Συστήματα Επικοινωνιών Ι

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Συστήματα Επικοινωνιών Ι"

Transcript

1 + Διδάσκων: Δρ. Κ. Δεμέστιχας Συστήματα Επικοινωνιών Ι Διαμόρφωση Συχνότητας Ευρείας Ζώνης Εύρος ζώνης μετάδοσης διαμορφωμένων κατά γωνία σημάτων Παραγωγή σημάτων FM

2 + Περιεχόμενα Διαμόρφωση γωνίας ευρείας ζώνης διαμόρφωση από απλό τόνο συναρτήσεις Bessel διαμόρφωση από πολλούς τόνους φασματική ανάλυση Εύρος ζώνης μετάδοσης κυματομορφών FM ενεργό εύρος ζώνης κανόνας του Carso εύρος ζώνης σήματος FM εύρος ζώνης σήματος PM Παραγωγή σημάτων FM έμμεση μέθοδος άμεση μέθοδος

3 + Σύνδεση με τα προηγούμενα Κατά τη διαμόρφωση γωνίας διαμορφώνεται η γωνία του φέροντος σήματος σύμφωνα με τα χαρακτηριστικά του σήματος πληροφορίας διαμόρφωση φάσης PM διαμόρφωση γωνίας FM Το εύρος ζώνης του διαμορφωμένου κατά γωνία σήματος εν γένει υπερβαίνει το διπλάσιο του εύρους ζώνης του σήματος Β 2W Η διαμόρφωση γωνίας όμως προσφέρει καλύτερη συμπεριφορά ως προς το θόρυβο και την παρεμβολή Στην περίπτωση διαμόρφωσης γωνίας στενής ζώνης το διαμορφωμένο σήμα είναι παρόμοιο με το σήμα AM και το εύρος ζώνης μετάδοσης, όπως και στην ΑΜ διαμόρφωση είναι διπλάσιο του εύρους ζώνης του σήματος πληροφορίας Αν για το συντελεστή διαμόρφωσης β ισχύει β 1 rad τότε έχουμε διαμόρφωση γωνίας στενής ζώνης ενώ αν β > 1 έχουμε διαμόρφωση γωνίας ευρείας ζώνης

4 + Διαμόρφωση φάσης/συχνότητας ευρείας ζώνης (Broadbad FM & PM Modulatio)

5 + Φασματική ανάλυση διαμορφωμένων κατά γωνία σημάτων Λόγω της μη γραμμικότητας, η φασματική ανάλυση των διαμορφωμένων κατά γωνία σημάτων είναι δύσκολη διαδικασία Στην ειδική περίπτωση που το σήμα πληροφορίας m(t) είναι περιοδικό είναι εφικτή η ανάλυση σε αρμονικές συνιστώσες Η απλούστερη περίπτωση είναι αυτή του ημιτονικού σήματος διαμόρφωσης, όταν δηλαδή mt () = A cos(2 π ft) m m

6 + Διαμόρφωση γωνίας ευρείας ζώνης διαμόρφωση από απλό τόνο Θεωρώ το εξής σήμα διαμόρφωσης mt () = Amcos(2 π ft m ) mt () = A si(2 π ft) για διαμόρφωση FM για διαμόρφωση PM Και στις 2 περιπτώσεις το διαμορφωμένο από απλό τόνο σήμα είναι το οποίο μπορεί να γραφτεί ως m m [ π β π ] st () = Acos2 ft+ si(2 ft) c c m 3 1 s1t2 Re3A c exp1j2pf c t jb si12pf m t224 Re3s ' 1t2 exp1j2pf c t24 το οποίο όμως είναι (εν γένει) μη περιοδικό 3 ' Η μιγαδική περιβάλλουσα αυτού όμως είναι περιοδικό σήμα (με T m = 1/f m ) και μπορεί να αναλυθεί σε σειρά Fourier s () t = A exp j si(2 f t) c [ β π ] m

7 + > Ανάλυση σε σειρά 3 1 Fourier 24 Αναπτύσσοντας τη 1 2μιγαδική περιβάλλουσα 1 1 2σε 2 σειρά Fourier έχουμε q ' s 1t2 a c exp1j2pf 2 m t2 q 2 1 1>(2f > m ) > όπου c f m s' 11t2 2 exp1 j2pf 1 3 m 12 t2 dt 2 L 1>(2f > m ) > 3 1 1>(2f m )) L > f m A c exp3jb 3 si12pf 1 m t2 2 j2pf m t4 dt L 1>(2f > m ) > 3 1 > > > c A c 2p L p p x 2pf m t ourier coeffi exp3j1b si x x24 dx

8 + Ανάλυση σε 3 1 σειρά Fourier Συναρτήσεις Bessel H -οστή τάξης συνάρτηση Bessel πρώτου είδους και ορίσματος β ορίζεται ως J 1b exp3j1b si x x24 dx 2p 1 2 L p Συνεπώς c A c J 1b2 1 2 a και το διαμορφωμένο σήμα s(t) γράφεται ως s1t2 RecA c 1 2 p we get, i terms 1 2 q ' s 1t2 Ac a J 1b2 exp1j2pf m t2 q a q 1 2 q c a J 1b2 exp3j2p1f c f m 2t4d A c a J 1b2 cos32p1f c f m 2t4 q 1 2 c q Διαμορφωμένο κατά γωνία σήμα με δείκτη διαμόρφωσης β 1 2

9 + Φάσμα σήματος FM ευρείας ζώνης Το διαμορφωμένο 1 2σήμα είναι s1t2 A c q a q J 1b2 cos32p1f c f m 2t4 και ο Μ/Σ Fourier αυτού S1f2 A q c 2 a J 1b23d1f 1 2 f c f m 2 d1f f c f m q L ows 1 that 2 the s 1 2 f f c 3 1 f m 2f για 1 24 Άπειρος αριθμός συναρτήσεων δέλτα1στις 2 συχνότητες 0, 1, 2, Á. 1 2

10 Η συνάρτηση Bessel πρώτου είδους τάξης ε ( 1) k ( β 2 ) + 2 k J (β ) = k!( k + )! k =0 Besselκαι J(β) για μικρές τιμές του β + Ιδιότητες συναρτήσεων Bessel Ιδιότητες Ιδιότητες Bessel J(β) Ιδιότητες συναρτήσεων Bessel J (β ) επίσης Φάσμα WBFM (2/3) 2! Ιδιότητες Bessel J(β) 1. J ( β ) = ( 1) J ( β ) J ( β ) άρτιος Η1.συνάρτηση Bessel πρώτου είδους τάξης ) = είναι J ( β ) = ( 1) J ( β ή αλλιώς J ( β ) 2. Αν 0 < β k β1 τότε: J J(β()β=)( 1)J (περιττός +2k 1. β) ( 1) ( ) 2 0β )<!β1 1 τότε: ) J=0 ( J2. ( βαν 2 2. Αν 0 < β 1 τότε:!( + )! k k ) =1 Φαίνεται, J ( βφάσμα, k =0 λοιπόν, ότι έχω άπειρο β J ( β )! 1 J 0 (β )! 1 β β = και για0 μικρές τιμές του β J ( β ) β Για J (μικρές βτου )! τιμές, J.του ( ββ: ) = J ( β ) =2! εξαιτίας 2 β β2 επίσης J 1J( β()β!)! 0,,for J 1(>β1) = J 1 ( β ) = J (β ) άρτιος 2 2 J (β ) = 2 ()β=) 1for >περιττός J γραφική ( β J)!J( β0, 1 3. = των παράσταση J ( βj) = (β ) = 1 συναρτήσεων = 3. Συστήματα Επικοινωνιών Ι Bessel= πρώτου βαθμού -οστής Συστήματα Επικοινωνιών Ι τάξης β β J 1 ( β )!, J 1 ( β ) = J 1 ( β ) = 2 2 J ( β )! 0, για for > 1 3. J 2 (β ) = 1 = Συστήματα Επικοινωνιών Ι

11 + Παρατηρήσεις Το φάσμα FM περιέχει μια συνιστώσα που αντιστοιχεί στο φέρον και ένα άπειρο σύνολο πλευρικών συχνοτήτων συμμετρικά τοποθετημένων εκατέρωθεν του φέροντος σε διαστήματα f m Στην περίπτωση που β 1, J (β)! 0,. Δηλαδή η κυματομορφή FM αποτελείται από το φέρον και ένα μόνο ζευγάρι πλευρικών συχνοτήτων στις f. ± f 0. Η περίπτωση αυτή είναι η περίπτωση FM στενής ζώνης Το πλάτος της φασματικής συχνότητας που οφείλεται στο φέρον εξαρτάται από το δείκτη διαμόρφωσης και ισούται με J 0 (β) Η μέση ισχύς της κυματομορφής FM εξαρτάται από το πλάτος του φέροντος και είναι ίση με 2 2 Ac P = J 2 ( β ) = 2 = A c 2

12 + Επίδραση πλάτους ημιτονικού σήματος διαμόρφωσης στην κυματομορφή FM Περίπτωση ημιτονικής διαμόρφωσης με σταθερή συχνότητα f m για τρεις διαφορετικές τιμές του πλάτους Α m

13 + Επίδραση συχνότητας ημιτονικού σήματος διαμόρφωσης στην κυματομορφή FM Περίπτωση ημιτονικής διαμόρφωσης σταθερού πλάτους Α m για τρεις διαφορετικές τιμές της συχνότητας f m Όταν η Δf είναι σταθερή και ο δείκτης διαμόρφωσης β αυξάνει ο αριθμός των φασματικών γραμμών που συγκεντρώνονται στο σταθερό διάστημα συχνότητας f c Δf < f < f c + Δf Όταν το β, το εύρος ζώνης της κυματομορφής FM τείνει στην οριακή τιμή 2 Δf

14 + Διαμόρφωση από πολλούς τόνους Στην πράξη το σήμα διαμόρφωσης αποτελείται όχι μόνο από έναν αλλά από πολλούς τόνους (ασυσχέτιστων ή αρμονικά συσχετισμένων) Έστω σήμα διαμόρφωσης που αποτελείται από 2 τόνους, f 1 και f 2 Το διαμορφωμένο FM σήμα είναι όπου mt () = Acos(2 π ft) + Acos(2 π ft) f [ π β π β π ] s() t = A cos2 f t + si(2 f t) + si(2 f t) c c f όπου kf A1 Δf kf A2 Δf β1 = =, β2 = = f f f f δείκτης διαμόρφωσης 1 ου τόνου δείκτης διαμόρφωσης 2 ου τόνου Η ίδια διαδικασία ακολουθείται στην περίπτωση σήματος διαμόρφωσης με πάνω από 2 τόνους

15 + Διαμόρφωση από πολλούς τόνους φασματική ανάλυση Ακολουθώντας διαδικασία παρόμοια με αυτή της διαμόρφωσης από απλό τόνο καταλήγουμε ότι [ ] st () = A J ( β ) J( β )cos 2 π( f + mf + f ) t c m 1 2 c 1 2 m= = Το φάσμα του ανωτέρω διαμορφωμένου FM σήματος αποτελείται από 1. Μια συνιστώσα φέροντος συχνότητας f c και πλάτους J 0 (β 1 ) J 0 (β 2 ) 2. Ένα σύνολο πλευρικών συχνοτήτων που αντιστοιχούν στην f 1 στις συχνότητες f. ± mf 5 με πλάτη J m (β 1 ) J 0 (β 2 ) 3. Ένα σύνολο πλευρικών συχνοτήτων που αντιστοιχούν στην f 2 στις συχνότητες f. ± f 7 με πλάτη J 0 (β 1 ) J (β 2 ) 4. Ένα σύνολο συχνοτήτων ετεροδιαμόρφωσης στις συχνότητες f. ± mf 5 ± f 7

16 + Διαμόρφωση από πολλούς τόνους φάσμα διαμορφωμένου σήματος

17 + Εύρος ζώνης μετάδοσης κυματομορφών FM

18 + Εύρος ζώνης σήματος FM Όπως είδαμε, θεωρητικά, ένα σήμα FM περιέχει άπειρο αριθμό πλευρικών συχνοτήτων και άρα το απαιτούμενο για τη μετάδοση του εύρος ζώνης είναι και αυτό άπειρο Στην πράξη όμως, το πλάτος των συνιστωσών υψηλής τάξης είναι αμελητέο, δηλαδή πρακτικά το απαιτούμενο εύρος ζώνης μετάδοσης είναι πεπερασμένο Μπορεί να οριστεί ένα ενεργό εύρος ζώνης που περιέχει μόνο εκείνες τις πλευρικές συνιστώσες των οποίων τα πλάτη είναι σημαντικά (μεγαλύτερα από 1% του πλάτους φέροντος) Το ενεργό εύρος ζώνης ορίζεται ως f 0 όπου f 0 η συχνότητα διαμόρφωσης και 089 ο μέγιστος ακέραιος για τον οποίο J (β) > 0.01=1%

19 + Εύρος ζώνης σήματος FM Αριθμός σημαντικών πλευρικών συχνοτήτων για διάφορες τιμές του δείκτη διαμόρφωσης β

20 + Εύρος ζώνης σηματος FM Παγκόσμια καμπύλη για τον υπολογισμό του 1% εύρους ζώνης μιας κυματομορφής FM

21 + Κανόνας του Carso Σύμφωνα με τον κανόνα του Carso, το απαιτούμενο εύρος ζώνης μετάδοσης σήματος FM (που προέρχεται από διαμόρφωση απλού τόνου) είναι Δ f 2 1 fm 2 f 2f BT = 2( β + 1) fm = + = Δ + fm 2( Δ φ + 1) fm Το πλήθος αρμονικών συνιστωσών που περιέχονται σε αυτό είναι m 2 f a1 1 b b FM PM M c Δ f 2 3 FM 2 β 3 f + = + = m 2 Δ φ + 3 PM

22 + Εύρος ζώνης σήματος FM Στη γενική περίπτωση οποιουδήποτε σήματος πληροφορίας m(t) ορίζουμε το λόγο απόκλισης D (αντίστοιχο του δείκτη διαμόρφωσης β) ως το λόγο D = Δf W όπου W η υψηλότερη συχνότητα διαμόρφωσης (η μέγιστη εκ των συχνοτήτων προς μετάδοση) Αντικαθιστώντας στον κανόνα του Carso έχουμε Β? = 2Δf D = 2W(D + 1) Ο κανόνας του Carso υποτιμά το απαιτούμενο εύρος ζώνης σε σχέση με την παγκόσμια καμπύλη

23 + Εύρος ζώνης σήματος FM Για διαμόρφωση στενής ζώνης: BT = 2W D 1 Για διαμόρφωση ευρείας ζώνης: B = 2Δ f = 2DW T D 1 Γενικά για οποιαδήποτε τιμή του D, σύμφωνα με τον κανόνα Carso B = 2( Δ f + W) = 2( D+ 1) W T

24 + Εύρος ζώνης σήματος PM Κανόνας Carso BT, Carso = 2( Δ φ + W) Δφ: μέγιστη απόκλιση φάσης στην ακραία περίπτωση εύρους ζώνης

25 + Παραγωγή σημάτων FM

26 + Παραγωγή σημάτων FM Διακρίνουμε 2 βασικές μεθόδους παραγωγής κυματομορφών FM: την έμμεση μέθοδο, όπου το σήμα πληροφορίας διαμορφώνεται αρχικά ώστε να πάρουμε σήμα FM στενής ζώνης και στη συνέχεια χρησιμοποιείται πολλαπλασιαστής συχνότητας για να αυξηθεί η απόκλιση συχνότητας στο επιθυμητό επίπεδο εύκολη σταθεροποίηση της συχνότητας φέροντος η εμπορική ραδιοφωνία FM χρησιμοποιεί αυτήν την τεχνική την άμεση μέθοδο, όπου η συχνότητα του φέροντος μεταβάλλεται εξ αρχής σύμφωνα με το σήμα πληροφορίας

27 + Έμμεση μέθοδος παραγωγής σήματος FM σε ένα στάδιο Για ημιτονικό σήμα διαμόρφωσης m(t): fc = f 1 β = β 1 A cos(2 π ft) 1 1

28 + Έμμεση μέθοδος παραγωγής σήματος FM σε δύο στάδια αύξηση Δf και f c αύξηση Δf και f c A 1cos(2 π ft 1 ) A2 π 2 cos(2 ft) αμετάβλητη αύξηση Δf μείωση f c f = ( f f ) c β = β 1 2 1

29 + Άμεση μέθοδος παραγωγής σήματος FM μέθοδος εύκολη σε υλοποίηση η συχνότητα του φέροντος μεταβάλλεται μέσω ενός VCO (ταλαντωτής ελεγχόμενος από τάση) απλός VCO: συντονισμένο κύκλωμα με μεταβλητό πυκνωτή επιρρεπής σε αποσταθεροποίηση της συχνότητας φέροντος ανάγκη για χρήση διάταξης σταθεροποίησης 1 fc() t = 2 π LC( t) Ct () = C +ΔCmt () f = 2π LC 0 1/2 ΔC fc = f0( 1 +ΔCm( t)/ C 0) f0 1 mt ( ) 2C 0

30 + Άμεση μέθοδος παραγωγής σήματος FM διάταξη σταθεροποίησης συχνότητας

31 + Σύνοψη Θεωρητικά το φάσμα ενός σήματος FM είναι άπειρο [ ] st () = A J ( β ) J( β )cos 2 π( f + mf + f ) t c m 1 2 c 1 2 m= = Στην πράξη ορίζουμε ένα ενεργό εύρος ζώνης (το οποίο περιέχει μόνο τις σημαντικές πλευρικές συχνότητες) και περιορίζουμε το απαιτούμενο εύρος ζώνης μετάδοσης J (β) > 0.01=1% Το εύρος μετάδοσης προσδιορίζεται είτε μέσω του κανόνα του Carso με χρήση του λόγου απόκλισης D είτε μέσω της παγκόσμιας καμπύλης B = 2( Δ f + W) = 2( D+ 1) W T

ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ. () t. Διαμόρφωση Γωνίας. Περιεχόμενα:

ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ. () t. Διαμόρφωση Γωνίας. Περιεχόμενα: ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ Περιεχόμενα: Διαμόρφωση Φάσης (PM) και Συχνότητας (FM) Διαμόρφωση FM από Απλό Τόνο - - Στενής Ζώνης - - Ευρείας Ζώνης - - από Πολλούς Τόνους Εύρος Ζώνης Μετάδοσης Κυματομορφών FM Απόκριση

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σχολή Θετικών Επιστημών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ Ι Μπατιστάτος Μιχάλης Εργαστήριο 8 ο : Διαμόρφωση Γωνίας Βασική Θεωρία

Διαβάστε περισσότερα

Διαμόρφωση Συχνότητας. Frequency Modulation (FM)

Διαμόρφωση Συχνότητας. Frequency Modulation (FM) Διαμόρφωση Συχνότητας Frequency Modulation (FM) Τι συμβαίνει με τις γραμμικές διαμορφώσεις; Στη γραμμική διαμόρφωση CW (Carrier Wave) δηλαδή, AM, DSB, SSB, VSB Το πλάτος ενός ημιτονικού φέροντος μεταβάλλεται

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I SSB Παραγωγή - Αποδιαμόρφωση FM Διαμόρφωση

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I SSB Παραγωγή - Αποδιαμόρφωση FM Διαμόρφωση Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I SSB Παραγωγή - Αποδιαμόρφωση FM Διαμόρφωση ΔΙΠΛΟΠΛΕΥΡΙΚΕΣ - ΜΟΝΟΠΛΕΥΡΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΑΜ 0 f DSB 0 f SSB 0 f SINGLE

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών

Συστήματα Επικοινωνιών Συστήματα Επικοινωνιών Ενότητα 5: Διαμορφώσεις γωνίας Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Παρουσίαση της διαμόρφωσης συχνότητας και

Διαβάστε περισσότερα

Πρακτικές μέθοδοι αποδιαμόρφωσης FM. Ανίχνευση μηδενισμών Διευκρίνιση ολίσθησης φάσης Μετατροπή FM σε ΑΜ Ανάδραση συχνότητας

Πρακτικές μέθοδοι αποδιαμόρφωσης FM. Ανίχνευση μηδενισμών Διευκρίνιση ολίσθησης φάσης Μετατροπή FM σε ΑΜ Ανάδραση συχνότητας Αποδιαμόρφωση FM Πρακτικές μέθοδοι αποδιαμόρφωσης FM Ανίχνευση μηδενισμών Διευκρίνιση ολίσθησης φάσης Μετατροπή FM σε ΑΜ Ανάδραση συχνότητας Ανίχνευση μηδενισμών Η έξοδος είναι ανάλογη του ρυθμού των μηδενισμών,

Διαβάστε περισσότερα

Μαθηµατική Παρουσίαση των FM και PM Σηµάτων

Μαθηµατική Παρουσίαση των FM και PM Σηµάτων Μαθηµατική Παροσίαση των FM και PM Σηµάτων Ένα γωνιακά διαµορφωµένο σήµα, πο αναφέρεται επίσης και ως εκθετικά διαµορφωµένο σήµα, έχει τη µορφή u os j [ ] { π + jφ π + φ Re e } Σεραφείµ Καραµπογιάς Ορίζοµε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΤΕΤΑΡΤΟ ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ

ΚΕΦΑΛΑΙΟ ΤΕΤΑΡΤΟ ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ ΚΕΦΑΛΑΙΟ ΤΕΤΑΡΤΟ ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ 4.1 Εισαγωγή Ένας ημιτονοειδής φορέας της μορφής c() = A c cos[θ()] είναι δυνατόν να διαμορφωθεί από ένα πληροφοριακό σήμα m(), όχι μόνο με μεταβολή του εύρους του (όπως

Διαβάστε περισσότερα

Επικοινωνίες I FM ΔΙΑΜΟΡΦΩΣΗ. Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών

Επικοινωνίες I FM ΔΙΑΜΟΡΦΩΣΗ. Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ FM ΔΙΑΜΟΡΦΩΣΗ Σήμα FM Η ακόλουθη εξίσωση δίδει την ισοδύναμη για τη διαμόρφωση συχνότητας έκφραση

Διαβάστε περισσότερα

Επικοινωνίες I FM ΔΙΑΜΟΡΦΩΣΗ. Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών

Επικοινωνίες I FM ΔΙΑΜΟΡΦΩΣΗ. Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ FM ΔΙΑΜΟΡΦΩΣΗ Σήμα FM Η ακόλουθη εξίσωση δίδει την ισοδύναμη για τη διαμόρφωση συχνότητας έκφραση

Διαβάστε περισσότερα

Κεφάλαιο 6 : Φασματική Ανάλυση Σημάτων Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Κεφάλαιο 6 : Φασματική Ανάλυση Σημάτων Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 6 : Φασματική Ανάλυση Σημάτων Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Φασματική Αάλ Ανάλυση Περιοδικών Σημάτων (Μιγαδικέςδ έ Σειρές

Διαβάστε περισσότερα

ΜΕΤΑΔΟΣΗ ΠΛΗΡΟΦΟΡΙΑΣ

ΜΕΤΑΔΟΣΗ ΠΛΗΡΟΦΟΡΙΑΣ ΜΕΤΑΔΟΣΗ ΠΛΗΡΟΦΟΡΙΑΣ ΚΕΦΑΛΑΙΟ. ΔΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ ΑΜ DSB-LC (DOUBLE SIDEBAND-LARGE CARRIER) 006 ΜΕΤΑΔΟΣΗ ΠΛΗΡΟΦΟΡΙΑΣ Γ. Οικονόμου ΠΜΣ-ΗΕΠ 1/13 Διαμόρφωση ΑΜ DSB-LC (Large Carrier) Ένα σημαντικό πρόβλημα

Διαβάστε περισσότερα

Τηλεπικοινωνικακά Συστήματα Ι - Ενδεικτικές Ερωτήσεις Ασκήσεις 1)

Τηλεπικοινωνικακά Συστήματα Ι - Ενδεικτικές Ερωτήσεις Ασκήσεις 1) Τηλεπικοινωνικακά Συστήματα Ι - Ενδεικτικές Ερωτήσεις Ασκήσεις Δ.Ευσταθίου Τμήμα Μηχανικών Πληροφορικής ΤΕ, ΤΕΙ Κεντρικής Μακεδονίας 1) 1. Ποια από τις παρακάτω συχνότητες δεν εμφανίζεται στην έξοδο ενός

Διαβάστε περισσότερα

Θεώρημα δειγματοληψίας

Θεώρημα δειγματοληψίας Δειγματοληψία Θεώρημα δειγματοληψίας Ένα βαθυπερατό σήμα πεπερασμένης ενέργειας που δεν περιέχει συχνότητες μεγαλύτερες των W Hertz μπορεί να περιγραφθεί πλήρως από τις τιμές του σε χρονικές στιγμές ισαπέχουσες

Διαβάστε περισσότερα

Το σήμα εξόδου ενός διαμορφωτή συμβατικού ΑΜ είναι:

Το σήμα εξόδου ενός διαμορφωτή συμβατικού ΑΜ είναι: Άσκηση 1 Το σήμα εξόδου ενός διαμορφωτή συμβατικού ΑΜ είναι: i. Προσδιορίστε το σήμα πληροφορίας και το φέρον. ii. Βρείτε το δείκτη διαμόρφωσης. iii. Υπολογίστε το λόγο της ισχύος στις πλευρικές ζώνες

Διαβάστε περισσότερα

Ηλεκτρονικές Επικοινωνίες - Μάθημα 2 Θεωρία και ασκήσεις για την ύλη στις σελίδες

Ηλεκτρονικές Επικοινωνίες - Μάθημα 2 Θεωρία και ασκήσεις για την ύλη στις σελίδες Ηλεκτρονικές Επικοινωνίες - Μάθημα 2 Θεωρία και ασκήσεις για την ύλη στις σελίδες 102-107 (Να απαντηθούν γραπτά και να παραδοθούν το αργότερο μέχρι την Παρασκευή 28 Νοεμβρίου). Διαμόρφωση πλάτους ΑΜ με

Διαβάστε περισσότερα

ΔΙΑΒΙΒΑΣΗ ΑΝΑΛΟΓΙΚΟΥ ΣΗΜΑΤΟΣ ΜΕ ΔΙΑΜΟΡΦΩΣΗ ΦΕΡΟΝΤΟΣ

ΔΙΑΒΙΒΑΣΗ ΑΝΑΛΟΓΙΚΟΥ ΣΗΜΑΤΟΣ ΜΕ ΔΙΑΜΟΡΦΩΣΗ ΦΕΡΟΝΤΟΣ ΔΙΑΒΙΒΑΣΗ ΑΝΑΛΟΓΙΚΟΥ ΣΗΜΑΤΟΣ ΜΕ ΔΙΑΜΟΡΦΩΣΗ ΦΕΡΟΝΤΟΣ Συστήματα Διαμόρφωσης Φέροντος ΔΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ (ΑΜPLITUDE MODULATION - AM) ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ (ANGLE( MODULATION - FM-PM PM) u(t)=a (1+m(t))os(πf t)

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ

ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΕΦΑΛΑΙΟ 3ο ΣΥΣΤΗΜΑΤΑ ΕΚΠΟΜΠΗΣ & ΛΗΨΗΣ Ρ/Τ ΣΥΣΤΗΜΑΤΩΝ Γενικό διάγραμμα πομπού ΕΠΕΞΕΡΓΑΣΙΑ ΥΨΗΛΕΣ ΣΥΧΝΟΤΗΤΕΣ Δημιουργία φέροντος σήματος Το φέρον σήμα (fo) παράγεται από ημιτονικούς

Διαβάστε περισσότερα

Επομένως το εύρος ζώνης του διαμορφωμένου σήματος είναι 2.

Επομένως το εύρος ζώνης του διαμορφωμένου σήματος είναι 2. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΠΛΗ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑ Το φέρον σε ένα σύστημα DSB διαμόρφωσης είναι c t A t μηνύματος είναι το m( t) sin c( t) sin c ( t) ( ) cos 4 c και το σήμα. Το διαμορφωμένο σήμα διέρχεται

Διαβάστε περισσότερα

Τηλεπικοινωνίες. Ενότητα 2.1: Ανάλυση Fourier. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ

Τηλεπικοινωνίες. Ενότητα 2.1: Ανάλυση Fourier. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Τηλεπικοινωνίες Ενότητα 2.1: Ανάλυση Fourier Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

ΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΕΞΕΤΑΣΕΩΝ

ΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΕΞΕΤΑΣΕΩΝ Μάθημα: Επικοινωνίες ΙΙ. Εξεταστική Περίοδος: B Θερινή, 14 Σεπτεμβρίου 2009. ΕΙΣΗΓΗΤΗΣ: Αναστάσιος Παπατσώρης Θέμα 1 ο (25 μονάδες) Ένα ADSL modem λειτουργεί με ταχύτητα downloading

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σχολή Οικονομίας Διοίκησης και Πληροφορικής Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Αρχές Τηλ/ων Συστημάτων Μπατιστάτος Μιχάλης Εργαστήριο 5 ο : Διαμόρφωση

Διαβάστε περισσότερα

Γραμμική διαμόρφωση φέροντος κύματος

Γραμμική διαμόρφωση φέροντος κύματος Γραμμική διαμόρφωση φέροντος κύματος Επικοινωνία στη βασική ζώνη Επικοινωνία στη βασική ζώνη (baseband) χρησιμοποιείται σε Συνδρομητικούς βρόχους (PSTN) Συστήματα PCM μεταξύ τηλεφωνικών κέντρων ισχύς φέρον

Διαβάστε περισσότερα

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. 3. ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. Ορίσουµε το µετασχηµατισµό Fourier ενός µη περιοδικού

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες

Εισαγωγή στις Τηλεπικοινωνίες ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες Ενότητα : Εισαγωγή στη Διαμόρφωση Πλάτους (AΜ) Όνομα Καθηγητή: Δρ. Ηρακλής Σίμος Τμήμα: Ηλεκτρονικών

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΤΙΚΗ FOURIER. Γ. Μήτσου

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΤΙΚΗ FOURIER. Γ. Μήτσου ΕΡΓΑΣΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΙΚΗΣ - ΟΠΟΗΛΕΚΡΟΝΙΚΗΣ & LASER ΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & /Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΙΚΗ FOURIER Γ. Μήτσου Μάρτιος 8 Α. Θεωρία. Εισαγωγή Η επεξεργασία οπτικών δεδοµένων, το φιλτράρισµα χωρικών συχνοτήτων

Διαβάστε περισσότερα

Ασκήσεις στα Συστήµατα Ηλεκτρονικών Επικοινωνιών Κεφάλαιο 3 ο : ΕΙΣΑΓΩΓΗ στις ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ και ΤΕΧΝΙΚΕΣ ΙΑΜΟΡΦΩΣΗΣ

Ασκήσεις στα Συστήµατα Ηλεκτρονικών Επικοινωνιών Κεφάλαιο 3 ο : ΕΙΣΑΓΩΓΗ στις ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ και ΤΕΧΝΙΚΕΣ ΙΑΜΟΡΦΩΣΗΣ Κεφάλαιο 3 ο : ΕΙΣΑΓΩΓΗ στις ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ και ΤΕΧΝΙΚΕΣ ΙΑΜΟΡΦΩΣΗΣ 1. Ποµπός ΑΜ εκπέµπει σε φέρουσα συχνότητα 1152 ΚΗz, µε ισχύ φέροντος 10KW. Η σύνθετη αντίσταση της κεραίας είναι

Διαβάστε περισσότερα

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων και Περιβάλλοντος, Σχολή Πολιτικών Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα Επανέκδοση

Διαβάστε περισσότερα

Διαμόρφωση Παλμών. Pulse Modulation

Διαμόρφωση Παλμών. Pulse Modulation Διαμόρφωση Παλμών Pulse Modulation Συστήματα διαμόρφωσης παλμών Είδη διαμόρφωσης παλμών Pulse Amplitude Modulation (PAM): A m(t) Pulse Position Modulation (PPM): T d m(t) Pulse Duration Modulation (PDM)

Διαβάστε περισσότερα

ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER. e ω. Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c

ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER. e ω. Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER x(t+kτ) = x(t) = π/ω f = / x(t) = = 8 c j t e ω c = (a-jb ) Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c. Αυτός γίνεται κατορθωτός αν

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Μετασχηματισμός Fourier Στο κεφάλαιο αυτό θα εισάγουμε και θα μελετήσουμε

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σχολή Θετικών Επιστημών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ Ι Μπατιστάτος Μιχάλης Εργαστήριο 3 ο : Διαμόρφωση ΑΜ-DSBSC/SSB Βασική

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες. Πολυδιάστατες Κυματομορφές Σήματος

Ψηφιακές Τηλεπικοινωνίες. Πολυδιάστατες Κυματομορφές Σήματος Ψηφιακές Τηλεπικοινωνίες Πολυδιάστατες Κυματομορφές Σήματος Ανακεφαλαίωση Καθένα από τα Μ σύμβολα αντιστοιχίζεται σε μια αναλογική κυματομορφή Οι κυματομορφές ορίζονται σε ένα N-D χώρο σήματος (Ν Μ) Μονοδιάστατα

Διαβάστε περισσότερα

Εξαναγκασμένη Ταλάντωση. Αρμονική Φόρτιση

Εξαναγκασμένη Ταλάντωση. Αρμονική Φόρτιση Εξαναγκασμένη Ταλάντωση Αρμονική Φόρτιση Αρμονική Ταλάντωση Εξαναγκασμένη Ταλάντωση: Αρμονική Φόρτιση: Δ8- Η αρμονική διέγερση αποτελεί θεμελιώδη μορφή διέγερσης στη Δυναμική των Κατασκευών λόγω της μαθηματικής

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Σειρά Fourier Ορθοκανονικές Συναρτήσεις Στοεδάφιοαυτόθαδιερευνήσουμεεάνκαικάτωαπό

Διαβάστε περισσότερα

Επανάληψη Μιγαδικών Αριθμών

Επανάληψη Μιγαδικών Αριθμών Σήματα και Συστήματα ΗΜΥ0 //006 Επανάληψη Μιγαδικών Αριμών Δημήτρης Ηλιάδης, eldemet@ucy.ac.cy Που χρησιμεύει: Από τη εωρία των Σειρών Fourier, γνωρίζουμε πως οποιοδήποτε περιοδικό σήμα ανεξαρτήτως πολυπλοκότητας,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΑΝΑΛΥΣΗ FOURIER (H ΣΕΙΡΑ FOURIER ΚΑΙ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER) Aναστασία Βελώνη Τμήμα Η.Υ.Σ 1 Άδειες

Διαβάστε περισσότερα

. Σήματα και Συστήματα

. Σήματα και Συστήματα Σήματα και Συστήματα Βασίλειος Δαλάκας & Παναγιώτης Ριζομυλιώτης Τμήμα Πληροφορικής & Τηλεματικής Χαροκόπειο Πανεπιστήμιο Σήματα και Συστήματα 1/17 Πρόβλημα 1 (βιβλίο σελίδα 93) Να αποδειχθεί ότι: α) Κάθε

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Εργαστήριο 9 ο : Διαμόρφωση BPSK & QPSK Βασική Θεωρία Εισαγωγή Κατά την μετάδοση ψηφιακών δεδομένων

Διαβάστε περισσότερα

Μοντέλο συστήματος αποδιαμόρφωσης παρουσία θορύβου

Μοντέλο συστήματος αποδιαμόρφωσης παρουσία θορύβου Μοντέλο συστήματος αποδιαμόρφωσης παρουσία θορύβου Επίδοση παρουσία θορύβου Η ανάλυση της επίδοσης των συστημάτων διαμόρφωσης παρουσία θορύβου είναι εξαιρετικά σημαντική για τη σχεδίαση των διαφόρων επικοινωνιακών

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ22 ( ) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #1 ΑΠΑΝΤΗΣΕΙΣ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ22 ( ) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #1 ΑΠΑΝΤΗΣΕΙΣ Θ.Ε. ΠΛΗ (0-3) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ # ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Στόχος της άσκησης είναι η εξοικείωση με γραφικές παραστάσεις βασικών σημάτων και πράξεις, καθώς και τον υπολογισμό ΜΣ Fourier βασικών σημάτων με τη χρήση

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Σήματα και Συστήματα στο Πεδίο της Επιμέλεια: Αθανάσιος N. Σκόδρας, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Άδειες

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών Ι

Συστήματα Επικοινωνιών Ι + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών Ι Συναρτήσεις συσχέτισης/αυτοσυσχέτισης Φίλτρα Μετασχηματισμός Hilbert + Περιεχόμενα n Συνάρτηση αυτοσυσχέτισης n Συνάρτηση

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο

Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο Εργαστηριακή Άσκηση 3: Εισαγωγή στη διαμόρφωση συχνότητας (FΜ) Προσομοίωση σε Η/Υ Δρ.

Διαβάστε περισσότερα

ΜΕΛΕΤΗ, ΑΝΑΠΤΥΞΗ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΑΣΚΗΣΕΩΝ ΑΝΑΛΟΓΙΚΩΝ ΔΙΑΜΟΡΦΩΣΕΩΝ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ SIMULINK ΤΟΥ MATLAB

ΜΕΛΕΤΗ, ΑΝΑΠΤΥΞΗ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΑΣΚΗΣΕΩΝ ΑΝΑΛΟΓΙΚΩΝ ΔΙΑΜΟΡΦΩΣΕΩΝ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ SIMULINK ΤΟΥ MATLAB Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Ο Ε Κ Π Α Ι Δ Ε Υ Τ Ι Κ Ο Ι Δ Ρ Υ Μ Α Σ Ε Ρ Ρ Ω Ν Σ Χ Ο Λ Η Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Ω Ν Ε Φ Α Ρ Μ Ο Γ Ω Ν Τ Μ Η Μ Α Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ & Ε Π Ι Κ Ο Ι Ν Ω Ν Ι Ω Ν ΜΕΛΕΤΗ, ΑΝΑΠΤΥΞΗ ΚΑΙ

Διαβάστε περισσότερα

Α. Αιτιολογήστε αν είναι γραμμικά ή όχι και χρονικά αμετάβλητα ή όχι.

Α. Αιτιολογήστε αν είναι γραμμικά ή όχι και χρονικά αμετάβλητα ή όχι. ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΕΞ. ΠΕΡΙΟΔΟΣ Β ΧΕΙΜ. 00 - ΩΡΕΣ ΘΕΜΑ Για τα παρακάτω συστήματα εισόδου εξόδου α. y ( 3x( x( n ) β. y ( x( n ) / γ. y ( x( x( n ) δ. y( x( n ) Α. Αιτιολογήστε αν είναι γραμμικά

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 7 ο : Διαμόρφωση BPSK & QPSK

Διαβάστε περισσότερα

1. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΗΜΑΤΑ

1. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΗΜΑΤΑ . ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΗΜΑΤΑ Σκοπός του κεφαλαίου αυτού είναι να δώσει μια γενική εικόνα του τι είναι σήμα και να κατατάξει τα διάφορα σήματα σε κατηγορίες ανάλογα με τις βασικές ιδιότητες τους. Επίσης,

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών Ι

Συστήματα Επικοινωνιών Ι + Διδάσκων: Δρ. Κ. Δεμέστιχας Συστήματα Επικοινωνιών Ι Τηλεπικοινωνιακά Σήματα και Συστήματα + Περιεχόμενα 2 n Εισαγωγή n Εφαρμογές συστημάτων επικοινωνίας n Μοντέλο τηλεπικοινωνιακού συστήματος n Σήματα

Διαβάστε περισσότερα

3 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΑΥΤΟΕΞΕΤΑΣΗΣ. 1) Nα αναφερθούν κάποια είδη πληροφοριών που χρησιμοποιούνται για επικοινωνία.

3 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΑΥΤΟΕΞΕΤΑΣΗΣ. 1) Nα αναφερθούν κάποια είδη πληροφοριών που χρησιμοποιούνται για επικοινωνία. 3 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΑΥΤΟΕΞΕΤΑΣΗΣ 1) Nα αναφερθούν κάποια είδη πληροφοριών που χρησιμοποιούνται για επικοινωνία. απ. Μπορεί να είναι ακουστικά μηνύματα όπως ομιλία, μουσική. Μπορεί να είναι μια φωτογραφία,

Διαβάστε περισσότερα

Επικοινωνίες στη Ναυτιλία

Επικοινωνίες στη Ναυτιλία Επικοινωνίες στη Ναυτιλία Εισαγωγή Α. Παπαδάκης, Αναπλ. Καθ. ΑΣΠΑΙΤΕ Δρ. ΗΜΜΥ Μηχ. ΕΜΠ Βασικά Αντικείμενα Μαθήματος Σήματα Κατηγοριοποίηση, ψηφιοποίηση, δειγματοληψία, κβαντισμός Βασικά σήματα ήχος, εικόνα,

Διαβάστε περισσότερα

ΔΕΚΤΗΣ ΡΑΔΙΟΦΩΝΙΚΩΝ ΣΗΜΑΤΩΝ FM

ΔΕΚΤΗΣ ΡΑΔΙΟΦΩΝΙΚΩΝ ΣΗΜΑΤΩΝ FM Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΜΕ ΘΕΜΑ ΔΕΚΤΗΣ ΡΑΔΙΟΦΩΝΙΚΩΝ ΣΗΜΑΤΩΝ FM ΒΑΒΑΛΟΣ ΠΑΝΑΓΙΩΤΗΣ Α.Ε.Μ.: 13243 1 ΕΥΧΑΡΙΣΤΙΕΣ Θα ήθελα να ευχαριστήσω τον κύριο Σπύρο Νικολαΐδη για την επίβλεψη

Διαβάστε περισσότερα

ΑΣΠΑΙΤΕ / Τμήμα Εκπαιδευτικών Ηλεκτρολόγων Μηχανικών & Εκπαιδευτικών Ηλεκτρονικών Μηχανικών

ΑΣΠΑΙΤΕ / Τμήμα Εκπαιδευτικών Ηλεκτρολόγων Μηχανικών & Εκπαιδευτικών Ηλεκτρονικών Μηχανικών 8. ΔΙΑΜΟΡΦΩΣΗ: ΓΕΝΙΚΗ ΘΕΩΡΗΣΗ 8.1. Ορισμoί Ως διαμόρφωση (modulation) χαρακτηρίζεται η μεταβολή μιας παραμέτρου (π.χ. πλάτους, συχνότητας, φάσης κλπ.) ενός σήματος που λέγεται φέρον εξαιτίας της επενέργειας

Διαβάστε περισσότερα

Μετάδοση πληροφορίας - Διαμόρφωση

Μετάδοση πληροφορίας - Διαμόρφωση ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Μετάδοση πληροφορίας - Διαμόρφωση MYE006-ΠΛΕ065: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου Διάρθρωση μαθήματος Βασικές έννοιες μετάδοσης Διαμόρφωση ορισμός

Διαβάστε περισσότερα

ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΣΚΗΣΕΙΣ

ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΣΚΗΣΕΙΣ ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ 1 α). Ποιο είναι το εύρος ζώνης του τηλεφωνικού καναλιού (με ακρίβεια). β). Πως εξασφαλίζεται η αμφίδρομη μετάδοση στην τηλεφωνία. γ).ποιο είναι το φυσικό

Διαβάστε περισσότερα

Δέκτες ΑΜ ΘΟΡΥΒΟΣ ΣΕ ΔΙΑΜΟΡΦΩΣΗ CW

Δέκτες ΑΜ ΘΟΡΥΒΟΣ ΣΕ ΔΙΑΜΟΡΦΩΣΗ CW ΘΟΡΥΒΟΣ ΣΕ ΔΙΑΜΟΡΦΩΣΗ Στα συστήματα διαμόρφωσης (otiuou-ve) το κριτήριο της συμπεριφοράς τους ως προς το θόρυβο, είναι ο λόγος σήματος προς θόρυβο στην έξοδο (output igl-tooie rtio). λόγος σήματος προς

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

ΕΠΙΚΟΙΝΩΝΙΕΣ, ΔΙΚΤΥΑ & ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΠΙΚΟΙΝΩΝΙΕΣ, ΔΙΚΤΥΑ & ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ, ΔΙΚΤΥΑ & ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΚΕΦΑΛΑΙΟ 2ο ΑΝΑΛΟΓΙΚΑ - ΨΗΦΙΑΚΑ ΣΗΜΑΤΑ & ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Πληροφορία Επικοινωνία συντελείται με τη μεταβίβαση μηνυμάτων από ένα πομπό σε ένα δέκτη. Μήνυμα

Διαβάστε περισσότερα

ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Ενότητα #1: Περιοδικά σήματα, τριγωνομετρικές σειρές περιοδικών σημάτων Χ. ΚΑΡΑΪΣΚΟΣ Τμήμα Μηχανικών Αυτοματισμού

Διαβάστε περισσότερα

Στοχαστικές Ανελίξεις

Στοχαστικές Ανελίξεις Ντετερμινιστικά Σήματα - Τυχαία Σήματα Ταξινόμηση των σημάτων ανάλογα με τη βεβαιότητα όσο αφορά την τιμή τους κάθε χρονική στιγμή. Τα ντετερμινιστικά σήματα μπορούν να αναπαρασταθούν σαν πλήρως καθορισμένες

Διαβάστε περισσότερα

Τα ηλεκτρονικά σήματα πληροφορίας διακρίνονται ανάλογα με τη μορφή τους σε δύο κατηγορίες : Αναλογικά σήματα Ψηφιακά σήματα

Τα ηλεκτρονικά σήματα πληροφορίας διακρίνονται ανάλογα με τη μορφή τους σε δύο κατηγορίες : Αναλογικά σήματα Ψηφιακά σήματα ΕΝΟΤΗΤΑ 2 2.0 ΗΛΕΚΤΡΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΑΡΧΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΕΙΣΑΓΩΓΗ Ηλεκτρικό σήμα ονομάζεται η τάση ή το ρεύμα που μεταβάλλεται ως συνάρτηση του χρόνου. Στα ηλεκτρονικά συστήματα επικοινωνίας, οι πληροφορίες

Διαβάστε περισσότερα

Παλμογράφος. ω Ν. Άσκηση 15:

Παλμογράφος. ω Ν. Άσκηση 15: Άσκηση 15: Παλμογράφος Σκοπός: Σε αυτή την άσκηση θα μάθουμε τις βασικές λειτουργίες του παλμογράφου και το πώς χρησιμοποιείται αυτός για τη μέτρηση συνεχούς και εναλλασσόμενης τάσης, συχνότητας και διαφοράς

Διαβάστε περισσότερα

Ο μετασχηματισμός Fourier

Ο μετασχηματισμός Fourier Ο μετασχηματισμός Fourier είναι από τα διαδεδομένα εργαλεία μετατροπής δεδομένων και συναρτήσεων (μιας ή περισσοτέρων διαστάσεων) από αυτό που ονομάζεται περιοχή χρόνου (time domain) στην περιοχή συχνότητας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΤΡΙΤΟ ΔΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ

ΚΕΦΑΛΑΙΟ ΤΡΙΤΟ ΔΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ ΚΕΦΑΛΑΙΟ ΤΡΙΤΟ ΔΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ 3. Εισαγωγή Συστήματα Αναλογικής Διαμόρφωσης Η ιδέα της αναλογικής διαμόρφωσης στηρίζεται στην αλλαγή κάποιας παραμέτρου ενός ημιτονοειδούς σήματος (t), το οποίο λέγεται

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΙΑΜΟΡΦΩΣΗ ΑΠΟ ΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ (ΑΜ)

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΙΑΜΟΡΦΩΣΗ ΑΠΟ ΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ (ΑΜ) ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΙΑΜΟΡΦΩΣΗ ΑΠΟ ΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ (ΑΜ) 1. ιαµόρφωση Πλάτους. Στην άσκηση αυτή θα ασχοληθούµε µε τη ιαµόρφωση Πλάτους (Amplitude Modulation) χρησιµοποιώντας τον ολοκληρωµένο διαµορφωτή

Διαβάστε περισσότερα

απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση της

απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση της 1. Ένα σώμα μάζας m =, kg εκτελεί εξαναγκασμένη ταλάντωση μικρής απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΘΕΜΑ 1 Α. Ερωτήσεις πολλαπλής επιλογής 1. Σώμα εκτελεί Α.Α.Τ με περίοδο Τ και πλάτος Α. Αν διπλασιάσουμε το πλάτος της ταλάντωσης τότε η περίοδος της θα : α. παραμείνει

Διαβάστε περισσότερα

- Ραδιόφωνο. - Κινητή τηλεφωνία - Ψηφιακή τηλεόραση (π.χ. NOVA)

- Ραδιόφωνο. - Κινητή τηλεφωνία - Ψηφιακή τηλεόραση (π.χ. NOVA) ΙΑΜΟΡΦΩΣΗ Ο σκοπός ενός τηλεπικοινωνιακού συστήµατος είναι η µεταφορά πληροφορίας µε τη µορφή σήµατος µέσω ενός καναλιού το οποίο χωρίζει τον ποµπό από τον δέκτη. Το κανάλι µπορεί να είναι είτε κάποια

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Σελίδα 1 από 13

ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Σελίδα 1 από 13 ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Σελίδα από 3 ΦΥΛΛΑ ΙΟ 4 ο η : Το δοµικό διάγραµµα του ποµπού ΑΜ φαίνεται στο παραπάνω σχήµα. Με βάση αυτό η διαδικασία της διαµόρφωσης αποτελείται από δύο λειτουργικά τµήµατα:

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER Ανάλυση σημάτων και συστημάτων Ο μετασχηματισμός Fourier (DTFT και DFT) είναι σημαντικότατος για την ανάλυση σημάτων και συστημάτων Εντοπίζει

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ο. Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT. (Discrete Time Fourier Transform) ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ Σ. ΦΩΤΟΠΟΥΛΟΣ ΔΠΜΣ 1/ 45

ΚΕΦΑΛΑΙΟ 3 ο. Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT. (Discrete Time Fourier Transform) ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ Σ. ΦΩΤΟΠΟΥΛΟΣ ΔΠΜΣ 1/ 45 ΚΕΦΑΛΑΙΟ 3 ο Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT (Discrt Tim Fourir Transform / 45 Γενικά Μορφές Μετασχηματισμού Fourir Σήματα που αντιστοιχούν στους τέσσερους τύπους μετασχηματισμών α Μετασχηματισμός

Διαβάστε περισσότερα

Από τους κλασικούς ταλαντωτές, στους ταλαντωτές που ελέγχονται από τάση ή

Από τους κλασικούς ταλαντωτές, στους ταλαντωτές που ελέγχονται από τάση ή Από τους κλασικούς ταλαντωτές, στους ταλαντωτές που ελέγχονται από τάση ή VCOs: Voltage Controlled Oscillators του Αθανάσιου Νασιόπουλου, Καθ. Τμήμα Ηλεκτρονικής, ΤΕΙ Αθήνας 1. Πρόλογος Εγκαινιάζουμε αυτή

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Laplace Μετασχηµατισµός Z Εφαρµογές Παράδειγµα ενός ηλεκτρικού συστήµατος Σύστηµα Παράδειγµα

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΕΙΔΙΚΗΣ ΘΕΜΑΤΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ. Ραδιοφωνία

ΜΑΘΗΜΑ ΕΙΔΙΚΗΣ ΘΕΜΑΤΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ. Ραδιοφωνία ΜΑΘΗΜΑ ΕΙΔΙΚΗΣ ΘΕΜΑΤΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ Ραδιοφωνία Περιέχομενα 1.Ιστορική Αναδρομή 2.Μονοφωνικό Σήμα 3.Στερεοφωνικό Σήμα 4.Σύγκριση Μονοφωνικό και Στερεοφωνικό σήματος 5.Ψηφιακή Μετάδοση Μηνύματος - Radio

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών

Συστήματα Επικοινωνιών Συστήματα Επικοινωνιών Ενότητα 3: Διαμόρφωση πλάτους Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Παρουσίαση των χαρακτηριστικών στοιχείων

Διαβάστε περισσότερα

ΜΕΤΑΔΟΣΗ ΠΛΗΡΟΦΟΡΙΑΣ

ΜΕΤΑΔΟΣΗ ΠΛΗΡΟΦΟΡΙΑΣ ΜΕΤΑΔΟΣΗ ΠΛΗΡΟΦΟΡΙΑΣ ΚΕΦΑΛΑΙΟ.3 ΔΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ ΜΟΝΗΣ ΠΛΕΥΡΙΚΗΣ ΖΩΝΗΣ - ΑΜ SSB (SINGLE SIDEBAND) 1/18 Διαμόρφωση ΑΜ SSB (Single Sideband) Είδαμε ότι η DSB διαμόρφωση διπλασιάζει το εύρος ζώνης του σήματος.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ο. Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT

ΚΕΦΑΛΑΙΟ 3 ο. Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT ΚΕΦΑΛΑΙΟ 3 ο Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT (Discrt Tim Fourir Transform ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ Σ. ΦΩΤΟΠΟΥΛΟΣ ΔΠΜΣ / 46 Γενικά Μορφές Μετασχηματισμού Fourir Σήματα που αντιστοιχούν

Διαβάστε περισσότερα

Τελεστικοί Ενισχυτές. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής

Τελεστικοί Ενισχυτές. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής Τελεστικοί Ενισχυτές Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής Ο ιδανικός τελεστικός ενισχυτής Είσοδος αντιστροφής Ισοδύναμα Είσοδος μη αντιστροφής A( ) A d 2 1 2 1

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΤΩΝ ΕΦΑΡΜΟΓΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Ιωάννης Γ. Τίγκελης και Δημήτριος Ι. Φραντζεσκάκης

Διαβάστε περισσότερα

Κύριες λειτουργίες ραδιοφωνικών δεκτών

Κύριες λειτουργίες ραδιοφωνικών δεκτών Εμπορικοί δέκτες Κύριες λειτουργίες ραδιοφωνικών δεκτών Αποδιαμόρφωση λήψη του σήματος πληροφορίας Συντονισμός φέροντος επιλογή του σταθμού Φιλτράρισμα απαλοιφή θορύβου και παρεμβολών Ενίσχυση αντιμετώπιση

Διαβάστε περισσότερα

ΦΙΛΤΡΑ ΜΕ ΠΑΘΗΤΙΚΑ ΣΤΟΙΧΕΙΑ

ΦΙΛΤΡΑ ΜΕ ΠΑΘΗΤΙΚΑ ΣΤΟΙΧΕΙΑ ΦΙΛΤΡΑ ΜΕ ΠΑΘΗΤΙΚΑ ΣΤΟΙΧΕΙΑ Τα φίλτρα είναι ηλεκτρικά δικτυώματα που αφήνουν να περνούν απαραμόρφωτα ηλεκτρικά σήματα μέσα σε συγκεκριμένες ζώνες συχνοτήτων και ταυτόχρονα μηδενίζουν κάθε άλλο ηλεκτρικό

Διαβάστε περισσότερα

ΕΝΑΛΛΑΣΣΟΜΕΝΑ ΡΕΥΜΑΤΑ

ΕΝΑΛΛΑΣΣΟΜΕΝΑ ΡΕΥΜΑΤΑ ΕΝΑΛΛΑΣΣΟΜΕΝΑ ΡΕΥΜΑΤΑ Ένα ρεύµα ονοµάζεται εναλλασσόµενο όταν το πλάτος του χαρακτηρίζεται από µια συνάρτηση του χρόνου, η οποία εµφανίζει κάποια περιοδικότητα. Το συνολικό ρεύµα που διέρχεται από µια

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΕΚΦΩΝΗΣΕΙΣ. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Επαναληπτικά Θέµατα ΟΕΦΕ 008 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ ΘΕΜΑ 1 ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που

Διαβάστε περισσότερα

To σήμα πληροφορίας m(t) πρέπει να είναι μονοπολικό (uni-polar) ΝRZ σήμα της μορφής: 0 ---> 0 Volts (11.1) 1 ---> +U Volts

To σήμα πληροφορίας m(t) πρέπει να είναι μονοπολικό (uni-polar) ΝRZ σήμα της μορφής: 0 ---> 0 Volts (11.1) 1 ---> +U Volts 11. ΔΙΑΜΟΡΦΩΣΗ ΚΛΕΙΔΩΜΑΤΟΣ ΠΛΑΤΟΥΣ (Amplitude Shift Keying - ΑSK) 11.1. Αναπαράσταση του ψηφιακού σήματος πληροφορίας To σήμα πληροφορίας πρέπει να είναι μονοπολικό (uni-polar) ΝZ σήμα της μορφής: 0 --->

Διαβάστε περισσότερα

Προφανώς, μια συνάρτηση μπορεί να μην είναι ούτε άρτια ούτε περιττή. Όμως, μπορεί να γραφεί σαν άθροισμα μιας άρτιας fe

Προφανώς, μια συνάρτηση μπορεί να μην είναι ούτε άρτια ούτε περιττή. Όμως, μπορεί να γραφεί σαν άθροισμα μιας άρτιας fe Άρτιο και Περιττό μέρος Συνάρτησης Προφανώς, μια συνάρτηση μπορεί να μην είναι ούτε άρτια ούτε περιττή. Όμως, μπορεί να γραφεί σαν άθροισμα μιας άρτιας e και μιας περιττής συνάρτησης, ως εξής: Αν e και,

Διαβάστε περισσότερα

ΕΙ ΙΚΑ ΚΕΦΑΛΑΙΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΡΩΤΗΣΕΙΣ & ΘΕΜΑΤΑ ΠΕΡΑΣΜΕΝΩΝ ΕΞΕΤΑΣΤΙΚΩΝ ΠΕΡΙΟ ΩΝ

ΕΙ ΙΚΑ ΚΕΦΑΛΑΙΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΡΩΤΗΣΕΙΣ & ΘΕΜΑΤΑ ΠΕΡΑΣΜΕΝΩΝ ΕΞΕΤΑΣΤΙΚΩΝ ΠΕΡΙΟ ΩΝ ΕΙ ΙΚΑ ΚΕΦΑΛΑΙΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΡΩΤΗΣΕΙΣ & ΘΕΜΑΤΑ ΠΕΡΑΣΜΕΝΩΝ ΕΞΕΤΑΣΤΙΚΩΝ ΠΕΡΙΟ ΩΝ α. Τι ονοµάζουµε διασπορά οπτικού παλµού σε µια οπτική ίνα; Ποια φαινόµενα παρατηρούνται λόγω διασποράς; (Αναφερθείτε σε

Διαβάστε περισσότερα

Σύνδεση με τα Προηγούμενα. Προχωρημένα Θέματα Τηλεπικοινωνιών. Εισαγωγή (2) Εισαγωγή. Βέλτιστος Δέκτης. παρουσία AWGN.

Σύνδεση με τα Προηγούμενα. Προχωρημένα Θέματα Τηλεπικοινωνιών. Εισαγωγή (2) Εισαγωγή. Βέλτιστος Δέκτης. παρουσία AWGN. Προχωρημένα Θέματα Τηλεπικοινωνιών Βέλτιστος Δέκτης για Ψηφιακά Διαμορφωμένα Σήματα παρουσία AWGN Σύνδεση με τα Προηγούμενα Στις «Ψηφιακές Τηλεπικοινωνίες», αναφερθήκαμε στο βέλτιστο δέκτη ψηφιακά διαμορφωμένων

Διαβάστε περισσότερα

Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Ανάλυση Κυκλωμάτων Σήματα Φώτης Πλέσσας fplessas@inf.uth.gr Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Εισαγωγή Για την ανάλυση των ηλεκτρικών κυκλωμάτων μαζί με την μαθηματική περιγραφή των

Διαβάστε περισσότερα

ΠΛΗ 22: Βασικά Ζητήματα Δίκτυα Η/Υ

ΠΛΗ 22: Βασικά Ζητήματα Δίκτυα Η/Υ www.lucent.com/security ΠΛΗ 22: Βασικά Ζητήματα Δίκτυα Η/Υ 2 η ΟΣΣ / ΠΛΗ22 / ΑΘΗ.4 /07.12.2014 Νίκος Δημητρίου (Σημείωση: Η παρουσίαση αυτή συμπληρώνει τα αρχεία PLH22_OSS2_diafaneies_v1.ppt, και octave_matlab_tutorial_v1.ppt

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY : Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Μετασχηματισμοί Σημάτων Ενέργεια και Ισχύς Σήματος Βασικές κατηγορίες σημάτων Περιοδικά σήματα Άρτια και περιττά σήματα Εκθετικά σήματα Μετασχηματισμοί σημάτων (signal

Διαβάστε περισσότερα

Ο μετασχηματισμός Fourier

Ο μετασχηματισμός Fourier Ο μετασχηματισμός Fourier είναι από τα διαδεδομένα εργαλεία μετατροπής δεδομένων και συναρτήσεων (μιας ή περισσοτέρων διαστάσεων) από αυτό που ονομάζεται περιοχή χρόνου (time domain) στην περιοχή συχνότητας

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών

Συστήματα Επικοινωνιών Συστήματα Επικοινωνιών Ενότητα 2: Εισαγωγή στις διαμορφώσεις αναλογικού σήματος Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Παρουσίαση βασικών

Διαβάστε περισσότερα

Οι σειρές Fourier. Eισαγωγικές Επισημάνσεις

Οι σειρές Fourier. Eισαγωγικές Επισημάνσεις παραρτημα Α Οι σειρές Fourier Μέρος (Ι) Eισαγωγικές Επισημάνσεις Ο Γάλλος μαθηματικός Jean Baptist Fourier μελετώντας την διάδοση της θερμότητας στα στερεά σώματα και στην προσπάθειά του να δώσει σε κλειστή

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ

ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ Κ. Ψυχαλίνος Πάτρα 005 . METAΣΧΗΜΑΤΙΣΜΟΣ LAPLACE. Ορισμοί Μετάβαση από το πεδίο του χρόνου στο πεδίο συχνότητας.

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 22: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Αναπαράσταση περιοδικών σημάτων με μιγαδικά εκθετικά σήματα: Οι σειρές Fourier Υπολογισμός συντελεστών Fourier Ανάλυση σημάτων σε μιγαδικά εκθετικά σήματα Είδαμε

Διαβάστε περισσότερα

«Επικοινωνίες δεδομένων»

«Επικοινωνίες δεδομένων» Εργασία στο μάθημα «Διδακτική της Πληροφορικής» με θέμα «Επικοινωνίες δεδομένων» Αθήνα, Φεβρουάριος 2011 Χρονολογική απεικόνιση της εξέλιξης των Τηλεπικοινωνιών Χρονολογική απεικόνιση της εξέλιξης των

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Μετασχηματισμός Laplace 1. Ο μετασχηματισμός

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 14/04/2013. ΘΕΜΑ 1 ο

ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 14/04/2013. ΘΕΜΑ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 01-013 ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 14/04/013 ΘΕΜΑ 1 ο 1) Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας δίπλα στο γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

Σχεδίαση Ηλεκτρονικών Κυκλωμάτων RF

Σχεδίαση Ηλεκτρονικών Κυκλωμάτων RF ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Σχεδίαση Ηλεκτρονικών Κυκλωμάτων RF Ενότητα: Πομποδέκτες, Μείκτες, Ενισχυτές Στυλιανός Μυτιληναίος Τμήμα Ηλεκτρονικής, Σχολή Τεχνολογικών

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 14 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/s15 e-mail:

Διαβάστε περισσότερα