΙΑΣ

ΜΕΤΑΔΟΣΗ ΠΛΗΡΟΦΟΡΙΑΣ ΜΕΤΑΔΟΣΗ ΠΛΗΡΟΦΟΡΙΑΣ ΚΕΦΑΛΑΙΟ.3 ΔΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ ΜΟΝΗΣ ΠΛΕΥΡΙΚΗΣ ΖΩΝΗΣ - ΑΜ SSB (SINGLE SIDEBAND) 1/18 Διαμόρφωση ΑΜ SSB (Single Sideband) Είδαμε ότι η DSB διαμόρφωση διπλασιάζει το εύρος ζώνης του σήματος.

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες

Εισαγωγή στις Τηλεπικοινωνίες ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες Ενότητα : Εισαγωγή στη Διαμόρφωση Πλάτους (AΜ) Όνομα Καθηγητή: Δρ. Ηρακλής Σίμος Τμήμα: Ηλεκτρονικών

Διαβάστε περισσότερα

Μετάδοση πληροφορίας - Διαμόρφωση

Μετάδοση πληροφορίας - Διαμόρφωση ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Μετάδοση πληροφορίας - Διαμόρφωση MYE006-ΠΛΕ065: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου Διάρθρωση μαθήματος Βασικές έννοιες μετάδοσης Διαμόρφωση ορισμός

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Μετασχηματισμός Fourier Στο κεφάλαιο αυτό θα εισάγουμε και θα μελετήσουμε

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες. Πολυδιάστατες Κυματομορφές Σήματος

Ψηφιακές Τηλεπικοινωνίες. Πολυδιάστατες Κυματομορφές Σήματος Ψηφιακές Τηλεπικοινωνίες Πολυδιάστατες Κυματομορφές Σήματος Ανακεφαλαίωση Καθένα από τα Μ σύμβολα αντιστοιχίζεται σε μια αναλογική κυματομορφή Οι κυματομορφές ορίζονται σε ένα N-D χώρο σήματος (Ν Μ) Μονοδιάστατα

Διαβάστε περισσότερα

Διαμόρφωση Παλμών. Pulse Modulation

Διαμόρφωση Παλμών. Pulse Modulation Διαμόρφωση Παλμών Pulse Modulation Συστήματα διαμόρφωσης παλμών Είδη διαμόρφωσης παλμών Pulse Amplitude Modulation (PAM): A m(t) Pulse Position Modulation (PPM): T d m(t) Pulse Duration Modulation (PDM)

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών. Επικοινωνίες I. Δημήτρης Ευσταθίου. Επίκουρος Καθηγητής

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών. Επικοινωνίες I. Δημήτρης Ευσταθίου. Επίκουρος Καθηγητής Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I Δημήτρης Ευσταθίου Επίκουρος Καθηγητής Δ. Ευσταθίου, Τμήμα Πληροφορικής και Επικοινωνιών, ΤΕΙ Σερρών Ύλη μαθήματος

Διαβάστε περισσότερα

Στην παρούσα ενότητα, θα εξεταστεί η διαμόρφωση QAM 16 καταστάσεων. Εναλλακτικές τεχνικές QAM προβλέπουν 64, 128 ή 256 καταστάσεις.

Στην παρούσα ενότητα, θα εξεταστεί η διαμόρφωση QAM 16 καταστάσεων. Εναλλακτικές τεχνικές QAM προβλέπουν 64, 128 ή 256 καταστάσεις. 14. ΔΙΑΜΟΡΦΩΣΗ ΤΕΤΡΑΓΩΝΙΣΜΟΥ ΠΛΑΤΟΥΣ (Quadrature Amplitude Modulation ή QAM) 1 14.1. Γενικά Η διαμορφωση QAM χρησιμοποιεί τόσο το πλάτος όσο και τη φάση του φέροντος. Σε κάθε περίπτωση, τα δυφία (bits)

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΑΕΙ ΠΕΙΡΑΙΑ ΤΤ (ΤΕΙ ΠΕΙΡΑΙΑ) ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΜΑΘΗΜΑ: ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΥΠ. ΚΑΘΗΓΗΤΗΣ: Ρ. ΗΡΑΚΛΗΣ ΣΙΜΟΣ ΜΑΡΤΙΟΣ 2015 ΑΣΚΗΣΗ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ22 (2012-13) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #5 Στόχος Βασικό στόχο της 5 ης εργασίας αποτελεί η εξοικείωση με τις έννοιες και τα μέτρα επικοινωνιακών καναλιών (Κεφάλαιο 3), καθώς και με έννοιες και τεχνικές της

Διαβάστε περισσότερα

Δέκτες ΑΜ ΘΟΡΥΒΟΣ ΣΕ ΔΙΑΜΟΡΦΩΣΗ CW

Δέκτες ΑΜ ΘΟΡΥΒΟΣ ΣΕ ΔΙΑΜΟΡΦΩΣΗ CW ΘΟΡΥΒΟΣ ΣΕ ΔΙΑΜΟΡΦΩΣΗ Στα συστήματα διαμόρφωσης (otiuou-ve) το κριτήριο της συμπεριφοράς τους ως προς το θόρυβο, είναι ο λόγος σήματος προς θόρυβο στην έξοδο (output igl-tooie rtio). λόγος σήματος προς

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Περίληψη Ευστάθεια Συστημάτων Απόκριση ΓΧΑ Συστημάτων σε Διεγέρσεις

Διαβάστε περισσότερα

To σήμα πληροφορίας m(t) πρέπει να είναι μονοπολικό (uni-polar) ΝRZ σήμα της μορφής: 0 ---> 0 Volts (11.1) 1 ---> +U Volts

To σήμα πληροφορίας m(t) πρέπει να είναι μονοπολικό (uni-polar) ΝRZ σήμα της μορφής: 0 ---> 0 Volts (11.1) 1 ---> +U Volts 11. ΔΙΑΜΟΡΦΩΣΗ ΚΛΕΙΔΩΜΑΤΟΣ ΠΛΑΤΟΥΣ (Amplitude Shift Keying - ΑSK) 11.1. Αναπαράσταση του ψηφιακού σήματος πληροφορίας To σήμα πληροφορίας πρέπει να είναι μονοπολικό (uni-polar) ΝZ σήμα της μορφής: 0 --->

Διαβάστε περισσότερα

Τηλεπικοινωνίες. Ενότητα 1: Εισαγωγή. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ

Τηλεπικοινωνίες. Ενότητα 1: Εισαγωγή. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Τηλεπικοινωνίες Ενότητα 1: Εισαγωγή Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

ΜΕΛΕΤΗ, ΑΝΑΠΤΥΞΗ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΑΣΚΗΣΕΩΝ ΑΝΑΛΟΓΙΚΩΝ ΔΙΑΜΟΡΦΩΣΕΩΝ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ SIMULINK ΤΟΥ MATLAB

ΜΕΛΕΤΗ, ΑΝΑΠΤΥΞΗ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΑΣΚΗΣΕΩΝ ΑΝΑΛΟΓΙΚΩΝ ΔΙΑΜΟΡΦΩΣΕΩΝ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ SIMULINK ΤΟΥ MATLAB Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Ο Ε Κ Π Α Ι Δ Ε Υ Τ Ι Κ Ο Ι Δ Ρ Υ Μ Α Σ Ε Ρ Ρ Ω Ν Σ Χ Ο Λ Η Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Ω Ν Ε Φ Α Ρ Μ Ο Γ Ω Ν Τ Μ Η Μ Α Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ & Ε Π Ι Κ Ο Ι Ν Ω Ν Ι Ω Ν ΜΕΛΕΤΗ, ΑΝΑΠΤΥΞΗ ΚΑΙ

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Διατήρηση της Ενέργειας Εικόνα: Η μετατροπή της δυναμικής ενέργειας σε κινητική κατά την ολίσθηση ενός παιχνιδιού σε μια πλατφόρμα. Μπορούμε να αναλύσουμε τέτοιες καταστάσεις με τις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ο : Εξομοίωση Ψηφιακή Υλοποίηση Αναλογικών Διαμορφώσεων

ΚΕΦΑΛΑΙΟ 2 ο : Εξομοίωση Ψηφιακή Υλοποίηση Αναλογικών Διαμορφώσεων ΚΕΦΑΛΑΙΟ 2 ο : Εξομοίωση Ψηφιακή Υλοποίηση Αναλογικών Διαμορφώσεων 2 2 Ν. Μήτρου ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Συνοπτική θεωρία και εργαστήριο Περιεχόμενα Κεφαλαίου 2 2.1 Εισαγωγή... 2-3 2.2 Απλή διαμόρφωση ΑΜ

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών Ι

Συστήματα Επικοινωνιών Ι + Διδάσκων: Δρ. Κ. Δεμέστιχας Συστήματα Επικοινωνιών Ι Τηλεπικοινωνιακά Σήματα και Συστήματα + Περιεχόμενα 2 n Εισαγωγή n Εφαρμογές συστημάτων επικοινωνίας n Μοντέλο τηλεπικοινωνιακού συστήματος n Σήματα

Διαβάστε περισσότερα

Ηλεκτρικές Μηχανές ΙΙ

Ηλεκτρικές Μηχανές ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ηλεκτρικές Μηχανές ΙΙ Ενότητα 1: Βασικές Αρχές Ηλεκτρικών Μηχανών Ηρακλής Βυλλιώτης Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Ανάλυση Επικοινωνιακών Σημάτων κατά Fourier

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Ανάλυση Επικοινωνιακών Σημάτων κατά Fourier ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Ανάλυση Επικοινωνιακών Σημάτων κατά Fourier 2.2: Μετασχηματισμός Fourier (Fourier Transform, FT) 2.3: Ιδιότητες του

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Εργαστήριο 9 ο : Διαμόρφωση BPSK & QPSK Βασική Θεωρία Εισαγωγή Κατά την μετάδοση ψηφιακών δεδομένων

Διαβάστε περισσότερα

Τηλεπικοινωνίες. Ενότητα 2.1: Ανάλυση Fourier. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ

Τηλεπικοινωνίες. Ενότητα 2.1: Ανάλυση Fourier. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Τηλεπικοινωνίες Ενότητα 2.1: Ανάλυση Fourier Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Το σήμα εξόδου ενός διαμορφωτή συμβατικού ΑΜ είναι:

Το σήμα εξόδου ενός διαμορφωτή συμβατικού ΑΜ είναι: Άσκηση 1 Το σήμα εξόδου ενός διαμορφωτή συμβατικού ΑΜ είναι: i. Προσδιορίστε το σήμα πληροφορίας και το φέρον. ii. Βρείτε το δείκτη διαμόρφωσης. iii. Υπολογίστε το λόγο της ισχύος στις πλευρικές ζώνες

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σχολή Θετικών Επιστημών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ Ι Μπατιστάτος Μιχάλης Εργαστήριο 3 ο : Διαμόρφωση ΑΜ-DSBSC/SSB Βασική

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΑΝΑΛΥΣΗ FOURIER (H ΣΕΙΡΑ FOURIER ΚΑΙ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER) Aναστασία Βελώνη Τμήμα Η.Υ.Σ 1 Άδειες

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 22: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Αναπαράσταση περιοδικών σημάτων με μιγαδικά εκθετικά σήματα: Οι σειρές Fourier Υπολογισμός συντελεστών Fourier Ανάλυση σημάτων σε μιγαδικά εκθετικά σήματα Είδαμε

Διαβάστε περισσότερα

Μαθηµατική Παρουσίαση των FM και PM Σηµάτων

Μαθηµατική Παρουσίαση των FM και PM Σηµάτων Μαθηµατική Παροσίαση των FM και PM Σηµάτων Ένα γωνιακά διαµορφωµένο σήµα, πο αναφέρεται επίσης και ως εκθετικά διαµορφωµένο σήµα, έχει τη µορφή u os j [ ] { π + jφ π + φ Re e } Σεραφείµ Καραµπογιάς Ορίζοµε

Διαβάστε περισσότερα

Τηλεπικοινωνικακά Συστήματα Ι - Ενδεικτικές Ερωτήσεις Ασκήσεις 1)

Τηλεπικοινωνικακά Συστήματα Ι - Ενδεικτικές Ερωτήσεις Ασκήσεις 1) Τηλεπικοινωνικακά Συστήματα Ι - Ενδεικτικές Ερωτήσεις Ασκήσεις Δ.Ευσταθίου Τμήμα Μηχανικών Πληροφορικής ΤΕ, ΤΕΙ Κεντρικής Μακεδονίας 1) 1. Ποια από τις παρακάτω συχνότητες δεν εμφανίζεται στην έξοδο ενός

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 7 ο : Διαμόρφωση BPSK & QPSK

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ Προβλήματα Διαταραχών Λογισμού Μεταβολών Άσκηση 3.10, σελίδα 35 από το βιβλίο

Διαβάστε περισσότερα

Τηλεπικοινωνίες. Ενότητα 5: Ψηφιακή Μετάδοση Αναλογικών Σημάτων. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ

Τηλεπικοινωνίες. Ενότητα 5: Ψηφιακή Μετάδοση Αναλογικών Σημάτων. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Τηλεπικοινωνίες Ενότητα 5: Ψηφιακή Μετάδοση Αναλογικών Σημάτων Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Τα ηλεκτρονικά σήματα πληροφορίας διακρίνονται ανάλογα με τη μορφή τους σε δύο κατηγορίες : Αναλογικά σήματα Ψηφιακά σήματα

Τα ηλεκτρονικά σήματα πληροφορίας διακρίνονται ανάλογα με τη μορφή τους σε δύο κατηγορίες : Αναλογικά σήματα Ψηφιακά σήματα ΕΝΟΤΗΤΑ 2 2.0 ΗΛΕΚΤΡΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΑΡΧΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΕΙΣΑΓΩΓΗ Ηλεκτρικό σήμα ονομάζεται η τάση ή το ρεύμα που μεταβάλλεται ως συνάρτηση του χρόνου. Στα ηλεκτρονικά συστήματα επικοινωνίας, οι πληροφορίες

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Σειρά Fourier Ορθοκανονικές Συναρτήσεις Στοεδάφιοαυτόθαδιερευνήσουμεεάνκαικάτωαπό

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά

Διαβάστε περισσότερα

ΕΠΙΚΟΙΝΩΝΙΕΣ, ΔΙΚΤΥΑ & ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΠΙΚΟΙΝΩΝΙΕΣ, ΔΙΚΤΥΑ & ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ, ΔΙΚΤΥΑ & ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΚΕΦΑΛΑΙΟ 2ο ΑΝΑΛΟΓΙΚΑ - ΨΗΦΙΑΚΑ ΣΗΜΑΤΑ & ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Πληροφορία Επικοινωνία συντελείται με τη μεταβίβαση μηνυμάτων από ένα πομπό σε ένα δέκτη. Μήνυμα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ο. Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT. (Discrete Time Fourier Transform) ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ Σ. ΦΩΤΟΠΟΥΛΟΣ ΔΠΜΣ 1/ 45

ΚΕΦΑΛΑΙΟ 3 ο. Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT. (Discrete Time Fourier Transform) ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ Σ. ΦΩΤΟΠΟΥΛΟΣ ΔΠΜΣ 1/ 45 ΚΕΦΑΛΑΙΟ 3 ο Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT (Discrt Tim Fourir Transform / 45 Γενικά Μορφές Μετασχηματισμού Fourir Σήματα που αντιστοιχούν στους τέσσερους τύπους μετασχηματισμών α Μετασχηματισμός

Διαβάστε περισσότερα

10. ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ (ΔΙΑΜΟΡΦΩΣΗ ΣΥΧΝΟΤΗΤΑΣ FREQUENCY MODULATION FM ΔΙΑΜΟΡΦΩΣΗ ΦΑΣΗΣ PHASE MODULATION PM) Γενική θεώρηση

10. ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ (ΔΙΑΜΟΡΦΩΣΗ ΣΥΧΝΟΤΗΤΑΣ FREQUENCY MODULATION FM ΔΙΑΜΟΡΦΩΣΗ ΦΑΣΗΣ PHASE MODULATION PM) Γενική θεώρηση 10. ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ (ΔΙΑΜΟΡΦΩΣΗ ΣΥΧΝΟΤΗΤΑΣ FREQUENCY MODULATION FM ΔΙΑΜΟΡΦΩΣΗ ΦΑΣΗΣ PHASE MODULATION PM) 10.1. Γενική θεώρηση 10.1.1. Ημιτονοειδές σήμα με μεταβαλλόμενη συχνότητα Σε ένα ημιτονοειδές

Διαβάστε περισσότερα

Ασκήσεις στα Συστήµατα Ηλεκτρονικών Επικοινωνιών Κεφάλαιο 3 ο : ΕΙΣΑΓΩΓΗ στις ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ και ΤΕΧΝΙΚΕΣ ΙΑΜΟΡΦΩΣΗΣ

Ασκήσεις στα Συστήµατα Ηλεκτρονικών Επικοινωνιών Κεφάλαιο 3 ο : ΕΙΣΑΓΩΓΗ στις ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ και ΤΕΧΝΙΚΕΣ ΙΑΜΟΡΦΩΣΗΣ Κεφάλαιο 3 ο : ΕΙΣΑΓΩΓΗ στις ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ και ΤΕΧΝΙΚΕΣ ΙΑΜΟΡΦΩΣΗΣ 1. Ποµπός ΑΜ εκπέµπει σε φέρουσα συχνότητα 1152 ΚΗz, µε ισχύ φέροντος 10KW. Η σύνθετη αντίσταση της κεραίας είναι

Διαβάστε περισσότερα

Τηλεπικοινωνίες. Ενότητα 2.2: Ανάλυση Fourier (Συνέχεια) Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ

Τηλεπικοινωνίες. Ενότητα 2.2: Ανάλυση Fourier (Συνέχεια) Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Τηλεπικοινωνίες Ενότητα 2.2: Ανάλυση Fourier (Συνέχεια) Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών Ι

Συστήματα Επικοινωνιών Ι + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών Ι Συναρτήσεις συσχέτισης/αυτοσυσχέτισης Φίλτρα Μετασχηματισμός Hilbert + Περιεχόμενα n Συνάρτηση αυτοσυσχέτισης n Συνάρτηση

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΤΩΝ ΕΦΑΡΜΟΓΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Ιωάννης Γ. Τίγκελης και Δημήτριος Ι. Φραντζεσκάκης

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY : Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Μετασχηματισμοί Σημάτων Ενέργεια και Ισχύς Σήματος Βασικές κατηγορίες σημάτων Περιοδικά σήματα Άρτια και περιττά σήματα Εκθετικά σήματα Μετασχηματισμοί σημάτων (signal

Διαβάστε περισσότερα

Τμήμα Μηχανικών Η/Υ και Πληροφορικής

Τμήμα Μηχανικών Η/Υ και Πληροφορικής Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Επεξεργασίας Σημάτων και Τηλεπικοινωνιών Κινητά Δίκτυα Επικοινωνιών Μέρος Α: Τηλεπικοινωνιακά Θέματα: Τεχνικές Ψηφιακής Διαμόρφωσης και Μετάδοσης Tο γενικό

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #9 Ιδιοτιμές και ιδιοσυναρτήσεις συστημάτων Απόκριση ΓΧΑ συστημάτων σε μιγαδικά εκθετικά σήματα Συνάρτηση μεταφοράς Ανάλυση Σημάτων/Συστημάτων με βασικά σήματα Συχνά

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Σήματα και Συστήματα στο Πεδίο της Επιμέλεια: Αθανάσιος N. Σκόδρας, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Άδειες

Διαβάστε περισσότερα

ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος

ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ ΥΨΗΛΩΝ ΣΥΧΝΟΤΗΤΩΝ (Θ) Ενότητα 3: Μικροκυματικές Διατάξεις ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

- Ραδιόφωνο. - Κινητή τηλεφωνία - Ψηφιακή τηλεόραση (π.χ. NOVA)

- Ραδιόφωνο. - Κινητή τηλεφωνία - Ψηφιακή τηλεόραση (π.χ. NOVA) ΙΑΜΟΡΦΩΣΗ Ο σκοπός ενός τηλεπικοινωνιακού συστήµατος είναι η µεταφορά πληροφορίας µε τη µορφή σήµατος µέσω ενός καναλιού το οποίο χωρίζει τον ποµπό από τον δέκτη. Το κανάλι µπορεί να είναι είτε κάποια

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Μετασχηματισμός Laplace 1. Ο μετασχηματισμός

Διαβάστε περισσότερα

Κβαντομηχανική Ι 6o Σετ Ασκήσεων. Άσκηση 1

Κβαντομηχανική Ι 6o Σετ Ασκήσεων. Άσκηση 1 Χειμερινό εξάμηνο 6-7 Κβαντομηχανική Ι 6o Σετ Ασκήσεων Άσκηση a) Τρόπος α : Λύνουμε όλους (ή έστω μερικούς από) τους συνδυασμούς [l i, r j ]: [l x, x] = [l y, y] = [l z, x] = i ħ y Κ.ο.κ., και συμπεραίνουμε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΤΡΙΤΟ ΔΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ

ΚΕΦΑΛΑΙΟ ΤΡΙΤΟ ΔΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ ΚΕΦΑΛΑΙΟ ΤΡΙΤΟ ΔΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ 3. Εισαγωγή Συστήματα Αναλογικής Διαμόρφωσης Η ιδέα της αναλογικής διαμόρφωσης στηρίζεται στην αλλαγή κάποιας παραμέτρου ενός ημιτονοειδούς σήματος (t), το οποίο λέγεται

Διαβάστε περισσότερα

Εργαστήριο 3: Διαλείψεις

Εργαστήριο 3: Διαλείψεις Εργαστήριο 3: Διαλείψεις Διάλειψη (fading) είναι η παραμόρφωση ενός διαμορφωμένου σήματος λόγω της μετάδοσης του σε ασύρματο περιβάλλον. Η προσομοίωση μίας τέτοιας μετάδοσης γίνεται με την μοντελοποίηση

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών

Συστήματα Επικοινωνιών Συστήματα Επικοινωνιών Ενότητα: Ασκήσεις για τις ενότητες 2 4: Διαμόρφωση Πλάτους Ιωάννης Βαρδάκας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σελίδα 2 Περιεχόμενα 1. Σκοποί ενότητας...5 2.

Διαβάστε περισσότερα

Α. Αιτιολογήστε αν είναι γραμμικά ή όχι και χρονικά αμετάβλητα ή όχι.

Α. Αιτιολογήστε αν είναι γραμμικά ή όχι και χρονικά αμετάβλητα ή όχι. ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΕΞ. ΠΕΡΙΟΔΟΣ Β ΧΕΙΜ. 00 - ΩΡΕΣ ΘΕΜΑ Για τα παρακάτω συστήματα εισόδου εξόδου α. y ( 3x( x( n ) β. y ( x( n ) / γ. y ( x( x( n ) δ. y( x( n ) Α. Αιτιολογήστε αν είναι γραμμικά

Διαβάστε περισσότερα

ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER. e ω. Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c

ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER. e ω. Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER x(t+kτ) = x(t) = π/ω f = / x(t) = = 8 c j t e ω c = (a-jb ) Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c. Αυτός γίνεται κατορθωτός αν

Διαβάστε περισσότερα

ΜΕΤΑΔΟΣΗ ΠΛΗΡΟΦΟΡΙΑΣ

ΜΕΤΑΔΟΣΗ ΠΛΗΡΟΦΟΡΙΑΣ ΜΕΤΑΔΟΣΗ ΠΛΗΡΟΦΟΡΙΑΣ ΚΕΦΑΛΑΙΟ. ΔΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ ΑΜ DSB-LC (DOUBLE SIDEBAND-LARGE CARRIER) 006 ΜΕΤΑΔΟΣΗ ΠΛΗΡΟΦΟΡΙΑΣ Γ. Οικονόμου ΠΜΣ-ΗΕΠ 1/13 Διαμόρφωση ΑΜ DSB-LC (Large Carrier) Ένα σημαντικό πρόβλημα

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών

Συστήματα Επικοινωνιών Συστήματα Επικοινωνιών Ενότητα 7: Απόδοση συστημάτων γωνίας υπό θόρυβο Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Παρουσίαση της γενικής

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ε. Στυλιάρης

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ε. Στυλιάρης (Με ιδέες και υλικό από ΦΥΣΙΚΗ Ι ΤΜΗΜΑ Α Ε. Στυλιάρης από παλαιότερες διαφάνειες του κ. Καραμπαρμπούνη) ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, 5 6 6 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ Μέση και Στιγμιαία Ταχύτητα Επιτάχυνση Διαφορικές

Διαβάστε περισσότερα

Ραδιοτηλεοπτικά Συστήματα Ενότητα 1: Εισαγωγή

Ραδιοτηλεοπτικά Συστήματα Ενότητα 1: Εισαγωγή ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ραδιοτηλεοπτικά Συστήματα Ενότητα 1: Εισαγωγή Δρ. Νικόλαος- Αλέξανδρος Τάτλας Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε Κάντε κλικ για

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 14 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/s15 e-mail:

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Ι Ι ΑΣΚΩΝ : ρ. Χρήστος Βοζίκης

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Ι Ι ΑΣΚΩΝ : ρ. Χρήστος Βοζίκης ΤΜΗΜΑ Β ΕΞΕΤΑΣΤΙΚΗ ΧΕΙΜΕΡΙΝΟΥ ΕΞΑΜΗΝΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΑΚΑ. ΕΤΟΣ - ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τ. Ε. Ι. Σ Ε Ρ Ρ Ω Ν Σέρρες, 7 Φεβρουαρίου ΘΕΜΑ ον ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Ι Ι ΑΣΚΩΝ :

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: Ραδιοφωνικός Δέκτης AM

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: Ραδιοφωνικός Δέκτης AM ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: Ραδιοφωνικός Δέκτης AM Εισαγωγή Τα Ηλεκτρονικά Ραδιοσυχνοτήτων (RF) είναι ουσιαστικά ηλεκτρονικά για τηλεπικοινωνίες. Σχηματικό διάγραμμα τηλεπικοινωνιακού συστήματος: Πομπός -> Κανάλι

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 13 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Wepage: http://eclass.uop.gr/courses/tst15

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΕΙΔΙΚΗΣ ΘΕΜΑΤΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ. Ραδιοφωνία

ΜΑΘΗΜΑ ΕΙΔΙΚΗΣ ΘΕΜΑΤΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ. Ραδιοφωνία ΜΑΘΗΜΑ ΕΙΔΙΚΗΣ ΘΕΜΑΤΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ Ραδιοφωνία Περιέχομενα 1.Ιστορική Αναδρομή 2.Μονοφωνικό Σήμα 3.Στερεοφωνικό Σήμα 4.Σύγκριση Μονοφωνικό και Στερεοφωνικό σήματος 5.Ψηφιακή Μετάδοση Μηνύματος - Radio

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι Βασικές Έννοιες Σήματα Κατηγορίες Σημάτων Συνεχούς/ Διακριτού Χρόνου, Αναλογικά/ Ψηφιακά Μετασχηματισμοί Σημάτων Χρόνου: Αντιστροφή, Κλιμάκωση, Μετατόπιση Πλάτους Βασικά

Διαβάστε περισσότερα

Εργαστήριο Κυκλωμάτων και Μετρήσεων

Εργαστήριο Κυκλωμάτων και Μετρήσεων ΗΜΥ203 Εργαστήριο Κυκλωμάτων και Μετρήσεων Κυκλώματα RLC Σειράς,Συχνότητα Συντονισμούκαι Διόρθωση Συντελεστή Ισχύος Διδάσκων: Δρ. Γιώργος Ζάγγουλος Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και

Διαβάστε περισσότερα

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. 3. ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. Ορίσουµε το µετασχηµατισµό Fourier ενός µη περιοδικού

Διαβάστε περισσότερα

ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος

ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ ΥΨΗΛΩΝ ΣΥΧΝΟΤΗΤΩΝ (Θ) Ενότητα 1: Μικροκυματικές Διατάξεις ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Σήματα και Συστήματα Συνεχούς/Διακριτού Χρόνου Επιμέλεια: Πέτρος Π. Γρουμπός, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών

Διαβάστε περισσότερα

FSK Διαμόρφωση και FSK Αποδιαμόρφωση (FSK Modulation-FSK Demodulation)

FSK Διαμόρφωση και FSK Αποδιαμόρφωση (FSK Modulation-FSK Demodulation) FSK Διαμόρφωση και FSK Αποδιαμόρφωση (FSK Modulation-FSK Demodulation) ΣΚΟΠΟΙ ΤΗΣ ΑΣΚΗΣΗΣ Η εκμάθηση της αρχής λειτουργίας της ψηφιακής διαμόρφωσης συχνότητας (Frequency Shift Keying, FSK) και της αποδιαμόρφωσής

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΚΤΥΑ ΚΙΝΗΤΩΝ ΚΑΙ ΠΡΟΣΩΠΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Ασκήσεις για το ασύρματο

Διαβάστε περισσότερα

1 f. d F D x m a D x m D x dt. 2 t. Όλες οι αποδείξεις στην Φυσική Κατεύθυνσης Γ Λυκείου. Αποδείξεις. d t dt dt dt. 1. Απόδειξη της σχέσης.

1 f. d F D x m a D x m D x dt. 2 t. Όλες οι αποδείξεις στην Φυσική Κατεύθυνσης Γ Λυκείου. Αποδείξεις. d t dt dt dt. 1. Απόδειξη της σχέσης. Αποδείξεις. Απόδειξη της σχέσης N t T N t T. Απόδειξη της σχέσης t t T T 3. Απόδειξη της σχέσης t Ικανή και αναγκαία συνθήκη για την Α.Α.Τ. είναι : d F D ma D m D Η εξίσωση αυτή είναι μια Ομογενής Διαφορική

Διαβάστε περισσότερα

m e j ω t } ja m sinωt A m cosωt

m e j ω t } ja m sinωt A m cosωt ΕΝΟΤΗΤΑ IV ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ 26 Στρεόµενα διανύσµατα Σε κυκλώµατα όπου η διέγερση είναι περιοδική και ηµιτονοειδής οι τάσεις και τα ρεύµατα αναπαρίστανται µε µιγαδικούς αριθµούς, ή όπως συνήθως λέµε

Διαβάστε περισσότερα

Στοχαστικές Ανελίξεις

Στοχαστικές Ανελίξεις Ντετερμινιστικά Σήματα - Τυχαία Σήματα Ταξινόμηση των σημάτων ανάλογα με τη βεβαιότητα όσο αφορά την τιμή τους κάθε χρονική στιγμή. Τα ντετερμινιστικά σήματα μπορούν να αναπαρασταθούν σαν πλήρως καθορισμένες

Διαβάστε περισσότερα

ΕΙ ΙΚΑ ΚΕΦΑΛΑΙΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΡΩΤΗΣΕΙΣ & ΘΕΜΑΤΑ ΠΕΡΑΣΜΕΝΩΝ ΕΞΕΤΑΣΤΙΚΩΝ ΠΕΡΙΟ ΩΝ

ΕΙ ΙΚΑ ΚΕΦΑΛΑΙΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΡΩΤΗΣΕΙΣ & ΘΕΜΑΤΑ ΠΕΡΑΣΜΕΝΩΝ ΕΞΕΤΑΣΤΙΚΩΝ ΠΕΡΙΟ ΩΝ ΕΙ ΙΚΑ ΚΕΦΑΛΑΙΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΡΩΤΗΣΕΙΣ & ΘΕΜΑΤΑ ΠΕΡΑΣΜΕΝΩΝ ΕΞΕΤΑΣΤΙΚΩΝ ΠΕΡΙΟ ΩΝ α. Τι ονοµάζουµε διασπορά οπτικού παλµού σε µια οπτική ίνα; Ποια φαινόµενα παρατηρούνται λόγω διασποράς; (Αναφερθείτε σε

Διαβάστε περισσότερα

Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης

Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης Πιθανότητες & Τυχαία Σήματα Διγαλάκης Βασίλης Στατικές (Στάσιμες) Διαδικασίες Στατική (Stationary) ορίζεται η διαδικασία της οποίας οι στατιστικές ιδιότητες δεν μεταβάλλονται με την πάροδο του χρόνου.

Διαβάστε περισσότερα

Επικοινωνίες στη Ναυτιλία

Επικοινωνίες στη Ναυτιλία Επικοινωνίες στη Ναυτιλία Εισαγωγή Α. Παπαδάκης, Αναπλ. Καθ. ΑΣΠΑΙΤΕ Δρ. ΗΜΜΥ Μηχ. ΕΜΠ Βασικά Αντικείμενα Μαθήματος Σήματα Κατηγοριοποίηση, ψηφιοποίηση, δειγματοληψία, κβαντισμός Βασικά σήματα ήχος, εικόνα,

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΔΙΑΦΟΡΑΣ ΦΑΣΗΣ ΔΥΟ ΗΜΙΤΟΝΟΕΙΔΩΝ ΣΗΜΑΤΩΝ

ΜΕΤΡΗΣΗ ΔΙΑΦΟΡΑΣ ΦΑΣΗΣ ΔΥΟ ΗΜΙΤΟΝΟΕΙΔΩΝ ΣΗΜΑΤΩΝ ΑΣΚΗΣΗ 05 ΜΕΤΡΗΣΗ ΔΙΑΦΟΡΑΣ ΦΑΣΗΣ ΔΥΟ ΗΜΙΤΟΝΟΕΙΔΩΝ ΣΗΜΑΤΩΝ Αντικείμενο της άσκησης αυτής είναι η μέτρηση της διαφοράς φάσης μεταξύ δύο κυματομορφών τάσης σε ένα κύκλωμα εναλλασσομένου ρεύματος με τη βοήθεια

Διαβάστε περισσότερα