Τρύφων Παύλος - Ευκλείδεια Γεωµετρία Α τάξης Γενικού Λυκείου

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Τρύφων Παύλος - Ευκλείδεια Γεωµετρία Α τάξης Γενικού Λυκείου"

Transcript

1 Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου ΩΝΙΕΣ ρισµός: Έστω χ και ψ δύο ηµιευθείες που δεν έχουν κοινό φορέα και έστω p το ηµιεπίπεδο που έχει ακµή τον φορέα της Oχ και περιέχει την ψ και q το ηµιεπίπεδο που έχει ακµή τον φορέα της ψ και περιέχει την χ. νοµάζουµε (κυρτή) γωνία το σύνολο των κοινών σηµείων των ηµιεπιπέδων p και q. Το σηµείο λέγεται κορυφή της γωνίας και οι ηµιευθείες χ, ψ λέγονται πλευρές της γωνίας. Τα σηµεία µιας γωνίας που δεν ανήκουν στις πλευρές της λέγονται εσωτερικά. εσωτερικό της γωνίας q p χ ψ Είδη γωνιών: Ευθεία γωνία λέγεται η γωνία της οποίας οι πλευρές χ και ψ είναι αντικείµενες ηµιευθείες(δηλ. η µια είναι προέκταση της άλλης) ευθεία γωνία ψ χ Πλήρης γωνία λέγεται η γωνία της οποίας τα σηµεία είναι όλα τα σηµεία του επιπέδου. πλήρης γωνία χ Μηδενική γωνία λέγεται η γωνία της οποίας τα σηµεία είναι τα σηµεία µιας ηµιευθείας και µόνο αυτά. µηδενική γωνία χ ρισµός: ιχοτόµος µια γωνίας χ ψ ονοµάζεται η ηµιευθεία δ που βρίσκεται στο εσωτερικό της γωνίας και η οποία είναι τέτοια ώστε χ δ = δψ. χ δ ΚΘΕ ΩΝΙ ΕΧΕΙ ΜΝΙΚΗ ΙΧΤΜ! ίσες γωνίες ψ ψ ρθή ονοµάζεται η γωνία η οποία είναι ίση µε το µισό µιας ευθείας γωνίας. ορθή γωνία (συµβολίζουµε: L χ ψ = 1 ) χ χ

2 Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου ξεία ονοµάζεται η γωνία που είναι µικρότερη από την ορθή γωνία. οξεία γωνία χ (συµβολίζουµε: L χ ψ < 1 ) ψ µβλεία ονοµάζεται η γωνία που είναι µεγαλύτερη από την ορθή γωνία. χ αµβλεία γωνία (συµβολίζουµε: L χ ψ > 1 ) ψ ύο τεµνόµενες ευθείες ε και ε ονοµάζονται κάθετες, όταν σχηµατίζουν ορθή γωνία. ν ε και ε ευθείες κάθετες, τότε γράφουµε (συµβολίζουµε) ε ε. ε ε ύο γωνίες ονοµάζονται κατακορυφήν, όταν έχουν κοινή κορυφή και οι πλευρές της µίας είναι προεκτάσεις των πλευρών της άλλης. Στο διπλανό σχήµα, αν χχ και ψψ δύο τεµνόµενες ευθείες, τότε οι γωνίες χ ψ, χ ψ είναι κατακορυφήν. Το ίδιο συµβαίνει και για τις γωνίες χψ, χ ψ. ψ χ κατακορυφήν γωνίες ψ χ ύο γωνίες λέγονται παραπληρωµατικές όταν έχουν άθροισµα µια ευθεία γωνία. (αν δύο γωνίες είναι παραπληρωµατικές τότε λέµε πως η µία είναι παραπλήρωµα της άλλης) ύο γωνίες λέγονται συµπληρωµατικές όταν έχουν άθροισµα ίσο µε µια ορθή γωνία. (αν δύο γωνίες είναι συµπληρωµατικές, τότε λέµε πως η µία είναι συµπλήρωµα της άλλης) οι γωνίες φ,ω είναι παραπληρωµατικές οι γωνίες είναι συµπληρωµατικές

3 Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου ύο γωνίες λέγονται εφεξής ή διαδοχικές, όταν 1. έχουν µια κοινή πλευρά, 2. έχουν κοινή κορυφή και 3. δεν έχουν κοινά εσωτερικά σηµεία. χ ψ χ χ O ψ ψ z z z t χ ψ, ψ z εφεξής γωνίες χ ψ, ψ z όχι εφεξής γωνίες ψ, z t χ όχι εφεξής γωνίες χ t, ψ z όχι εφεξής γωνίες ύο κατακορυφήν γωνίες είναι ίσες. ι διχοτόµοι δύο κατακορυφήν γωνιών είναι αντικείµενες ηµιευθείες. ι διχοτόµοι δύο εφεξής και παραπληρωµατικών γωνιών είναι κάθετες ηµιευθείες. Μεσοκάθετη ευθύγραµµου τµήµατος ονοµάζεται η ευθεία ε που είναι κάθετη στο και διέρχεται από το µέσο του Μ. ν η ευθεία ε είναι µεσοκάθετη του, τότε τα σηµεία, ονοµάζονται συµµετρικά ως προς την ε. ε Μ ΣΤΙΧΕΙ ΚΥΚΥ Κύκλος µε κέντρο το σηµείο και ακτίνα το ευθύγραµµο τµήµα που έχει µήκος ρ λέγεται το σύνολο των σηµείων του επιπέδου που απέχουν από το απόσταση ρ. κύκλος µε κέντρο και ακτίνα ρ συµβολίζεται µε (,ρ). Κάθε σηµείο Μ για το οποίο είναι (Μ)<ρ λέγεται εσωτερικό σηµείο του κύκλου (,ρ), ενώ κάθε σηµείο Ν για το οποίο είναι (Ν)>ρ λέγεται εξωτερικό σηµείο του κύκλου (,ρ). ρ Ν Μ :σηµείο του κύκλου

4 Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου Κυκλικός δίσκος ονοµάζεται το σχήµα που αποτελείται από τα σηµεία ενός κύκλου (,ρ) και από το σύνολο των εσωτερικών σηµείων του. ρ κυκλικός δίσκος Χορδή ενός κύκλου (,ρ) λέγεται κάθε ευθύγραµµο τµήµα που τα άκρα του είναι σηµεία του κύκλου. ιάµετρος ενός κύκλου (,ρ) λέγεται κάθε χορδή του κύκλου που διέρχεται από το κέντρο του.(ν διάµετρος τότε τα σηµεία και ονοµάζονται αντιδιαµετρικά). ρ ρ Η σχέση που συνδέει µια διάµετρο και την ακτίνα ενός κύκλου είναι: (διάµετρος)=2(ακτίνα). :χορδή,: διάµετρος. =2. ρ=ρ ύο κύκλοι (,ρ) και (,ρ ) λέγονται ίσοι όταν έχουν ίσες ακτίνες, δηλαδή (,ρ)=( ρ ) ρ=ρ. (ίσοι κύκλοι µε την έννοια ότι µε κατάλληλη µετατόπιση του ενός κύκλου µπορεί να ταυτιστεί µε τον άλλον). (,ρ) ( ρ ) οι ίσοι κύκλοι µε κατάλληλη µετατόπιση ταυτίζονται Τόξο ενός κύκλου ονοµάζεται το καθένα από τα δύο µέρη στα οποία χωρίζεται ο κύκλος από µια χορδή του. τόξα της χορδής Το τόξο µε άκρα τα σηµεία και συµβολίζεται µε. ια να µπορέσουµε κα περιγράψουµε ποιο από τα δύο τόξα εννοούµε µε την γραφή, συµβολίζουµε Κ το ένα από τα δύο τόξα και µε µε το άλλο τόξο, όπου Κ, σηµεία του κύκλου. ν η χορδή είναι διάµετρος τότε τα δύο τόξα στα οποία χωρίζεται ο κύκλος ονοµάζονται ηµικύκλια. Κ Τοποθετούµε σηµεία Κ, στον κύκλο προκειµένου να ξεχωρίζουµε τα δύο τόξα. αν διάµετρος τότε ηµικύκλια

5 Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου Επίκεντρη γωνία ονοµάζεται κάθε γωνία της οποίας η κορυφή είναι το κέντρο ενός κύκλου. χ αντίστοιχο τόξο επίκεντρης Έτσι η γωνία χ ψ του σχήµατος είναι επίκεντρη και λέµε ότι η επίκεντρη γωνία βαίνει στο τόξο ή ότι το τόξο είναι αντίστοιχο της επίκεντρης γωνίας χ ψ. ψ επίκεντρη γωνία (: το κέντρο του κύκλου) A Πρόταση: Σε ένα κύκλο ή σε ίσους κύκλους, ίσες επίκεντρες γωνίες βαίνουν σε ίσα τόξα και αντίστροφα. ηλαδή ισχύει η ισοδυναµία: = =. O B Πόρισµα 1: ύο κάθετοι διάµετροι και ενός κύκλου χωρίζουν τον κύκλο (,ρ) σε τέσσερα ίσα τόξα (που το καθένα ονοµάζεται τεταρτοκύκλιο). ρ τεταρτοκύκλιο Πόρισµα 2: Κάθε τόξο ενός κύκλου έχει µοναδικό µέσο. ηλαδή αν ένα τόξο κύκλου (,ρ) τότε υπάρχει µοναδικό σηµείο Μ του κύκλου τέτοιο, ώστε Μ =Μ. ρ Μ ΠΡΣΧΗ: (α) (β) (γ) Η σύγκριση και οι πράξεις τόξων ανάγονται στη σύγκριση και τις πράξεις των αντίστοιχων επίκεντρων γωνιών τους. Τα τόξα άνισων κύκλων δεν είναι συγκρίσιµα! Μέτρο µια γωνίας είναι το µέτρο του αντίστοιχου τόξου της όταν αυτή καταστεί επίκεντρη.

6 Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου ΤΡΙΩΝ Έστω, και τρία διαφορετικά µη συνευθειακά σηµεία. Το σχήµα που αποτελείται από τα ευθύγραµµα τµήµατα, και λέγεται τρίγωνο (συµβολίζουµε ). Τα σηµεία,, λέγονται κορυφές του τριγώνου, τα τµήµατα, και λέγονται πλευρές το τριγώνου και οι γωνίες,, λέγονται γωνίες του τριγώνου. ι πλευρές, και συµβολίζονται µε α,β,γ αντίστοιχα και οι γωνίες,, συµβολίζονται µε,, αντίστοιχα. ι πλευρές και οι γωνίες ενός τριγώνου λέγονται κύρια στοιχεία του τριγώνου. γ α β Κάθε γωνία που είναι εφεξής και παραπληρωµατική µιας γωνίας του τριγώνου λέγεται εξωτερική γωνία του τριγώνου. τριγώνου ια παράδειγµα η γωνία και την συµβολίζουµε εξ. χ είναι εξωτερική γωνία του εξωτερική γωνιά της γωνίας χ ιάµεσος ενός τριγώνου λέγεται το τµήµα µε άκρα µια κορυφή του τριγώνου και το µέσο της απέναντι πλευράς του. ι διάµεσοι που αντιστοιχούν στις πλευρές α,β,γ συµβολίζονται µε µ α, µ β, µ γ αντίστοιχα. γ µ α β Εσωτερική διχοτόµος ή απλά διχοτόµος µιας γωνίας ενός τριγώνου λέγεται το ευθύγραµµο τµήµα της διχοτόµου της γωνίας από την κορυφή της µέχρι την απέναντι πλευρά ι διχοτόµοι που αντιστοιχούν στις πλευρές α,β,γ συµβολίζονται µε δ α, δ β, δ γ αντίστοιχα. δ β β Ύψος ενός τριγώνου λέγεται το κάθετο τµήµα από µια κορυφή του τριγώνου προς την ευθεία της απέναντι πλευράς του. Τα ύψη που αντιστοιχούν στις πλευρές α,β,γ συµβολίζονται µε υ α, υ β, υ γ αντίστοιχα γ υ γ

7 Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου Ισοσκελές ονοµάζεται το τρίγωνο το οποίο έχει δύο πλευρές ίσες Ισόπλευρο ονοµάζεται το τρίγωνο το οποίο έχει όλες τις πλευρές του ίσες. Σκαληνό ονοµάζεται το τρίγωνο το οποίο έχει τις πλευρές του άνισες ανά δύο. διάκριση τριγώνων ως προς τις πλευρές του. ρθογώνιο ονοµάζεται το τρίγωνο το οποίο έχει µία ορθή γωνία. µβλυγώνιο ονοµάζεται το τρίγωνο το οποίο έχει µία αµβλεία γωνία. ξυγώνιο ονοµάζεται το τρίγωνο το οποίο έχει όλες του τις γωνίες οξείες. διάκριση τριγώνων ως προς τις γωνίες του. ΙΣΤΗΤ ΤΡΙΩΝΩΝ ΚΙ ΠΤΕΕΣΜΤ ύο τρίγωνα λέγονται ίσα όταν µε κατάλληλη µετατόπιση µπορούν να ταυτιστούν, δηλαδή όταν έχουν τις πλευρές τους ίσες µια προς µια και τις απέναντι των ίσων πλευρών γωνίες όσες. ι παρακάτω προτάσεις µας επιτρέπουν να διαπιστώσουµε την ισότητα δύο τριγώνων δίχως την µετατόπιση αυτών! (για παράδειγµα µε διαφανές χαρτί). ι προτάσεις αυτές λέγονται κριτήρια ισότητας τριγώνων: 1ο κριτήριο: ν δύο τρίγωνα έχουν δύο πλευρές ίσες µια προς µια και τις περιεχόµενες σε αυτές γωνίες ίσες, τότε είναι ίσα. ηλαδή αν =, = και = τότε =. 2ο κριτήριο: ν µια πλευρά ενός τριγώνου είναι ίση µε µια πλευρά ενός άλλου τριγώνου και οι προσκείµενες γωνίες των πλευρών αυτών είναι ίσες µια προς µια, τότε είναι ίσα. ηλαδή αν =, = και = τότε =. 3ο κριτήριο: ν οι πλευρές ενός τριγώνου είναι ίσες µια προς µια µε τις πλευρές ενός άλλου τριγώνου, τότε είναι ίσα. ηλαδή αν =, = και = τότε =.

8 Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου Στην ειδική περίπτωση που έχουµε ορθογώνια τρίγωνα, έχουµε τα εξής κριτήρια ισότητας ορθογωνίων τριγώνων: 1 ο κριτήριο: ν δύο ορθογώνια τρίγωνα έχουν τις κάθετες πλευρές τους µια προς µια ίσες τότε είναι ίσα. 2 ο κριτήριο: ν δύο ορθογώνια τρίγωνα έχουν µια κάθετη πλευρά ίση και την προσκείµενη σε αυτή οξεία γωνία ίση µια προς µια, τότε είναι ίσα. 3 ο κριτήριο: ν δύο ορθογώνια τρίγωνα έχουν την υποτείνουσα και µια οξεία γωνία αντίστοιχα ίσες µια προς µια, τότε είναι ίσα. 4 ο κριτήριο: ν δύο ορθογώνια τρίγωνα έχουν την υποτείνουσα και µια κάθετη πλευρά αντίστοιχα ίσες µια προς µια, τότε είναι ίσα. Συνέπειες 1. ι παρά τη βάση γωνίες ισοσκελούς τριγώνου είναι ίσες. 2. ι γωνίες ισόπλευρου τριγώνου είναι ίσες. 3. Η διχοτόµος που αντιστοιχεί στη βάση ισοσκελούς τριγώνου είναι ύψος και διάµεσος. 4. Η διάµεσος που αντιστοιχεί στη βάση ισοσκελούς τριγώνου είναι ύψος και διχοτόµος. 5. Το ύψος που αντιστοιχεί στη βάση ισοσκελούς τριγώνου είναι διάµεσος και διχοτόµος. 6. Η κάθετος από το κέντρο ενός κύκλου προς µια χορδή του διέρχεται από το µέσο της χορδής και από το µέσο του αντίστοιχου τόξου της. 7. Κάθε σηµείο της µεσοκαθέτου ευθύγραµµου τµήµατος ισαπέχει από τα άκρα του τµήµατος και αντίστροφα: κάθε σηµείο που ισαπέχει από τα άκρα ενός ευθύγραµµου τµήµατος ανήκει στη µεσοκάθετό του. 8. Σε ένα κύκλο (ή σε ίσους κύκλους) ισχύει: δύο χορδές είναι ίσες τα αντίστοιχα τόξα είναι ίσα οι αντίστοιχες επίκεντρες γωνίες είναι ίσες τα αντίστοιχα αποστήµατά τους είναι ίσα. 9. Κάθε σηµείο της διχοτόµου µια γωνίας ισαπέχει από τις πλευρές της και αντίστροφα: κάθε σηµείο στο εσωτερικό µιας γωνίας που ισαπέχει από τις πλευρές της ανήκει στη διχοτόµο της γωνίας.

9 Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου ΣΥΜΜΕΤΡΙ κεντρική συµµετρία ρισµός 1: ύο σηµεία και ονοµάζονται συµµετρικά ως προς κέντρο συµµετρίας το σηµείο, όταν το είναι µέσο του ευθύγραµµου τµήµατος. ρισµός 2: Ένα γεωµετρικό σχήµα του επιπέδου ονοµάζεται συµµετρικό ως προς ένα σηµείο, όταν για κάθε σηµείο του σχήµατος, το συµµετρικό του ως προς το είναι σηµείο του σχήµατος (τότε το ονοµάζεται κέντρο συµµετρίας του σχήµατος). Παραδείγµατα: 1. Το ευθύγραµµο τµήµα έχει κέντρο συµµετρίας το µέσο του. 2. κύκλος (,ρ) έχει κέντρο συµµετρίας το κέντρο του 3. Το τρίγωνο δεν έχει κέντρο συµµετρίας. αξονική συµµετρία ρισµός 3: ύο σηµεία και ονοµάζονται συµµετρικά ως προς άξονα συµµετρίας την ευθεία ε, όταν η ευθεία ε είναι µεσοκάθετη του ευθύγραµµου τµήµατος. ε ρισµός 4: Ένα γεωµετρικό σχήµα του επιπέδου ονοµάζεται συµµετρικό ως προς µια ευθεία ε, όταν για κάθε σηµείο του σχήµατος, το συµµετρικό του ως προς την ευθεία ε είναι σηµείο του σχήµατος (τότε η ευθεία ε ονοµάζεται άξονας συµµετρίας του σχήµατος). Παραδείγµατα: 1. Η γωνία έχει άξονα συµµετρίας τον φορέα της διχοτόµου της. 2. ένα ευθύγραµµο τµήµα έχει ως άξονες συµµετρίας την µεσοκάθετή του και το φορέα του. 3. Ένα ισοσκελές τρίγωνο έχει άξονα συµµετρίας τον φορέα του ύψους που αντιστοιχεί στη βάση του. 4. Ένα ισόπλευρο τρίγωνο έχει άξονες συµµετρίας τους φορείς των υψών του. 5. Ένας κύκλος έχει άξονα συµµετρίας τον φορές οποιασδήποτε διαµέτρου του.

10 Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου ΝΙΣΤΙΚΕΣ ΣΧΕΣΕΙΣ Πρόταση: Κάθε εξωτερική γωνία τριγώνου είναι µεγαλύτερη καθεµιάς από τις απέναντι εσωτερικές του γωνίες. ηλαδή ισχύει: χ > και χ >. εξ Πόρισµα: Κάθε τρίγωνο έχει το πολύ µια ορθή ή µια αµβλεία γωνία. [πράγµατι: έστω ότι ένα τρίγωνο έχει δύο ορθές γωνίες,. Τότε από την προηγούµενη πρόταση θα έχουµε ότι: εξ > δηλαδή εξ > 90 ο. υτό όµως είναι άτοπο διότι ο + εξ = 180 άρα εξ = 90 ο. Έστω τώρα ότι ένα τρίγωνο αµβλεία έπεται ότι η γωνία εξ έχει δύο αµβλείες γωνίες,. φού η γωνία είναι εξ είναι οξεία γωνία. πό την προηγούµενη πρόταση ισχύει ότι: >. Φτάσαµε λοιπόν σε σχέση της µορφής: (οξεία γωνία > αµβλεία γωνία), άτοπο!] χ Πρόταση: Το άθροισµα δύο γωνιών ενός τριγώνου είναι µικρότερο από 180 ο. [πράγµατι: ισχύει ότι εξ > καθώς και η σχέση +εξ = 180 ο,άρα ο +< 180 ] Πρόταση: Σε ένα τρίγωνο απέναντι από την µεγαλύτερη γωνία βρίσκεται η µεγαλύτερη πλευρά και αντίστροφα. ηλαδή σε τρίγωνο ισχύει: β>γ >. γ β Συνέπειες ν ένα τρίγωνο έχει δύο γωνίες ίσες, τότε οι πλευρές που βρίσκονται απέναντι από αυτές τις γωνίες είναι ίσες. Η µεγαλύτερη πλευρά ορθογωνίου (αντίστοιχα αµβλυγώνιου) τριγώνου είναι αυτή που βρίσκεται απέναντι από την ορθή (αντίστοιχα. αµβλεία) γωνία.

11 Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου Μια από τις σπουδαιότερες ανισοτικές σχέσεις σε ένα τρίγωνο είναι η λεγόµενη τριγωνική ανισότητα: «Κάθε πλευρά ενός τριγώνου είναι µικρότερη από το άθροισµα των δύο άλλων πλευρών και µεγαλύτερη από τη διαφορά τους». ηλαδή σε κάθε τρίγωνο µε πλευρές α,β,γ ισχύει: β-γ <α<β+γ Παρατήρηση! Τρεις θετικοί αριθµοί α,β,γ αποτελούν πλευρές τριγώνου β-γ <α<β+γ α<β+γ και β<α+γ και γ<α+β Πόρισµα: Κάθε χορδή κύκλου είναι µικρότερη ή ίση της διαµέτρου. [πράγµατι: αν χορδή κύκλου (,ρ) τότε από την τριγωνική ανισότητα στο τρίγωνο O παίρνουµε: <ρ+ρ=2ρ=διάµετρος. Η ισότητα ισχύει όταν είναι διάµετρος]. ρ ρ Πρόταση: ν ευθεία ε και σηµείο εκτός αυτής, τότε το κάθετο τµήµα από το προς την ε είναι µικρότερο από κάθε άλλο πλάγιο τµήµα προς την ε που περνά από το σηµείο. (δηλαδή η απόσταση του από την ε είναι µικρότερη από την απόσταση του από τυχόν σηµείο της ευθείας). Έτσι στο διπλανό σχήµα τα έχουµε: AM<Ν, Μ<, Μ<Κ Ν Μ ε Κ Πρόταση: Τα ίχνη δύο άνισων πλάγιων ευθύγραµµων τµηµάτων απέχουν οµοίως άνισα από το ίχνος της κάθετης και αντίστροφα. Έτσι στο διπλανό σχήµα τα έχουµε: > >.

12 Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου ΣΧΕΤΙΚΕΣ ΘΕΣΕΙΣ ΕΥΘΕΙΣ ΚΙ ΚΥΚΥ Πρόταση 1: ν α η απόσταση του κέντρου ενός κύκλου (,ρ) από µία ευθεία χ χ, τότε: o Η ευθεία και ο κύκλος δεν έχουν κοινά σηµεία α>ρ o Η ευθεία και ο κύκλος έχουν ακριβώς δυο κοινά σηµεία α<ρ o Η ευθεία και ο κύκλος έχουν ένα µόνο κοινό σηµείο α=ρ. {σε αυτήν την περίπτωση η ευθεία χ χ λέγεται εφαπτοµένη του κύκλου (,ρ) και όταν υπάρχει είναι µοναδική. Το κοινό σηµείο ευθείας και κύκλου λέγεται σηµείο επαφής. Η ακτίνα που καταλήγει στο σηµείο επαφής είναι κάθετη στην εφαπτοµένη}. α >ρ α<ρ α=ρ χ α α χ χ χ δύο κοινά σηµεία ευθείας και κύκλου χ α σηµείο επαφής χ Πρόταση 2: (α) πό σηµείο εκτός κύκλου µπορούµε να φέρουµε ακριβώς δύο εφαπτόµενες προς τον κύκλο. (β) Τα εφαπτόµενα τµήµατα P και P προς κύκλο από σηµείο P εκτός αυτού είναι ίσα και η ευθεία P διχοτοµεί τις γωνίες A P B και A B. ηλαδή ισχύει: P=P, O 1 = O 2 και P 1 = P 2.,: ακτίνες του κύκλου,: σηµεία επαφής A O P B

13 Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου ΣΧΕΤΙΚΕΣ ΘΕΣΕΙΣ Υ ΚΥΚΩΝ ρισµός: ιάκεντρος δύο κύκλων (Κ,R) και (,ρ) ονοµάζεται το ευθύγραµµο τµήµα Κ µε άκρα τα κέντρα των κύκλων. Συµβολίζεται µε δ, δηλαδή δ= διάκεντρος=κ. δ=r+ρ το σηµείο επαφής και τα κέντρα Κ, είναι συνευθειακά! Πρόταση 1: ν για δύο κύκλους (Κ,R) και (,ρ) µε R>ρ ισχύει δ=r+ρ ή δ=r-ρ τότε οι κύκλοι έχουν µοναδικό κοινό σηµείο, και αντίστροφα. Στην περίπτωση αυτή οι κύκλοι λέγονται εφαπτόµενοι. ν ο ένας κύκλος βρίσκεται στο εξωτερικό του άλλου, τότε λέµε ότι οι κύκλοι εφάπτονται εξωτερικά και ισχύει δ=r+ρ. ν ο ένας κύκλος βρίσκεται στο εσωτερικό του άλλου, τότε λέµε ότι οι κύκλοι εφάπτονται εσωτερικά και ισχύει δ=r-ρ. δ=r-ρ Κ A διάκεντρος των δύο κύκλων Κ R-ρ<δ< R+ρ Πρόταση 2: ν για δύο κύκλους (Κ,R) και (,ρ) µε R>ρ ισχύει R-ρ<δ< R+ρ, τότε οι κύκλοι έχουν δύο κοινά σηµεία συµµετρικά ως προς την διάκεντρο, και αντίστροφα. Κ η διάκεντρος είναι µεσοκάθετος της κοινής χορδής δ<r-ρ Πρόταση 3: ν για δύο κύκλους (Κ,R) και (,ρ) µε R>ρ ισχύει R+ρ<δ ή δ< R-ρ τότε οι κύκλοι δεν έχουν κοινά σηµεία, και αντίστροφα. ένας κύκλος βρίσκεται στο εξωτερικό του άλλου δ>r+ρ. ν ο ένας κύκλος βρίσκεται στο εσωτερικό του άλλου δ<r-ρ. δ>r+ρ Κ Κ

14 Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου ΠΡΗΕΣ ΕΥΘΕΙΕΣ Τρεις είναι οι δυνατές θέσεις δύο ευθειών στο επίπεδο: ε 1 ε 2 o ή να ταυτίζονται (το οποίο συµβαίνει όταν έχουν δύο κοινά σηµεία) o ή να τέµνονται (το οποίο συµβαίνει όταν έχουν ένα κοινό σηµείο) o ή να µην τέµνονται (το οποίο συµβαίνει όταν δεν έχουν κοινό σηµείο) ύο ευθείες ε 1, ε 2 του ίδιου επιπέδου που δεν τέµνονται ονοµάζονται παράλληλες και συµβολίζουµε ε 1 //ε 2. ε 1 ε 2 ε 1 ε 2 σηµείο τοµής των ευθειών Έστω δύο ευθείες ε 1, ε 2 και µια ευθεία δ τέµνουσα αυτών. ια να ονοµάσουµε ένα ζευγάρι γωνιών που αποτελείται από µια γωνία µε κορυφή το και από µια γωνία µε κορυφή το, χρησιµοποιούµε τους εξής όρους: (α) «εντός», αν και οι δύο γωνίες περιέχονται µεταξύ των ευθειών ε 1, ε 2 (β) «εκτός», αν και οι δύο γωνίες δεν περιέχονται µεταξύ των ευθειών ε 1, ε 2 (γ) «επί τα αυτά», αν και οι δύο γωνίες βρίσκονται προς το ίδιο µέρος της τέµνουσας δ (δ) «εναλλάξ», αν και οι δύο γωνίες βρίσκονται εκατέρωθεν της δ. ια παράδειγµα, για το ζευγάρι των 1, 1 χρησιµοποιούµε την ονοµασία «εντός εναλλάξ», για το ζευγάρι των 1, 3 χρησιµοποιούµε την ονοµασία «εντός, εκτός και επί τα αυτά», ενώ για το ζευγάρι των 1, 4 χρησιµοποιούµε την ονοµασία «εντός, εκτός εναλλάξ» κ.λ.π. ε ε δ H παρακάτω πρόταση δίνει ένα κριτήριο παραλληλίας δύο ευθειών. Πρόταση: (α) ν δύο ευθείες τεµνόµενες από µια τρίτη σχηµατίζουν δύο εντός εναλλάξ γωνίες ίσες, τότε είναι παράλληλες. (β) ν δύο ευθείες τεµνόµενες από µια τρίτη σχηµατίζουν δύο εντός, εκτός και επί τα αυτά γωνίες ίσες, τότε είναι παράλληλες. (γ) ν δύο ευθείες τεµνόµενες από µια τρίτη σχηµατίζουν δύο εντός και επί τα αυτά γωνίες παραπληρωµατικές, τότε οι ευθείες είναι παράλληλες.

15 Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου ξίωµα παραλληλίας [ή 5 ο ίτηµα του Ευκλείδη]: πό σηµείο εκτός ευθείας άγεται µοναδική παράλληλη προς αυτή. Συνέπεια 1: (α)ν δύο ευθείες είναι παράλληλες προς µια τρίτη ευθεία, τότε είναι και µεταξύ τους παράλληλες, (β) ν µια ευθεία τέµνει τη µια από δύο παράλληλες ευθείες, τότε θα τέµνει και την άλλη. Συνέπεια 2: ν δύο ευθείες τέµνονται από µια τρίτη και σχηµατίζουν δύο εντός και επί τα αυτά µέρη γωνίες µε άθροισµα µικρότερο από 180 ο, τότε οι ευθείες τέµνονται προς το µέρος της τέµνουσας που βρίσκονται οι γωνίες αυτές. ηλαδή αν 1 +1 < 180 τότε οι ευθείες ε 1 και ε 2 τέµνονται προς το µέρος των γωνιών 1 και 1. ε 1 ε 2 1 δ < 180 Συνέπεια 3: ν δύο γωνίες έχουν παράλληλες τις πλευρές τους τότε: (α) αν είναι και οι δύο οξείες ή και οι δύο αµβλείες, τότε είναι ίσες, (β) αν η µία είναι οξεία και η άλλη αµβλεία, τότε είναι παραπληρωµατικές. Συνέπεια 4: Το άθροισµα των γωνιών ενός τριγώνου είναι ίσο µε 180 ο. [πράγµατι, από µια κορυφή του τριγώνου, π.χ. την, φέρνουµε ευθεία χχ //. Τότε οι γωνίες χ και είναι ίσες ως εντός εναλλάξ γωνίες των παράλληλων ευθειών χχ, µε τέµνουσα την. Παρόµοια οι γωνίες χ και είναι ίσες. πότε: χ++ χ = ευθεία γωνία= ++= ++ ]. χ χ Συνέπεια 5: Κάθε εξωτερική γωνία ενός τριγώνου είναι ίση µε το άθροισµα των δύο απέναντι εσωτερικών γωνιών του τριγώνου. εξ =+ χ Συνέπεια 6: ν δύο τρίγωνα έχουν δύο γωνίες ίσες, τότε έχουν όλες τους τις γωνίες ίσες. Συνέπεια 7: ι οξείες γωνίες ενός ορθογωνίου τριγώνου είναι συµπληρωµατικές. Συνέπεια 8: Κάθε γωνία ισόπλευρου τριγώνου είναι ίση µε 60 ο. Συνέπεια 9: ύο οξείες (ή δύο αµβλείες) γωνίες µε πλευρές κάθετες είναι ίσες. Συνέπεια 10: ύο γωνίες µε πλευρές κάθετες, αλλά η µια να είναι οξεία και η άλλη αµβλεία, είναι παραπληρωµατικές.

16 Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου ΠΡΗΡΜΜ ρισµός: Παραλληλόγραµµο ονοµάζεται κάθε τετράπλευρο του οποίου οι απέναντι πλευρές είναι παράλληλες. ηλαδή το είναι παραλληλόγραµµο // και // Ιδιότητες παραλληλογράµµου: Σε κάθε παραλληλόγραµµο ισχύουν: (α) οι απέναντι πλευρές του είναι ίσες, (β) οι απέναντι γωνίες του είναι ίσες, (γ) οι διαγώνιοί του διχοτοµούνται (δηλ. έχουν κοινό µέσο ). σχήµα 1 =, Έτσι για το παραλληλόγραµµο του διπλανού σχήµατος 1 ισχύει αντίστοιχα: =, =, =, = και =. Πόρισµα 1: Παράλληλα τµήµατα µεταξύ παραλλήλων είναι ίσα. (στην περίπτωση που τα παράλληλα τµήµατα µεταξύ των παραλλήλων είναι κάθετα στις ε 1, ε 2 τότε το κοινό µήκος τους λέγεται απόσταση των παραλλήλων). ε 1 Ζ ηλαδή αν ε 1 //ε 2 και ////ΕΖ, τότε ==ΕΖ. [πράγµατι: το τετράπλευρο είναι παραλληλόγραµµο διότι έχει παράλληλες τις πλευρές του. Άρα =. Παρόµοια ισχύει =ΕΖ διότι το τετράπλευρο ΕΖ είναι παραλληλόγραµµο]. ε 2 ε 1 //ε 2 Ε Πόρισµα 2: Το σηµείο τοµής των διαγωνίων του παραλληλογράµµου είναι κέντρο συµµετρίας του. [πράγµατι: Στο σχήµα 1 παραπάνω έχουµε ότι: (το είναι συµµετρικό του ως προς το ) και (το είναι συµµετρικό του ως προς το ). Άρα από την εφαρµογή σελ. 51 του σχολικού βιβλίου, το συµµετρικό του ως προς το είναι το. Παρόµοια δείχνουµε ότι το συµµετρικό του ως προς το είναι το ]. Πρόταση: ν ένα τετράπλευρο έχει κάποια από τις ιδιότητες: - οι απέναντι πλευρές του είναι ίσες, - δύο απέναντι πλευρές του είναι ίσες + παράλληλες, - οι απέναντι γωνίες του είναι ίσες, - οι διαγώνιοί του διχοτοµούνται, Η πρόταση αυτή αποτελεί κριτήριο διαπίστωσης αν ένα τετράπλευρο είναι παραλληλόγραµµο! τότε το τετράπλευρο είναι παραλληλόγραµµο.

17 Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου ρισµός: Ένα τετράπλευρο ονοµάζεται ορθογώνιο όταν είναι παραλληλόγραµµο και έχει µια ορθή γωνία. Πρόταση: ι διαγώνιες ενός ορθογωνίου είναι ίσες. [πράγµατι: τα τρίγωνα, και είναι ίσα, διότι έχουν== 90, -κοινή και =,οπότε =]. Ιδιότητες ορθογωνίου: Σε κάθε ορθογώνιο ισχύουν: (α) οι απέναντι πλευρές του είναι ίσες και παράλληλες, (β) κάθε γωνία του είναι ορθή, (γ) οι διαγώνιοί του διχοτοµούνται και είναι ίσες ( => ===). Πρόταση: ν ένα τετράπλευρο έχει κάποια από τις ιδιότητες: - είναι παραλληλόγραµµο+έχει µια ορθή γωνία, - είναι παραλληλόγραµµο+και οι διαγώνιοί του είναι ίσες, - έχει τρεις ορθές γωνίες, - όλες του οι γωνίες είναι ίσες, Η πρόταση αυτή αποτελεί κριτήριο διαπίστωσης αν ένα τετράπλευρο είναι ορθογώνιο! τότε το τετράπλευρο είναι ορθογώνιο. ρισµός: Ένα τετράπλευρο ονοµάζεται ρόµβος όταν είναι παραλληλόγραµµο και έχει δύο διαδοχικές πλευρές ίσες. Ιδιότητες ρόµβου: Σε κάθε ρόµβο ισχύουν: (α) όλες οι ιδιότητες του παραλληλογράµµου (β) όλες οι πλευρές του είναι ίσες, (γ) οι διαγώνιοί του τέµνονται κάθετα και διχοτοµούν τις γωνίες του. Πρόταση: ν ένα τετράπλευρο έχει κάποια από τις ιδιότητες: - όλες οι πλευρές του είναι ίσες, - είναι παραλ/µµο+δύο διαδοχικές πλευρές του είναι ίσες, - είναι παραλ/µµο+οι διαγώνιοί του τέµνονται κάθετα, - είναι παραλ/µµο+µια διαγώνιός του διχοτοµεί µια γωνία του, Η πρόταση αυτή αποτελεί κριτήριο διαπίστωσης αν ένα τετράπλευρο είναι ρόµβος! τότε το τετράπλευρο είναι ρόµβος.

18 Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου ρισµός: Ένα τετράπλευρο ονοµάζεται τετράγωνο όταν είναι ορθογώνιο και ρόµβος. Κατά συνέπεια ένα τετράγωνο έχει ΌΕΣ τις ιδιότητες του ορθογωνίου και του ρόµβου! Κάνοντας συνδυασµό των ιδιοτήτων του ορθογωνίου και του ρόµβου, προκύπτει άµεσα η παρακάτω: Πρόταση: ν ένα τετράπλευρο έχει κάποια από τις ιδιότητες: - είναι παραλληλόγραµµο+έχει µια ορθή γωνία+δύο διαδοχικές πλευρές του είναι ίσες, - είναι παραλληλόγραµµο+έχει µια ορθή γωνία +µια διαγώνιός του διχοτοµεί µια γωνία του, - είναι παραλληλόγραµµο+έχει µια ορθή γωνία + οι διαγώνιοί του είναι κάθετες, - είναι παραλληλόγραµµο+ και έχει δύο διαδοχικές πλευρές ίσες+οι διαγώνιοί του είναι επίσης ίσες, - είναι παραλληλόγραµµο+ οι διαγώνιοί του είναι ίσες και κάθετες, - είναι παραλληλόγραµµο+ οι διαγώνιοί του είναι ίσες+ η µια διχοτοµεί µια γωνία του, - έχει τρεις ορθές γωνίες+ όλες οι πλευρές του είναι ίσες, - έχει τρεις ορθές γωνίες+ δύο διαδοχικές πλευρές του είναι ίσες, - έχει τρεις ορθές γωνίες+ οι διαγώνιοί του τέµνονται κάθετα, - έχει τρεις ορθές γωνίες+µια διαγώνιός του διχοτοµεί µια γωνία του, Η πρόταση αυτή αποτελεί κριτήριο διαπίστωσης αν ένα τετράπλευρο είναι τετράγωνο! τότε το τετράπλευρο είναι τετράγωνο.

19 Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου Συγκεντρωτικός πίνακας ιδιοτήτων παραλληλογράµµων και κριτηρίων για παραλληλόγραµµα Επιµέλεια: Π. Τρύφων Παραλληλόγραµµο ρθογώνιο Ρόµβος Τετράγωνο Σχήµα ρισµός Είναι το τετράπλευρο του οποίου οι απέναντι πλευρές είναι παράλληλες. Είναι το παραλληλόγραµµο µε µια ορθή γωνία. Είναι το παραλληλόγραµµο µε δύο διαδοχικές πλευρές ίσες. Είναι το τετράπλευρο που είναι ορθογώνιο και ρόµβος. Ιδιότητες για Πλευρές ι απέναντι πλευρές του είναι ίσες και παράλληλες. ι απέναντι πλευρές του είναι ίσες και παράλληλες. ι απέναντι πλευρές του είναι παράλληλες και όλες ίσες. ι απέναντι πλευρές του είναι παράλληλες και όλες ίσες Ιδιότητες για ωνίες ι απέναντι γωνίες του είναι ίσες. ι διαδοχικές του γωνίες είναι παραπληρωµατικές. Όλες οι γωνίες του είναι ορθές. ι διαδοχικές του γωνίες είναι παραπληρωµατικές. ι απέναντι γωνίες του είναι ίσες. ι διαδοχικές του γωνίες είναι παραπληρωµατικές. Όλες οι γωνίες του είναι ορθές. ι διαγώνιοί του Ιδιότητες για ιαγώνιους ι διαγώνιοί του διχοτοµούνται. ι διαγώνιοί του διχοτοµούνται και είναι ίσες. ι διαγώνιοί του διχοτοµούνται, διχοτοµούν τις γωνίες του και τέµνονται κάθετα διχοτοµούνται, είναι ίσες, διχοτοµούν τις γωνίες του και τέµνονται κάθετα. ια να αποδείξουµε ότι ένα Κριτήρια 1. ι απέναντι πλευρές είναι παράλληλες 2. ι απέναντι πλευρές του είναι ίσες 3. ύο απέναντι πλευρές του είναι ίσες και παράλληλες 4. ι απέναντι γωνίες του είναι ίσες 5. ι διαγώνιοί του διχοτοµούνται. ια να αποδείξουµε ότι ένα τετράπλευρο είναι ορθογώνιο πρέπει πρώτα να αποδείξουµε ότι είναι παραλληλόγραµµο και µετά ότι ισχύει ένα από τα: 1. Μια γωνία του είναι ορθή. 2. ι διαγώνιοί του είναι ίσες, ή χωρίς να αποδείξουµε ότι είναι παραλληλόγραµµο, αρκεί να αποδείξουµε ότι: 1. Έχει τρεις ορθές γωνίες. 2. Όλες οι γωνίες του είναι ίσες. τετράπλευρο είναι ρόµβος πρώτα αποδεικνύουµε ότι είναι παραλληλόγραµµο και µετά ότι ισχύει ένα από τα: 1. ύο διαδοχικές πλευρές του είναι ίσες. 2. ι διαγώνιοί του τέµνονται κάθετα. 3. Μια διαγώνιός του διχοτοµεί µια γωνία του, ή χωρίς να αποδείξουµε ότι είναι παραλληλόγραµµο, αρκεί να αποδείξουµε ότι ια να αποδείξουµε ότι ένα τετράπλευρο είναι τετράγωνο πρέπει να αποδείξουµε ότι είναι ορθογώνιο και ρόµβος. έχεις όλες τις πλευρές του ίσες.

20 Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου ΕΦΡΜΕΣ ΤΩΝ ΠΡΗΡΜΜΩΝ 1 η εφαρµογή: Σε ένα τρίγωνο, το ευθύγραµµο τµήµα που ενώνει τα µέσα δύο πλευρών του είναι παράλληλο προς την τρίτη πλευρά και ίσο µε το µισό της. ηλαδή αν Μ,Ν είναι τα µέσα των πλευρών και αντίστοιχα του τριγώνου, τότε ΜΝ// και ΜΝ =. 2 Μ Ν 2 η εφαρµογή: Σε ένα τρίγωνο, αν από το µέσο µια πλευράς φέρουµε παράλληλη προς µια άλλη πλευρά, τότε η ευθεία αυτή διέρχεται από το µέσο της τρίτης πλευράς του τριγώνου. ηλαδή αν Μ=Μ και ε// τότε Ν=Ν. [πράγµατι:θεωρούµε Ν//, οπότε το τετράπλευρο ΜΝ είναι παραλληλόγραµµο διότι έχει τις απέναντι πλευρές του παράλληλες. Άρα Ν=Μ=Μ. Τώρα τα τρίγωνα ΜΝ Ν είναι ίσα (διότι έχουν Μ=Ν, ΜΝ( =) = Ν και ΜΝ=Ν). Άρα Ν=Ν]. 3 η εφαρµογή: ίνεται ευθεία ε και σηµείο εκτός αυτής. Να κατασκευασθεί ευθεία ζ η οποία να διέρχεται από το σηµείο και να είναι παράλληλη προς την ε. [ύση: Θεωρούµε το συµµετρικό του ως προς τυχαίο σηµείο Μ της ευθείας ε και κατόπιν το συµµετρικό του ως προς τυχαίο σηµείο Ν της ε, διαφορετικό του Μ. Η ευθεία ζ που ορίζεται από τα σηµεία και είναι η ζητούµενη, διότι από το τρίγωνο και την 1 η εφαρµογή παραπάνω προκύπτει ότι ΜΝ//, δηλαδή ζ//ε]. και Μ Ν ε ζ ε Μ Ν 4 η εφαρµογή: Η διάµεσος ορθογωνίου τριγώνου που αντιστοιχεί στην υποτείνουσα, είναι ίση µε το µισό της υποτείνουσας και αντίστροφα. ο ηλαδή, αν = 90, και Μ-διάµεσος, τότεμ =. ντίστροφα: αν Μ-διάµεσος και ισχύει ο = 90. Μ =, τότε 2 [πράγµατι: Θεωρούµε στην προέκταση της Μ προς το Μ σηµείο τέτοιο, ώστε Μ=Μ και το συµπέρασµα προκύπτει άµεσα από το ορθογώνιο ]. 2 Μ

21 Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου 5 η εφαρµογή: ν σε ένα ορθογώνιο τρίγωνο η µία οξεία γωνία του είναι 30 ο, τότε η απέναντι από αυτή πλευρά ισούται µε το µισό της υποτείνουσας, και αντίστροφα. ο ηλαδή αν = 90 τότε: = = [πράγµατι: θεωρούµε την διάµεσο Μ του τριγώνου που αντιστοιχεί στην υποτείνουσα και χρησιµοποιούµε την 4 η εφαρµογή και το γεγονός ότι σε ένα ισόπλευρο τρίγωνο οι γωνιές του είναι ίσες µε 60 ο η καθεµία]. Μ 6 η εφαρµογή: Τα µέσα των πλευρών τετραπλεύρου είναι κορυφές παραλληλογράµµου. Θ [πράγµατι:θεωρούµε τη διαγώνιο του τετραπλεύρου. Η Παρατηρούµε ότι στα τρίγωνα και λόγω της 1 ης εφαρµογής ισχύει: ΖΗ=// και ΕΘ=// αντίστοιχα. 2 2 Άρα ΖΗ=//ΕΘ, δηλαδή το ΕΖΗΘ είναι παραλληλόγραµµο]. Ε Ζ 7 η εφαρµογή: ν παράλληλες ευθείες ορίζουν σε µια τέµνουσα ευθεία ίσα ευθύγραµµα τµήµατα, τότε θα ορίζουν και σε κάθε άλλη τέµνουσα ευθεία ίσα ευθύγραµµα τµήµατα. ηλαδή αν α//β//γ και =, τότε Ε=ΕΖ. α β Ε γ Ζ 8 η εφαρµογή: Να χωριστεί ένα δεδοµένο ευθύγραµµο τµήµα σε ν ίσα ευθύγραµµα τµήµατα. 1 [ύση:θεωρούµε ηµιευθεία χ και σε αυτήν τα ν ίσα ευθύγραµµα τµήµατα 1 = 1 2 = = ν-1 ν. Κατόπιν φέρνουµε (κατασκευάζουµε) παράλληλες από τα σηµεία 1, 2, ν-1 προς την ευθεία ν. ι παράλληλες αυτές ορίζουν ίσα ευθύγραµµα τµήµατα στην τέµνουσα, διότι ορίζουν ίσα τµήµατα στην τέµνουσα χ από την κατασκευή τους (7 η εφαρµογή) ]. 2 ν-1 ν χ Παρατηρήσεις Πως δείχνουµε ότι ένα ευθύγραµµο τµήµα είναι ίσο µε το µισό ενός άλλου; o Με διάµεσο ορθογωνίου τριγώνου που αντιστοιχεί στην υποτείνουσα o Με γωνία 30 ο ορθογωνίου τριγώνου o Το ευθύγραµµο τµήµα να έχει τα άκρα του στα µέσα πλευρών τριγώνου.

22 Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου ΤΡΠΕΖΙ ρισµός: Ένα τετράπλευρο ονοµάζεται τραπέζιο όταν έχει δύο µόνο απέναντι πλευρές παράλληλες. ι παράλληλες πλευρές ενός τραπεζίου ονοµάζονται βάσεις, ενώ η απόστασή τους ονοµάζεται ύψος του τραπεζίου. ιάµεσος του τραπεζίου, ονοµάζεται το ευθύγραµµο τµήµα που ενώνει τα µέσα των µη παράλληλων πλευρών του. ύψος (υ) µικρή βάση (β) µεγάλη βάση () διάµεσος(δ) Πρόταση: Η διάµεσος ενός τραπεζίου έχει τις εξής ιδιότητες: (α) είναι παράλληλη προς τις βάσεις του τραπεζίου και ίση µε το ηµιάθροισµά τους (β) διέρχεται από τα µέσα Κ, των διαγωνίων του, το τµήµα Κ είναι παράλληλο προς τις βάσεις και ίσο µε την ηµιδιαφορά των βάσεων. + ηλαδή ΜΝ//, και ΜΝ = 2 Επίσης αν Κ, τα µέσα των διαγωνίων και αντίστοιχα, τότε Κ//, και Κ =. 2 Μ Κ // Ν ισοσκελές τραπέζιο ρισµός: Ένα τετράπλευρο ονοµάζεται ισοσκελές τραπέζιο όταν είναι τραπέζιο και οι µη παράλληλες πλευρές του είναι ίσες. Ιδιότητες ισοσκελούς τραπεζίου: Σε κάθε ισοσκελές τραπέζιο ισχύουν: (α) οι παρά τις βάσεις γωνίες είναι ίσες, (β) οι διαγώνιοί του είναι ίσες. A B ηλαδή, αν το είναι ισοσκελές τραπέζιο µε // και =, τότε: =, = και =. Πρόταση: ν ένα τετράπλευρο έχει κάποια από τις ιδιότητες: (a) είναι τραπέζιο +οι γωνίες που πρόσκεινται σε µια βάση είναι ίσες, (β) είναι τραπέζιο+ οι διαγώνιοί του είναι ίσες, Η πρόταση αυτή αποτελεί κριτήριο διαπίστωσης αν ένα τετράπλευρο είναι ισοσκελές τραπέζιο! τότε το τετράπλευρο είναι ισοσκελές τραπέζιο.

23 Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου [πράγµατι: (α) Έστω τραπέζιο µε παράλληλη µε την => =. Επειδή όχι o. ίχως βλάβη της γενικότητας υποθέτουµε ότι +< 180 o. Τότε από γνωστή πρόταση, οι, τέµνονται σε κάποιο σηµείο, έστω Κ. Τότε το τρίγωνο Κ είναι ισοσκελές, διότι =. Άρα Κ=Κ (1). Όµως ισχύει: Κ = και Κ = (ως εντός, εκτός και επί τα (α) Κ αυτά γωνίες). Άρα το τρίγωνο A K B είναι ισοσκελές => Κ=Κ (2). Τελικά, λόγω των σχέσεων (1) και (2) παίρνουµε ότι =. (β) Έστω τραπέζιο µε =. Φέρνουµε τα ύψη Η,Θ. Τότε από το ορθογώνιο ΘΗ έχουµε ότι Η=Θ. Τα τρίγωνα ορθογώνια, Η=Θ και =). Άρα Η, Θ είναι ίσα (διότι είναι = Η. Τώρα εύκολα διαπιστώνουµε ότι τα τρίγωνα, είναι ίσα, απ όπου προκύπτει και η ζητούµενη σχέση =]. (β) Η Θ

24 Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου ΚΕΝΤΡ ΤΡΙΩΝΥ ι τρεις µεσοκάθετοι ενός τριγώνου διέρχονται από το ίδιο σηµείο (περίκεντρο του τριγώνου) το οποίο είναι κέντρο κύκλου που διέρχεται και από τις τρεις κορυφές του τριγώνου (περιγεγραµµένος κύκλος του τριγώνου). ι τρεις εσωτερικές διχοτόµοι ενός τριγώνου διέρχονται από το ίδιο σηµείο (έγκεντρο του τριγώνου) το οποίο είναι κέντρο κύκλου που εφάπτεται και στις τρεις πλευρές του τριγώνου (εγγεγραµµένος κύκλος του τριγώνου). ι διχοτόµοι δύο εξωτερικών γωνιών και η εσωτερική διχοτόµος της τρίτης γωνίας ενός τριγώνου διέρχονται από το ίδιο σηµείο (παράκεντρο) το οποίο είναι κέντρο κύκλου που εφάπτεται στη µια πλευρά του τριγώνου και στις προεκτάσεις των άλλων δύο (παρεγγεγραµµένος κύκλος). Κάθε τρίγωνο έχει τρία παράκεντρα και κατά συνέπεια τρεις παρεγγεγραµµένους κύκλους. ι διάµεσοι ενός τριγώνου διέρχονται από το ίδιο σηµείο (βαρύκεντρο του τριγώνου) του οποίου η απόσταση από κάθε κορυφή είναι τα 2/3 του µήκους της αντίστοιχης διαµέσου. ι φορείς (:οι προεκτάσεις) των υψών ενός τριγώνου διέρχονται από το ίδιο σηµείο (ορθόκεντρο του τριγώνου). Παρατηρήσεις Πως δείχνουµε ότι τρεις ευθείες διέρχονται από το ίδιο σηµείο; o Τρεις συντρέχουσες ευθείες είναι δυνατόν να είναι: - οι φορείς των υψών ενός τριγώνου, - οι φορείς των διχοτόµων ενός τριγώνου, - οι φορείς των διαµέσων ενός τριγώνου, - οι φορείς των µεσοκαθέτων των πλευρών ενός τριγώνου. o Θεωρούµε το κοινό σηµείο των δύο από τις τρεις ευθείες και αποδεικνύουµε ότι η άλλη περνάει από αυτό το σηµείο.

25 Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου ΩΝΙΕΣ ΣΤΝ ΚΥΚ Κάθε γωνία που έχει την κορυφή της πάνω σε έναν κύκλο και οι πλευρές της τέµνουν τον κύκλο λέγεται εγγεγραµµένη γωνία του κύκλου. Το τόξο του κύκλου που περιέχεται στην εγγεγραµµένη γωνία λέγεται αντίστοιχο τόξο ή λέµε ότι η εγγεγραµµένη γωνία βαίνει στο τόξο. όχι εγγεγραµµένη γωνία εγγεγραµµένη γωνία Πρόταση: Κάθε εγγεγραµµένη γωνία ισούται µε το µισό της επίκεντρης γωνίας που βαίνει στο ίδιο µε αυτήν τόξο. Πόρισµα: (α) Κάθε εγγεγραµµένη γωνία που βαίνει σε ηµικύκλιο είναι ορθή (β) Εγγεγραµµένες γωνίες που βαίνουν στο ίδιο ή σε ίδια τόξα του ίδιου ή ίσων κύκλων είναι ίσες, και αντίστροφα (γ) τα τόξα που περιέχονται µεταξύ παράλληλων χορδών ενός κύκλου είναι ίσα και αντίστροφα. (α) (β) ίσες διότι βαίνουν (γ) στο ίδιο τόξο Κ αντίστροφα, αν -διάµετρος = 90 Κ=Κ = // = Πρόταση: (γωνία χορδής + εφαπτοµένης) ε Μ Μ Η γωνία που σχηµατίζεται από µια χορδή ενός κύκλου και την εφαπτοµένη ε στο ένα άκρο της χορδής ισούται µε κάθε εγγεγραµµένη γωνία του κύκλου που βαίνει στο τόξο της χορδής. Μ ηλαδή, A 2 χ =Μ (= ). χ

26 Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου ΕΕΡΜΜΕΝ ΤΕΤΡΠΕΥΡ ΣΕ ΚΥΚ νωρίζουµε ότι για κάθε τρία διαφορετικά µη συνευθειακά σηµεία του επιπέδου υπάρχει (µοναδικός) κύκλος που διέρχεται και από τα τρία αυτά σηµεία. ( κύκλος αυτός είναι ο περιγεγραµµένος κύκλος του τριγώνου µε κορυφές τα σηµεία αυτά). υτό όµως δεν συµβαίνει πάντα και για τέσσερα σηµεία του επιπέδου. ρισµός 1: Ένα τετράπλευρο λέγεται εγγράψιµο σε κύκλο όταν υπάρχει κύκλος που να διέρχεται και από τις τέσσερις κορυφές του. ρισµός 2: Ένα τετράπλευρο λέγεται εγγεγραµµένο σε κύκλο όταν οι κορυφές του είναι σηµεία ενός κύκλου.. Πρόταση 1: Ένα τετράπλευρο που είναι εγγεγραµµένο σε κύκλο έχει τις ιδιότητες: 1. ι απέναντι γωνίες του είναι παραπληρωµατικές, 2. Κάθε πλευρά του φαίνεται από τις απέναντι κορυφές υπό ίσες γωνίες, 3. Κάθε εξωτερική γωνία του ισούται µε την απέναντι εσωτερική του γωνία. Πρόταση 2: Ένα τετράπλευρο είναι εγγράψιµο σε κύκλο, όταν ισχύει ένα από τα παρακάτω: 1. ύο απέναντι γωνίες του είναι παραπληρωµατικές, 2. Μία πλευρά του φαίνεται από τις απέναντι κορυφές υπό ίσες γωνίες 3. Μία εξωτερική γωνία του ισούται µε την απέναντι εσωτερική του γωνία. Παρατηρήσεις Τέσσερα σηµεία είναι οµοκυκλικά όταν είναι κορυφές εγγράψιµου τετραπλεύρου ια να δείξουµε ότι τρεις κύκλοι διέρχονται από το ίδιο σηµείο, θεωρούµε το σηµείο τοµής των δύο κύκλων και προσπαθούµε να δείξουµε ότι το τετράπλευρο µε κορυφές το και τρία σηµεία του τρίτου κύκλου είναι εγγράψιµο σε κύκλο. ια να δείξουµε ότι 5 σηµεία είναι οµοκυκλικά, αρκεί να δείξουµε ότι 4 από αυτά είναι οµοκυκλικά και ότι το 5 ο µε 3 από τα προηγούµενα 4 είναι επίσης οµοκυκλικά.

27 Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου ΕΩΜΕΤΡΙΚΙ ΤΠΙ Με τον όρο «γεωµετρικός τόπος» εννοούµε το σύνολο των σηµείων του επιπέδου που έχουν µια συγκεκριµένη ιδιότητα. ια παράδειγµα ο κύκλος είναι ένας γεωµετρικός τόπος διότι τα σηµεία του έχουν την (κοινή) ιδιότητα να ισαπέχουν από ένα σταθερό σηµείο ια να βρούµε έναν γεωµετρικό τόπο ακολουθούµε την εξής πορεία: ΗΜ 1. θεωρούµε ένα σηµείο που έχει την ιδιότητα του γεωµετρικού τόπου και «ανακαλύπτουµε» το σχήµα στο οποίο ανήκει, ΗΜ 2. θεωρούµε ένα τυχαίο σηµείο του γεωµετρικού τόπου που βρήκαµε στο πρώτο βήµα και αποδεικνύουµε ότι αυτό έχει την ιδιότητα του τόπο. ΣΙΚΙ ΕΩΜΕΤΡΙΚΙ ΤΠΙ (δηλ. γεωµετρικοί τόποι στους οποίους ανάγονται συνήθως τα προβλήµατα των γεωµετρικών τόπων) 1. γεωµετρικός τόπος των σηµείων που απέχουν σταθερή απόσταση ρ από σταθερό σηµείο είναι κύκλος κέντρου και ακτίνας ρ. 2. γεωµετρικός τόπος των σηµείων που ισαπέχουν από δύο δοθέντα σηµεία, είναι η µεσοκάθετος του ευθύγραµµου τµήµατος. 3. γεωµετρικός τόπος των σηµείων που βρίσκονται εντός γωνίας χ ψ και ισαπέχουν από τις πλευρές αυτής είναι η διχοτόµος της χ ψ 4. γεωµετρικός τόπος των σηµείων που απέχουν απόσταση λ από γνωστή ευθεία (ε), είναι δύο παράλληλες προς την (ε) ευθείες, που απέχουν απόσταση λ από την (ε). 5. γεωµετρικός τόπος των σηµείων που ισαπέχουν δύο γνωστών παραλλήλων ευθειών είναι η µεσοπαράλληλος αυτών. 6. γεωµετρικός τόπος των σηµείων που βλέπουν σταθερό ευθύγραµµο τµήµα υπό γνωστή γωνία φ, είναι δύο τόξα συµµετρικά προς την, που έχουν χορδή την και δέχονται εγγεγραµµένη γωνία ίση µε την φ. 7. γεωµετρικός τόπος των σηµείων των οποίων οι αποστάσεις από δύο δεδοµένα σηµεία, έχουν γνωστό λόγο ν µ 1, είναι κύκλος διαµέτρου, όπου τα, διαιρούν τα, εσωτερικά και εξωτερικά σε λόγο ν µ. (πολλώνιος κύκλος)

28 Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου ΕΩΜΕΤΡΙΚΕΣ ΚΤΣΚΕΥΕΣ Με τον όρο γεωµετρική κατασκευή εννοούµε τις διαδοχικές εργασίες που κάνουµε για να σχεδιάσουµε ένα γεωµετρικό σχήµα από ορισµένα στοιχεία του ή από ορισµένες ιδιότητές του. Στις γεωµετρικές κατασκευές χρησιµοποιούµε αποκλειστικά τον κανόνα (:µη βαθµολογηµένος χάρακας) και τον διαβήτη. Σε µια γεωµετρική κατασκευή ελέγχουµε επίσης συνθήκες που πρέπει να ικανοποιούνται ώστε το πρόβληµα να έχει λύση (δηλαδή να είναι εφικτή η κατασκευή) καθώς και το πλήθος των λύσεων του προβλήµατος). ΣΙΚΕΣ ΕΩΜΕΤΡΙΚΕΣ ΚΤΣΚΕΥΕΣ (δηλ. γεωµετρικές κατασκευές στις οποίες ανάγονται συνήθως τα προβλήµατα των γεωµετρικών κατασκευών) 1. Να κατασκευασθεί η µεσοκάθετος - να βρεθεί το µέσο γνωστού ευθύγραµµου τµήµατος. 2. πό σηµείο να αχθεί κάθετος σε γνωστή ευθεία (ε) (δύο περιπτώσεις). 3. Να διχοτοµηθεί γνωστή γωνία. 4. Να κατασκευασθεί γωνία ίση προς γνωστή γωνία φ. 5. πό σηµείο εκτός ευθείας (ε) να αχθεί παράλληλη ευθεία προς την (ε). 6. Να διαιρεθεί γνωστό ευθύγραµµο τµήµα σε ν ίσα µέρη. 7. πό γνωστό σηµείο εκτός γνωστού κύκλου να αχθούν οι εφαπτόµενες προς τον κύκλο. 8. Να κατασκευασθεί τόξο κύκλου µε χορδή γνωστό ευθύγραµµο τµήµα που να δέχεται γνωστή γωνία ω. 9. Να κατασκευασθεί τρίγωνο όταν δίνονται οι τρεις πλευρές του ή δύο πλευρές και η περιεχόµενη γωνία σε αυτές ή µία πλευρά και οι προσκείµενες γωνίες σε αυτή. 10. Να κατασκευασθεί ορθογώνιο τρίγωνο όταν δίνονται οι δύο κάθετες πλευρές ή µια κάθετη πλευρά και η υποτείνουσά του. 11. Να κατασκευασθεί κύκλος όταν δίνονται τρία σηµεία του. 12. Να κατασκευασθούν (αν υπάρχουν) οι κοινές εσωτερικές / εξωτερικές εφαπτόµενες δύο γνωστών κύκλων 13. Κατασκευή τέταρτης αναλόγου. 14. Να διαιρεθεί ευθύγραµµο τµήµα εσωτερικά και εξωτερικά, σε δεδοµένο λόγο µ 1. ν

29 Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου ασκήσεις ίνεται ισοσκελές τρίγωνο (=) και στις προεκτάσεις της πλευράς του τα σηµεία Ε,Ζ τέτοια, ώστε Ε=Ζ. είξτε ότι: (α) το τρίγωνο ΕΖ είναι ισοσκελές (β) τα τρίγωνα Ζ, Ε είναι ίσα. 2. Στο εσωτερικό ισοσκελούς τριγώνου (=) θεωρούµε σηµείο Μ τέτοιο, ώστε γωνίας. M B= M. είξτε ότι το σηµείο Μ ανήκει στη διχοτόµο της 3. ν δύο τρίγωνα έχουν δύο πλευρές ίσες µία προς µία και τις περιεχόµενες διάµεσες ίσες, τότε είναι ίσα. 4. ύο αµβλυγώνια τρίγωνα και ΕΖ (µε =Ζ και B = E. είξτε ότι τα τρίγωνα, ΕΖ είναι ίσα., Ζ αµβλείες) έχουν =Ε, 5. ν τα ύψη και Ε ισοσκελούς τριγώνου (=) τέµνονται σε σηµείο Μ, δείξτε ότι η ευθεία Μ είναι µεσοκάθετος των ευθύγραµµων τµηµάτων Ε και. 6. ίνεται ισοσκελές τρίγωνο (=) και τα σηµεία,ε της ευθείας που βρίσκονται εκτός των, τέτοια, ώστε =Ε. ν και Ε. είξτε ότι το τρίγωνο είναι ισοσκελές. 7. Έστω τρίγωνο, Μ το µέσο της πλευράς, Μ και ΜΕ. ν ΜΕ=Μ, δείξτε ότι =. 8. ν δύο τρίγωνα, έχουν =, υ α =υ α και δ α =δ α,να αποδείξετε ότι είναι ίσα. ο 9. (α) ν δύο τρίγωνα, έχουν β=β, γ=γ και B + B = 180, να αποδειχθεί ότι = ο (β) ν δύο τρίγωνα, έχουν β=β, = και B B = 180, να αποδειχθεί ότι γ=γ. +

30 Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου 10. Να βρεθεί ο γεωµετρικός τόπος των σηµείων του επιπέδου τα οποία ισαπέχουν από δύο δεδοµένες τεµνόµενες ευθείες. 11. Να βρεθεί ο γεωµετρικός τόπος των κέντρων των κύκλων οι οποίοι ορίζουν ίσες χορδές και σε δύο δεδοµένες τεµνόµενες ευθείες (ε) και (ε ). αντίστοιχα. 12. Θεωρούµε κύκλο (,ρ) και σταθερό σηµείο Μ εκτός αυτού. ν µεταβλητό σηµείο του κύκλου, να βρεθεί ο γεωµετρικός τόπος των συµµετρικών του σηµείου ως προς το σηµείο Μ. 13. Θεωρούµε δύο σταθερά σηµεία και του επιπέδου. Να βρεθεί ο γεωµετρικός τόπος των συµµετρικών του σηµείου ως προς τις ευθείες που διέρχονται από το. 14. Θεωρούµε τρίγωνο και στις πλευρές του,, αντίστοιχα τα σηµεία:,ε,ζ. είξτε ότι Ε+ΕΖ+Ζ< Να αποδείξετε ότι το άθροισµα των υψών ενός τριγώνου είναι µικρότερο από την περίµετρο του τριγώνου. 16. είξτε ότι σε κάθε τρίγωνο ισχύουν: β + γ α β + γ α+ β + γ (α) < µ < (β) < µ + µ +. 2 α 2 2 α β µ γ 17. Μπορεί ένα σκαληνό τρίγωνο να διαιρεθεί µε µία ευθεία σε δύο ίσα τρίγωνα ή όχι; 18. Ποιο σηµείο δεδοµένης ευθείας (ε) έχει ελάχιστο άθροισµα αποστάσεων από δύο σταθερά σηµεία και ; 19. ν α,β,γ είναι πλευρές τριγώνου, δείξτε ότι α 2 +β 2 +γ 2 <2αβ+2αγ+2βγ. 20. Σε κυρτό τετράπλευρο η είναι η µεγαλύτερη και η είναι η µικρότερη πλευρά του. είξτε ότι ο 21. Θεωρούµε τρίγωνο µε > 90 < και <. και τα σηµεία,ε των πλευρών του και αντίστοιχα. Να αποδειχθεί ότι: +Ε>Ε+Ε+.

31 Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου 22. Σε ένα οξυγώνιο τρίγωνο µε ηµιπερίµετρο τ, να αποδείξετε ότι: β + γ α (α) υ α > (β) υ α +υ β +υ γ >τ Να βρεθεί ο γεωµετρικός τόπος των κέντρων των κύκλων οι οποίοι εφάπτονται σε δύο τεµνόµενες ευθείες. 24. Θεωρούµε κύκλο (,ρ). Να βρεθεί ο γεωµετρικός τόπος των κέντρων Μ των κύκλων (Μ,λ), όπου λ>0 γνωστό, οι οποίοι εφάπτονται εξωτερικά του κύκλου (,ρ). 25. ίνονται δύο κύκλοι (,ρ) και (,ρ), µια εξωτερική εφαπτοµένη τους και µια εσωτερική εφαπτοµένη τους οι οποίες τέµνονται στο σηµείο Ι. Να αποδειχθεί ότι η γωνία Ι είναι ορθή. 26. Θεωρούµε κύκλο (,ρ) και τις εφαπτόµενες του, Ε από ένα σηµείο εκτός αυτού. Έστω ένα κινητό σηµείο Μ του τόξου Ε. ν η εφαπτοµένη στο Μ τέµνει τα τµήµατα, Ε στα σηµεία, αντίστοιχα, δείξτε ότι η περίµετρος του τριγώνου είναι σταθερή. (δηλ. ανεξάρτητη από τη θέση του σηµείου Μ) 27. ύο κύκλοι (Κ,ρ) και (,ρ ) εφάπτονται εξωτερικά στο σηµείο. Έστω η κοινή εξωτερική εφαπτοµένη αυτών. είξτε ότι: (α) κύκλος διαµέτρου εφάπτεται της Κ στο σηµείο, (β) κύκλος διαµέτρου Κ εφάπτεται του. 28. ίνονται δύο κύκλοι (Κ,ρ) και (,ρ). Να βρεθεί ο γεωµετρικός τόπος των σηµείων Μ του επιπέδου που έχουν την ιδιότητα: αν φέρουµε τα εφαπτόµενα τµήµατα Μ,Μ προς τον κύκλο (Κ,ρ) και τα εφαπτόµενα τµήµατα Μ,Μ προς τον κύκλο (,ρ), τότε να ισχύει Μ =Μ 29. ύο κύκλοι (Κ,R) και (,ρ) εφάπτονται εξωτερικά στο σηµείο. Μία χορδή του κύκλου (Κ,R) εφάπτεται του κύκλου (,ρ) στο σηµείο. Φέρνουµε την που τέµνει τον κύκλο (Κ,R) στο σηµείο Μ. ν ΜΕ, δείξτε ότι + Ε = Να κατασκευασθεί τρίγωνο αν είναι γνωστά (κατασκευάσιµα) τα στοιχεία του =α, =υ α και Μ=µ α..

32 Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου 31. Να κατασκευασθεί ισοσκελές τρίγωνο (=) αν είναι γνωστά (κατασκευάσιµα) τα στοιχεία του =γ και η γωνία. 32. Να κατασκευασθεί τρίγωνο αν είναι γνωστά (κατασκευάσιµα) τα στοιχεία του = ω, =γ και η διχοτόµος του δα. 33. Να βρεθεί ο γεωµετρικός τόπος των µέσων των χορδών δεδοµένου κύκλου (,ρ) που έχουν γνωστό µήκος λ. 34. Να κατασκευασθεί τρίγωνο αν είναι γνωστά (κατασκευάσιµα) τα στοιχεία του υ α, α και ισχύει η σχέση α=2β. 35. ίνεται ευθύγραµµο τµήµα. Να βρεθεί σηµείο Μ του τέτοιο, ώστε Μ-Μ=λ, όπου λ δεδοµένο ευθύγραµµο τµήµα. 36. ίνεται γωνία χ ψ και σηµείο εκτός αυτής. Να κατασκευασθεί ευθεία η οποία να διέρχεται από το σηµεία και να σχηµατίζει µε τις χ,ψ ισοσκελές τρίγωνο µε κορυφή το σηµείο. 37. ίνεται κύκλος (,ρ), σηµείο του και σηµείο εκτός αυτού. Να κατασκευασθεί κύκλος ο οποίος διέρχεται από τα σηµεία, και εφάπτεται του κύκλου (,ρ) στο σηµείο. 38. (α) Να κατασκευασθεί κύκλος όταν γνωρίζουµε την ακτίνα του και ότι διέρχεται από δύο δεδοµένα σηµεία, (β) Να κατασκευασθεί κύκλος όταν γνωρίζουµε την ακτίνα του και ότι εφάπτεται µιας ευθείας (ε) σε δεδοµένο σηµείο αυτής. 39. ύο κύκλοι εφάπτονται εξωτερικά (ή εσωτερικά) σε σηµείο. Μια ευθεία (ε) διέρχεται από το και τέµνει τους κύκλους στα σηµεία και. είξτε ότι οι εφαπτόµενες των κύκλων στα σηµεία, είναι παράλληλες. 40. Να κατασκευασθεί τρίγωνο αν είναι γνωστά (κατασκευάσιµα) τα στοιχεία, α του, υ. 41. ν σε ένα τρίγωνο ισχύει =60 ο και α=2γ, να αποδείξετε ότι το τρίγωνο είναι ορθογώνιο.

33 Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου 42. Θεωρούµε ισοσκελές τρίγωνο (=), σηµείο της πλευράς και σηµείο Ε της ηµιευθείας τέτοιο, ώστε Ε=. είξτε ότι Ε. 43. ποδείξτε ότι δεν υπάρχει κυρτό πολύγωνο µε περισσότερες από τρεις οξείες γωνίες. 44. ν µια γωνία κυρτού πολυγώνου είναι µεγαλύτερη από το άθροισµα των υπολοίπων γωνιών του, τότε το πολύγωνο έχει τρεις κορυφές. 45. Να κατασκευασθεί ορθογώνιο τρίγωνο ( = 90 ) αν είναι γνωστή (κατασκευάσιµη) η γωνία ευθύγραµµο τµήµα). και ισχύει η σχέση α+γ=λ (όπου λ γνωστό 46. Θεωρούµε ισοσκελές τρίγωνο (=) και το σηµείο Μ στην προέκταση της βάσης προς το µέρος του. πό το Μ φέρνουµε παράλληλες προς τις πλευρές, οι οποίες τέµνουν τις ηµιευθείες, στα σηµεία,ε αντίστοιχα. ποδείξτε ότι: (α) το τρίγωνο ΜΕ είναι ισοσκελές, (β) Μ-ΜΕ=. 47. Έστω σηµείο της βάσης ισοσκελούς τριγώνου. Φέρνουµε τις παράλληλες προς τις πλευρές, οι οποίες τέµνουν τις, στα σηµεία Ε,Ζ αντίστοιχα. είξτε ότι η περίµετρος του τετραπλεύρου ΕΖ είναι σταθερή (δηλ. ανεξάρτητη από τη θέση του σηµείου πάνω στη ). 48. Θεωρούµε ένα τετράγωνο, το ισόπλευρο τρίγωνο Ε εντός του τετραγώνου και το ισόπλευρο τρίγωνο Ζ εκτός του τετραγώνου. Να αποδειχτεί ότι τα σηµεία,ε,ζ είναι συνευθειακά. 49. ύο ίσοι κύκλοι µε κέντρα και Κ εφάπτονται εξωτερικά στο σηµείο. Θεωρούµε ένα σηµείο του ενός κύκλου και ένα σηµείο του άλλου κύκλου τέτοια, ώστε παραλληλόγραµµο. = 90. Να αποδείξετε ότι το τετράπλευρο Κ είναι 50. Θεωρούµε ισοσκελές τρίγωνο (=) και εκτός αυτού τα τετράγωνα Ε και ΖΗ. ν Μ είναι το µέσο της πλευράς, να αποδείξετε ότι: (α) Η ευθεία Μ είναι µεσοκάθετος της ΕΗ, (β) ι ευθείες Ζ και τέµνονται σε σηµείο της Μ.

34 Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου 51. Έστω,Ε οι προβολές της κορυφής ενός τριγώνου στις διχοτόµους της γωνίας. Να αποδειχθεί ότι: (α) το τετράπλευρο µε κορυφές τα σηµεία,,,ε είναι ορθογώνιο και (β) η ευθεία Ε διέρχεται από το µέσο της πλευράς και είναι παράλληλη προς την πλευρά του τριγώνου. 52. πό εσωτερικό σηµείο ενός ισόπλευρου τριγώνου πλευράς α, φέρνουµε τις παράλληλες προς τις πλευρές, και οι οποίες τέµνουν τις, και αντίστοιχα στα σηµεία,ε και Ζ. Να αποδείξετε ότι +Ε+Ζ=α. 53. Προεκτείνουµε τις πλευρές,, και ενός παραλληλογράµµου κατά τα ευθύγραµµα τµήµατα Ε=, Ζ=, Η= και Θ= αντίστοιχα. Να αποδείξετε ότι το τετράπλευρο ΕΖΗΘ είναι παραλληλόγραµµο και έχει το ίδιο κέντρο µε το. 54. ίνεται ορθογώνιο. Εξωτερικά από αυτό κατασκευάζουµε τα ισόπλευρα τρίγωνα Ε, Ζ, Η και Θ. είξτε ότι το τετράπλευρο ΕΖΗΘ είναι ρόµβος και έχει το ίδιο κέντρο µε το. 55. Σε τρίγωνο µε =60 ο θεωρούµε την εσωτερική διχοτόµο, την προβολή Ε του σηµείου στην και την προβολή Ζ του σηµείου Ε στην. είξτε ότι 3.Ε=2.Ζ ν τα ύψη, Ε και Ζ τριγώνου τέµνονται στο σηµείο Η και Ρ,Μ είναι τα µέσα των Η και αντίστοιχα, να αποδείξετε ότι το ΡΜ είναι µεσοκάθετος της ΕΖ. 57. Να αποδείξετε ότι τα µέσα των πλευρών κυρτού τετραπλεύρου είναι κορυφές τετραγώνου αν και µόνο αν το έχει ίσες και κάθετες διαγωνίους. 58. Σε τετράπλευρο ονοµάζουµε Ε,Ζ,Η,Θ τα µέσα των πλευρών του,, και αντίστοιχα. ν Κ, τα µέσα των διαγωνίων, αντίστοιχα, να δείξετε ότι: (α) τα τετράπλευρα ΕΚΗ και ΖΚΘ είναι παραλληλόγραµµα και (β) οι ευθείες ΕΗ,ΖΘ,Κ συντρέχουν. 59. Να κατασκευασθεί ορθογώνιο τρίγωνο ( =90 ο ) αν είναι γνωστή (κατασκευάσιµη) η πλευρά του =γ και η διάµεσός του µ α.

35 Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου 60. Έστω µια τέµνουσα δύο παράλληλων ευθειών (ε), (ε ). Να δειχθεί ότι οι διχοτόµοι των γωνιών που έχουν κορυφές τα σηµεία, σχηµατίζουν ορθογώνιο, του οποίου η µια διαγώνιος είναι παράλληλη προς τις ευθείες (ε), (ε ). 61. Σε ένα τρίγωνο φέρνουµε τη διάµεσο Μ και έστω Ν το µέσο της. Φέρνουµε στη συνέχεια την Ν που τέµνει τη στο σηµείο Ζ. Να δεχτεί ότι: (α) Ζ=2.Ζ (β) ΝΖ=Ζ/ Σε ισοσκελές τρίγωνο (=) είναι =120 ο. ν,ε είναι σηµεία της πλευράς τέτοια, ώστε =Ε=Ε, να δειχτεί ότι = 90 ο. 63. ν το ύψος και η διάµεσος Μ ενός τριγώνου τριχοτοµούν τη γωνία, να υπολογιστούν οι γωνίες του τριγώνου. ο 64. ίνεται τρίγωνο ΕΖ µε = 90 ο και = 30. Έστω Κ, τυχαία σηµεία των Ζ,Ε αντίστοιχα τέτοια, ώστε Κ//ΖΕ. ν, είναι τα µέσα των Ζ,ΚΕ αντίστοιχα, δείξτε ότι =Ε. 65. Σε ένα σκαληνό και µη ορθογώνιο τρίγωνο να αποδειχθεί ότι τα µέσα των πλευρών του και το ίχνος ενός ύψους του είναι κορυφές ισοσκελούς τραπεζίου. 66. ν σε παραλληλόγραµµο θεωρήσουµε το συµµετρικό Ε της κορυφής ως προς τη διαγώνιο, δείξτε ότι το τετράπλευρο Ε είναι ισοσκελές τραπέζιο. ο 67. ν σε τραπέζιο ισχύει =+ και == 90, δείξτε ότι: (α) ο κύκλος διαµέτρου εφάπτεται της πλευράς και (β) ο κύκλος διαµέτρου εφάπτεται της πλευράς. 68. ίνεται τραπέζιο (//) µε <. Έστω Κ,,Η,Θ τα µέσα αντίστοιχα των ευθύγραµµων τµηµάτων,,κ,. είξτε ότι +4ΗΘ= ίνεται τραπέζιο (//) µε =+ και έστω Μ το µέσο της πλευράς. είξτε ότι Μ= 90 ο. Ζ

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΧΟΛΙΑ στη γεωµετρία της Α τάξης ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΚΑΘΕΤΕΣ 1. είχνω ότι η γωνία τους είναι 90 ο 2. είχνω ότι είναι διχοτόµοι δύο εφεξής και παραπληρωµατικών γωνιών. 3. είχνω ότι

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι

Διαβάστε περισσότερα

Τάξη A Μάθημα: Γεωμετρία

Τάξη A Μάθημα: Γεωμετρία Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού

Διαβάστε περισσότερα

5.10 5.11. 2 η ιδιότητα της διαµέσου. 4. Ορισµός Ισοσκελές τραπέζιο λέγεται το τραπέζιο του οποίου οι µη παράλληλες πλευρές είναι ίσες.

5.10 5.11. 2 η ιδιότητα της διαµέσου. 4. Ορισµός Ισοσκελές τραπέζιο λέγεται το τραπέζιο του οποίου οι µη παράλληλες πλευρές είναι ίσες. 5.0 5. ΘΕΩΡΙ. Ορισµοί Τραπέζιο λέγεται το τετράπλευρο που έχει µόνο δύο πλευρές παράλληλες. άσεις τραπεζίου λέγονται οι παράλληλες πλευρές του. Ύψος τραπεζίου λέγεται η απόσταση των βάσεων. ιάµεσος τραπεζίου

Διαβάστε περισσότερα

6.1 6.4. 1. Εγγεγραµµένη γωνία, αντίστοιχη επίκεντρη και τόξο. 2. Γωνία δύο χορδών και γωνία δύο τεµνουσών

6.1 6.4. 1. Εγγεγραµµένη γωνία, αντίστοιχη επίκεντρη και τόξο. 2. Γωνία δύο χορδών και γωνία δύο τεµνουσών 6. 6.4 ΘΩΡΙ. γγεγραµµένη γωνία, αντίστοιχη επίκεντρη και τόξο Το µέτρο της επίκεντρης ισούται µε το µέτρο του αντίστοιχου τόξου. Η εγγεγραµµένη ισούται µε το µισό της αντίστοιχης επίκεντρης. Η εγγεγραµµένη

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 08/04/10

ΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 08/04/10 ΥΣΙΣ ΙΑΩΝΙΣΜΑ ΩΜΤΡΙΑ Α ΥΚΙΟΥ ΘΜΑ ο 08/04/0 Α. Να αποδείξετε ότι η διάµεσος ορθογωνίου τριγώνου που φέρουµε από την κορυφή της ορθής γωνίας είναι ίση µε το µισό της υποτείνουσας. Θεωρία σχολικό βιβλίο σελ.09

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΦΥΛΛΑΔΙΟ ΕΠΙΜΕΛΕΙΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΠΙΜΕΛΕΙΑ: ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΦΥΛΛΑΔΙΟ ΕΠΙΜΕΛΕΙΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΠΙΜΕΛΕΙΑ: ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΩΜΤΡΙ ΛΥΚΙΟΥ ΠΝΛΗΠΤΙΚΟ ΦΥΛΛΙΟ ΠΙΜΛΙ ΥΡΙΝΟΣ ΣΙΛΗΣ ΠΙΜΛΙ: ΥΡΙΝΟΣ ΣΙΛΗΣ ΘΜΤ ΘΩΡΙΣ ΚΦΛΙΟ ο Τ ΣΙΚ ΩΜΤΡΙΚ ΣΧΗΜΤ ΘΜ ο Τι καλείται μέσο ενός ευθυγράμμου τμήματος και τι ισχύει γι αυτό ; ΠΝΤΗΣΗ Μέσο ενός ευθύγραμμου

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

3.1 ΣΤΟΙΧΕΙΑ ΤΡΙΓΩΝΟΥ ΕΙ Η ΤΡΙΓΩΝΩΝ

3.1 ΣΤΟΙΧΕΙΑ ΤΡΙΓΩΝΟΥ ΕΙ Η ΤΡΙΓΩΝΩΝ 1 3.1 ΣΤΟΙΧΕΙ ΤΡΙΩΝΟΥ ΕΙΗ ΤΡΙΩΝΩΝ ΘΕΩΡΙ 1. Κύρια στοιχεία τριγώνου Τα κύρια στοιχεία ενός τριγώνου είναι οι πλευρές, οι γωνίες και οι κορυφές. Ονοµασία : Πλευρές είναι οι,, Κορυφές είναι τα σηµεία,, ωνίες

Διαβάστε περισσότερα

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.

Διαβάστε περισσότερα

ΕΙ Η ΤΕΤΡΑΠΛΕΥΡΩΝ. ( Παραλληλόγραµµα Τραπέζια ) Παραλληλόγραµµο, λέγεται το τετράπλευρο

ΕΙ Η ΤΕΤΡΑΠΛΕΥΡΩΝ. ( Παραλληλόγραµµα Τραπέζια ) Παραλληλόγραµµο, λέγεται το τετράπλευρο Παραλληλόγραµµο, λέγεται το τετράπλευρο ΕΙΗ ΤΕΤΡΠΛΕΥΡΩΝ ( Παραλληλόγραµµα Τραπέζια ) που έχει τις απέναντι πλευρές του παράλληλες δηλ. // και //. ΙΙΟΤΗΤΕΣ ΠΡΛΛΗΛΟΡΜΜΟΥ: 1. Οι απέναντι πλευρές του είναι.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5ο ΠΑΡΑΛΛΗΛOΓΡΑΜΜΑ - ΤΡΑΠΕΖΙΑ. Εισαγωγή

ΚΕΦΑΛΑΙΟ 5ο ΠΑΡΑΛΛΗΛOΓΡΑΜΜΑ - ΤΡΑΠΕΖΙΑ. Εισαγωγή ΚΦΛΙΟ 5ο ΠΡΛΛΗΛOΡΜΜ - ΤΡΠΙ ισαγωγή. Τι καλείται τετράπλευρο ; Πόσες διαγώνιες έχει ένα κυρτό τετράπλευρο ; Τι καλείται παραλληλόγραμμο και τι τραπέζιο ; Το ευθύγραμμο σχήμα που έχει τέσσερις πλευρές λέγεται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 o ΤΑ ΒΑΣΙΚΑ ΓΕΩΜΕΤΡΙΚΑ ΣΧΗΜΑΤΑ

ΚΕΦΑΛΑΙΟ 2 o ΤΑ ΒΑΣΙΚΑ ΓΕΩΜΕΤΡΙΚΑ ΣΧΗΜΑΤΑ ΚΕΦΛΙΟ 2 o Τ ΣΙΚ ΓΕΩΜΕΤΡΙΚ ΣΧΗΜΤ Πρωταρχικές έννοιες Όπως τα αντιλαμβανόμαστε : Σημείο, Ευθεία, Επίπεδο. ξιώματα προτάσεις που τις αποδεχόμαστε χωρίς απόδειξη. αξίωμα: πό δυο διαφορετικά σημεία του επιπέδου

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ 2001-ΟΡΟΣΗΜΟ 1

ΦΡΟΝΤΙΣΤΗΡΙΑ 2001-ΟΡΟΣΗΜΟ 1 ΦΡΟΝΤΙΣΤΗΡΙΑ 2001-ΟΡΟΣΗΜΟ 1 ΦΡΟΝΤΙΣΤΗΡΙΑ 2001-ΟΡΟΣΗΜΟ 2 ΠΕΡΙΕΧΕΙ ΒΑΣΙΚΑ ΓΕΩΜΕΤΡΙΚΑ ΣΧΗΜΑΤΑ ΤΡΙΓΩΝΑ ΠΑΡΑΛΛΗΛΕΣ ΕΥΘΕΙΕΣ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ ΤΡΑΠΕΖΙΑ ΕΓΓΕΓΡΑΜΜΕΝΑ ΣΧΗΜΑΤΑ ΦΡΟΝΤΙΣΤΗΡΙΑ 2001-ΟΡΟΣΗΜΟ 3 ΦΡΟΝΤΙΣΤΗΡΙΑ

Διαβάστε περισσότερα

Κεφάλαιο 9 Ο κύκλος Ορισμός. Ο κύκλος (Κ, r) με κέντρο Κ και ακτίνα r είναι το σχήμα που αποτελείται από όλα τα σημεία του επιπέδου που απέχουν απόσταση r από το σημείο Κ. Σχήμα 9.1: Στοιχεία ενός κύκλου.

Διαβάστε περισσότερα

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία 2014 2015 ΜΑΥΡΑΓΑΝΗΣ ΣΤΑΘΗΣ ΚΑΡΑΓΕΩΡΓΟΣ ΒΑΣΙΛΗΣ ΘΕΩΡΙΑ ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 2 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ιδακτέα εξεταστέα ύλη σχολικού

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράλληλες Ευθείες και Τετράπλευρα Ορισμός. Δύο ευθείες ονομάζονται παράλληλες όταν ανήκουν στο ίδιο επίπεδο και δεν τέμνονται. Δύο παράλληλες ευθείες ε και ζ συμβολίζονται ε ζ. Γωνίες δύο ευθειών

Διαβάστε περισσότερα

Το τµήµα που ενώνει τα µέσα δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο µε το µισό της.

Το τµήµα που ενώνει τα µέσα δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο µε το µισό της. 5.3 Εφαρµογές των παραλληλογράµµων 155 5.3 Εφαρµογές των παραλληλογράµµων Α Εφαρµογές στα τρίγωνα Α1 Θεώρηµα 1 Το τµήµα που ενώνει τα µέσα δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και

Διαβάστε περισσότερα

6.5 6.6. Ασκήσεις σχολικού βιβλίου σελίδας 134. Ερωτήσεις Κατανόησης

6.5 6.6. Ασκήσεις σχολικού βιβλίου σελίδας 134. Ερωτήσεις Κατανόησης 6.5 6.6 σκήσεις σχολικού βιβλίου σελίδας 34 ρωτήσεις Κατανόησης. Σε ένα εγγεγραµµένο τετράπλευρο i) Τα αθροίσµατα των απέναντι γωνιών του είναι ίσα Σ Λ ii) Κάθε πλευρά φαίνεται από τις απέναντι κορυφές

Διαβάστε περισσότερα

1 Εγγεγραµµένα σχήµατα

1 Εγγεγραµµένα σχήµατα Εγγεγραµµένα σχήµατα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Σκοπός του µαθήµατος είναι να δώσει στους µαθητές συνοπτικά τις απαραίτητες γνώσεις από τη διδακτέα ύλη της Α λυκείου που δεν διδάχθηκε ή διδάχθηκε περιληπτικά.

Διαβάστε περισσότερα

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και Α. Να χαρακτηρίσετε Σωστές (Σ) ή Λάθος (Λ) τις παρακάτω προτάσεις: α. Οι διχοτόμοι δύο διαδοχικών και παραπληρωματικών γωνιών σχηματίζουν ορθή γωνία. β. Οι διαγώνιες κάθε παραλληλογράμμου είναι ίσες μεταξύ

Διαβάστε περισσότερα

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις Γεωµετρία Α Γυµνασίου Ορισµοί Ιδιότητες Εξηγήσεις Ευθεία γραµµή Ορισµός δεν υπάρχει. Η απλούστερη από όλες τις γραµµές. Κατασκευάζεται µε τον χάρακα (κανόνα) πάνω σε επίπεδο. 1. ύο σηµεία ορίζουν την θέση

Διαβάστε περισσότερα

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» ΕΩΜΕΤΡΙΑ Β ΥΚΕΙΟΥ Κεφάλαιο 9ο: ΜΕΤΡΙΚΕ ΧΕΕΙ Ερωτήσεις του τύπου «ωστό-άθος» Να χαρακτηρίσετε με (σωστό) ή (λάθος) τις παρακάτω προτάσεις. 1. * Αν σε τρίγωνο ΑΒ ισχύει ΑΒ = Α + Β, τότε το τρίγωνο είναι:

Διαβάστε περισσότερα

5.6 5.9. 1. Θεώρηµα, Ε µέσα των ΑΒ, ΑΓ Ε = //

5.6 5.9. 1. Θεώρηµα, Ε µέσα των ΑΒ, ΑΓ Ε = // 1 5.6 5.9 ΘΩΡΙ 1., µέσα των, = //. µέσο της και // µέσο της 3. = και ////Ζ = Ζ Ζ. Ο γ. τόπος της µεσοπαράλληλης Έστω ε η µεσοπαράλληλη των ε 1, ε. Τότε ισχύουν : i) άθε σηµείο της ε ισαπέχει από τις ε

Διαβάστε περισσότερα

Λ υ μ ε ν ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1

Λ υ μ ε ν ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1 υ μ ε ν ε ς σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1 Προεκτεινουµε τις πλευρες και παραλληλογραμμου κατα τμηματα = και = αντιστοιχως. Να αποδειξετε οτι τα σημεια, και ειναι συνευθειακα. = παραλληλογραμμο

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ. 1 o ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1

ΓΕΩΜΕΤΡΙΑ. 1 o ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ΛΥΚΙΟΥ - ΩΜΤΡΙ ΩΜΤΡΙ ΘΜ o ΙΩΝΙΣΜ. Να αποδείξετε ότι : Ι) διάμεσος που αντιστοιχεί στην υποτείνουσα ορθογωνίου τριγώνου είναι ίση με το μισό της υποτείνουσας. ΙΙ) ν μια διάμεσος τριγώνου είναι ίση με το

Διαβάστε περισσότερα

5.6 5.9. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 110 112. Στα παρακάτω σχήµατα να υπολογίσετε τα x και ψ. Απάντηση Στο σχήµα (α) :

5.6 5.9. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 110 112. Στα παρακάτω σχήµατα να υπολογίσετε τα x και ψ. Απάντηση Στο σχήµα (α) : 5.6 5.9 σκήσεις σχολικού βιβλίου σελίδας 0 ρωτήσεις Κατανόησης. Στα παρακάτω σχήµατα να υπολογίσετε τα x και ψ (α ) ( β ) A x x, 5 ( γ) ψ x +, 5 x, 5 ε ε ε ε 4 δ δ ε ε B ε ε 4 (δ ) ψ ψ x 60 o 4 (ε) B 5

Διαβάστε περισσότερα

3.5 3.6. Ασκήσεις σχολικού βιβλίου σελίδας 48. Ερωτήσεις κατανόησης

3.5 3.6. Ασκήσεις σχολικού βιβλίου σελίδας 48. Ερωτήσεις κατανόησης .5.6 σκήσεις σχολικού βιβλίου σελίδας 48 ρωτήσεις κατανόησης. Έστω ευθεία ε και σηµείο εκτός αυτής. ν ε και ε (, σηµεία της ε) τότε i) Σ Λ ii) Σ Λ iii) = Σ Λ ιτιολογήστε την απάντηση σας i) ιότι από ένα

Διαβάστε περισσότερα

15 ΑΣΚΗΣΕΙΣ ΣΤΑ ΑΞΙΟΣΗΜΕΙΩΤΑ ΣΗΜΕΙΑ ΤΡΙΓΩΝΟΥ

15 ΑΣΚΗΣΕΙΣ ΣΤΑ ΑΞΙΟΣΗΜΕΙΩΤΑ ΣΗΜΕΙΑ ΤΡΙΓΩΝΟΥ εωμετρία α λυκείου ξιοσημείωτα σημεία τριγώνου 5 ΣΚΗΣΙΣ ΣΤ ΞΙΟΣΗΙΩΤ ΣΗΙ ΤΡΙΩΝΟΥ )ίνεται τρίγωνο µε = 45 και B = 75. ν µέσο της φέρουµε από το κάθετη στη διχοτόµο της γωνίας που τέµνει την στο. Στην παίρνουµε

Διαβάστε περισσότερα

8.1 8.2. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 177 179

8.1 8.2. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 177 179 8. 8. σκήσεις σχολικού βιβλίου σελίδας 77 79 ρωτήσεις Κατανόησης. i) ν δύο τρίγωνα είναι ίσα τότε είναι όµοια; ii) ν δύο τρίγωνα είναι όµοια προς τρίτο τότε είναι µεταξύ τους όµοια πάντηση i) Προφανώς

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου

Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου Θέμα Α. Να αποδείξετε ότι το ευθύγραμμο τμήμα που ενώνει τα μέσα των δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο με το μισό της (7 μονάδες)

Διαβάστε περισσότερα

Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 η Να αποδείξετε ότι στις ομόλογες πλευρές δύο ίσων τριγώνων αντιστοιχούν ίσες διάμεσοι. Α Α ΑΠΟΔΕΙΞΗ Β Γ Β Γ Θα δείξουμε ότι ΑΜ=Α

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ «άµιλλα»

ΦΡΟΝΤΙΣΤΗΡΙΑ «άµιλλα» 1 ΜΕΤΡΙΚΕ ΧΕΕΙ ΘΕΩΡΙΑ Μετρικές σχέσεις στο ορθογώνιο τρίγωνο το ορθογώνιο τρίγωνο το τετράγωνο κάθε κάθετης πλευράς είναι ίσο µε το γινόµενο της υποτείνουσας επί την προβολή της κάθετης στην υποτείνουσα.

Διαβάστε περισσότερα

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις Γεωμετρία Β Λυκείου Κεφάλαιο 9 Γεωμετρία Βˊ Λυκείου Κεφάλαιο 9 ο Μετρικές Σχέσεις ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Μετρικές σχέσεις ονομάζουμε τις σχέσεις μεταξύ των μέτρων των στοιχείων

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

ÊåöÜëáéï 7 ï. âéâëéïììüèçìá 22: -ºóá ó Þìáôá -ºóá ôñßãùíá -ÊáôáóêåõÝò ìå êáíüíá êáé äéáâþôç -Åßäç ôåôñáðëåýñùí -Éäéüôçôåò ôïõ ðáñáëëçëïãñüììïõ

ÊåöÜëáéï 7 ï. âéâëéïììüèçìá 22: -ºóá ó Þìáôá -ºóá ôñßãùíá -ÊáôáóêåõÝò ìå êáíüíá êáé äéáâþôç -Åßäç ôåôñáðëåýñùí -Éäéüôçôåò ôïõ ðáñáëëçëïãñüììïõ ÊåöÜëáéï 7 ï Åõèýãñáììá ó Þìáôá âéâëéïììüèçìá : -ºóá ó Þìáôá -ºóá ôñßãùíá -ÊáôáóêåõÝò ìå êáíüíá êáé äéáâþôç -Åßäç ôåôñáðëåýñùí -Éäéüôçôåò ôïõ ðáñáëëçëïãñüììïõ âéâëéïììüèçìá 3: -Åìâáäü ôñéãþíïõ -Åìâáäü

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

. Ασκήσεις για εξάσκηση

. Ασκήσεις για εξάσκηση . Ασκήσεις για εξάσκηση Βασικές ασκήσεις Εφαρµογές 1.76 ίνεται ένα τρίγωνο ΑΒΓ µε AB= 8 και AΓ= 1. Ένας κύκλος διέρχεται από τα σηµεία Β και Γ και τέµνει τις πλευρές ΑΒ και ΑΓ στα σηµεία και Ε αντίστοιχα.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Βασικά θεωρήματα Σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο μιας κάθετης πλευράς του είναι ίσο με το γινόμενο της υποτείνουσας επί την προβολή της

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

3.6 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ

3.6 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ 1 3.6 ΕΜΝ ΚΥΚΛΙΚΥ ΤΜΕ ΘΕΩΡΙ 1. Εµβαδόν κυκλικού τοµέα γωνίας µ ο : Ε = πρ. µ, όπου ρ η ακτίνα του κύκλου και π ο γνωστός αριθµός. Εµβαδόν κυκλικού τοµέα γωνίας α rad: Ε = 1 αρ, όπου ρ η ακτίνα του κύκλου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις : ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων Μάθημα: Γεωμετρία Α Λυκείου Παρουσιάζουμε συνοπτικές λύσεις σε επιλεγμένα Θέματα («Θέμα 4 ο») από την Τράπεζα θεμάτων. Το αρχείο αυτό τις επόμενες ημέρες

Διαβάστε περισσότερα

6. Θεωρούµε ισοσκελές τραπέζιο ΑΒΓ (ΑΒ//Γ ). Φέρουµε τα ύψη του ΑΕ και ΒΖ. α) Ε=ΓΖ. β) ΑΖ=ΒΕ.

6. Θεωρούµε ισοσκελές τραπέζιο ΑΒΓ (ΑΒ//Γ ). Φέρουµε τα ύψη του ΑΕ και ΒΖ. α) Ε=ΓΖ. β) ΑΖ=ΒΕ. 1. Θεωρούµε ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ). Στο µέσο της πλευράς ΑΒ φέρουµε κάθετη ευθεία που τέµνει την ΑΓ στο Ε. Από το Ε φέρουµε ευθεία παράλληλη στη βάση ΒΓ που τέµνει την ΑΒ στο Ζ. α) Να αποδείξετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του

Διαβάστε περισσότερα

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ. Βαγγέλης. Βαγγέλης Νικολακάκης Μαθηματικός.

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ. Βαγγέλης. Βαγγέλης Νικολακάκης Μαθηματικός. 01 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παρον φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ ΑΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 1 ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ ΑΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 1 ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΘΗΜΤΙΚ ΥΜΝΣΙΥ ΜΕΡΣ ο ΕΩΜΕΤΡΙ ΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 1 ΕΠΙΜΕΛΕΙ : ΥΕΡΙΝΣ ΣΙΛΗΣ ΜΘΗΜΤΙΚ ΥΜΝΣΙΥ ΣΚΗΣΕΙΣ ΜΕΡΣ 1ο : ΕΩΜΕΤΡΙ ΚΕΦΛΙ 1ο ΣΙΚΕΣ ΕΩΜΕΤΡΙΚΕΣ ΕΝΝΙΕΣ νακφαλαίωση σημίο άπιρς υθίς από υθύγραμμο τμήμα Δ παράλληλα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ ΟΜΟΙΟΤΗΤΑ Ορισμός: Δύο ευθύγραμμα σχήματα ονομάζονται όμοια, αν έχουν τις πλευρές τους ανάλογες και τις γωνίες που σχηματίζονται από ομόλογες πλευρές τους ίσες μία προς μία. ΚΡΙΤΗΡΙΑ ΟΜΟΙΟΤΗΤΑΣ ΤΡΙΓΩΝΩΝ

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 16 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ : ΓΕΩΜΕΤΡΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 16 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ : ΓΕΩΜΕΤΡΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ ΘΕΜΑ 1ο ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 16 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ : ΓΕΩΜΕΤΡΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) Α1. Να αποδείξετε ότι,

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ ΑΝΑΛΟΓΙΕΣ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ Βασικά θεωρήματα Αν τρεις τουλάχιστον παράλληλες ευθείες τέμνουν δύο άλλες ευθείες, ορίζουν σε αυτές τμήματα ανάλογα. (αντίστροφο Θεωρήματος Θαλή) Θεωρούμε δύο ευθείες δ και

Διαβάστε περισσότερα

2.4-2.5 ΣΥΜΜΕΤΡΙΑ ΩΣ ΠΡΟΣ ΣΗΜΕΙΟ

2.4-2.5 ΣΥΜΜΕΤΡΙΑ ΩΣ ΠΡΟΣ ΣΗΜΕΙΟ 1 4-5 ΣΥΜΜΤΡΙ ΩΣ ΠΡΣ ΣΗΜΙ ΚΝΤΡ ΣΥΜΜΤΡΙΣ ΘΩΡΙ Το συµµετρικό σηµείου ως προς κέντρο σηµείο νοµάζουµε συµµετρικό του ως προς κέντρο το σηµείο µε το οποίο συµπίπτει το περιστρεφόµενο περί το κατά γωνία 180

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ΕΥΘΕΙΑ ΑΣΚΗΣΕΙΣ Πηγή: KEE

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ΕΥΘΕΙΑ ΑΣΚΗΣΕΙΣ Πηγή: KEE 1. Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: α) ω = 3 π β) ω = π 3 γ) ω = π. Να βρείτε τη γωνία ω που σχηµατίζει µε τον άξονα x x µια ευθεία ε, η οποία

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ

ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ 1. Να επιλέξετε μια απάντηση για κάθε ερώτηση και να δικαιολογήσετε σύντομα την απάντησή σας. i. Αν η εξωτερική γωνία ενός κανονικού ν-γώνου ισούται με 0 ο, τότε το ν ισούται

Διαβάστε περισσότερα

Γεωμετρία Α' Λυκείου Κεφάλαιο 3 ο (Τρίγωνα) Γεωμετρία Αˊ Λυκείου. Κεφάλαιο 3 ο Τρίγωνα

Γεωμετρία Α' Λυκείου Κεφάλαιο 3 ο (Τρίγωνα) Γεωμετρία Αˊ Λυκείου. Κεφάλαιο 3 ο Τρίγωνα Γεωμετρία Αˊ Λυκείου Κεφάλαιο 3 ο Τρίγωνα Κεφάλαιο 3 ο :Τρίγωνα 1. Τι λέγονται κύρια στοιχεία ενός τριγώνου; Οι πλευρές και οι γωνίες ενός τριγώνου λέγονται κύρια στοιχεία του τριγώνου. Για ευκολία οι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΓΥΜΝΣΙΟ ΥΜΗΤΤΟΥ ΜΘΗΜΤΙΚ ΓΥΜΝΣΙΟΥ ΜΙ ΠΡΟΕΤΟΙΜΣΙ ΓΙ ΤΙΣ ΕΞΕΤΣΕΙΣ - Σελίδα 1 από 11 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΤΩΝ ΤΩΝ ΕΞΕΤΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και τρείς ασκήσεις.

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙ 3 ο : KΩΝΙΚΕΣ ΤΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΥ ( 3.) ΚΥΚΛΣ Γνωρίζουµε ότι ένας κύκλος (, ρ) είναι ο γεωµετρικός τόπος των σηµείων του επιπέδου τα οποία απέχουν µια ορισµένη απόσταση ρ από ένα

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ. ΚΕΦΑΛΑΙΟ 10ο ΕΜΒΑΔΑ ΕΠΙΜΕΛΕΙΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΠΙΜΕΛΕΙΑ: ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ. ΚΕΦΑΛΑΙΟ 10ο ΕΜΒΑΔΑ ΕΠΙΜΕΛΕΙΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΠΙΜΕΛΕΙΑ: ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΩΜΕΤΡΙ ΛΥΚΕΙΟΥ ΚΕΦΛΙΟ 0ο ΕΜ ΕΠΙΜΕΛΕΙ ΥΕΡΙΝΟΣ ΣΙΛΗΣ 57 ΚΕΦΛΙΟ 0ο ΕΜ Πολυγωνικά χωρία - Πολυγωνικές επιφάνειες. Τι καλούμαι πολυγωνικό χωρίο και πως ονομάζεται αυτό ; Πότε δύο πολυγωνικά χωρία λέγονται

Διαβάστε περισσότερα

2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ.

2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ. Θαλής Β' Λυκείου 1995-1996 1. Έστω κύκλος ακτίνας 1, στον οποίο ορίζουμε ένα συγκεκριμένο σημείο Α 0. Στη συνέχεια ορίζουμε τα σημεία Α ν ως εξής: Το μήκος του τόξου Α 0 Α ν (όπου αυτό μπορεί να είναι

Διαβάστε περισσότερα

Ä ÑÁÓÔÇÑÉÏÔÇÔÁ 1ç. Απάντηση Οι γωνίες που σχηµατίζονται είναι: Α. αµβλεία Β. ευθεία Γ. πλήρης. οξεία Ε. ορθή Ζ. αµβλεία Η. οξεία.

Ä ÑÁÓÔÇÑÉÏÔÇÔÁ 1ç. Απάντηση Οι γωνίες που σχηµατίζονται είναι: Α. αµβλεία Β. ευθεία Γ. πλήρης. οξεία Ε. ορθή Ζ. αµβλεία Η. οξεία. Ä ÑÁÓÔÇÑÉÏÔÇÔÁ 1ç Σε όλα τα παρακάτω αντικείµενα σχηµατίζονται διάφορες γωνίες ανάλογα µε τη σχετική θέση, κάθε φορά, δύο ηµιευθειών που έχουν ένα κοινό ση- µείο, όπως π.χ. είναι οι δείκτες του ρολογιού,

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α )

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α ) A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α ) 1 Στις πλευρες ΑΒ, ΒΓ, ΓΑ ισοπλευρου τριγωνου ΑΒΓ, παιρνουμε 3 Να δειχτει οτι α + 110 0α Ποτε ισχυει Συγκρινετε το ισον; τα τριγωνα με σημεια Δ, Ε, Ζ αντιστοιχα,

Διαβάστε περισσότερα

2. ίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και οι διχοτόµοι του Β και ΓΕ. Αν ΕΗ ΒΓ και Ζ ΒΓ, να αποδείξετε ότι: β) Τα τρίγωνα ΑΕ και ΑΖ είναι ίσα.

2. ίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και οι διχοτόµοι του Β και ΓΕ. Αν ΕΗ ΒΓ και Ζ ΒΓ, να αποδείξετε ότι: β) Τα τρίγωνα ΑΕ και ΑΖ είναι ίσα. 1. Από εξωτερικό σηµείο Σ κύκλου (Κ,ρ) θεωρούµε τις τέµνουσες ΣΑΒ και ΣΓ του κύκλου για τις οποίες ισχύει ΣΒ=Σ. Τα ΚΛ και ΚΜ είναι τα αποστήµατα των χορδών ΑΒ και Γ του κύκλου αντίστοιχα. α) i. τα τρίγωνα

Διαβάστε περισσότερα

ΒΕ Ζ είναι ισόπλευρο. ΔΕΡ.

ΒΕ Ζ είναι ισόπλευρο. ΔΕΡ. ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΩΕΚΑΝΗΣΟΥ ΘΕΜΑ 1 Θεωρούμε το ισόπλευρο τρίγωνο ΑΒΓ και έστω ένα σημείο της πλευράς ΑΓ. Κατασκευάζουμε το παραλληλόγραμμο ΒΓΕ και έστω Ζ η τομή της Ε με την ΑB. Ονομάζουμε

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΡΟΛΟΓΟΣ Αγαπητοί συνάδελφοι, Φίλοι µαθητές και µαθήτριες Η καινούργια µας σειρά βιβλίων µε τον τίτλο ΒΙΒΛΙΟµαθήµατα δηµιουργήθηκε από µια ιδέα µας για το περιοδικό

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο µιας κάθετης πλευράς του είναι ίσο µε το γινόµενο της υποτείνουσας επί την προβολή της πλευράς αυτής στην

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ. Να σηµειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισµούς:. Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α = β, τότε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2 ΕΠΝΛΗΠΤΙΚ ΘΕΜΤ ΓΥΝΜΣΙΟΥ ΜΘΗΜΤΙΚ ΛΓΕΡ ΚΕΦΛΙΟ. Να διατυπώσετε τα κριτήρια διαιρετότητας. πό τους αριθμούς 675, 0, 4404, 7450 να γράψετε αυτούς που διαιρούνται με το, με το, με το 4, με το 9.. Ποια είναι

Διαβάστε περισσότερα

6. Εγγεγραμμένα Σχήματα. Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr

6. Εγγεγραμμένα Σχήματα. Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr 6. Εγγεγραμμένα Σχήματα Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr 1 Επίκεντρη γωνία Μια γωνία λέγεται επίκεντρη γωνία ενός κύκλου αν η κορυφή της είναι το κέντρο του κύκλου. Το τόξο ΑΓΒ που

Διαβάστε περισσότερα

4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ

4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ 4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ 1. Δίνεται ορθογώνιο και ισοσκελές τρίγωνο ΑΒΓ( ˆ =90 ο ) και ΑΔ η διχοτόμος της γωνίας A. Από το σημείο Δ φέρουμε παράλληλη προς την ΑΒ που τέμνει την πλευρά ΑΓ στο σημείο

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Συνοπτική θεωρία Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ 1. Πότε ένας φυσικός αριθμός λέγεται άρτιος; Άρτιος

Διαβάστε περισσότερα

Κεφάλαιο 10 Γεωμετρικές κατασκευές Στα αιτήματα του Ευκλείδη περιλαμβάνονται μόνο τρία που αναφέρονται στη δυνατότητα κατασκευής ενός σχήματος. Ηιτήσθω από παντός σημείου επί παν σημείον ευθείαν γραμμήν

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 11. Έστω η παράσταση Α = [(30 : 6) 2] 2 [(15 5) : 3 + 2 2 6] 3 (2 5 3 3 + 2 1 ) Να υπολογίσετε την τιµή της παράστασης Α Αν Α = 30, i) να αναλύσετε τον αριθµό Α σε γινόµενο

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑ 7.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων. Να βρείτε το γεωµετρικό τόπο των µιγαδικών z, για τους οποίους οι εικόνες των µιγαδικών z, i, iz είναι συνευθειακά σηµεία. Έστω z = x + i,

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ Α και Β Γενικού Λυκείου ε 3 Γ ε 2 Κ Ε ε 1 Ι Ο Θ Η Ζ Α μ α Ψ ε 4 Β Β ( Σελ. 63 120 ) Τόμος 2ος ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ

Γεωμετρία Β Λυκείου ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ 36 ΚΕΦΑΛΑΙΟ 9: ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ 37 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΤΥΧΑΙΟ ΤΡΙΓΩΝΟ 38 39 40 41 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΚΥΚΛΟ 4 43 44 ΚΕΦΑΛΑΙΟ 10:ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ 45 46 47 48 49 50 51 5 53

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΗ. Λύση: Β=Γ= = = = 50 2 2 2 ˆ ˆ 180 Γ 180 50 130

ΣΗΜΕΙΩΣΗ. Λύση: Β=Γ= = = = 50 2 2 2 ˆ ˆ 180 Γ 180 50 130 ΣΗΜΕΙΩΣΗ Οι λύσεις των θεμάτων είναι ενδεικτικές.πιθανόν να υπάρχουν και άλλες λύσεις και μάλιστα πιο απλές. ΘΕΜΑ 2 2814 α) Αφού ΑΒΓ ισοσκελές 180 ˆ ˆ ˆ Α 180 80 100 Β=Γ= = = = 50 2 2 2 Επειδή ΒΕ=ΒΔ θα

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 2013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός http://cutemaths.wordpress.com/ ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 20,

Διαβάστε περισσότερα

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ και ΝΙΚΟΥ ΛΥΚΙΟΥ ΥΚΛΙΙ ΩΤΡΙ ΛΥΣΙΣ ΤΩΝ ΣΚΗΣΩΝ ΥΠΟΥΡΙΟ ΠΙΙΣ ΚΙ ΘΡΗΣΚΥΤΩΝ Κωδικός βιβλίου: 0--007 ΠΟΛΙΤΙΣΟΥ ΚΙ ΘΛΗΤΙΣΟΥ ΥΚΛΙΙ ΩΤΡΙ ΛΥΣΙΣ ΤΩΝ ΣΚΗΣΩΝ ε Κ ε Ψ Ζ Ο Ι Θ ε Η μα ε4 και ΝΙΚΟΥ ΛΥΚΙΟΥ ISBN 978-960-06--6

Διαβάστε περισσότερα

Ε=Α και φέρουµε την ΒΕ που τέµνει τη Γ στο σηµείο Η. Να αποδείξετε ότι: α) το τρίγωνο ΒΑΕ είναι ισοσκελές. β) το ΕΒΖ είναι παραλληλόγραµµο.

Ε=Α και φέρουµε την ΒΕ που τέµνει τη Γ στο σηµείο Η. Να αποδείξετε ότι: α) το τρίγωνο ΒΑΕ είναι ισοσκελές. β) το ΕΒΖ είναι παραλληλόγραµµο. 1. ίνεται παραλληλόγραµµο ΑΒΓ µε ΑΒ=2ΒΓ. Προεκτείνουµε την πλευρά Α κατά τµήµα Ε=Α και φέρουµε την ΒΕ που τέµνει τη Γ στο σηµείο Η. Να αποδείξετε ότι: α) το τρίγωνο ΒΑΕ είναι ισοσκελές. β) το ΕΓΒ είναι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ 1 Θέµα: Τα διανύσµατα ❶ ❷ ❸ ❹ ❺ Η έννοια του διανύσµατος Πρόσθεση και αφαίρεση διανυσµάτων Πολλαπλασιασµός αριθµού µε διάνυσµα Συντεταγµένες

Διαβάστε περισσότερα

1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688

1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688 1 ο Αχαρνών 197 Αγ. Νικόλαος 10.865196 ο Αγγ. Σικελιανού 4 Περισσός 10.718688 AΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ 1. Θεωρούμε ορθογώνιο τρίγωνο ΑΒΓ (Α =90Ο ) και Α το ύψος του. Αν Ε και Ζ είναι οι προβολές του

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε

Διαβάστε περισσότερα

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Η Γενικευμένη Γεωμετρία, που θα αναπτύξουμε στα παρακάτω κεφάλαια, είναι μία «Νέα Γεωμετρία», η οποία προέκυψε από την ανάγκη να γενικεύσει ορισμένα σημεία της Ευκλείδειας

Διαβάστε περισσότερα

Θεωρούμε τρίγωνο ΑΒΓ και τα μέσα Δ, Ε των ΑΒ, ΑΓ αντίστοιχα.θα αποδείξουμε ότι:

Θεωρούμε τρίγωνο ΑΒΓ και τα μέσα Δ, Ε των ΑΒ, ΑΓ αντίστοιχα.θα αποδείξουμε ότι: 7o Γενικό Λύκειο Αθηνών Σχολικό Έτος 04-5 Τάξη: A' Λυκείου Αθήνα -6-05 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Θέμα ο Α. Να αποδείξετε ότι: Το ευθύγραμμο τμήμα που ενώνει

Διαβάστε περισσότερα

2.1 ΕΦΑΠΤΟΜΕΝΗ ΟΞΕΙΑΣ ΓΩΝΙΑΣ

2.1 ΕΦΑΠΤΟΜΕΝΗ ΟΞΕΙΑΣ ΓΩΝΙΑΣ 1 2.1 ΕΦΠΤΟΜΕΝΗ ΟΞΕΙΣ ΩΝΙΣ ΘΕΩΡΙ Εφαπτοµένη οξείας γνίας : Έστ ένα ορθογώνιο τρίγνο και µία από τις οξείες γνίες του. Ονοµάζουµε εφαπτοµένη της γνίας και συµβολίζουµε µε εφ το λόγο της απέναντι κάθετης

Διαβάστε περισσότερα

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ.

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ. Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) 8556 ΘΕΜΑ Δίνονται τα διανύσματα και με, και, 3 α) Να βρείτε το εσωτερικό γινόμενο β) Αν τα διανύσματα γ) Να βρείτε το μέτρο του διανύσματος 8558 ΘΕΜΑ

Διαβάστε περισσότερα