ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ. Θέμα 2. α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ. Θέμα 2. α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει"

Transcript

1 ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ Θέμα α) Δείξτε ότι οι διακριτές ιδιοτιμές της ενέργειας σε ένα μονοδιάστατο πρόβλημα δεν είναι εκφυλισμένες β) Με βάση το προηγούμενο ερώτημα να δείξετε ότι μπορούμε να διαλέξουμε τις αντίστοιχες κυματοσυναρτήσεις (δέσμιες καταστάσεις) να είναι πραγματικές Θέμα α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει d dv xp T x dt dx όπου Η = Τ + V, και Τ η κινητική ενέργεια β) Δείξτε ότι εάν το σύστημα είναι σε μια δέσμια κατάσταση το αριστερό μέλος είναι μηδέν γ) Δείξτε ότι <Τ> = <V> για τις δέσμιες καταστάσεις του αρμονικού ταλαντωτή d A A [ A, H ] dt i t Θέμα 3 Σωματίδιο μάζας m κινείται μέσα σε ένα απειρόβαθο πηγάδι δυναμικού πλάτους a (<x<a) α) Βρείτε τις ιδιοκαταστάσεις Ψ και τις ιδιοτιμές της ενέργειας Ε του σωματιδίου β) Μία μικρή διαταραχή V(x) προστίθεται στο σύστημα, V(x)= -V για <x<a/ και V(x)= για a/<x<a, V > Να υπολογίσετε τις ενέργειες W του σωματιδίου σε πρώτη τάξη της θεωρίας διαταραχών γ) Ομοίως όταν έχουμε V(x)= -V για <x<a/ και V(x)=V για a/<x<a Θέμα 4 Σωματίδιο μάζας Μ κινείται στην περιφέρεια κύκλου ακτίνας RΥπολογίστε τις επιτρεπόμενες τιμές της ενέργειας, τις αντίστοιχες κυματοσυναρτήσεις και τον εκφυλισμό si si ( ) (si ) Θέμα 5 Η κυματοσυνάρτηση του ατόμου του Υδρογόνου (υποθέτοντας άπειρη την μάζα του πυρήνα) είναι (,, ) ce cos 4 Όπου c μια σταθερά κανονικοποίησης και me α) Υπολογίστε την z συνιστώσα της στροφορμής L z και τον κβαντικό αριθμό της στροφορμής β) Υπολογίστε την μέση τιμή της κινητικής ενέργειας του ατόμου γ) Υπολογίστε την ολική ενέργεια k e d k! k

2 Θέμα 6 (α) Να δείξετε ότι [ H, A] για κάθε ιδιοσυνάρτηση της Χαμιλτονιανής Η και ενός οποιουδήποτε τελεστή Α του φυσικού συστήματος P (β) Εάν H V ( ) και χρησιμοποιώντας τον τελεστή A P αποδείξτε ότι για m κάθε ιδιοσυνάρτηση της Χαμιλτονιανής ισχύει T V, όπου Τ ο τελεστής της κινητικής ενέργειας και V() η δυναμική ενέργεια για το άτομο του υδρογόνου Θέμα 7 Η δυναμική ενέργεια σε ένα μονοδιάστατο πρόβλημα για ένα σωματίδιο μάζας m, είναι ανάλογη της συνάρτησης δέλτα του Diac, V(x) = - λδ(x), λ> (α) Για ποιές τιμές της ενέργειας έχουμε σκέδαση (δηλαδή συνεχές φάσμα), για ποιες τιμές έχουμε δέσμιες καταστάσεις (διακριτό φάσμα); (β) Να βρεθούν οι δέσμιες καταστάσεις pˆ Θέμα 8 (α) Υπολογίστε τον μεταθέτη της κινητικής ενέργειας με τις m συνιστώσες L ˆx, L ˆ y και L ˆz της στροφορμής ( pˆ pˆ x pˆ y pˆ z ) (β) Να δείξετε ότι Lˆ x, Hˆ, Lˆ y, Hˆ και Lˆ z, Hˆ όταν το δυναμικό είναι συνάρτηση του μέτρου ˆ μόνο και ˆ p H V ( ) m Θέμα 9 Σωμάτιο μάζας m κινείται σε πηγάδι δυναμικού V x a / V ( x) a / x a / V x a / Υπολογίστε το πλάτος a σαν συνάρτηση των m, V και, ώστε να υπάρχει μόνο μια δέσμια κατάσταση με ενέργεια E V /, όπου V Θέμα Σωμάτιο μάζας m κινείται σε «απειρόβαθο» πηγάδι, x a, και έχει 3 αρχική κυματοσυνάρτηση που δίνεται από την σχέση ( x, t ) Asi ( x / a) (α) Προσδιορίστε την σταθερά A και την κυματοσυνάρτηση ( x, t) σαν συνάρτηση του χρόνου t (β) Υπολογίστε την αβεβαιότητα της ενέργειας E ως συνάρτηση του χρόνου Υπόδειξη: si ( ) 3si si Θέμα Δίνεται η κανονικοποιημένη κυματοσυνάρτηση, N Y Y Y m m όπου Y Y (, ) είναι η σφαιρική αρμονική l l (α) Να υπολογίσετε την σταθερά N (β) Να υπολογίσετε την αβεβαιότητα στα μεγέθη L z και L

3 Θέμα Δίνεται η χαμιλτονιανή ενός συστήματος σπιν με δύο ίδιο-καταστάσεις, E H όπου E E E (α) Την χρονική στιγμή t το σύστημα μετρήθηκε και το σπιν του βρέθηκε να είναι στην διεύθυνση y Γράψτε την κυματοσυνάρτηση που αντιστοιχεί (β) Γράψτε την κυματοσυνάρτηση του συστήματος για t (γ) Να υπολογίσετε την πιθανότητα για κάθε ενδεχόμενο αποτέλεσμα της μέτρησης του σπιν στην διεύθυνση x ως συνάρτηση του χρόνου και να κάνετε τις γραφικές τους παραστάσεις Θέμα 3 α) Αποδείξτε την σχέση που δίνει την χρονική μεταβολή της μέσης τιμής d A A ενός τελεστή Α: [ A, H ] dt i t β) Εάν Η είναι η Χαμιλτονιανή ενός μονοδιάστατου αρμονικού ταλαντωτή μάζας m d x d p και συχνότητας ω, υπολογίστε τις ποσότητες, και δείξτε ότι dt dt d x x dt Θέμα 4 Ένα σωματίδιο μάζας m και ενέργειας Ε=V προσπίπτει από αριστερά σε ένα ορθογώνιο φράγμα δυναμικού ύψους V και πλάτους a Βρείτε τον συντελεστή διέλευσης Τ Θέμα 5 Η Χαμιλτονιανή ενός συστήματος δύο καταστάσεων είναι ένας ερμιτιανός a b πίνακας H * με a R Εάν το σύστημα είναι αρχικά στην κατάσταση b a ( t ) βρείτε την κατάσταση του συστήματος για t Θέμα 6 α) Γράψτε τις σχέσεις μετάθεσης για τους τελεστές της στροφορμής β) Αν L =L x +L y +L z να δείξετε ότι [L,L k ]= όπου k=x,y,z L γ) Σύστημα περιγράφεται από την Χαμιλτονιανή H glz, Ι και g θετικές I σταθερές με κατάλληλες μονάδες Να βρείτε το ενεργειακό του φάσμα Ποια πρέπει να είναι η σχέση των I και g έτσι ώστε η κατάσταση ελάχιστης ενέργειας να είναι διπλά εκφυλισμένη a Θέμα 7 Η συνάρτηση ( ) ce cos είναι η κυματοσυνάρτηση μιας στάσιμης κατάστασης ενός φυσικού συστήματος μάζας m το οποίο έχει δυναμική ενέργεια V ( ) και ορισμένη στροφορμή, όπου γ και α σταθερές Να υπολογίσετε: α) Την στροφορμή του συστήματος β) Την ενέργεια Ε του συστήματος γ) Την σταθερά γ

4 Θέμα 8 Οι τελεστές a και a ορίζονται ως εξής: m ip x m ip a x, a x x m m για έναν αρμονικό ταλαντωτή μάζας m και συχνότητας ω Υπενθυμίζουμε τις ιδιότητες a, a των τελεστών a και a, όπου Ψ είναι ιδιοσυναρτήσεις του αρμονικού ταλαντωτή (α) Βρείτε την δράση των τελεστών x και p x στην Ψ (β) Υπολογίστε την αναμενόμενη τιμή του τελεστή ( xpx pxx) ως προς την κυματοσυνάρτηση Ψ ενός αρμονικού ταλαντωτή Θέμα 9 Σωματίδιο μάζας m κινείται κατά τον άξονα x με ιδιοσυνάρτηση βασικής A κατάστασης ( x) όπου Α,λ θετικές σταθερές cosh( x) Αν η συνάρτηση της δυναμικής ενέργειας V(x) μηδενίζεται για x : (α) Βρείτε την τιμή της ενέργειας της βασικής στάθμης και (β) βρείτε την μορφή της δυναμικής ενέργειας Δίνεται ότι: (cosh x)' sih x, (sih x)' cosh x, cosh x sih x Θέμα Η κατάσταση του ηλεκτρονίου σε ένα άτομο υδρογόνου περιγράφεται την χρονική στιγμή t= από την κυματοσυνάρτηση: Ψ=Ν(ψ -ψ +ψ 3,- ), όπου ψ, ψ και ψ 3,- κανονικοποιημένες ιδιοκαταστάσεις του ατόμου του υδρογόνου (α) Υπολογίστε τον συντελεστή κανονικοποιήσης Ν και την χρονικά εξελιγμένη κυματοσυνάρτηση του ηλεκτρονίου (β) Υπολογίστε τις μέσες τιμές <l >, <l z > και <E>, καθώς και την αβεβαιότητα Δl Θέμα Η αλληλεπίδραση ενός ηλεκτρονίου με ένα σταθερό μαγνητικό πεδίο περιγράφεται από την χαμιλτονιανή H (α) Υπολογίστε τις ενεργειακές στάθμες του ηλεκτρονίου (β) Την χρονική στιγμή t= το σύστημα μετρήθηκε και το σπιν του βρέθηκε στην κατεύθυνση -z Γράψτε την κυματοσυνάρτηση του ηλεκτρονίου (γ) Βρείτε την κατάσταση του συστήματος για t> και υπολογίστε την πιθανότητα να μετρήσουμε το σπιν στην κατεύθυνση z Θέμα Κβαντομηχανικό σύστημα περιγράφεται από την χαμιλτονιανή H H V Yποθέτουμε ότι λύνουμε για την χαμιλτονιανή Η και ξερουμε τις ιδιοσυναρτήσεις της Ψ () και τις ιδιοενέργειες Ε (), H Ψ () = Ε () Ψ () Εάν θεωρήσουμε τον όρο V σαν διαταραχή βρείτε την διόρθωση στην ενέργεια σε πρώτη τάξη της θεωρίας διαταραχών Προσοχή, κάντε όλους τους απαιτούμενους ενδιάμεσους υπολογισμούς Υποθέστε ότι το δεν έχουμε εκφυλισμό Θέμα 3 Θεωρήστε δύο ορθοκανονικά διανύσματα ψ και ψ και υποθέστε ότι αποτελούν βάση σε ένα χώρο δύο διαστάσεων Θεωρήστε επίσης ένα τελαστή Α που ορίζεται στο χώρο αυτό και ικανοποιεί τις σχέσεις Αψ =ψ +ψ, Αψ =ψ +ψ Να υπολογίσετε τις ιδιοτιμές και τις κανονικοποιημένες ιδιοσυναρτήσεις του τελεστή Α

5 Θέμα 4: Σωματίδιο μάζας m κινείται υπό την επίδραση της δύναμης F=-kx, k> και η κατάστασή του σε μια ορισμένη στιγμή περιγράφεται από την κυματοσυνάρτηση / ( x) Nxe x (α) Έχει το σωματίδιο απόλυτα καθορισμένη ενέργεια; Υπάρχει κατάλληλη τιμή του λ για την οποία η απάντηση είναι καταφατική; (β) Για οιοδήποτε λ υπολογίστε την μέση τιμή της ενέργειας του σωματιδίου και σχεδιάστε πρόχειρα την εξάρτησή της από το λ Τι παρατηρείτε, ποία η σχέση με το ερώτημα (α); ( )! x exp( x ) dx!(4 ) Θέμα 5: Σωμάτιο μάζας m κινείται σε τρισδιάστατο πηγάδι δυναμικού που δίνεται από την σχέση a V ( ) V a όπου V θετική σταθερά Προσδιορίστε το V ώστε το σύστημα να έχει για l μόνο δύο δέσμιες καταστάσεις Θέμα 6: Ένα μονοδιάστατο πρόβλημα χαρακτηρίζεται από δέσμιες καταστάσεις με ενέργειες E και ορθοκανονικό σύστημα ιδιοσυναρτήσεων ( x ) με ακέραιο και ομοτιμία (paity) ( ) Δίνεται η κυματοσυνάρτηση του συστήματος ( x, t) για t i i ( x, t ) ( x) 3( x) C 5( x) 3 (α) Υπολογίστε τον συντελεστή C έτσι ώστε αυτή να είναι κανονικοποιημένη στην μονάδα και γράψτε την κυματοσυνάρτηση ( x, t) σε χρόνο t (β) Βρείτε την πιθανότητα μια μέτρηση της ενέργειας στο χρόνο t να σας δώσει την τιμή E 5 (γ) Οι μέσες τιμές θέσης, ορμής και ενέργειας, x, p και H μεταβάλλονται με τον χρόνο; Εξηγείστε Θέμα 7: Το ηλεκτρόνιο σε άτομο υδρογόνου είναι στην κατάσταση ( t ) R /3 Y /3 Y όπου είναι οι καταστάσεις σπίν (α) Εάν μετρήσετε τα L, L z, S και S z ποιες είναι οι πιθανές τιμές και με τι πιθανότητα έκαστη? (β) Έστω J=L+S η ολική στροφορμή Υπολογίστε τα <J > και <J z > Θέμα 8: Υπολογίστε την σχετικιστική διόρθωση πρώτης τάξης για την ενέργεια της θεμελιώδους κατάστασης του ατόμου του Υδρογόνου Η διόρθωση δίνεται κλασσικά από την σχέση

6 4 p E c m c p mc m Θεωρώντας ότι η ορμή είναι πολύ μικρότερη της «μάζας», σύμφωνα με τη σχέση p mc, αναπτύσσοντας κατά Taylo και κρατώντας τον πρώτο όρο ( ) ( ) 4 4 me, E me 3, a e 3 a Θέμα 9: Δέσμιο ηλεκτρόνιο του ατόμου του υδρογόνου βρίσκεται υπό την επήρεια του ομογενούς μαγνητικού πεδίου B=Bz (αγνοείστε το σπίν του ηλεκτρονίου) Η χαμιλτονιανή του συστήματος δίνεται από την σχέση H H L z Όπου eb / m e c () Οι ιδιοκαταστάσεις lm και οι ιδιοτιμές της ενέργειας E lm της χαμιλτονιανής H, θεωρούνται γνωστές Υποθέτουμε ότι το σύστημα βρίσκεται αρχικά στην κατάσταση ( ) Ποια είναι η πιθανότητα ως συνάρτηση του χρόνου να βρεθεί το σύστημα στις παρακάτω καταστάσεις ( a) px ( ) ( b) py ( ) ( c) p z Θέμα 3: Ηλεκτρόνιο, ακίνητο, ευρίσκεται σε εναλλασσόμενο μαγνητικό πεδίο που δίνεται από την σχέση B( t) B si( t) zˆ Για t το ηλεκτρόνιο ευρίσκεται στην ιδιοκατάσταση του τελεστή S με ιδιοτιμή /, όπου S S, (/,/, ) (α) Υπολογίστε σαν συνάρτηση του χρόνου την πιθανότητα μέτρησης της τιμής / για το spi στη κατεύθυνση x (β) Ποία είναι η πιθανότητα μέτρησης της τιμής / για το spi στην κατεύθυνη z; Θέμα 3: Το ηλεκτρόνιο σε ένα άτoμο υδρογόνου την χρονική στιγμή t= είναι στην κατάσταση (, t ) N όπου είναι οι καταστάσεις σπίν και ψ lm οι ιδιοσυναρτήσεις του ατόμου του υδρογόνου με συγκεκριμένη ενέργεια To ηλεκτρόνιο βρίσκεται υπό την επήρεια ενός ομογενούς μαγνητικού πεδίου B B zˆ για t>, H=H +H B (α) Βρείτε την κατάσταση του συστήματος για t> (β) Εάν μετρήσουμε το σπιν του ηλεκτρονίου στον άξονα z τι τιμές θα πάρουμε και με τι πιθανότητα; (γ) Έστω J=L+S η ολική στροφορμή Ποιες είναι οι δυνατές τιμές της ολικής στροφορμής για αυτό το σύστημα?

7 (γ) Υπολογίστε τα J z Ψ και J Ψ Σε ποια τιμή της ολικής στροφορμής αντιστοιχεί η κυματοσυνάρτηση του ηλεκτρονίου; i sx, sy, sz i, e s g S m c ( j, m) j( j ) m( m ), c( j, m) j( j ) m( m ), J J x ij y Θέμα 3: Σωματίδιο μάζας m κινείται υπό την επίδραση δυναμικού V(x,y)=V (x)+v (y) στις δύο διαστάσεις Όπου:, x, y V ( x), x a και V ( y), y b V, x a, y b mva 3 Βρείτε τις δέσμιες ιδιοκαταστάσεις του συστήματος όταν Θέμα 33: Ένας διδιάστατος αρμονικός ταλαντωτής περιγράφεται από την m Χαμιλτονιανή: H ( px py ) ( x y ) m (α) Να δοθεί μία γενική έκφραση για τις ενεργειακές στάθμες της H, και να βρείτε τον εκφυλισμό τους (β) Να εκφράσετε την κυματοσυνάρτηση του συστήματος για την θεμελιώδη στάθμη και την πρώτη διεγερμένη σαν συνάρτηση των κυματοσυναρτήσεων ψ k του μονοδιάστατου αρμονικού ταλαντωτή (γ) Εάν το σύστημα περιγράφεται από την κυματοσυνάρτηση: b Et i Nxe e, x y όπου Ν θετική σταθερά Να προσδιοριστούν οι σταθερές Ε και b (δ) Εάν το σύστημα έχει ενέργεια E και προστεθεί μία ασθενής διαταραχή 4 της μορφής V ( x) ax, a, ο εκφυλισμός αίρεται Να βρείτε τις νέες ενεργειακές στάθμες του συστήματος Υπόδειξη, να τις εκφράσετε σαν συνάρτηση των ποσοτήτων: V dq ( q) q ( q) V dq ( q) q ( q) * 4 * 4 χωρίς να υπολογίσετε τα ολοκληρώματα Θέμα 34 Σωματίδιο μάζας m κινείται ελεύθερα στο χώρο ανάμεσα σε δύο αδιαπέραστες σφαιρικές επιφάνειες με ακτίνες =a και =b, a<b α) Γράψτε την Χαμιλτονιανή του σωματιδίου σε σφαιρικές συντεταγμένες και ξεχωρίστε τον όρο της στροφορμής β) Υπολογίστε τις ενεργειακές ιδιοτιμές και τις ιδιοσυναρτήσεις του σωματιδίου για στροφορμή l ίση με το μηδέν

8 Θέμα 35: Δύο σωματίδια με spi S =3/ και S = αλληλεπιδρούν τοπικά και η Χαμιλτονιανή που περιγράφει την αλληλεπίδραση είναι: H=gS S, όπου g μια σταθερά με τις κατάλληλες μονάδες α) Υπολογίστε τις δυνατές τιμές της ολικής στροφορμής S των δύο σωματιδίων και τον εκφυλισμό σε κάθε περίπτωση β) Υπολογίστε τις ενεργειακές ιδιοτιμές του συστήματος Θέμα 36: Για την πυκνότητα πιθανότητας P και το ρεύμα πιθανότητας J ισχύει P J t Αποδείξτε αυτή τη σχέση στην Κβαντομηχανική ορίζοντας το κατάλληλο J δεδομένου ότι P (, t) (, t) Θέμα 37: Σωματίδιο μάζας m κινείται σε ένα απειρόβαθο πηγάδι δυναμικού μεταξύ των θέσεων a και a α) Βρείτε την ενέργεια και την κυματοσυνάρτηση για την θεμελιώδη και για την πρώτη διεγερμένη στάθμη β) Μία μικρή διαταραχή V ( x) x a προστίθεται στο σύστημα Χρησιμοποιήστε θεωρία διαταραχών πρώτης τάξης για να υπολογίσετε την μεταβολή στην ενέργεια της θεμελιώδους στάθμης γ) Υπολογίστε την πιθανότητα μετάβασης από τη θεμελιώδη στάθμη στην πρώτη διεγερμένη στάθμη (του αδιατάραχτου προβλήματος) εάν η διαταραχή V ( x) x a διαρκεί χρόνο Τ Θέμα 38: Σωμάτιο με μάζα m κινείται σε μια διάσταση υπό την επίδραση του δυναμικού U ( x) k x και βρίσκεται στην θεμελειώδη κατάσταση bx iat / (α) Αν ( x, t) N e e είναι κανονικοποιημένη λύση της χρόνο-εξαρτώμενης εξίσωσης Schödige για την θεμελιώδη στάθμη να υπολογίσετε τις σταθερές b, a (β) Σε δεδομένη χρονική στιγμή επέρχεται απότομη σύλληψη ένος άλλου σωματίου με αποτέλεσμα το νέο σύνθετο σωμάτιο να έχει μάζα m m Ποιά είναι η πιθανότητα το νέο σύνθετο σωμάτιο να παραμείνει στην θεμελειώδη κατάσταση; Θέμα 39: Σωμάτιο μάζας m σε απειρόβαθο πηγάδι δυναμικού με πλάτος a ( a / x a / ) βρίσκεται στην κατάσταση ( x) ( ) Αίφνης το πλάτος του πηγαδιού διπλασιάζεται ( a x a ) (α) Γράψτε τις καινούργιες ίδιο-συναρτήσεις και ίδιο-ενέργειες (β) Υπολογίστε την πιθανότητα σε μέτρηση της ενέργειας του σωματίου, αυτή να βρεθεί ίση με τιμή που είχε πριν τον διπλασιασμό του πλάτους του πηγαδιού (γ) Δώστε την έκφραση για την πυκνότητα πιθανότητας στο x για t Υπόδειξη: Κατά τον διπλασιασμό του πλάτους το σωμάτιο στιγμιαία παραμένει περιορισμένο στο διάστημα a / x a /, δηλαδή ( x) a / x a / ( x, t ) a x a / a / x a

9 Θέμα 4: Σωμάτιο μάζας m κινείται στο δυναμικό V(x): x a a x b V ( x) V b x b όπου a,b θετικές σταθερές, V > b x a x a Ζητείται να υπολογισθεί η ενέργεια Ε και το V, έτσι ώστε η ιδιοσυνάρτηση ψ(x) της d Χαμιλτονιανής να ικανοποιεί την συνθήκη για b<x<b dx Θέμα 4: Να υπολογιστεί προσεγγιστικά η ενέργεια της θεμελιώδους στάθμης για 4 έναν τρισδιάστατο ταλαντωτή μάζας m με δυναμική ενέργεια: V ( ) m Δίνονται: Η κυματοσυνάρτηση του μονοδιάστατου αρμονικού ταλαντωτή στην 4 θεμελιώδη στάθμη ( x ) a / exp( ax / ), a m / ( )! x exp( ax ) dx!(4 a) a Θέμα 4: (α) Γράψτε τις σχέσεις μετάθεσης για τους τελεστές της στροφορμής (β) Αν L L L L να δείξετε ότι [ L, L ] και [ L, L ] όπου k=x,y,z x y z (γ) Αν η Χαμιλτονιανή ενός συστήματος είναι ιδιοτιμές της ενέργειας και τον εκφυλισμό κάθε στάθμης k H g L L να βρείτε τις k ( x y ) Θέμα 43: Η κυματοσυνάρτηση του spi ενός ηλεκτρονίου είναι c 3c όπου οι συναρτήσεις και είναι ιδιοσυναρτήσεις του τελεστή της z συνιστώσας του spi και c μία σταθερά κανονικοποίησης Έστω ότι μετράμε το spi του σωματιδίου στην κατεύθυνση ενός άξονα που αντιστοιχεί ο τελεστής s ( sx sy ), όπου s x και s y οι τελεστές του spi στις διευθύνσεις x,y 3 αντίστοιχα (α) Τι τιμές θα βρούμε για το spi του σωματιδίου σε αυτή την κατεύθυνση; (β) Ποια είναι η πιθανότητα να βρούμε κάθε μία από τις τιμές αυτές; (γ) Δώστε τις αντίστοιχες κυματοσυναρτήσεις

και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για

και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου IV Άσκηση 1: Σωματίδιο μάζας Μ κινείται στην περιφέρεια κύκλου ακτίνας R. Υπολογίστε τις επιτρεπόμενες τιμές της ενέργειας, τις αντίστοιχες κυματοσυναρτήσεις και τον εκφυλισμό.

Διαβάστε περισσότερα

. Να βρεθεί η Ψ(x,t).

. Να βρεθεί η Ψ(x,t). ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου II Άσκηση 1: Εάν η κυματοσυνάρτηση Ψ(,0) παριστάνει ένα ελεύθερο σωματίδιο, με μάζα m, στη μία διάσταση την χρονική στιγμή t=0: (,0) N ep( ), όπου N 1/ 4. Να βρεθεί η

Διαβάστε περισσότερα

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου Ι Άσκηση 1: Θεωρήστε δύο ορθοκανονικά διανύσματα ψ 1 και ψ και υποθέστε ότι αποτελούν βάση σε ένα χώρο δύο διαστάσεων. Θεωρήστε επίσης ένα τελαστή T που ορίζεται στο χώρο

Διαβάστε περισσότερα

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής. ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου V Άσκηση : Οι θεμελιώδεις σχέσεις μετάθεσης της στροφορμής επιτρέπουν την ύπαρξη ακέραιων και ημιπεριττών ιδιοτιμών Αλλά για την τροχιακή στροφορμή L r p γνωρίζουμε ότι

Διαβάστε περισσότερα

Διάλεξη 1: Κβαντομηχανική σε τρεις διαστάσεις

Διάλεξη 1: Κβαντομηχανική σε τρεις διαστάσεις Διάλεξη : Κβαντομηχανική σε τρεις διαστάσεις Βασικές Αρχές της Κβαντομηχανικής H κατάσταση ενός φυσικού συστήματος περιγράφεται από την κυματοσυνάρτησή του και αποτελεί το πλάτος πιθανότητας να βρεθεί

Διαβάστε περισσότερα

KΒΑΝΤΟΜΗΧΑΝΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

KΒΑΝΤΟΜΗΧΑΝΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 KΒΑΝΤΟΜΗΧΑΝΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ Κυματική εξίσωση Schrödiger Η δυνατότητα ενός σωματιδίου να συμπεριφέρεται ταυτόχρονα και ως κύμα, δηλαδή να είναι εντοπισμένο

Διαβάστε περισσότερα

Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική

Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική Spin Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική Δομή Διάλεξης Το πείραμα Stern-Gerlach: Πειραματική απόδειξη spin Ο δισδιάστατος χώρος καταστάσεων spin του ηλεκτρονίου: οι πίνακες Pauli Χρονική εξέλιξη

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κβαντομηχανική σε τρεις διαστάσεις Διδάσκων : Επίκ. Καθ. Μ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κβαντομηχανική σε τρεις διαστάσεις Διδάσκων : Επίκ. Καθ. Μ. ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγρονη Φυσική II Κβαντομηχανική σε τρεις διαστάσεις Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Θεωρία Διαταραχών ΙΙ: Εκφυλισμένες Καταστάσεις

Θεωρία Διαταραχών ΙΙ: Εκφυλισμένες Καταστάσεις Θεωρία Διαταραχών ΙΙ: Εκφυλισμένες Καταστάσεις Δομή Διάλεξης Εκφυλισμένη Θεωρία Διαταραχών: Γενική Μέθοδος για την αντιμετώπιση των απειρισμών λόγω εκφυλισμού Εφαρμογή σε διεγερμένη κατάσταση υδρογόνου

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ˆ pˆ. παραγωγίστε ως προς το χρόνο και χρησιμοποιείστε την εξίσωση Schrodinger για να βρείτε τη χρονική παράγωγο της κυματοσυνάρτησης. Θα βρείτε.

ˆ pˆ. παραγωγίστε ως προς το χρόνο και χρησιμοποιείστε την εξίσωση Schrodinger για να βρείτε τη χρονική παράγωγο της κυματοσυνάρτησης. Θα βρείτε. Άσκηση. Η Hamiltoia ενός συστήματος έχει τη γενική μορφή ˆ pˆ H V ( xˆ ) m Δείξτε ότι d V ( xˆ ) pˆ F( xˆ) t dt x def. t Υπόδειξη: Ξεκινείστε από τον ορισμό της αναμενόμενης τιμής pˆ dx ( x, t) pˆ( x,

Διαβάστε περισσότερα

Χρονοανεξάρτητη Μη-Εκφυλισμένη Θεωρία Διαταραχών

Χρονοανεξάρτητη Μη-Εκφυλισμένη Θεωρία Διαταραχών Χρονοανεξάρτητη Μη-Εκφυλισμένη Θεωρία Διαταραχών Δομή Διάλεξης Ανασκόπηση συμβολισμού Dirac Διαταραχές σε σύστημα δύο καταστάσεων Η γενική μέθοδος μη-εκφυλισμένης θεωρίας διαταραχών Εφαρμογή: Διαταραχή

Διαβάστε περισσότερα

Κβαντικό Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο

Κβαντικό Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Κβαντικό Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Δομή Διάλεξης Χαμιλτονιανή και Ρεύμα Πιθανότητας για Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Μετασχηματισμοί Βαθμίδας Αρμονικός Ταλαντωτής σε Ηλεκτρικό Πεδίο Σωμάτιο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Εκφυλισμένη Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Εκφυλισμένη Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Εκφυλισμένη Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Ποια απο τις παρακάτω είναι η σωστή µορφή του πραγµατικού µέρους της κυµατοσυνάρτησης του

Ποια απο τις παρακάτω είναι η σωστή µορφή του πραγµατικού µέρους της κυµατοσυνάρτησης του Τίτλος: Κυµατοσυνάρτηση-Φράγµα δυναµικού Χρόνος: min. Σωµάτιο προσπίπτει απο αριστερά στο παρακάτω φράγµα δυναµικού. Ποια απο τις παρακάτω είναι η σωστή µορφή του πραγµατικού µέρους της κυµατοσυνάρτησης

Διαβάστε περισσότερα

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 30 Αυγούστου 2010 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης 2,5 ώρες.

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 30 Αυγούστου 2010 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης 2,5 ώρες. ΘΕΜΑ [5575] ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 3 Αυγούστου ( ιδάσκων: ΑΦ Τερζής) ιάρκεια εξέτασης,5 ώρες (α) Να αποδειχθεί ότι για οποιοδήποτε µη εξαρτώµενο από τον χρόνο τελεστή Α, ισχύει d A / dt = A,

Διαβάστε περισσότερα

Δομή Διάλεξης. Εύρεση ακτινικού μέρους εξίσωσης Schrödinger. Εφαρμογή σε σφαιρικό πηγάδι δυναμικού απείρου βάθους. Εφαρμογή σε άτομο υδρογόνου

Δομή Διάλεξης. Εύρεση ακτινικού μέρους εξίσωσης Schrödinger. Εφαρμογή σε σφαιρικό πηγάδι δυναμικού απείρου βάθους. Εφαρμογή σε άτομο υδρογόνου Κεντρικά Δυναμικά Δομή Διάλεξης Εύρεση ακτινικού μέρους εξίσωσης Schrödinger Εφαρμογή σε σφαιρικό πηγάδι δυναμικού απείρου βάθους Εφαρμογή σε άτομο υδρογόνου Ακτινική Συνιστώσα Ορμής Έστω Χαμιλτονιανή

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

( ) * Λύση (α) Καθώς η Χαµιλτονιανή είναι ερµιτιανός τελεστής έχουµε ότι = = = = 0. (β) Απαιτούµε

( ) * Λύση (α) Καθώς η Χαµιλτονιανή είναι ερµιτιανός τελεστής έχουµε ότι = = = = 0. (β) Απαιτούµε ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 3 Γενάρη ( ιδάσκων: ΑΦ Τερζής) ιάρκεια εξέτασης 3 ώρες ΘΕΜΑ [555555553] Θεωρούµε κβαντικό σύστηµα που περιγράφεται από την Χαµιλτονιανή H 3ε µ iε µε ιδιοσυναρτήσεις κάποιου

Διαβάστε περισσότερα

ETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ

ETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ Θεωρία της στροφορμής Στέλιος Τζωρτζάκης 1 3 4 Υπενθύμιση βασικών εννοιών της στροφορμής κυματοσυνάρτηση

Διαβάστε περισσότερα

S ˆz. Απ. : Αυτό που πρέπει να βρούμε είναι οι συντελεστές στο ανάπτυγμα α. 2αβ

S ˆz. Απ. : Αυτό που πρέπει να βρούμε είναι οι συντελεστές στο ανάπτυγμα α. 2αβ Άσκηση 4. Έστω σωμάτιο με spin /. Να προσδιορίσετε την κατάστασή του αν είναι γνωστές οι S ˆ, S ˆ και μόνο το πρόσημο της S ˆ. Απ. : Αυτό που πρέπει να βρούμε είναι οι συντελεστές στο ανάπτυγμα α ψ = α

Διαβάστε περισσότερα

H = H 0 + V (0) n + Ψ (1) n + E (2) (3) >... Σε πρώτη προσέγγιση µπορούµε να δεχτούµε ότι. n και E n E n

H = H 0 + V (0) n + Ψ (1) n + E (2) (3) >... Σε πρώτη προσέγγιση µπορούµε να δεχτούµε ότι. n και E n E n 3 Θεωρία διαταραχών 3. ιαταραχή µη εκφυλισµένων καταστάσεων 3.. Τοποθέτηση του προβλήµατος Θέλουµε να λύσουµε µε τη ϑεωρία των διαταραχών το πρόβληµα των ιδιοτιµών και ιδιοσυναρτήσεων ενός συστή- µατος

Διαβάστε περισσότερα

ETY-202. Ο γενικός φορμαλισμός Dirac ETY-202 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC. Στέλιος Τζωρτζάκης 21/11/2013

ETY-202. Ο γενικός φορμαλισμός Dirac ETY-202 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC. Στέλιος Τζωρτζάκης 21/11/2013 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC Στέλιος Τζωρτζάκης Ο γενικός φορμαλισμός Dirac 1 3 4 Εικόνες και αναπαραστάσεις Επίσης μια πολύ χρήσιμη ιδιότητα

Διαβάστε περισσότερα

Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών

Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών Βασικά σημεία της κβαντομηχανικής Διδάσκων : Επίκουρη Καθηγήτρια Χριστίνα Λέκκα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Κίνηση σε Μονοδιάστατα Τετραγωνικά Δυναμικά

Κίνηση σε Μονοδιάστατα Τετραγωνικά Δυναμικά Κίνηση σε Μονοδιάστατα Τετραγωνικά Δυναμικά Δομή Διάλεξης Τετραγωνικό Πηγάδι Δυναμικού: Δέσμιες καταστάσεις - ιδιοτιμές Οριακές Περιπτώσεις: δ δυναμικό, άπειρο βάθος Σκέδαση σε μια διάσταση: Σκαλοπάτι

Διαβάστε περισσότερα

Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Εξάρτηση του πυρηνικού δυναμικού από άλλους παράγοντες (πλην της απόστασης) Η συνάρτηση του δυναμικού

Διαβάστε περισσότερα

Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας

Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας Δομή Διάλεξης Χρονική εξέλιξη Gaussian κυματοσυνάρτησης σε μηδενικό δυναμικό (ελέυθερο σωμάτιο): Μετατόπιση και Διασπορά Πείραμα διπλής οπής: Κροσσοί συμβολής για

Διαβάστε περισσότερα

μαγνητικό πεδίο τυχαίας κατεύθυνσης

μαγνητικό πεδίο τυχαίας κατεύθυνσης Σπιν 1 μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο τυχαίας κατεύθυνσης 1) Ηλεκτρόνιο βρίσκεται μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο B B ˆ ˆ ˆ 0xex B0 yey B0 zez, όπου B0 x, B0

Διαβάστε περισσότερα

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5 Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 1/ 53 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων Ακαδηµαικό έτος

Διαβάστε περισσότερα

ΜΕΡΟΣ Α: ΤΑ ΘΕΜΕΛΙΑ ΚΕΦ. 1. ΟΙ ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΚΕΦ. 4. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ ΤΟΥ DIRAC ΚΕΦ. 5. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΚΕΦ. 7.

ΜΕΡΟΣ Α: ΤΑ ΘΕΜΕΛΙΑ ΚΕΦ. 1. ΟΙ ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΚΕΦ. 4. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ ΤΟΥ DIRAC ΚΕΦ. 5. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΚΕΦ. 7. stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 01. ΟΙ ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΜΕΡΟΣ Α: ΤΑ ΘΕΜΕΛΙΑ ΚΕΦ. 1. ΟΙ ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ Στέλιος Τζωρτζάκης ΚΕΦ. 2. ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ΚΕΦ.

Διαβάστε περισσότερα

Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 )

Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 ) vs of Io vs of Io D of Ms Scc & gg Couo Ms Scc ική Θεωλης ική Θεωλης ιδάσκων: Λευτέρης Λοιδωρίκης Π 746 dok@cc.uo.g cs.s.uo.g/dok ομηχ ομηχ δ ά τρεις διαστ Εξίσωση Schödg σε D Σε μία διάσταση Σε τρείς

Διαβάστε περισσότερα

1. Μετάπτωση Larmor (γενικά)

1. Μετάπτωση Larmor (γενικά) . Μετάπτωση Larmor (γενικά) Τι είναι η μετάπτωση; Μετάπτωση είναι η αλλαγή της διεύθυνσης του άξονα περιστροφής ενός περιστρεφόμενου αντικειμένου. Αν ο άξονας περιστροφής ενός αντικειμένου περιστρέφεται

Διαβάστε περισσότερα

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής. Σημειώσεις I: Κίνηση σε τρεις διαστάσεις, στροφορμή

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής. Σημειώσεις I: Κίνηση σε τρεις διαστάσεις, στροφορμή Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙI Α. Καρανίκας και Π. Σφήκας Σημειώσεις I: Κίνηση σε τρεις διαστάσεις, στροφορμή 1. Κίνηση σε τρεις διαστάσεις Αποδεικνύεται (με τον ίδιο τρόπο όπως και

Διαβάστε περισσότερα

Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013

Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013 ΘΕΜΑ 1: ( 3 µονάδες ) Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013 Ηλεκτρόνιο κινείται επάνω από µία αδιαπέραστη και αγώγιµη γειωµένη επιφάνεια που

Διαβάστε περισσότερα

Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα

Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα Κώστας

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Τροχιακή Στροφορμή (Ορισμοί Τελεστών) Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Αρμονικός Ταλαντωτής

Αρμονικός Ταλαντωτής Αρμονικός Ταλαντωτής Δομή Διάλεξης Η χρησιμότητα του προβλήματος του αρμονικού ταλαντωτή Η Hamiltonian και οι τελεστές δημιουργίας και καταστροφής Το φάσμα ιδιοτιμών της Hamiltonian Οι ιδιοκαταστάσεις

Διαβάστε περισσότερα

Η Αναπαράσταση της Θέσης (Position Representation)

Η Αναπαράσταση της Θέσης (Position Representation) Η Αναπαράσταση της Θέσης (Position Representation) Δομή Διάλεξης Το παρατηρήσιμο μέγεθος της θεσης και τα αντίστοιχα πλάτη πιθανότητας (συνεχές φάσμα ιδιοτιμών και ιδιοκαταστάσεων) Οι τελεστές της θέσης

Διαβάστε περισσότερα

Â. Θέλουμε να βρούμε τη μέση τιμή

Â. Θέλουμε να βρούμε τη μέση τιμή ΜΕΣΗ ΤΙΜΗ ΕΝΟΣ ΕΡΜΙΤΙΑΝΟΥ ΤΕΛΕΣΤΗ Έστω ο ερμιτιανός τελεστής Â. Θέλουμε να βρούμε τη μέση τιμή Â μια χρονική στιγμή, που αυθαίρετα, αλλά χωρίς βλάβη της γενικότητας, θεωρούμε χρονική στιγμή μηδέν, όπου

Διαβάστε περισσότερα

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ Στέλιος Τζωρτζάκης 1 3 4 Ο διανυσματικός χώρος των φυσικών καταστάσεων Η έννοια

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑ II (ΑΠΕΙΡΙΣΜΟΣ ΤΟΥ ΔΥΝΑΜΙΚΟΥ ΣΕ ΠΕΡΙΟΧΗ/ΠΕΡΙΟΧΕΣ), και τις ενεργειακές στάθμες του, 2. E E E, όπου ˆ

ΠΑΡΑΔΕΙΓΜΑ II (ΑΠΕΙΡΙΣΜΟΣ ΤΟΥ ΔΥΝΑΜΙΚΟΥ ΣΕ ΠΕΡΙΟΧΗ/ΠΕΡΙΟΧΕΣ), και τις ενεργειακές στάθμες του, 2. E E E, όπου ˆ ΠΑΡΑΔΕΙΓΜΑ II (ΑΠΕΙΡΙΣΜΟΣ ΤΟΥ ΔΥΝΑΜΙΚΟΥ ΣΕ ΠΕΡΙΟΧΗ/ΠΕΡΙΟΧΕΣ) Στο απειρόβαθο πηγάδι με τοιχώματα στα σημεία x, θα υπολογίσουμε τη διασπορά της ενέργειας,, για τη μικτή κατάσταση με 5 x x x 8 μέσα στο πηγάδι

Διαβάστε περισσότερα

Δομή Διάλεξης. Ορισμός Ολικής Στροφορμής. Σχέση βάσης ολικής στροφορμής (j,m j ) με βάση επιμέρους στροφορμών (m 1,m 2 )

Δομή Διάλεξης. Ορισμός Ολικής Στροφορμής. Σχέση βάσης ολικής στροφορμής (j,m j ) με βάση επιμέρους στροφορμών (m 1,m 2 ) Πρόσθεση Στροφορμών Δομή Διάλεξης Ορισμός Ολικής Στροφορμής Σχέση βάσης ολικής στροφορμής (j,m j ) με βάση επιμέρους στροφορμών (m 1,m 2 ) Συντελεστές μετάβασης (Glebsch-Gordon) για σύνθεση από l=1, s=1/2

Διαβάστε περισσότερα

Κβαντομηχανική σε μία διάσταση

Κβαντομηχανική σε μία διάσταση vrsy of Io Dr of Mrls Scc & grg Couol Mrls Scc κή Θεωρία της Ύλης ιδάσκων: Λευτέρης Λοιδωρίκης Π 76 ldor@cc.uo.gr csl.rls.uo.gr/ldor σταση Μία ιάσ ανική σε Μ κή Θεωρ ρία της Ύλης: Κβα αντομηχα Κβαντομηχανική

Διαβάστε περισσότερα

ETY-202 ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΤΩΝ ΘΕΜΕΛΙΩΔΩΝ ΑΡΧΩΝ ETY-202 ΎΛΗ & ΦΩΣ 03. ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ. Στέλιος Τζωρτζάκης 1/11/2013

ETY-202 ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΤΩΝ ΘΕΜΕΛΙΩΔΩΝ ΑΡΧΩΝ ETY-202 ΎΛΗ & ΦΩΣ 03. ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ. Στέλιος Τζωρτζάκης 1/11/2013 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 03. ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΤΩΝ ΘΕΜΕΛΙΩΔΩΝ ΑΡΧΩΝ Στέλιος Τζωρτζάκης 1 3 4 Ο νόμος της χρονικής μεταβολής των μέσων τιμών και το

Διαβάστε περισσότερα

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 31 Γενάρη 2012 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης 3 ώρες.

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 31 Γενάρη 2012 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης 3 ώρες. ΘΕΜΑ 1[1] ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 31 Γενάρη 1 ( ιδάσκων: ΑΦ Τερζής ιάρκεια εξέτασης 3 ώρες Ηλεκτρόνιο βρίσκεται σε δυναµικό απειρόβαθου πηαδιού και περιράφεται από την 1 πx πx κυµατοσυνάρτηση

Διαβάστε περισσότερα

Διάλεξη 2: Κεντρικά Δυναμικά. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για κεντρικά δυναμικά

Διάλεξη 2: Κεντρικά Δυναμικά. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για κεντρικά δυναμικά Διάλεξη : Κεντρικά Δυναμικά Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schöing για κεντρικά δυναμικά Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 03 Κεντρικά δυναμικά Εξάρτηση δυναμικού

Διαβάστε περισσότερα

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙΙ

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙΙ Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙΙ Χρονικά Ανεξάρτητη Θεωρία Διαταραχών. Τα περισσότερα φυσικά συστήματα που έχομε προσεγγίσει μέχρι τώρα περιγράφονται από μία κύρια Χαμιλτονιανή η οποία

Διαβάστε περισσότερα

21/11/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης

21/11/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ Στέλιος Τζωρτζάκης Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ 1 3 4 Το δυναμικό του αρμονικού ταλαντωτή Η παραβολική προσέγγιση βρίσκει άμεση

Διαβάστε περισσότερα

Θεωρία Χρονοεξαρτώμενων Διαταραχών

Θεωρία Χρονοεξαρτώμενων Διαταραχών Θεωρία Χρονοεξαρτώμενων Διαταραχών Δομή Διάλεξης Γενική μέθοδος μελέτης συστημάτων με χρονοεξαρτώμενο μέρος Χαμιλτονιανής. Εύρεση πιθανότητας μετάβασης Απλό παράδειγμα με ακριβή λύση: Σύστημα δύο καταστάσεων

Διαβάστε περισσότερα

Πανεπιστήµιο Αθηνών. προς το χρόνο και χρησιµοποιείστε την εξίσωση Schrodinger για να βρείτε τη χρονική παράγωγο της κυµατοσυνάρτησης.

Πανεπιστήµιο Αθηνών. προς το χρόνο και χρησιµοποιείστε την εξίσωση Schrodinger για να βρείτε τη χρονική παράγωγο της κυµατοσυνάρτησης. Πανεπιστήµιο Αθηνών Τµήµα Φυσικής Κβαντοµηχανική Ι Α Καρανίκας και Π Σφήκας Άσκηση 1 Η Hamiltonian ενός συστήµατος έχει τη γενική µορφή Δείξτε ότι Υπόδειξη: Ξεκινείστε από τον ορισµό της αναµενόµενης τιµής,

Διαβάστε περισσότερα

Κβαντομηχανική Ι 3o Σετ Ασκήσεων. Άσκηση 1

Κβαντομηχανική Ι 3o Σετ Ασκήσεων. Άσκηση 1 Χειμερινό εξάμηνο 016-017 Κβαντομηχανική Ι 3o Σετ Ασκήσεων Άσκηση 1 Οι λύσεις του αρμονικού ταλαντωτή, με V = x είναι της μορφής ψ n (x) = ( mω π )1/4 1 n n! H n (x)e x /, n = 0,1, (1) Με Η n τα πολυώνυμα

Διαβάστε περισσότερα

Εφαρμογές Θεωρίας Διαταραχών σε Υδρογόνο: Λεπτή Υφή, Φαινόμενο Zeeman, Υπέρλεπτη Υφή

Εφαρμογές Θεωρίας Διαταραχών σε Υδρογόνο: Λεπτή Υφή, Φαινόμενο Zeeman, Υπέρλεπτη Υφή Εφαρμογές Θεωρίας Διαταραχών σε Υδρογόνο: Λεπτή Υφή, Φαινόμενο Zeeman, Υπέρλεπτη Υφή Δομή Διάλεξης Λεπτή Υφή: Άρση εκφυλισμού λόγω σύζευξης spin με μαγνητικό πεδίο τροχιακής στροφορμής και λόγω σχετικιστικού

Διαβάστε περισσότερα

Κβαντομηχανική Ι 1o Σετ Ασκήσεων. Άσκηση 1

Κβαντομηχανική Ι 1o Σετ Ασκήσεων. Άσκηση 1 Χειμερινό εξάμηνο 16-17 Κβαντομηχανική Ι 1o Σετ Ασκήσεων ) ψ(x) dx Άσκηση 1 ψ ο (x) = Α (α x ), < x < = A (α x ) dx = 1 (α x ) dx = (α 4 x + x 4 )dx = α 4 dx x dx = 5 45 3 A ( 5 45 + 5 3 5 + x 4 dx + 5

Διαβάστε περισσότερα

Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό γ) Πυρηνικό μοντέλο των φλοιών

Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό γ) Πυρηνικό μοντέλο των φλοιών Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη

Διαβάστε περισσότερα

μαγνητικό πεδίο παράλληλο στον άξονα x

μαγνητικό πεδίο παράλληλο στον άξονα x Σπιν μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο παράλληλο στον άξονα ) Ηλεκτρόνιο βρίσκεται μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο με κατεύθυνση στα θετικά του άξονα, δηλαδή e,

Διαβάστε περισσότερα

Μοντέρνα Φυσική. Κβαντική Θεωρία. Ατομική Φυσική. Μοριακή Φυσική. Πυρηνική Φυσική. Φασματοσκοπία

Μοντέρνα Φυσική. Κβαντική Θεωρία. Ατομική Φυσική. Μοριακή Φυσική. Πυρηνική Φυσική. Φασματοσκοπία Μοντέρνα Φυσική Κβαντική Θεωρία Ατομική Φυσική Μοριακή Φυσική Πυρηνική Φυσική Φασματοσκοπία ΚΒΑΝΤΙΚΗ ΘΕΩΡΙΑ Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης:

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Εφαρμογές Θεωρίας Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Εφαρμογές Θεωρίας Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Εφαρμογές Θεωρίας Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Παραμαγνητικός συντονισμός

Παραμαγνητικός συντονισμός Παραμαγνητικός συντονισμός B B teˆ teˆ B eˆ, όπου Έστω ηλεκτρόνιο σε μαγνητικό πεδίο cos sin x y z B, B. Θεωρούμε ότι η σταθερή συνιστώσα του μαγνητικού πεδίου, Be, ˆz είναι ισχυρότερη από τη χρονοεξαρτώμενη

Διαβάστε περισσότερα

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Κίνηση σε κεντρικά δυναµικά 1.1.1 Κλασική περιγραφή Η Χαµιλτωνιανή κλασικού συστήµατος που κινείται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Χρονοεξαρτώμενη Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Χρονοεξαρτώμενη Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Χρονοεξαρτώμενη Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 12: Ασκήσεις. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 12: Ασκήσεις. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 12: Ασκήσεις Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Άσκηση 12.1 Να υπολογιστεί η μέση ενέργεια σωματιδίου που περιγράφεται από την κυματοσυνάρτηση ψ x = 1 3 ψ 1

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Πρόσθεση Στροφορμών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Πρόσθεση Στροφορμών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Πρόσθεση Στροφορμών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Λύσεις 9 ου Set Ασκήσεων Κβαντομηχανικής Ι

Λύσεις 9 ου Set Ασκήσεων Κβαντομηχανικής Ι Λύσεις 9 ου Set Ασκήσεων Κβαντομηχανικής Ι Disclaimer: Οι δυο ασκήσεις ζητούν τις κυματοσυναρτήσεις, τις ενέργειες, τις τιμές (x 1 x 2 ) 2 των διαφόρων καταστάσεων και τη διόρθωση από διαταραχή, για μποζόνια

Διαβάστε περισσότερα

Κβαντική Μηχανική ΙΙ. Ενότητα 8: Ερωτήσεις και Ασκήσεις (Ασκήσεις προς Λύση) Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Μηχανική ΙΙ. Ενότητα 8: Ερωτήσεις και Ασκήσεις (Ασκήσεις προς Λύση) Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Μηχανική ΙΙ Ενότητα 8: Ερωτήσεις και Ασκήσεις (Ασκήσεις προς Λύση) Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΛΥΣΗ Οι ασκήσεις που ακολουθούν είναι προς επίλυση από

Διαβάστε περισσότερα

Χρησιμοποιείστε την πληροφορία αυτή για να δείξετε ότι ο τελεστής που θα μεταφέρει το άνυσμα

Χρησιμοποιείστε την πληροφορία αυτή για να δείξετε ότι ο τελεστής που θα μεταφέρει το άνυσμα Άσκηση. (Βοήθημα θεωρίας) Εάν ένα κλασικό άνυσμα r μετατοπισθεί κατά a, θα προκύψει το άνυσμα r = r + a. a Χρησιμοποιείστε την πληροφορία αυτή για να δείξετε ότι ο τελεστής που θα μεταφέρει το άνυσμα r

Διαβάστε περισσότερα

Κυματική φύση της ύλης: ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ. Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης:

Κυματική φύση της ύλης: ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ. Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης: Κυματική φύση της ύλης: ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης: Κινούμενα ηλεκτρόνια συμπεριφέρονται σαν κύματα (κύματα de Broglie)

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟ ΔΥΝΑΜΙΚΟ ΓΕΝΙΚΑ. Έστω σωμάτιο, στις τρεις διαστάσεις, που βρίσκεται υπό την επίδραση μιγαδικού δυναμικού της μορφής

ΜΙΓΑΔΙΚΟ ΔΥΝΑΜΙΚΟ ΓΕΝΙΚΑ. Έστω σωμάτιο, στις τρεις διαστάσεις, που βρίσκεται υπό την επίδραση μιγαδικού δυναμικού της μορφής ΜΙΓΑΔΙΚΟ ΔΥΝΑΜΙΚΟ ΓΕΝΙΚΑ Έστω σωμάτιο, στις τρεις διαστάσεις, που βρίσκεται υπό την επίδραση μιγαδικού δυναμικού της μορφής Re Im V r V r i V r, όπου οι συναρτήσεις Re,Im V r V r είναι πραγματικές συναρτήσεις

Διαβάστε περισσότερα

Από τι αποτελείται το Φως (1873)

Από τι αποτελείται το Φως (1873) Από τι αποτελείται το Φως (1873) Ο James Maxwell έδειξε θεωρητικά ότι το ορατό φως αποτελείται από ηλεκτρομαγνητικά κύματα. Ηλεκτρομαγνητικό κύμα είναι η ταυτόχρονη διάδοση, μέσω της ταχύτητας του φωτός

Διαβάστε περισσότερα

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Ατοµο του Υδρογόνου 1.1.1 Κατάστρωση του προβλήµατος Ας ϑεωρήσουµε πυρήνα ατοµικού αριθµού Z

Διαβάστε περισσότερα

Γενική Μεταπτυχιακή Εξέταση - ΕΜΠ & ΕΚΕΦΕ-" ηµόκριτος"

Γενική Μεταπτυχιακή Εξέταση - ΕΜΠ & ΕΚΕΦΕ- ηµόκριτος ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ NATIONAL TECHNICAL UNIVERSITY ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & DEPARTMENT OF PHYSICS ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ - ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ZOGRAFOU CAMPUS ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 157 80 ATHENS -

Διαβάστε περισσότερα

ΦΥΣ η ΠΡΟΟΔΟΣ 2-Απρίλη-2016

ΦΥΣ η ΠΡΟΟΔΟΣ 2-Απρίλη-2016 ΦΥΣ. 211 2 η ΠΡΟΟΔΟΣ 2-Απρίλη-2016 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

ΦΥΣ η ΠΡΟΟΔΟΣ 2-Απρίλη-2016

ΦΥΣ η ΠΡΟΟΔΟΣ 2-Απρίλη-2016 ΦΥΣ. 211 2 η ΠΡΟΟΔΟΣ 2-Απρίλη-2016 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Ο Μονοδιάστατος Γραµµικός Αρµονικός Ταλαντωτής 1.1.1 Εύρεση των ιδιοτοµών και ιδιοσυναρτήσεων

Διαβάστε περισσότερα

Η άλγεβρα της στροφορμής

Η άλγεβρα της στροφορμής Η άλγεβρα της στροφορμής Στην κλασική μηχανική, η τροχιακή στροφορμή L ενός σωματιδίου είναι L r p (1) όπου r το διάνυσμα θέσης του σωματιδίου και p η ορμή του. Σε καρτεσιανές συντεταγμένες, η (1) γράφεται

Διαβάστε περισσότερα

16/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ

16/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ Στέλιος Τζωρτζάκης 1 3 4 φάση Η έννοια των ταυτόσημων σωματιδίων Ταυτόσημα αποκαλούνται όλα τα σωματίδια

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Ιούνιος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Ιούνιος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Ιούνιος 2004 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε στα 4 θέματα με σαφήνεια συντομία. Η πλήρης απάντηση θέματος εκτιμάται ιδιαίτερα. Καλή

Διαβάστε περισσότερα

Προβλήματα Κεφαλαίου 2

Προβλήματα Κεφαλαίου 2 Άνοιξη 2017 8/3/2017 Προβλήματα Κεφαλαίου 2 Οι λύσεις των προβλημάτων 23,24 και 25 * να παραδοθούν μέχρι τις 17/3/2017 Οι λύσεις των προβλημάτων 26 και 27 * να παραδοθούν μέχρι τις 24/3/2017 1. Θεωρείστε

Διαβάστε περισσότερα

Προβλήματα Κεφαλαίου 2

Προβλήματα Κεφαλαίου 2 Άνοιξη 2013 5/3/2013 Προβλήματα Κεφαλαίου 2 Οι λύσεις των προβλημάτων 3, 4, 5 * να παραδοθούν μέχρι τις 22/3/2013 Οι λύσεις των προβλημάτων 8 * και 20 να παραδοθούν μέχρι τις 28/3/2013 1. Για να κερδίσουμε

Διαβάστε περισσότερα

Ατομική και Μοριακή Φυσική

Ατομική και Μοριακή Φυσική Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Ατομική και Μοριακή Φυσική Σύστημα με δύο ηλεκτρόνια Λιαροκάπης Ευθύμιος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κεντρικά Δυναμικά Διδάσκων : Επίκ. Καθ. Μ. Μπενής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κεντρικά Δυναμικά Διδάσκων : Επίκ. Καθ. Μ. Μπενής ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγxρονη Φυσική II Κεντρικά Δυναμικά Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Ceative Coons.

Διαβάστε περισσότερα

Σπιν 1 2. Γενικά. Ŝ και S ˆz γράφονται. ιδιοκαταστάσεις αποτελούν ορθοκανονική βάση στον χώρο των καταστάσεων του σπιν 1 2.

Σπιν 1 2. Γενικά. Ŝ και S ˆz γράφονται. ιδιοκαταστάσεις αποτελούν ορθοκανονική βάση στον χώρο των καταστάσεων του σπιν 1 2. Σπιν Γενικά Θα χρησιμοποιήσουμε τις γενικές σχέσεις που αποδείξαμε στην ανάρτηση «Εύρεση των ιδιοτιμών της στροφορμής», που, όπως είδαμε, ισχύουν για κάθε γενική στροφορμή ˆ J με συνιστώσες Jˆ, Jˆ, J ˆ,

Διαβάστε περισσότερα

Κβαντομηχανική Ι Λύσεις προόδου. Άσκηση 1

Κβαντομηχανική Ι Λύσεις προόδου. Άσκηση 1 Κβαντομηχανική Ι Λύσεις προόδου Άσκηση 1 ψ(x) = A Sin (k x), < x < α) Sin (k x) = eikx e ikx i Mε πιθανές τιμές ορμής p = ± ħk, από τον τύπο του De Broglie. Kαθεμιά έχει πιθανότητα 50%. b) p = ψ p ψ =

Διαβάστε περισσότερα

Sˆy. Η βάση για την οποία συζητάμε απαρτίζεται από τα ανύσματα = (1) ˆ 2 ± =± ± Άσκηση 20. (βοήθημα θεωρίας)

Sˆy. Η βάση για την οποία συζητάμε απαρτίζεται από τα ανύσματα = (1) ˆ 2 ± =± ± Άσκηση 20. (βοήθημα θεωρίας) Άσκηση 0. (βοήθημα θεωρίας) Έστω + και η βάση που συγκροτούν οι (κοινές) ιδιοκαταστάσεις των τελεστών ˆ S και Sˆz ενός σωματίου με spin 1/. Να βρείτε την αναπαράσταση των τελεστών S ˆx, Sˆ και Sˆz στη

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 5 Μεταφορική και Ταλαντωτική Κίνηση Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 5 Μεταφορική και Ταλαντωτική Κίνηση Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 5 Μεταφορική και Ταλαντωτική Κίνηση Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενδεικτική βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ P.W. Atkins,

Διαβάστε περισσότερα

Εφαρμογές της κβαντομηχανικής. Εφαρμογές της κβαντομηχανικής

Εφαρμογές της κβαντομηχανικής. Εφαρμογές της κβαντομηχανικής Εφαρμογές της κβαντομηχανικής ΠΙΑΣ Ελεύθερο σωματίδιο σε μια διάσταση Σωματίδιο κινούμενο ελεύθερα στον άξονα σε σταθερό δυναμικό ανεξάρτητο του : V ˆ( () V ξίσωση Schrödinger: d d H ˆ H ˆ ˆ() () () d

Διαβάστε περισσότερα

Ο Πυρήνας του Ατόμου

Ο Πυρήνας του Ατόμου 1 Σκοποί: Ο Πυρήνας του Ατόμου 15/06/12 I. Να δώσει μία εισαγωγική περιγραφή του πυρήνα του ατόμου, και της ενέργειας που μπορεί να έχει ένα σωματίδιο για να παραμείνει δέσμιο μέσα στον πυρήνα. II. III.

Διαβάστε περισσότερα

, που, χωρίς βλάβη της γενικότητας, μπορούμε να θεωρήσουμε χρονική στιγμή μηδέν, δηλαδή

, που, χωρίς βλάβη της γενικότητας, μπορούμε να θεωρήσουμε χρονική στιγμή μηδέν, δηλαδή Η ΚΥΜΑΤΟΣΥΝΑΡΤΗΣΗ ΣΤΗΝ ΑΝΑΠΑΡΑΣΤΑΣΗ ΘΕΣΗΣ ΑΝΑΠΑΡΑΣΤΑΣΗ ΟΡΜΗΣ p. Θα βρούμε πρώτα τη σχέση που συνδέει την p με την x. x ΚΑΙ ΣΤΗΝ Έστω η κατάσταση του συστήματός μας μια χρονική στιγμή t 0, που, χωρίς βλάβη

Διαβάστε περισσότερα

3/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 08. ΤΟ ΣΠΙΝ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΟ ΣΠΙΝ

3/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 08. ΤΟ ΣΠΙΝ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΟ ΣΠΙΝ stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΤΟ ΣΠΙΝ ΎΛΗ & ΦΩΣ 08. ΤΟ ΣΠΙΝ Στέλιος Τζωρτζάκης 1 3 4 Εισαγωγή Η ενδογενής στροφορμή ή αλλιώς σπιν αποτελεί ένα θεμελιώδες χαρακτηριστικό των σωματιδίων διότι

Διαβάστε περισσότερα

ΥΛΙΚΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΔΙΑΤΑΞΕΙΣ. Μάθημα Ι: Εισαγωγικές έννοιες. Πρασσά Βάια

ΥΛΙΚΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΔΙΑΤΑΞΕΙΣ. Μάθημα Ι: Εισαγωγικές έννοιες. Πρασσά Βάια ΥΛΙΚΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΔΙΑΤΑΞΕΙΣ Μάθημα Ι: Εισαγωγικές έννοιες Πρασσά Βάια Περιγραφή Στοιχειώδεις έννοιες της επιστήμης υλικών, ηλεκτρική και θερμική αγωγιμότητα στα στερεά, στοιχειώδης κβαντομηχανική,

Διαβάστε περισσότερα

Μετασχηματισμοί Καταστάσεων και Τελεστών

Μετασχηματισμοί Καταστάσεων και Τελεστών Μετασχηματισμοί Καταστάσεων και Τελεστών Δομή Διάλεξης Μετασχηματισμοί Καταστάσεων Τελεστής Μετατόπισης Συνεχείς Μετασχηματισμοί και οι Γεννήτορές τους Τελεστής Στροφής Διακριτοί Μετασχηματισμοί: Parity

Διαβάστε περισσότερα

x L I I I II II II Ακόµα αφού η συνάρτηση στην θέση x=0 είναι συνεχής, έχουµε την παρακάτω συνθήκη. ηλαδή οι ιδιοσυναρτήσεις είναι

x L I I I II II II Ακόµα αφού η συνάρτηση στην θέση x=0 είναι συνεχής, έχουµε την παρακάτω συνθήκη. ηλαδή οι ιδιοσυναρτήσεις είναι Πρόβληµα ΑπειρόβαθοΚβαντικόΠηγάδι3α(ΑΚΠ3α), x > Θεωρούµε κβαντικό πηγάδι µε δυναµικό της µορφής V( x) x Να εκτιµηθούν οι ιδιοκαταστάσεις του συστήµατος για (α) c> και (β) c< Για την περίπτωση (α) να µελετηθεί

Διαβάστε περισσότερα

Αρχίζουµε µε την µη συµµετρική µορφή του απειρόβαθου κβαντικού πηγαδιού δυναµικού, το οποίο εκτείνεται από 0 έως L.

Αρχίζουµε µε την µη συµµετρική µορφή του απειρόβαθου κβαντικού πηγαδιού δυναµικού, το οποίο εκτείνεται από 0 έως L. Πρόβληµα ΑπειρόβαθοΚβαντικόΠηγάδια(ΑΚΠα) Να µελετηθεί το απειρόβαθο κβαντικό πηγάδι µε θετικές ενεργειακές καταστάσεις ( E > ). Αρχίζουµε µε την µη συµµετρική µορφή του απειρόβαθου κβαντικού πηγαδιού δυναµικού

Διαβάστε περισσότερα

Σύστημα δύο αλληλεπιδρώντων σπιν μέσα σε ομογενές μαγνητικό πεδίο (άσκηση)

Σύστημα δύο αλληλεπιδρώντων σπιν μέσα σε ομογενές μαγνητικό πεδίο (άσκηση) Σύστημα δύο αλληλεπιδρώντων σπιν μέσα σε ομογενές μαγνητικό πεδίο (άσκηση) Δύο σωμάτια με σπιν s και s αντίστοιχα και με τον ίδιο γυρομαγνητικό λόγο τοποθετούνται μέσα σε ομογενές χρονοανεξάρτητο μαγνητικό

Διαβάστε περισσότερα

Λυμένες ασκήσεις στροφορμής

Λυμένες ασκήσεις στροφορμής Λυμένες ασκήσεις στροφορμής Θα υπολογίσουμε τη δράση των τελεστών κλίμακας J ± σε μια τυχαία ιδιοκατάσταση j, m των τελεστών J και Jˆ. Λύση Δείξαμε ότι η κατάσταση Jˆ± j, m είναι επίσης ιδιοκατάσταση των

Διαβάστε περισσότερα

Κεφάλαιο 9: Συστήματα Πολλών σωματίων

Κεφάλαιο 9: Συστήματα Πολλών σωματίων Κεφάλαιο 9: Συστήματα Πολλών σωματίων Περιεχόμενα Κεφαλαίου Τα θέματα που θα καλύψουμε στο κεφάλαιο αυτό, είναι τα εξής (Βαγιονάκης, 1996 Μοδινός, 1994 Τραχανάς, 2005 Τραχανάς, 2008 Binney & Skinner, 2013

Διαβάστε περισσότερα

Γενική Μεταπτυχιακή Εξέταση - ΕΜΠ & ΕΚΕΦΕ-" ηµόκριτος"

Γενική Μεταπτυχιακή Εξέταση - ΕΜΠ & ΕΚΕΦΕ- ηµόκριτος ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ NATIONAL TECHNICAL UNIVERSITY ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & DEPARTMENT OF PHYSICS ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ - ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ZOGRAFOU CAMPUS ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 57 80 ATHENS - GREECE

Διαβάστε περισσότερα

Η Ψ = Ε Ψ. Ψ = f(x, y, z, t, λ)

Η Ψ = Ε Ψ. Ψ = f(x, y, z, t, λ) Κυματική εξίσωση του Schrödinger (196) Η Ψ = Ε Ψ Η: τελεστής Hamilton (Hamiltonian operator) εκτέλεση μαθηματικών πράξεων επί της κυματοσυνάρτησης Ψ. Ε: ολική ενέργεια των ηλεκτρονίων δυναμική ενέργεια

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 4 Αρχές της Κβαντικής Μηχανικής Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 4 Αρχές της Κβαντικής Μηχανικής Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 4 Αρχές της Κβαντικής Μηχανικής Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενδεικτική βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ P.W. Atkins, J.

Διαβάστε περισσότερα