ΑΤΣΟΝΟΜΟΙ ΠΡΑΚΣΟΡΕ ΕΡΓΑΙΑ ΕΞΑΜΗΝΟΤ HEARTSTONE ΑΛΕΞΑΝΔΡΟ ΛΟΤΚΟΠΟΤΛΟ ΑΜ:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΑΤΣΟΝΟΜΟΙ ΠΡΑΚΣΟΡΕ ΕΡΓΑΙΑ ΕΞΑΜΗΝΟΤ HEARTSTONE ΑΛΕΞΑΝΔΡΟ ΛΟΤΚΟΠΟΤΛΟ ΑΜ:"

Transcript

1 ΑΤΣΟΝΟΜΟΙ ΠΡΑΚΣΟΡΕ ΕΡΓΑΙΑ ΕΞΑΜΗΝΟΤ HEARTSTONE ΑΛΕΞΑΝΔΡΟ ΛΟΤΚΟΠΟΤΛΟ ΑΜ:

2 ΕΙΑΓΩΓΗ Το Heartstone είναι ζνα ψθφιακό παιχνίδι καρτϊν που διεξάγιεται πάνω ςτο Battle.net, ζναν διακομιςτι τθσ εταιρίασ Blizzard. Το παιχνίδι αποτελείται από δυο αντίπαλουσ παίχτεσ οι οποίοι μποροφν να διαλζξουν ανάμεςα από ζναν αρικμό ειδϊν του παιχνιδιοφ, το κακζνα προςφζροντασ μια ξεχωριςτι εμπειρία. Σε κάκε είδοσ θ διεξαγωγι του παιχνιδιοφ είναι θ ίδια και το μόνο που αλλάηει είναι θ αμοιβζσ και το επίπεδο δυςκολίασ. Κάκε παίχτθσ ζχει κατοχι του μια ουςιϊδθσ ςυλλόγθ από βαςικζσ κάρτεσ τθν οποία μπορεί να εμπλουτίςει με ςπάνιεσ και πιο δυνατζσ κάρτεσ, παίρνοντάσ τεσ ςαν αμοιβι ςτθν ολοκλιρωςθ του είδουσ Arena. Κάκε είδοσ παιχνιδιοφ αποτελείται από ζναν αρικμό αγϊνων. Ο κάκε αγϊνασ αποτελείται από δφο αντίπαλουσ παίχτεσ, παίχτθσ εναντίον παίχτθ ι παίχτθσ εναντίον υπολογιςτι, οι οποίοι μποροφν να τραβοφν κάρτεσ από τθν τράπουλά τουσ. Η τράπουλα αποτελείται από τριάντα κάρτεσ που ζχει επιλζξει ο παίχτθσ από τθ ςυλλογι του για να παίξει ςτον αγϊνα. Ο κάκε παίχτθσ εκπροςωπείται από ζναν ιρωα, ζναν χαρακτιρα δθλαδι από τον κόςμο του Warcraft (άλλο παιχνίδι τθσ εταιρίασ), ο οποίοσ ιρωασ ανικει ςε μια κλάςςθ θ οποία κακορίηει τθν τράπουλα και του δίνει μοναδικζσ δυνάμεισ. Κάκε ιρωασ ζχει 30 πόντουσ ηωισ και όταν αυτοί μθδενιςτοφν ςτον αγϊνα ο παίχτθσ που ελζγχει τον ιρωα χάνει. Ο αγϊνασ αποτελείται από γφρουσ όπου ςτον κάκε γφρο παίηει μόνο ο παίχτθσ που είναι θ ςειρά του. Στον γφρο του ο παίχτθσ μπόρει να τραβιξει μια κάρτα από τθν τράπουλά του, να παιξει όςεσ κάρτεσ μπορεί από αυτζσ που ζχει ςτο χζρι του,

3 να επιτεκεί ςτισ κάρτεσ του αντιπάλου ι ςτον ίδιο τον αντίπαλο, όλα τα προθγοφμενα μαηί και όποτε κζλει να πάει πάςο. Κάνενασ δεν μπορεί να διακόψει το γφρο του αντιπάλου. Για να παιχτεί μια κάρτα πρζπει να ζχει λιγότερουσ ι ίςουσ πόντουσ πθγισ (mana) με τον παίχτθ, ο οποίοσ ξεκινά με ζνα πόντο πιγθσ και ςε κάκε γφρο ανανεϊνονται και αυξάνονται κατα ζνα με μζγιςτο τουσ δζκα πόντουσ. Οι κάρτεσ τοποκετοφνται ςτο μιςό κομμάτι τθσ αρζνασ που αντιςτοιχεί ςτον παίχτθ που τισ ζπαιξε. Οταν ο αγϊνασ ξεκινιςει μοιράηονται ςτον παίχτθ που ξεκινά τρεισ κάρτεσ και ςτον άλλο παίχτθ τζςςερισ κάρτεσ και μια κάρτα που του δίνει ζνα πόντο πθγισ. Άφου μοιραςτοφν οι κάρτεσ αυτζσ οι παίχτεσ μπόρουν να δϊςουν πίςω ςτθν τράπουλα ζναν αρικμό καρτϊν από αυτζσ που τουσ μοιράςτθκαν προθγουμζνωσ και να τραβιξουν τον ίδιο αρικμό. Αυτι είναι θ μοναδικι φορά που ςυμβαίνει αυτό και αμζςωσ μετά ξεκινά ο γφροσ και παίηει ο παίχτθσ που κλθρϊκθκε να παίξει πρϊτοσ. Ραράδειγμα αρζνασ:

4 HEARTSTONE ΚΑΙ ΔΙΚΣΤΑ BAYES Με τθ βοικεια κάποιων ςτατιςτικϊν που αναφζρονται ςτισ κάρτεσ και ςτισ κλάςςεισ των θρϊων κα προςπακιςουμε με τθ βοικεια του κανόνα Bayes και των δικτυϊν Bayes να εξάγουμε κάποιεσ πικανότθτεσ που κα μασ βοθκιςουν να προβλζψουμε τισ κάρτεσ του αντιπάλου και τθν πικανότθτα χρθςιμοποίθςείσ τουσ. Σαν δείγμα για τα ςτατιςτικά ςτοιχζια χρθςιμοποιικθκαν τράπουλεσ παιχτϊν και οι τριάντα πρϊτεσ ςε δθμοτικότθτα κάρτεσ (πιο χρθςιμοποιθμζνεσ). Ξεκινάμε με τον παρακάτω πίνακα κλάςςεων: Κλάςςθ Αρικμόσ Ρικανότθτα P(K) τραπουλϊν Warlock ,6 % Priest ,9 % Shaman ,7 % Hunter ,1 % Druid ,8 % Rogue ,9 % Paladin ,5 % Warrior % Mage ,5 % Σε κάκε κάρτα υπάρχουν ξεχωριςτά ςτατιςτικά γιϋ αυτό κα παρουμε ςαν παράδειγμα τθν παρακάτω κάρτα, θ οποία ονομάηεται Defender of Argus.

5 Για τθν παραπάνω κάρτα υπάρχουν τα παρακάτω ςτατιςτικά: Κάρτα Αρικμόσ τραπουλϊν Ρικανότθτα P(C) που τθν περιζχουν Defender of Argus % Για τισ τράπουλεσ που τθν περιζχουν ξζρουμε τα εξισ: Κλάςςθ τράπουλασ Αρικμόσ Ρικανότθτα P(K C) τραπουλϊν Warlock ,6 % Priest ,7 % Shaman ,2 % Hunter % Druid ,2 % Rogue ,3 % Paladin ,5 % Warrior 971 3,7 % Mage ,3 %

6 Μζχρι τϊρα ζχουμε το εξισ ςχιμα: Σε κάκε γφρο θ οποιαδιποτε κάρτα ζχει διαφορετικι πικανότθτα να εμφανιςτεί (ζςτω ότι παίηουμε πρϊτοι): Γφροσ (G) Ρικανότθτα P(H) 1 1/30 + 1/29 + 1/28 2 1/27 3 1/26 4 1/ Πποτε το ςχιμα γίνεται:

7 Εςτϊ τϊρα ότι κζλουμε να βροφμε τθν πικανότθτα να εμφανιςτεί θ παραπάνω κάρτα ςτο χζρι του αντιπάλου, γνωρίηοντασ ότι ο αντίπαλοσ είναι Shaman και είμαςτε ςτον τζταρτο γφρο ζχωντασ παίξει πρϊτοι: Βρίςκουμε πρϊτα τθν πικανότθτα να υπάρχει θ κάρτα ςτθν τράπουλα του αντιπάλου, δεδομζνου ότι ο αντίπαλοσ ανικει ςτθν κατθγορία Shaman: K=Shaman ( ) ( ) ( ) ( ) Ραρατθροφμε ότι το ποςοςτό είναι ικανοποιθτικό για να μασ δϊςει πλθροφορία ςχετικά με τθν κάρτα και τθν τράπουλα του αντιπάλου και δεδομζνου ότι υπάρχουν 743 κάρτεσ ςτο παιχνίδι ςυμπεραίνουμε ότι θ κάρτα χρθςιμοποιείται ςυχνά.

8 Αμζςωσ μετά και αφοφ ζχουμε βρει τθν πικανότθτα με τθν οποία θ κάρτα βρίςκεται ςτθν τράπουλα του αντιπάλου βρίςκουμε τθν πικανότθτα να υπάρχει και ςτο χζρι του, δθλαδι να τθν ζχει τραβιξει: ( ) ( ) Ραρατθροφμε ότι το ποςοςτό να κρατά τθν κάρτα ο αντιπαλόσ μασ είναι μικρό και ςτο μζγιςτο κα φτάςει, όπωσ είναι λογίκο το 37,2 %. Για τθν κλάςςθ Warlock όμωσ το ποςοςτό ςυμμετοχισ τθσ κάρτασ ςτθν τράπουλα είναι: ( ) ( ) ( ) ( ) Αλλά το ποςοςτό να υπάρχει ςτο χζρι του αντιπάλου ςτο τζταρτο γφρο είναι: ( ) Μπορεί να φτάςει το ποςοςτό εωσ 58,8 %, αλλά μζχρι να ζχουμε ικανοποιθτικό ποςοςτό ζτςι ϊςτε να μασ φανεί χριςιμο ςε κάποια ςτρατιγικι, το παιχνίδι μάλλον κα ζχει προχωριςθ πολφ.

9 ΤΜΠΕΡΑΜΑΣΑ Σαν ςυμπζραςμα οπότε βλζπουμε ότι αυτά τα ποςοςτά δφςκολα μποροφν να μασ βοθκιςουν να εξάγουμε κάποια ςτρατθγικι από τθν αρχι ι και ακόμα όταν βριςκόμαςτε ςτθν μζςθ του παιχνιδιοφ. Από τθν παραπάνω ζρευνα όμωσ είναι φανερό οτι μερικζσ κάρτεσ ζχουν μεγάλθ ςυμμετοχι ςτισ τράπουλεσ κάποιων κλάςςεων και μποροφμε από εκεί να εξάγουμε κάποια μοτίβα τραπουλϊν για όλεσ τισ κλάςςεισ παιχτϊν. Χρθςιμοποιϊντασ τον πίνακα που δείχνει ςε τι ποςοςτό κάκε κλάςςθσ τράπουλασ ανικει θ κάρτα (μπλε πίνακασ), μποροφμε να κρατάμε το μεγαλφτερο κάκε φορά και να προβλζψουμε τθν τράπουλα του αντιπάλου. Αυτό κα μασ βοθκιςει ςτουσ τελευταίουσ γφρουσ του παιχνιδιοφ για να προβλζψουμε τθν κάρτα του αντιπάλου μασ με ποςοςτό περίπου 60% όπωσ είδαμε παραπάνω ςτο παράδειγμα κλάςςθσ Warlock. ΒΙΒΛΙΟΓΡΑΥΙΑ Το υλικό κακϊσ και τα ςτατιςτικά ςτοιχεία που χρθςιμοποιικθκαν βρίςκονται ςτουσ παρακάτω ςυνδζςμουσ: https://en.wikipedia.org/wiki/hearthstone:_heroes_of_warcraft

10

Αυτόνομοι Πράκτορες. Αναφορά Εργασίας Εξαμήνου. Το αστέρι του Aibo και τα κόκαλα του

Αυτόνομοι Πράκτορες. Αναφορά Εργασίας Εξαμήνου. Το αστέρι του Aibo και τα κόκαλα του Αυτόνομοι Πράκτορες Αναφορά Εργασίας Εξαμήνου Το αστέρι του Aibo και τα κόκαλα του Jaohar Osman Η πρόταςθ εργαςίασ που ζκανα είναι το παρακάτω κείμενο : - ξ Aibo αγαπάει πάρα πξλύ ρα κόκαλα και πάμρα ρα

Διαβάστε περισσότερα

Πολυπλέκτες. 0 x 0 F = S x 0 + Sx 1 1 x 1

Πολυπλέκτες. 0 x 0 F = S x 0 + Sx 1 1 x 1 Πολυπλέκτες Ο πολυπλζκτθσ (multipleer - ) είναι ζνα ςυνδυαςτικό κφκλωμα που επιλζγει δυαδικι πλθροφορία μιασ από πολλζσ γραμμζσ ειςόδου και τθν κατευκφνει ςε μια και μοναδικι γραμμι εξόδου. Η επιλογι μιασ

Διαβάστε περισσότερα

= = 124

= = 124 Λζξεισ Κάκε μακθτισ μζςα ςτθν ομάδα κα πρζπει να ζχει μια αρικμομθχανι. Ζνασ μακθτισ κα διαβάηει φωναχτά τουσ αρικμοφσ. Οι υπόλοιποι μακθτζσ κα τουσ γράφουν ςτθν αρικμομθχανι πατϊντασ κάκε φορά το πλικτρο

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium V Στατιςτική Συμπεραςματολογία Ι Σημειακζσ Εκτιμήςεισ Διαςτήματα Εμπιςτοςφνησ Στατιςτική Συμπεραςματολογία (Statistical Inference) Το πεδίο τθσ Στατιςτικισ Συμπεραςματολογία,

Διαβάστε περισσότερα

x n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό.

x n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό. Κωδικοποιητές Ο κωδικοποιθτισ (nor) είναι ζνα κφκλωμα το οποίο διακζτει n γραμμζσ εξόδου και το πολφ μζχρι m = 2 n γραμμζσ ειςόδου και (m 2 n ). Οι ζξοδοι παράγουν τθν κατάλλθλθ λζξθ ενόσ δυαδικοφ κϊδικα

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Α ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ IMC (Key Stage II) 9 Μαρτίου 2016 ΧΡΟΝΟΣ: 2 ΩΡΕΣ Λύςεισ : Πρόβλημα 1 (α) Να βρείτε τθν τιμι του για να ιςχφει θ πιο κάτω ςχζςθ: (β) Ο Ανδρζασ τελειϊνει

Διαβάστε περισσότερα

Διαχείριςθ του φακζλου "public_html" ςτο ΠΣΔ

Διαχείριςθ του φακζλου public_html ςτο ΠΣΔ Διαχείριςθ του φακζλου "public_html" ςτο ΠΣΔ Οι παρακάτω οδθγίεσ αφοροφν το χριςτθ webdipe. Για διαφορετικό λογαριαςμό χρθςιμοποιιςτε κάκε φορά το αντίςτοιχο όνομα χριςτθ. = πατάμε αριςτερό κλικ ςτο Επιςκεφκείτε

Διαβάστε περισσότερα

ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ. ΚΕΦΑΛΑΙΟ 3: Εργονομία

ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ. ΚΕΦΑΛΑΙΟ 3: Εργονομία ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ Εργονομία, ωςτι ςτάςθ εργαςίασ, Εικονοςτοιχείο (pixel), Ανάλυςθ οκόνθσ (resolution), Μζγεκοσ οκόνθσ Ποιεσ επιπτϊςεισ μπορεί να ζχει θ πολφωρθ χριςθ του υπολογιςτι ςτθν

Διαβάστε περισσότερα

Δείκτεσ Διαχείριςθ Μνιμθσ. Βαγγζλθσ Οικονόμου Διάλεξθ 8

Δείκτεσ Διαχείριςθ Μνιμθσ. Βαγγζλθσ Οικονόμου Διάλεξθ 8 Δείκτεσ Διαχείριςθ Μνιμθσ Βαγγζλθσ Οικονόμου Διάλεξθ 8 Δείκτεσ Κάκε μεταβλθτι ςχετίηεται με μία κζςθ ςτθν κφρια μνιμθ του υπολογιςτι. Κάκε κζςθ ςτθ μνιμθ ζχει τθ δικι τθσ ξεχωριςτι διεφκυνςθ. Με άμεςθ

Διαβάστε περισσότερα

Slide 1. Εισαγωγή στη ψυχρομετρία

Slide 1. Εισαγωγή στη ψυχρομετρία Slide 1 Εισαγωγή στη ψυχρομετρία 1 Slide 2 Σφντομη ειςαγωγή ςτη ψυχρομετρία. Διάγραμμα Mollier (πίεςησ-ενθαλπίασ P-H) Σο διάγραμμα Mollier είναι μία γραφικι παράςταςθ ςε ζναν άξονα ςυντεταγμζνων γραμμϊν

Διαβάστε περισσότερα

Αναφορά Εργαςίασ Nim Game

Αναφορά Εργαςίασ Nim Game Αναφορά Εργαςίασ Nim Game Αυτόνομοι Πράκτορεσ (ΠΛΗ 513) Βαγενάσ Σωτιριοσ 2010030034 Ειςαγωγή Για τθν εργαςία του μακιματοσ αςχολικθκα με το board game Nim. Ρρόκειται για ζνα παιχνίδι δφο παιχτϊν (2-player

Διαβάστε περισσότερα

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Περιφέρειες)

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Περιφέρειες) Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Περιφέρειες) Ιούνιοσ 2013 Περιεχόμενα: Ειςαγωγή... 3 1. Περιφζρεια... 3 1.1 Διαχειριςτήσ Αιτήςεων Περιφζρειασ... 3 1.1.1. Είςοδοσ... 3 1.1.2. Αρχική

Διαβάστε περισσότερα

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο)

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Ιοφνιοσ 2013 Περιεχόμενα: Ειςαγωγή... 3 1.Εθνικό Τυπογραφείο... 3 1.1. Είςοδοσ... 3 1.2. Αρχική Οθόνη... 4 1.3. Διεκπεραίωςη αίτηςησ...

Διαβάστε περισσότερα

ςυςτιματα γραμμικϊν εξιςϊςεων

ςυςτιματα γραμμικϊν εξιςϊςεων κεφάλαιο 7 Α ςυςτιματα γραμμικϊν εξιςϊςεων αςικζσ ζννοιεσ Γραμμικά, λζγονται τα ςυςτιματα εξιςϊςεων ςτα οποία οι άγνωςτοι εμφανίηονται ςτθν πρϊτθ δφναμθ. Σα γραμμικά ςυςτιματα με δφο εξιςϊςεισ και δφο

Διαβάστε περισσότερα

Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2

Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Δρ. Χρήζηος Ηλιούδης Μθ Προςθμαςμζνοι Ακζραιοι Εφαρμογζσ (ςε οποιαδιποτε περίπτωςθ δεν χρειάηονται αρνθτικοί αρικμοί) Καταμζτρθςθ. Διευκυνςιοδότθςθ.

Διαβάστε περισσότερα

Θεςιακά ςυςτιματα αρίκμθςθσ

Θεςιακά ςυςτιματα αρίκμθςθσ Θεςιακά ςυςτιματα αρίκμθςθσ Δρ. Χρήστος Ηλιούδης αρικμθτικό ςφςτθμα αρίκμθςθσ (Number System) Αξία (value) παράςταςθ Οι αξίεσ (π.χ. το βάροσ μιασ ποςότθτασ μιλων) μποροφν να παραςτακοφν με πολλοφσ τρόπουσ

Διαβάστε περισσότερα

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο)

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Πάτρα, 2013 Περιεχόμενα: Ειςαγωγή... 4 1. Επιμελητήριο... Error! Bookmark not defined. 1.1 Διαχειριςτήσ Αιτήςεων Επιμελητηρίου...

Διαβάστε περισσότερα

Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων

Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Ενότητα 7: Ειςαγωγι ςτο Δυναμικό Προγραμματιςμό Κακθγθτισ Γιάννθσ Γιαννίκοσ Σχολι Οργάνωςθσ και Διοίκθςθσ Επιχειριςεων Τμιμα Διοίκθςθσ Επιχειριςεων Σκοποί ενότητασ

Διαβάστε περισσότερα

ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι

ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι Παράςταςη κινητήσ υποδιαςτολήσ ςφμφωνα με το πρότυπο ΙΕΕΕ Δρ. Χρήστος Ηλιούδης το πρότυπο ΙΕΕΕ 754 ζχει χρθςιμοποιθκεί ευρζωσ ςε πραγματικοφσ υπολογιςτζσ. Το πρότυπο αυτό κακορίηει δφο βαςικζσ μορφζσ κινθτισ

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ. Φιλιοποφλου Ειρινθ

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ. Φιλιοποφλου Ειρινθ ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ Φιλιοποφλου Ειρινθ Προςθήκη νζων πεδίων Ασ υποκζςουμε ότι μετά τθ δθμιουργία του πίνακα αντιλαμβανόμαςτε ότι ζχουμε ξεχάςει κάποια πεδία. Είναι ζνα πρόβλθμα το οποίο

Διαβάστε περισσότερα

Aux.Magazine Μπιλμπάο, Βιηκάγια, Ιςπανία www.auxmagazine.com Προςωπικά δεδομζνα

Aux.Magazine Μπιλμπάο, Βιηκάγια, Ιςπανία www.auxmagazine.com Προςωπικά δεδομζνα Προςωπικά δεδομζνα Η Λείρ Ναγιάλα, θ Σίλβια Αντρζσ, θ Χουάνα Γκαλβάν και θ Γερμάν Καςτανζντα δθμιοφργθςαν τθ δικι τουσ εταιρία, τθν AUXILIARTE FACTORIA το 2004. Ζχοντασ και ςυνειδθτοποίθςαν ότι μοιράηονταν

Διαβάστε περισσότερα

Ε. ε περίπτωςθ που θ διαφορά των δφο ηαριϊν είναι 3 τότε ο παίκτθσ ξαναρίχνει μόνο ζνα ηάρι.

Ε. ε περίπτωςθ που θ διαφορά των δφο ηαριϊν είναι 3 τότε ο παίκτθσ ξαναρίχνει μόνο ζνα ηάρι. 1 ο Σετ Ασκήσεων Δομή Επιλογής - Επανάληψης Άςκθςθ 1θ: Ζνα παιχνίδι με ηάρια παίηεται ωσ εξισ: Α. Ο παίκτθσ αρχικά ποντάρει κάποιο ποςό και ρίχνει δφο ηάρια. Β. Ο παίκτθσ κερδίηει (το ποςό που ζχει ποντάρει)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ 9 10 (Γ Γυμνασίου- Α Λυκείου)

ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ 9 10 (Γ Γυμνασίου- Α Λυκείου) ΕΠΙΠΕΔΟ 9 10 (Γ Γυμνασίου- Α Λυκείου) 19 Μαρτίου 011 10:00-11:15 3 point/μονάδες 1) Μια διάβαςθ πεηϊν ζχει άςπρεσ και μαφρεσ λωρίδεσ, πλάτουσ 50 cm. ε ζνα δρόμο θ διάβαςθ ξεκινά και τελειϊνει με άςπρεσ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου)

ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου) ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου) 19 Μαρτίου 2011 10:00-11:15 3 point/μονάδες 1) Στθν πιο κάτω εικόνα πρζπει να υπάρχει αρικμόσ ςε κάκε κουκκίδα ϊςτε το άκροιςμα των αρικμϊν ςτα άκρα κάκε ευκφγραμμου τμιματοσ

Διαβάστε περισσότερα

ΡΑΝΕΛΛΘΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΧΗΜΕΙΑ ΘΕΤΙΚΘΣ ΚΑΤΕΥΘΥΝΣΘΣ

ΡΑΝΕΛΛΘΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΧΗΜΕΙΑ ΘΕΤΙΚΘΣ ΚΑΤΕΥΘΥΝΣΘΣ ΡΑΝΕΛΛΘΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΧΗΜΕΙΑ ΘΕΤΙΚΘΣ ΚΑΤΕΥΘΥΝΣΘΣ Θζμα Α Α1: γ, Α2: β, Α3: α, Α4: β, A5: β Θζμα Β Β1: Σ ι Λ (ελλιπισ διατφπωςθ), Λ, Σ, Σ, Σ Β2: α) Οι διαφορζσ μεταξφ ς και π δεςμοφ είναι: α. Στον ς

Διαβάστε περισσότερα

ΟΜΑΔΑ: ΘΕΟΚΛΗΣΩ-ΑΝΣΡΕΑ-ΝΕΦΕΛΗ

ΟΜΑΔΑ: ΘΕΟΚΛΗΣΩ-ΑΝΣΡΕΑ-ΝΕΦΕΛΗ 29/9/2014 το μάκθμα τθσ ευζλικτθσ ηϊνθσ,τα παιδιά χωρίςτθκαν ςε ομάδεσ και ζφτιαξαν τθν δικι τουσ ηωγραφιά χρθςιμοποιϊντασ γεωμετρικά ςχιματα. ΟΜΑΔΑ: ΘΕΟΚΛΗΣΩ-ΑΝΣΡΕΑ-ΝΕΦΕΛΗ ΤΜΜΕΣΡΙΑ: 10 ΚΑΙ 13 ΟΚΣΩΒΡΙΟΤ

Διαβάστε περισσότερα

Εγχειρίδιο Χρήςησ Support

Εγχειρίδιο Χρήςησ Support Εγχειρίδιο Χρήςησ Support Περιεχόμενα 1) Αρχικι Σελίδα...2 2) Φόρμα Σφνδεςθσ...2 3) Μετά τθ ςφνδεςθ...2 4) Λίςτα Υποκζςεων...3 5) Δθμιουργία Νζασ Υπόκεςθσ...4 6) Σελίδα Υπόκεςθσ...7 7) Αλλαγι Κωδικοφ...9

Διαβάστε περισσότερα

Περιοριςμοί μιασ Β.Δ. ςτθν Access(1/3)

Περιοριςμοί μιασ Β.Δ. ςτθν Access(1/3) Περιοριςμοί μιασ Β.Δ. ςτθν Access(1/3) Το όνομα ενόσ πίνακα, όπωσ και κάκε άλλου αντικειμζνου, μπορεί να ζχει μζγεκοσ ζωσ 64 χαρακτιρεσ. Το όνομα ενόσ πεδίου μπορεί να ζχει μζγεκοσ ζωσ 64 χαρακτιρεσ. Κάκε

Διαβάστε περισσότερα

Παράςταςη ςυμπλήρωμα ωσ προσ 1

Παράςταςη ςυμπλήρωμα ωσ προσ 1 Δρ. Χρήστος Ηλιούδης Θζματα διάλεξησ ΣΤ1 Προςθεςη αφαίρεςη ςτο ΣΤ1 2 ή ΣΤ1 Ονομάηουμε ςυμπλιρωμα ωσ προσ μειωμζνθ βάςθ R ενόσ μθ προςθμαςμζνου αρικμοφ Χ = ( Χ θ-1 Χ θ-2... Χ 0 ) R ζναν άλλον αρικμό Χ'

Διαβάστε περισσότερα

Γράφοι. Δομζσ Δεδομζνων Διάλεξθ 9

Γράφοι. Δομζσ Δεδομζνων Διάλεξθ 9 Γράφοι Δομζσ Δεδομζνων Διάλεξθ 9 Περιεχόμενα Γράφοι Γενικζσ ζννοιεσ, οριςμόσ, κτλ Παραδείγματα Γράφων Αποκικευςθ Γράφων Βαςικοί Οριςμοί Γράφοι και Δζντρα Διάςχιςθ Γράφων Περιοδεφων Πωλθτισ Γράφοι Οριςμόσ:

Διαβάστε περισσότερα

Πωσ δθμιουργώ φακζλουσ;

Πωσ δθμιουργώ φακζλουσ; Πωσ δθμιουργώ φακζλουσ; Για να μπορζςετε να δθμιουργιςετε φακζλουσ ςτο χαρτοφυλάκιό ςασ ςτο Mahara κα πρζπει να μπείτε ςτο ςφςτθμα αφοφ πατιςετε πάνω ςτο ςφνδεςμο Mahara profiles από οποιοδιποτε ςελίδα

Διαβάστε περισσότερα

Ένα πρόβλθμα γραμμικοφ προγραμματιςμοφ βρίςκεται ςτθν κανονικι μορφι όταν:

Ένα πρόβλθμα γραμμικοφ προγραμματιςμοφ βρίςκεται ςτθν κανονικι μορφι όταν: Μζθοδος Simplex Η πλζον γνωςτι και περιςςότερο χρθςιμοποιουμζνθ μζκοδοσ για τθν επίλυςθ ενόσ γενικοφ προβλιματοσ γραμμικοφ προγραμματιςμοφ, είναι θ μζκοδοσ Simplex θ οποία αναπτφχκθκε από τον George Dantzig.

Διαβάστε περισσότερα

Διαδικαςία Διαχείριςθσ Στθλϊν Βιβλίου Εςόδων - Εξόδων. (v.1.0.7)

Διαδικαςία Διαχείριςθσ Στθλϊν Βιβλίου Εςόδων - Εξόδων. (v.1.0.7) Διαδικαςία Διαχείριςθσ Στθλϊν Βιβλίου Εςόδων - Εξόδων (v.1.0.7) 1 Περίληψη Το ςυγκεκριμζνο εγχειρίδιο δθμιουργικθκε για να βοθκιςει τθν κατανόθςθ τθσ διαδικαςίασ διαχείριςθσ ςτθλών βιβλίου Εςόδων - Εξόδων.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση Συγγραφή:

Διαβάστε περισσότερα

Διδάςκων: Κωνςταντίνοσ τεφανίδθσ

Διδάςκων: Κωνςταντίνοσ τεφανίδθσ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ ΧΟΛΗ ΘΕΣΙΚΩΝ ΕΠΙΣΗΜΩΝ ΣΜΗΜΑ ΕΠΙΣΗΜΗ ΤΠΟΛΟΓΙΣΩΝ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗ ΗΤ-564 ΠΡΟΧΩΡΗΜΕΝΑ ΘΕΜΑΣΑ ΕΠΙΚΟΙΝΩΝΙΑ ΑΝΘΡΩΠΟΤ - ΜΗΧΑΝΗ Διδάςκων: Κωνςταντίνοσ τεφανίδθσ τόχοσ τθσ ςυγκεκριμζνθσ εργαςίασ

Διαβάστε περισσότερα

Virtualization. Στο ςυγκεκριμζνο οδηγό, θα παρουςιαςτεί η ικανότητα δοκιμήσ τησ διανομήσ Ubuntu 9.04, χωρίσ την ανάγκη του format.

Virtualization. Στο ςυγκεκριμζνο οδηγό, θα παρουςιαςτεί η ικανότητα δοκιμήσ τησ διανομήσ Ubuntu 9.04, χωρίσ την ανάγκη του format. Virtualization Στο ςυγκεκριμζνο οδηγό, θα παρουςιαςτεί η ικανότητα δοκιμήσ τησ διανομήσ Ubuntu 9.04, χωρίσ την ανάγκη του format. Το virtualization πρόκειται για μια τεχνολογία, θ οποία επιτρζπει το διαχωριςμό

Διαβάστε περισσότερα

ΟΤΑΝ ΕΦΥΓΑΝ Τ ΑΓΑΛΜΑΤΑ, ΑΓΓΕΛΙΚΗ ΔΑΡΛΑΣΗ

ΟΤΑΝ ΕΦΥΓΑΝ Τ ΑΓΑΛΜΑΤΑ, ΑΓΓΕΛΙΚΗ ΔΑΡΛΑΣΗ (Α ΟΜΑΔΑ) ΟΤΑΝ ΕΦΥΓΑΝ Τ ΑΓΑΛΜΑΤΑ, ΑΓΓΕΛΙΚΗ ΔΑΡΛΑΣΗ [1] 1. Ποια πιςτεφεισ ότι είναι τα μθνφματα που ικελε να προβάλει θ ςυγγραφζασ με το βιβλίο; Η ςυγγραφζασ κζλει να τονίςει με τθν Αγγελίνα, το κορίτςι

Διαβάστε περισσότερα

Εγχειρίδιο: Honeybee Small

Εγχειρίδιο: Honeybee Small ΚΟΚΚΙΝΟΣ ΔΗΜΗΤΡΗΣ Τηλ/Fax: 20 993677 Άγιος Δημήτριος, Αττικής 73 42 Ν. Ζέρβα 29 e-mail: Kokkinos@kokkinostoys.gr www.kokkinostoys.gr Εγχειρίδιο: Honeybee Small HEYBEE SMALL CRANE MACHINE DIP SW 2 3 4 5

Διαβάστε περισσότερα

Στατιςτικά Μοντζλα και ο Κανόνασ του Bayes

Στατιςτικά Μοντζλα και ο Κανόνασ του Bayes Στατιςτικά Μοντζλα και ο Κανόνασ του Bayes Κϊςτασ Διαμαντάρασ Τμιμα Πλθροφορικισ ΤΕΛ Κεςςαλονίκθσ 1 Ο κανόνασ του Bayes (προφ. Μπζιη): Κυμόμαςτε τισ πικανότθτεσ Θ πικανότθτα ωσ κλάςμα επί ενόσ ςυνόλου:

Διαβάστε περισσότερα

: Α ΚΗ ΕΙ ΣΕΧΝΙΚΟΣΑΚΣΙΚΗ Α ΚΗ Η ΠΑ Α

: Α ΚΗ ΕΙ ΣΕΧΝΙΚΟΣΑΚΣΙΚΗ Α ΚΗ Η ΠΑ Α Craig Brown, Former National Coach Team "A" Scotland The Development of the 4-4-2 System Presented at the NSCAA Convention, St. Louis / USA, January 2009 Craig Brown : ΑΚΗΕΙ ΣΕΧΝΙΚΟΣΑΚΣΙΚΗ ΑΚΗΗ ΠΑΑ Οι

Διαβάστε περισσότερα

Megatron ERP Βάςη δεδομζνων Π/Φ - κατηγοριοποίηςη Databox

Megatron ERP Βάςη δεδομζνων Π/Φ - κατηγοριοποίηςη Databox Megatron ERP Βάςη δεδομζνων Π/Φ - κατηγοριοποίηςη Databox 03 05 ΙΛΤΔΑ ΠΛΗΡΟΦΟΡΙΚΗ Α.Ε. αρμά Ιηαμπζλλα Βαρλάμθσ Νίκοσ Ειςαγωγι... 1 Σι είναι το Databox...... 1 Πότε ανανεϊνεται...... 1 Μπορεί να εφαρμοςτεί

Διαβάστε περισσότερα

Internet a jeho role v našem životě Το Διαδίκτυο και ο ρόλοσ του ςτθ ηωι μασ

Internet a jeho role v našem životě Το Διαδίκτυο και ο ρόλοσ του ςτθ ηωι μασ Internet a jeho role v našem životě Το Διαδίκτυο και ο ρόλοσ του ςτθ ηωι μασ Διαδίκτυο: μια πόρτα ςτον κόςμο Πϊσ μπορεί κανείσ ςε λίγα λεπτά να μάκει ποιεσ ταινίεσ παίηονται ςτουσ κινθματογράφουσ, να ςτείλει

Διαβάστε περισσότερα

TIM Εικονικό Περιβάλλον Συνεργασίας Οδθγίεσ Χριςθσ

TIM Εικονικό Περιβάλλον Συνεργασίας Οδθγίεσ Χριςθσ www.timproject.eu www.tim.project-platform.eu TIM Εικονικό Περιβάλλον Συνεργασίας Οδθγίεσ Χριςθσ This project has been founded with support form the European Commission. This presentation reflects the

Διαβάστε περισσότερα

Ιδιότθτεσ πεδίων Γενικζσ.

Ιδιότθτεσ πεδίων Γενικζσ. Οι ιδιότθτεσ των πεδίων διαφζρουν ανάλογα με τον τφπο δεδομζνων που επιλζγουμε. Ορίηονται ςτο κάτω μζροσ του παρακφρου ςχεδίαςθσ του πίνακα, ςτθν καρτζλα Γενικζσ. Ιδιότθτα: Μζγεκοσ πεδίου (Field size)

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη

Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

ΗΛΕΚΣΡΟΝΙΚΗ ΤΠΗΡΕΙΑ ΑΠΟΚΣΗΗ ΑΚΑΔΗΜΑΪΚΗ ΣΑΤΣΟΣΗΣΑ

ΗΛΕΚΣΡΟΝΙΚΗ ΤΠΗΡΕΙΑ ΑΠΟΚΣΗΗ ΑΚΑΔΗΜΑΪΚΗ ΣΑΤΣΟΣΗΣΑ ΗΛΕΚΣΡΟΝΙΚΗ ΤΠΗΡΕΙΑ ΑΠΟΚΣΗΗ ΑΚΑΔΗΜΑΪΚΗ ΣΑΤΣΟΣΗΣΑ Οδηγός Χρήσης Εφαρμογής Ελέγχου Προσφορών Αφοφ πιςτοποιθκεί ο λογαριαςμόσ που δθμιουργιςατε ςτο πρόγραμμα ωσ Πάροχοσ Προςφορϊν, κα λάβετε ζνα e-mail με

Διαβάστε περισσότερα

ΕΡΓΑΣΗΡΙΟ ΕΦΑΡΜΟΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΡΓΑΣΗΡΙΟ ΕΦΑΡΜΟΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ Στο εργαςτιριο αυτό κα δοφμε πωσ μποροφμε να προςομοιϊςουμε μια κίνθςθ χωρίσ τθ χριςθ εξειδικευμζνων εργαλείων, παρά μόνο μζςω ενόσ προγράμματοσ λογιςτικϊν φφλλων, όπωσ είναι το Calc και το Excel. Τα δφο

Διαβάστε περισσότερα

Λαμβάνοντασ υπόψη ότι κατά την πρόςθεςη δφο δυαδικϊν ψηφίων ιςχφει: Κρατοφμενο

Λαμβάνοντασ υπόψη ότι κατά την πρόςθεςη δφο δυαδικϊν ψηφίων ιςχφει: Κρατοφμενο Αριθμητικά κυκλώματα Ημιαθροιστής (Half Adder) Ο ημιαθροιςτήσ είναι ζνα κφκλωμα το οποίο προςθζτει δφο δυαδικά ψηφία (bits) και δίνει ωσ αποτζλεςμα το άθροιςμά τουσ και το κρατοφμενο. Με βάςη αυτή την

Διαβάστε περισσότερα

assessment.gr USER S MANUAL (users)

assessment.gr USER S MANUAL (users) assessment.gr USER S MANUAL (users) Human Factor January 2010 Περιεχόμενα 1. Γενικζσ οδθγίεσ ςυςτιματοσ... 3 1.1 Αρχικι ςελίδα... 3 1.2 Ερωτθματολόγια... 6 1.2.1 Τεςτ Γνϊςεων Γενικοφ Ρεριεχομζνου... 6

Διαβάστε περισσότερα

Βάςεισ Δεδομζνων Ι. Ενότητα 4: Μετατροπή ςχήματοσ Ο/Σ ςε ςχεςιακό. Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Ρλθροφορικισ ΤΕ

Βάςεισ Δεδομζνων Ι. Ενότητα 4: Μετατροπή ςχήματοσ Ο/Σ ςε ςχεςιακό. Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Ρλθροφορικισ ΤΕ Βάςεισ Δεδομζνων Ι Ενότητα 4: Μετατροπή ςχήματοσ Ο/Σ ςε ςχεςιακό Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Ρλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons.

Διαβάστε περισσότερα

Qualifiers: Ο μζγιςτοσ αρικμόσ ςυμμετοχϊν ςε κάκε qualifier είναι 128. Δίνεται θ δυνατότθτα ςτισ ομάδεσ να επιλζξουν ςε ποιο από τα 2 qualifiers

Qualifiers: Ο μζγιςτοσ αρικμόσ ςυμμετοχϊν ςε κάκε qualifier είναι 128. Δίνεται θ δυνατότθτα ςτισ ομάδεσ να επιλζξουν ςε ποιο από τα 2 qualifiers Qualifiers: Ο μζγιςτοσ αρικμόσ ςυμμετοχϊν ςε κάκε qualifier είναι 128. Δίνεται θ δυνατότθτα ςτισ ομάδεσ να επιλζξουν ςε ποιο από τα 2 qualifiers επικυμοφν να διαγωνιςτοφν κατά τθ διάρκεια τθσ ςυμπλιρωςθσ

Διαβάστε περισσότερα

w e b t r a i l s. g r Η ΛΕΙΣΟΤΡΓΙΚΟΣΗΣΑ ΣΟΤ ΙΣΟΣΟΠΟΤ J24CLASS.GR

w e b t r a i l s. g r Η ΛΕΙΣΟΤΡΓΙΚΟΣΗΣΑ ΣΟΤ ΙΣΟΣΟΠΟΤ J24CLASS.GR w e b t r a i l s. g r Η ΛΕΙΣΟΤΡΓΙΚΟΣΗΣΑ ΣΟΤ ΙΣΟΣΟΠΟΤ J24CLASS.GR Νίκοσ Καμπιτάκθσ 26 Μαρτίου 2011 Γενικζσ πλθροφορίεσ Δθμιουργία το Νοζμβριο του 2009 Γραφιςτικόσ ςχεδιαςμόσ «κοντά» ςτο παλιό Εξελιγμζνεσ

Διαβάστε περισσότερα

Δίκτυα Υπολογιςτϊν 2-Rooftop Networking Project

Δίκτυα Υπολογιςτϊν 2-Rooftop Networking Project Ονοματεπώνυμα και Α.Μ. μελών ομάδασ Κοφινάσ Νίκοσ ΑΜ:2007030111 Πζρροσ Ιωακείμ ΑΜ:2007030085 Site survey Τα κτιρια τθσ επιλογισ μασ αποτελοφν το κτιριο επιςτθμϊν και το κτιριο ςτο οποίο ςτεγάηεται θ λζςχθ

Διαβάστε περισσότερα

MySchool Πρακτικζσ οδθγίεσ χριςθσ

MySchool Πρακτικζσ οδθγίεσ χριςθσ MySchool Πρακτικζσ οδθγίεσ χριςθσ 1) Δθμιουργία τμθμάτων (ΣΧΟΛΙΚΗ ΜΟΝΑΔΑ, Διαχείριςθ, Διαχείριςθ τμθμάτων) Το πρώτο που πρζπει να κάνουμε ςτο MySchool είναι να δθμιουργιςουμε τα τμιματα που υπάρχουν ςτο

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ. Κεφάλαιο 8 Η γλϊςςα Pascal

ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ. Κεφάλαιο 8 Η γλϊςςα Pascal ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ Κεφάλαιο 8 Η γλϊςςα Pascal Παράγραφοσ 8.2 Βαςικοί τφποι δεδομζνων Σα δεδομζνα ενόσ προγράμματοσ μπορεί να: είναι αποκθκευμζνα εςωτερικά ςτθν μνιμθ είναι αποκθκευμζνα εξωτερικά

Διαβάστε περισσότερα

τα κρουςτά! Ερωτιςεισ & απαντιςεισ για τα κρουςτά

τα κρουςτά! Ερωτιςεισ & απαντιςεισ για τα κρουςτά Τα κροσζηά! ΧΟΡΗΓΟΣ Ερωτιςεισ & απαντιςεισ για τα κρουςτά τα κρουςτά! 1. Γιατί ονομάηονται κρουςτά όργανα; Το όνομα «κρουςτά» όργανα προζρχεται από το ριμα κροφω/χτυπώ και δθλϊνει τον τρόπο με τον οποίο

Διαβάστε περισσότερα

Ο ήχοσ ωσ φυςικό φαινόμενο

Ο ήχοσ ωσ φυςικό φαινόμενο Ο ήχοσ ωσ φυςικό φαινόμενο Φφλλο Εργαςίασ Ονοματεπώνυμο. Παραγωγή και διάδοςη του ήχου Ήχοσ παράγεται όταν τα ςωματίδια κάποιου υλικοφ μζςου αναγκαςκοφν να εκτελζςουν ταλάντωςθ. Για να διαδοκεί ο ιχοσ

Διαβάστε περισσότερα

Περιεχόμενα. Τι Είναι Ζνα Domain Name;.1. Λάκθ Που Πρζπει Να Αποφφγετε.2. Φόρμουλα Για Ζνα Πετυχθμζνο Domain Name..5

Περιεχόμενα. Τι Είναι Ζνα Domain Name;.1. Λάκθ Που Πρζπει Να Αποφφγετε.2. Φόρμουλα Για Ζνα Πετυχθμζνο Domain Name..5 Περιεχόμενα Τι Είναι Ζνα Domain Name;.1 Λάκθ Που Πρζπει Να Αποφφγετε.2 Φόρμουλα Για Ζνα Πετυχθμζνο Domain Name..5 Επιλογι Domain Name Βιμα Προσ Βιμα 7 Τι Είναι Ένα Domain Name; Το domain name (ςτα ελλθνικά

Διαβάστε περισσότερα

Οι περιπέτειεσ των πουλιών ςτη λίμνη Κουρνά

Οι περιπέτειεσ των πουλιών ςτη λίμνη Κουρνά Οι περιπέτειεσ των πουλιών ςτη λίμνη Κουρνά (Παραμφκι δθμιουργθμζνο από τα παιδιά του Παιδικοφ τακμοφ «Παιδικό Χαμόγελο», Εκπαιδευτικός: Αλζξανδρος Πανταηις, Ρζκυμνο 2013) -«Καλθμζρα αράχνθ!» Είπε λαχανιαςμζνοσ

Διαβάστε περισσότερα

Καρβέλης Φώτης ΓΟΝΙΔΙΩΜΑΤΙΚΗ ΒΙΒΛΙΟΘΗΚΗ

Καρβέλης Φώτης ΓΟΝΙΔΙΩΜΑΤΙΚΗ ΒΙΒΛΙΟΘΗΚΗ Καρβέλης Φώτης ΓΟΝΙΔΙΩΜΑΤΙΚΗ ΒΙΒΛΙΟΘΗΚΗ Λόγοι για τουσ οποίουσ κάνουμε γονιδιωματικι βιβλιοκικθ Για οργανιςμοφσ που κινδυνεφουν να εξαφανιςτοφν. Για εκπαιδευτικοφσ λόγουσ. Για να κάνουμε μελζτθ ςτθν εξελικτικι

Διαβάστε περισσότερα

Εγχειρίδιο Χριςθσ τθσ διαδικτυακισ εφαρμογισ «Υποβολι και παρακολοφκθςθ τθσ ζγκριςθσ Εκπαιδευτικών Πακζτων»

Εγχειρίδιο Χριςθσ τθσ διαδικτυακισ εφαρμογισ «Υποβολι και παρακολοφκθςθ τθσ ζγκριςθσ Εκπαιδευτικών Πακζτων» Εγχειρίδιο Χριςθσ τθσ διαδικτυακισ εφαρμογισ «Υποβολι και παρακολοφκθςθ τθσ ζγκριςθσ Εκπαιδευτικών Πακζτων» Το Πλθροφοριακό Σφςτθμα τθσ δράςθσ «e-κπαιδευτείτε» ζχει ςτόχο να αυτοματοποιιςει τισ ακόλουκεσ

Διαβάστε περισσότερα

ΠΑΙΧΝΙΔΙΑ ΓΙΑ ΣΟΝ ΤΝΣΟΝΙΜΟ ΣΘ ΟΜΑΔΑ ΚΑΙ ΣΘΝ ΚΑΛΛΙΕΡΓΕΙΑ ΣΘ ΑΚΟΤΣΙΚΘ ΜΝΘΜΘ- ΒΑΘΜΙΔΑ 2 και αρχζσ 3

ΠΑΙΧΝΙΔΙΑ ΓΙΑ ΣΟΝ ΤΝΣΟΝΙΜΟ ΣΘ ΟΜΑΔΑ ΚΑΙ ΣΘΝ ΚΑΛΛΙΕΡΓΕΙΑ ΣΘ ΑΚΟΤΣΙΚΘ ΜΝΘΜΘ- ΒΑΘΜΙΔΑ 2 και αρχζσ 3 1 ΠΑΙΧΝΙΔΙΑ ΓΙΑ ΣΟΝ ΤΝΣΟΝΙΜΟ ΣΘ ΟΜΑΔΑ ΚΑΙ ΣΘΝ ΚΑΛΛΙΕΡΓΕΙΑ ΣΘ ΑΚΟΤΣΙΚΘ ΜΝΘΜΘ- ΒΑΘΜΙΔΑ 2 και αρχζσ 3 Δεξιότητεσ: τακερόσ παλμόσ, ςυντονιςμόσ χεριοφ-ματιοφ, εςτιαςμόσ προςοχισ, ςυγκζντρωςθ, ακουςτικι μνιμθ

Διαβάστε περισσότερα

Ερωτιςεισ & απαντιςεισ για τα ξφλινα πνευςτά

Ερωτιςεισ & απαντιςεισ για τα ξφλινα πνευςτά Τα νύλιμα! ΧΟΡΗΓΟΣ Ερωτιςεισ & απαντιςεισ για τα ξφλινα πνευςτά τα ξφλινα! 1. Γιατί τα λζμε ξφλινα πνευςτά; Πνευςτά ονομάηονται τα όργανα ςτα οποία ο ιχοσ παράγεται μζςα ςε ζνα ςωλινα απ όπου περνάει ο

Διαβάστε περισσότερα

ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΗ. του ΙΑΣΡΟΦΑΡΜΑΚΕΤΣΙΚΟΤ ΦΑΚΕΛΟΤ ΑΘΕΝΩΝ Για τον ΟΙΚΟ ΝΑΤΣΟΤ ΕΡΓΑΣΗΡΙΑΚΟΙ ΓΙΑΣΡΟΙ. iknowhow Πληροφορική A.E

ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΗ. του ΙΑΣΡΟΦΑΡΜΑΚΕΤΣΙΚΟΤ ΦΑΚΕΛΟΤ ΑΘΕΝΩΝ Για τον ΟΙΚΟ ΝΑΤΣΟΤ ΕΡΓΑΣΗΡΙΑΚΟΙ ΓΙΑΣΡΟΙ. iknowhow Πληροφορική A.E ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΗ του ΙΑΣΡΟΦΑΡΜΑΚΕΤΣΙΚΟΤ ΦΑΚΕΛΟΤ ΑΘΕΝΩΝ Για τον ΟΙΚΟ ΝΑΤΣΟΤ ΕΡΓΑΣΗΡΙΑΚΟΙ ΓΙΑΣΡΟΙ iknowhow Πληροφορική A.E ΕΡΓΑΣΗΡΙΑΚΟΙ ΓΙΑΣΡΟΙ... 3 Η ΕΦΑΡΜΟΓΗ... 3 ΧΡΗΣΕ... 3 ΠΡΟΒΑΗ ΣΗΝ ΕΦΑΡΜΟΓΗ... 3 ΑΡΧΙΚΗ

Διαβάστε περισσότερα

Πωσ δημιουργώ μάθημα ςτο e-class του ΠΣΔ [επίπεδο 1]

Πωσ δημιουργώ μάθημα ςτο e-class του ΠΣΔ [επίπεδο 1] Το e-class του Πανελλινιου Σχολικοφ Δίκτυου [ΠΣΔ/sch.gr] είναι μια πολφ αξιόλογθ και δοκιμαςμζνθ πλατφόρμα για αςφγχρονο e-learning. Ανικει ςτθν κατθγορία του ελεφκερου λογιςμικοφ. Αρχίηουμε από τθ διεφκυνςθ

Διαβάστε περισσότερα

ΔΟΜΗ ΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αςκήςεισ με ψευδογλώςςα/ διάγραμμα ροήσ. Αντώνης Μαϊργιώτης

ΔΟΜΗ ΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αςκήςεισ με ψευδογλώςςα/ διάγραμμα ροήσ. Αντώνης Μαϊργιώτης ΔΟΜΗ ΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αςκήςεισ με ψευδογλώςςα/ διάγραμμα ροήσ Αντώνης Μαϊργιώτης Να γραφεί αλγόριθμοσ με τη βοήθεια διαγράμματοσ ροήσ, που να υπολογίζει το εμβαδό Ε ενόσ τετραγώνου με μήκοσ Α. ΑΡΧΗ ΔΙΑΒΑΣΕ

Διαβάστε περισσότερα

Φρζςκια πατατοςαλάτα με ςάλτςα Philadelphia με μουςτάρδα

Φρζςκια πατατοςαλάτα με ςάλτςα Philadelphia με μουςτάρδα Φρζςκια πατατοςαλάτα με ςάλτςα Philadelphia με μουςτάρδα Χρόνοσ προετοιμαςίασ: 10 λεπτά Χρόνοσ μαγειρζματοσ: 25-30 λεπτά Για 4 άτομα 600 γραμμάρια μικρζσ πατάτεσ βραςμζνεσ με τθν φλοφδα τουσ 2 τομάτεσ

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ Η ΤΑΞΗ ΤΗΣ ΤΕΛΙΚΗΣ ΕΠΙΛΟΓΗΣ. Στθ ΓϋΛυκείου οι Ομάδεσ Προςανατολιςμοφ είναι τρεισ:

Γ' ΛΥΚΕΙΟΥ Η ΤΑΞΗ ΤΗΣ ΤΕΛΙΚΗΣ ΕΠΙΛΟΓΗΣ. Στθ ΓϋΛυκείου οι Ομάδεσ Προςανατολιςμοφ είναι τρεισ: Γ' ΛΥΚΕΙΟΥ Η ΤΑΞΗ ΤΗΣ ΤΕΛΙΚΗΣ ΕΠΙΛΟΓΗΣ Στθ ΓϋΛυκείου οι Ομάδεσ Προςανατολιςμοφ είναι τρεισ: 1. Ομάδα Ανκρωπιςτικών Σπουδών 2. Ομάδα Οικονομικών, Πολιτικών, Κοινωνικών & Παιδαγωγικών Σπουδών 3. Ομάδα Θετικών

Διαβάστε περισσότερα

Διαγώνισμα Φυσική ς Κατευ θυνσής Γ Λυκει ου - Ταλαντώσεις

Διαγώνισμα Φυσική ς Κατευ θυνσής Γ Λυκει ου - Ταλαντώσεις Διαγώνισμα Φυσική ς Κατευ θυνσής Γ Λυκει ου - Ταλαντώσεις Επιμέλεια: Σ. Ασημέλλης Θέμα Α Να γράψετε ςτο φφλλο απαντιςεϊν ςασ τον αρικμό κακεμιάσ από τισ παρακάτω ερωτιςεισ 1-4 και δίπλα το γράμμα που αντιςτοιχεί

Διαβάστε περισσότερα

ΟΔΗΓΙΕ ΓΙΑ ΣΗΝ ΕΙΑΓΩΓΗ ΕΚΔΡΟΜΩΝ & ΝΕΩΝ - ΑΝΑΚΟΙΝΩΕΩΝ ΣΗΝ ΙΣΟΕΛΙΔΑ ΣΗ Δ.Δ.Ε. ΘΕΠΡΩΣΙΑ

ΟΔΗΓΙΕ ΓΙΑ ΣΗΝ ΕΙΑΓΩΓΗ ΕΚΔΡΟΜΩΝ & ΝΕΩΝ - ΑΝΑΚΟΙΝΩΕΩΝ ΣΗΝ ΙΣΟΕΛΙΔΑ ΣΗ Δ.Δ.Ε. ΘΕΠΡΩΣΙΑ ΟΔΗΓΙΕ ΓΙΑ ΣΗΝ ΕΙΑΓΩΓΗ ΕΚΔΡΟΜΩΝ & ΝΕΩΝ - ΑΝΑΚΟΙΝΩΕΩΝ ΣΗΝ ΙΣΟΕΛΙΔΑ ΣΗ Δ.Δ.Ε. ΘΕΠΡΩΣΙΑ ΕΙΑΓΩΓΗ Ο νζοσ δικτυακόσ τόποσ τθσ Δ.Δ.Ε. Θεςπρωτίασ παρζχει πλζον τθ δυνατότθτα τθσ καταχϊρθςθσ νζων, ειδιςεων και

Διαβάστε περισσότερα

ΔΕΛΣΙΟ ΣΤΠΟΤ ΣΟΧΑΙ ΑΕ: «ΚΛΑΔΙΚΕ ΣΟΧΕΤΕΙ» ΜΕΛΕΣΗ ΑΓΟΡΑ ΑΛΤΙΔΩΝ ΛΙΑΝΙΚΟΤ ΕΜΠΟΡΙΟΤ

ΔΕΛΣΙΟ ΣΤΠΟΤ ΣΟΧΑΙ ΑΕ: «ΚΛΑΔΙΚΕ ΣΟΧΕΤΕΙ» ΜΕΛΕΣΗ ΑΓΟΡΑ ΑΛΤΙΔΩΝ ΛΙΑΝΙΚΟΤ ΕΜΠΟΡΙΟΤ ΔΕΛΣΙΟ ΣΤΠΟΤ ΣΟΧΑΙ ΑΕ: «ΚΛΑΔΙΚΕ ΣΟΧΕΤΕΙ» ΜΕΛΕΣΗ ΑΓΟΡΑ ΑΛΤΙΔΩΝ ΛΙΑΝΙΚΟΤ ΕΜΠΟΡΙΟΤ Μείωςθ 1,9% ςε ςχζςθ με το 2009, παρουςίαςε θ αγορά των αλυςίδων λιανικοφ εμπορίου των οκτϊ εξεταηόμενων κατθγοριϊν το 2010

Διαβάστε περισσότερα

Μετατροπι Αναλογικοφ Σιματοσ ςε Ψθφιακό. Διάλεξθ 10

Μετατροπι Αναλογικοφ Σιματοσ ςε Ψθφιακό. Διάλεξθ 10 Μετατροπι Αναλογικοφ Σιματοσ ςε Ψθφιακό Διάλεξθ 10 Γενικό Σχιμα Μετατροπζασ Αναλογικοφ ςε Ψθφιακό Ψθφιακό Τθλεπικοινωνιακό Κανάλι Μετατροπζασ Ψθφιακοφ ςε Αναλογικό Τα αναλογικά ςιματα μετατρζπονται ςε

Διαβάστε περισσότερα

Η θεωρία τησ ςτατιςτικήσ ςε ερωτήςεισ-απαντήςεισ Μέροσ 1 ον (έωσ ομαδοποίηςη δεδομένων)

Η θεωρία τησ ςτατιςτικήσ ςε ερωτήςεισ-απαντήςεισ Μέροσ 1 ον (έωσ ομαδοποίηςη δεδομένων) 1)Πώσ ορύζεται η Στατιςτικό επιςτόμη; Στατιςτικι είναι ζνα ςφνολο αρχϊν και μεκοδολογιϊν για: το ςχεδιαςμό τθσ διαδικαςίασ ςυλλογισ δεδομζνων τθ ςυνοπτικι και αποτελεςματικι παρουςίαςι τουσ τθν ανάλυςθ

Διαβάστε περισσότερα

Διαδικαζία Διατείριζης Εκηύπωζης Ιζοζσγίοσ Γενικού - Αναλσηικών Καθολικών. (v )

Διαδικαζία Διατείριζης Εκηύπωζης Ιζοζσγίοσ Γενικού - Αναλσηικών Καθολικών. (v ) Διαδικαζία Διατείριζης Εκηύπωζης Ιζοζσγίοσ Γενικού - Αναλσηικών Καθολικών (v.1. 0.7) 1 Περίλθψθ Το ςυγκεκριμζνο εγχειρίδιο δθμιουργικθκε για να βοθκιςει τθν κατανόθςθ τθσ διαδικαςίασ διαχείριςθσ Εκτφπωςθσ

Διαβάστε περισσότερα

Προώθησε το site σου στις μηχανε ς αναζη τησης

Προώθησε το site σου στις μηχανε ς αναζη τησης Προώθησε το site σου στις μηχανε ς αναζη τησης ΠΡΟΟΧΘ! ΑΤΣΟ Ο ΟΔΘΓΟ ΕΙΝΑΙ ΙΔΑΝΙΚΟ ΓΙΑ ΝΕΕ ΙΣΟΕΛΙΔΕ ΑΛΛΑ Θ ΣΡΑΣΘΓΙΚΘ ΜΠΟΡΕΙ ΝΑ ΕΦΑΡΜΟΣΕΙ ΕΤΚΟΛΑ Ε ΠΑΛΙΕ ΙΣΟΕΛΙΔΕ ΚΑΙ ΝΑ ΣΙ ΩΦΕΛΘΕΙ... Μια προςφορά του http://nextnet.gr

Διαβάστε περισσότερα

Οδθγίεσ εγκατάςταςθσ και ρυκμίςεισ του ηυγοφ DIGI SM100

Οδθγίεσ εγκατάςταςθσ και ρυκμίςεισ του ηυγοφ DIGI SM100 Οδθγίεσ εγκατάςταςθσ και ρυκμίςεισ του ηυγοφ DIGI SM100 ΠΕΡΙΕΧΟΜΕΝΑ Γενικά Είςοδοσ ςτο πρόγραμμα Ρυιμίςεισ ζυγοφ Αλλαγι IP διεφκυνςθσ ηυγοφ Ρυκμίςεισ επικοινωνίασ Αποκικευςθ Ρυιμίςεισ εφαρμογθσ DIGICOM

Διαβάστε περισσότερα

Η διαδικαςία επιλογήσ μαθημάτων

Η διαδικαςία επιλογήσ μαθημάτων Η διαδικαςία επιλογήσ μαθημάτων 1. Ηθτιςτε από τθν Κοςμθτεία τθσ χολισ Οικονομικϊν Επιςτθμϊν και Διοίκθςθσ (Κτιριο ΟΕΔ02, 0 όροφοσ, γραφείο 027Α) τθν λίςτα με τα μακιματα αντιςτοιχίασ που ιδθ υπάρχουν

Διαβάστε περισσότερα

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Επιμελητήρια)

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Επιμελητήρια) Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Επιμελητήρια) Πάτρα, 2013 Περιεχόμενα: Ειςαγωγή... 3 1. Επιμελητήριο... 3 1.1 Διαχειριςτήσ Αιτήςεων Επιμελητηρίου... 3 1.1.1. Είςοδοσ... 3 1.1.2. Αρχική

Διαβάστε περισσότερα

Ραραμετροποίθςθ ειςαγωγισ δεδομζνων περιόδων

Ραραμετροποίθςθ ειςαγωγισ δεδομζνων περιόδων Παραμετροποίηςη ειςαγωγήσ δεδομζνων περιόδων 1 1 Περίληψη Το παρόν εγχειρίδιο παρουςιάηει αναλυτικά τθν παραμετροποίθςθ τθσ ειςαγωγισ αποτελεςμάτων μιςκοδοτικϊν περιόδων. 2 2 Περιεχόμενα 1 Ρερίλθψθ...2

Διαβάστε περισσότερα

ΓΕΦΤΡΟΠΟΙΪΑ: ΜΟΝΙΜΑ ΚΑΙ ΚΙΝΗΣΑ ΦΟΡΣΙΑ. ΔΙΟΝΥΣΙΟΣ Ε. ΜΠΙΣΚΙΝΗΣ Τμήμα Πολιτικών Μηχανικών Τ.Ε. Τ.Ε.Ι. Δυτικής Ελλάδας

ΓΕΦΤΡΟΠΟΙΪΑ: ΜΟΝΙΜΑ ΚΑΙ ΚΙΝΗΣΑ ΦΟΡΣΙΑ. ΔΙΟΝΥΣΙΟΣ Ε. ΜΠΙΣΚΙΝΗΣ Τμήμα Πολιτικών Μηχανικών Τ.Ε. Τ.Ε.Ι. Δυτικής Ελλάδας 1 ΓΕΦΤΡΟΠΟΙΪΑ: ΜΟΝΙΜΑ ΚΑΙ ΚΙΝΗΣΑ ΦΟΡΣΙΑ ΔΙΟΝΥΣΙΟΣ Ε. ΜΠΙΣΚΙΝΗΣ Τμήμα Πολιτικών Μηχανικών Τ.Ε. Τ.Ε.Ι. Δυτικής Ελλάδας Μόνιμα Φορτία Ίδιον Βάροσ (για Οπλιςμζνο Σκυρόδεμα): g=25 KN/m 3 Σε οδικζσ γζφυρεσ πρζπει

Διαβάστε περισσότερα

ΟΝΟΜΑΣΟΛΟΓΙΑ ΠΑΡΑΜΕΣΡΩΝ ΓΙΑ ΠΡΟΑΡΜΟΜΕΝΕ ΑΝΑΦΟΡΕ. @XXX@_<όνομα παραμζτρου> (Εμφανίηεται ςαν Caption ςτθν φόρμα των φίλτρων).

ΟΝΟΜΑΣΟΛΟΓΙΑ ΠΑΡΑΜΕΣΡΩΝ ΓΙΑ ΠΡΟΑΡΜΟΜΕΝΕ ΑΝΑΦΟΡΕ. @XXX@_<όνομα παραμζτρου> (Εμφανίηεται ςαν Caption ςτθν φόρμα των φίλτρων). ΟΝΟΜΑΣΟΛΟΓΙΑ ΠΑΡΑΜΕΣΡΩΝ ΓΙΑ ΠΡΟΑΡΜΟΜΕΝΕ ΑΝΑΦΟΡΕ. @XXX@_ (Εμφανίηεται ςαν Caption ςτθν φόρμα των φίλτρων). Βαςικοί παράμετροι @EDT@_ @CHK@_ @CXD@_ @CXDC@_ @CMB@_ @CHKLB@_ Παράμετροσ που

Διαβάστε περισσότερα

4o Τοσρνοσά Basket Σηελετών Επιτειρήζεων 2013-2014 Δήλωζη Σσμμεηοτής

4o Τοσρνοσά Basket Σηελετών Επιτειρήζεων 2013-2014 Δήλωζη Σσμμεηοτής 4o Τοσρνοσά Basket Σηελετών Επιτειρήζεων 2013-2014 Δήλωζη Σσμμεηοτής 4o Τουρνουά Basket Στελεχϊν Επιχειριςεων 2013-2014 Σελ. 1 / 7 Σηοιτεία Αθληηών Ομάδας: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.

Διαβάστε περισσότερα

Τεχνικι Παρουςιάςεων με PowerPoint

Τεχνικι Παρουςιάςεων με PowerPoint Τεχνικι Παρουςιάςεων με PowerPoint Δρ. Παφλοσ Θεοδϊρου Ανϊτατθ Εκκλθςιαςτικι Ακαδθμία Ηρακλείου Κριτθσ Περιεχόμενα Ειςαγωγι Γιατί πρζπει να γίνει παρουςίαςθ τθσ εργαςίασ μου Βαςικι προετοιμαςία Δομι παρουςίαςθσ

Διαβάστε περισσότερα

3 ο ΓΥΜΝΑΣΙΟ ΤΡΙΚΑΛΩΝ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΑΣ Γ ΓΥΜΝΑΣΙΟΥ

3 ο ΓΥΜΝΑΣΙΟ ΤΡΙΚΑΛΩΝ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΑΣ Γ ΓΥΜΝΑΣΙΟΥ 3 ο ΓΥΜΝΑΣΙΟ ΤΡΙΚΑΛΩΝ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΑΣ Γ ΓΥΜΝΑΣΙΟΥ 1) Τίτλοσ τθσ ζρευνασ: «Ποια είναι θ επίδραςθ τθσ κερμοκραςίασ ςτθ διαλυτότθτα των ςτερεϊν ςτο νερό;» 2) Περιγραφι του ςκοποφ τθσ ζρευνασ: Η ζρευνα

Διαβάστε περισσότερα

ΑΝΣΙΣΡΟΦΗ ΤΝΑΡΣΗΗ. f y x y f A αντιςτοιχίηεται ςτο μοναδικό x A για το οποίο. Παρατθριςεισ Ιδιότθτεσ τθσ αντίςτροφθσ ςυνάρτθςθσ 1. Η. f A τθσ f.

ΑΝΣΙΣΡΟΦΗ ΤΝΑΡΣΗΗ. f y x y f A αντιςτοιχίηεται ςτο μοναδικό x A για το οποίο. Παρατθριςεισ Ιδιότθτεσ τθσ αντίςτροφθσ ςυνάρτθςθσ 1. Η. f A τθσ f. .. Αντίςτροφθ ςυνάρτθςθ Ζςτω θ ςυνάρτθςθ : A θ οποία είναι " ". Τότε ορίηεται μια νζα ςυνάρτθςθ, θ μζςω τθσ οποίασ το κάκε ιςχφει y. : A με Η νζα αυτι ςυνάρτθςθ λζγεται αντίςτροφθ τθσ. y y A αντιςτοιχίηεται

Διαβάστε περισσότερα

CP VIOLATION in b system ΜΑΑΝΤΗΣ ΑΛΕΞΑΝΔΟΣ --ΣΑΒΒΙΔΗΣ ΓΙΩΓΟΣ

CP VIOLATION in b system ΜΑΑΝΤΗΣ ΑΛΕΞΑΝΔΟΣ --ΣΑΒΒΙΔΗΣ ΓΙΩΓΟΣ CP VIOLATION in b system ΜΑΑΝΤΗΣ ΑΛΕΞΑΝΔΟΣ --ΣΑΒΒΙΔΗΣ ΓΙΩΓΟΣ PARITY (ΟΜΟΤΙΜΙΑ) P & ΣΥΖΥΓΙΑ ΦΟΤΙΟΥ C Τι είναι θ parity; Τι είναι θ ςυηυγία φορτίου; Το C αντιςτρζφει και τον λεπτονικό και βαρυονικό αρικμό.

Διαβάστε περισσότερα

Αςκιςεισ και παιχνίδια με ευρϊ

Αςκιςεισ και παιχνίδια με ευρϊ 1 ο Ειδικό Δ.Σ. Ρειραιά 2013 χολικό Βοικθμα Μζροσ Α Αςκιςεισ και παιχνίδια με ευρϊ Γεράςιμοσ Σπίνοσ Πλγα Σουρίδθ Αντί για πρόλογο Οι αςκιςεισ που κα ακολουκιςουν, αναφζρονται ςτθν εκμάκθςθ των χρθμάτων

Διαβάστε περισσότερα

Η αυτεπαγωγή ενός δακτυλίου

Η αυτεπαγωγή ενός δακτυλίου Η αυτεπαγωγή ενός δακτυλίου Υποκζςτε ότι κρατάτε ςτο χζρι ςασ ζναν μεταλλικό δακτφλιο διαμζτρου πχ 5 cm. Ζνασ φυςικόσ πικανότθτα κα προβλθματιςτεί: τι αυτεπαγωγι ζχει άραγε; Νομίηω κα ιταν μια καλι ιδζα

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΤΟΤ. Φιλιοποφλου Ειρινθ

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΤΟΤ. Φιλιοποφλου Ειρινθ ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΤΟΤ Φιλιοποφλου Ειρινθ Βάςθ Δεδομζνων Βάζη δεδομένων είναι μια οπγανωμένη ζςλλογή πληποθοπιών οι οποίερ πποζδιοπίζοςν ένα ζςγκεκπιμένο θέμα.χπηζιμεύοςν ζηην Σςλλογή

Διαβάστε περισσότερα

Δζντρα. Δομζσ Δεδομζνων

Δζντρα. Δομζσ Δεδομζνων Δζντρα Δομζσ Δεδομζνων Περιεχόμενα Δζντρα Γενικζσ ζννοιεσ Κόμβοσ ενόσ δζντρου Δυαδικά δζντρα αναηιτθςθσ Αναηιτθςθ Κόμβου Ειςαγωγι ι δθμιουργία κόμβου Δζντρα Γενικζσ ζννοιεσ Οι προθγοφμενεσ δομζσ που εξετάςτθκαν

Διαβάστε περισσότερα

Κριτήριο αξιολόγησης στη βιολογία κατεύθυνσης

Κριτήριο αξιολόγησης στη βιολογία κατεύθυνσης ΘΕΜΑ Α. Στισ παρακάτω ερωτήςεισ πολλαπλήσ επιλογήσ να ςημειώςετε το γράμμα που αντιςτοιχεί ςτη ςωςτή απάντηςη. Α1. Θ ανκρϊπινθ ινςουλίνθ αποτελείτε από : α. 50 αμινοξζα β. 51 αμινοξζα γ. 52 αμινοξζα δ.

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 2: ΤΟ ΛΟΓΙΣΜΙΚΟ ΤΟΥ ΥΡΟΛΟΓΙΣΤΗ. ΚΕΦΑΛΑΙΟ 7: Ρροςταςία Λογιςμικοφ - Ιοί

ΕΝΟΤΗΤΑ 2: ΤΟ ΛΟΓΙΣΜΙΚΟ ΤΟΥ ΥΡΟΛΟΓΙΣΤΗ. ΚΕΦΑΛΑΙΟ 7: Ρροςταςία Λογιςμικοφ - Ιοί ΕΝΟΤΗΤΑ 2: ΤΟ ΛΟΓΙΣΜΙΚΟ ΤΟΥ ΥΡΟΛΟΓΙΣΤΗ ΚΕΦΑΛΑΙΟ 7: Ρροςταςία Λογιςμικοφ - Ιοί Ρρόγραμμα-ιόσ (virus), Αντιϊικό πρόγραμμα (antivirus), Αντίγραφα αςφαλείασ (backup), Χάκερ (hacker) Είναι οι αποκθκευμζνεσ

Διαβάστε περισσότερα

Σφντομεσ Οδθγίεσ Χριςθσ

Σφντομεσ Οδθγίεσ Χριςθσ Σφντομεσ Οδθγίεσ Χριςθσ Περιεχόμενα 1. Επαφζσ... 3 2. Ημερολόγιο Επιςκζψεων... 4 3. Εκκρεμότθτεσ... 5 4. Οικονομικά... 6 5. Το 4doctors ςτο κινθτό ςου... 8 6. Υποςτιριξθ... 8 2 1. Επαφζσ Στισ «Επαφζσ»

Διαβάστε περισσότερα

Επικοινωνία, ομιλία και γλώςςα: Πωσ μπορώ να βοηθήςω;

Επικοινωνία, ομιλία και γλώςςα: Πωσ μπορώ να βοηθήςω; Επικοινωνία, ομιλία και γλώςςα: Πωσ μπορώ να βοηθήςω; Μετάφραςθ: Φανι Καραμανϊλθ Εάν ζχετε ζνα μωρό με ςφνδρομο Down ίςωσ θ μζρα που κα μπορεί να μιλιςει να ςασ φαίνεται πολφ μακρινι. Στα πρϊτα ςτάδια

Διαβάστε περισσότερα

Ανάπτυξη Εφαρμογών με Σχεςιακέσ Βάςεισ Δεδομένων

Ανάπτυξη Εφαρμογών με Σχεςιακέσ Βάςεισ Δεδομένων Ανάπτυξη Εφαρμογών με Σχεςιακέσ Βάςεισ Δεδομένων Δρ. Θεοδώρου Παύλοσ theodorou@uoc.gr Περιεχόμενα Τι είναι οι Βάςεισ Δεδομζνων (DataBases) Τι είναι Σφςτθμα Διαχείριςθσ Βάςεων Δεδομζνων (DBMS) Οι Στόχοι

Διαβάστε περισσότερα

Τ.Ε.Ι. Κεντρική Μακεδονίας Πύλη Διδακτικού Υλικού. Οδθγίεσ κατάκεςθσ διδακτικοφ υλικοφ ςτθν Πφλθ Διδακτικοφ Υλικοφ "Μελετθτιριο"

Τ.Ε.Ι. Κεντρική Μακεδονίας Πύλη Διδακτικού Υλικού. Οδθγίεσ κατάκεςθσ διδακτικοφ υλικοφ ςτθν Πφλθ Διδακτικοφ Υλικοφ Μελετθτιριο Τ.Ε.Ι. Κεντρική Μακεδονίας Πύλη Διδακτικού Υλικού Οδθγίεσ κατάκεςθσ διδακτικοφ υλικοφ ςτθν Πφλθ Διδακτικοφ Υλικοφ "Μελετθτιριο" 1 Κατάκεςθ διδακτικοφ υλικοφ ςτο "Μελετθτιριο" 1. Είςοδοσ ςτο ςύςτημα 1.

Διαβάστε περισσότερα

Διαδικασία με βήματα. 1. Αλλάηω το χρϊμα ςκθνικοφ ςε γκρι(#3333).

Διαδικασία με βήματα. 1. Αλλάηω το χρϊμα ςκθνικοφ ςε γκρι(#3333). Διαδικασία με βήματα 1. Αλλάηω το χρϊμα ςκθνικοφ ςε γκρι(#3333). 2. Διαλζγω το Polystar Tool. Από τα Options κάνω το Polygon ςε Star και τα υπόλοιπα όπωσ είναι. Ζωγραφίηω ζνα αςτζρι πάνω αριςτερά. Fill

Διαβάστε περισσότερα

Ζπειτα κάναμε μια ςυηιτθςθ και εκφράςαμε τισ απορίεσ που είχαμε. Όλεσ οι ερωτιςεισ που κάναμε ςτον κ. Γιάννθ είναι: Επ : Πωρ μοξπώ μα

Ζπειτα κάναμε μια ςυηιτθςθ και εκφράςαμε τισ απορίεσ που είχαμε. Όλεσ οι ερωτιςεισ που κάναμε ςτον κ. Γιάννθ είναι: Επ : Πωρ μοξπώ μα Στα πλαίςια του προγράμματοσ Κυκλοφοριακισ Αγωγισ : «Ασ μάκουμε τα ςιματα, μθν πάκουμε ατυχιματα» που υλοποιεί θ τάξθ μασ κατά τθ φετινι ςχολικι χρονιά, τθν Τρίτθ 17 Φεβρουαρίου 2015 πραγματοποιιςαμε επίςκεψθ

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ

Γενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Γενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ Λουκάσ Βλάχοσ Τμιμα Φυςικισ Α.Π.Θ. Θεςςαλονίκθ, 2014 Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ

Διαβάστε περισσότερα

Κατερίνα Χριςτοδοφλου Ψυχολόγοσ Μτπχ.Συμβουλευτικήσ Ψυχολογίασ

Κατερίνα Χριςτοδοφλου Ψυχολόγοσ Μτπχ.Συμβουλευτικήσ Ψυχολογίασ Κατερίνα Χριςτοδοφλου Ψυχολόγοσ Μτπχ.Συμβουλευτικήσ Ψυχολογίασ Περίοδοσ εξετάςεων Προςδοκία για αποτζλεςμα ανάλογο των προςπακειϊν μασ και του χρόνου που αφιερϊκθκε Τι είναι ο φόβοσ των εξετάςεων; Ο φόβοσ

Διαβάστε περισσότερα