Υπολογισµός Καµπύλης Απόκρισης

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Υπολογισµός Καµπύλης Απόκρισης"

Transcript

1 Απόκριση Θεµελιώσεων µε Πασσάλους υπό Οριζόντια Φόρτιση Απόκριση Πασσάλων υπό Οριζόντια Φόρτιση Μενονωµένος Πάσσαλος Φέρουσα Ικανότητα Μέθοδος Broms Οµάδα Πασσάλων Υπολογισµός Καµπύλης Απόκρισης p-y µέθοδος 3D ανάλυση 1

2 (M+dM) M + N dy - Vv dx = 0 (Hetenyi 1946) 2 2 dm dy d M d y dv + N VV = 0 + N V = 0 dx dx 2 2 dx dx dx d y d M d y M = EpIp = E 2 2 pip 4 dx dx dx dv p= V, dx 4 p = Epy y 2 d y d y Ep Ip + N + Epy y = dx dx Στρώση 2SM (18.6m) Στρώση 3SM (43.3m) Στρώση SMg ( 45. 1m) Μέτρο αντίδρασης P (MN/m) Οριζόντια µετακί νηση y (cm) ιάγραµµα οριζόντιας µετακίνησης µε το βάθος 0 y (m) z (m )

3 4 2 d y d y Ep Ip + N + Epy y = dx dx Epy=p/y Epy : Μέτρο αντίδρασης πασσάλου υπό οριζόντια φόρτιση (F/L 2 ) p : Αντίδραση εδάφους (F/L) y : Οριζόντια µετακίνηση πασσάλου (L) 3

4 Μαλακή Άργιλος - Στατική φόρτιση - Ανακυκλιζόµενη φόρτιση Σκληρή Άργιλος - Στατική φόρτιση - Ανακυκλιζόµενη φόρτιση Άµµος Μαλακός βράχος οκιµαστική φόρτιση πασσάλου για το σχεδιασµό θεµελιώσεων σηµαντικών έργων Αντίστροφη Ανάλυση µε βάση τα αποτελέσµατα (µετακινήσεις, παραµορφώσεις, φορτία) της δοκιµαστικής φόρτισης Απόκριση µεµονωµένου πασσάλου Προσδιορισµός καµπύλης απόκρισης (P-y) και κατανοµής καµπυλοτήτων ή/και ροπών µε το βάθος (φ-z, M-z) Ενιαία Παρουσίαση (συνέδριο) Απόκριση οµάδας πασσάλων Προσδιορισµός καµπύλης απόκρισης οµάδας (συντελεστής µείωσης της δυσκαµψίας της οµάδας, RG) και κατανοµής του φορτίου στους χαρακτηριστικούς πασσάλους 4

5 τέλος Στατική φόρτιση ε 50 Οριακή πλευρική αντίσταση: pult = min(put, pud) p p ut ud γ x = 3+ x+ J c cu D = 9 c D Εξίσωση Καµπύλης : u u D, J= Μαλακή Αργιλος Μέσης Συνεκτικ p = 0.5(y/y 50 ) 1/3, p p ult = 2.5 ε D, ε = 0,005 0, 02 y Στιφρή Αργιλος

6 Ανακυκλιζόµενη φόρτιση Υπολογισµός του κρίσιµου βάθους x r ( όταν p ud =p ut ) Εξίσωση Καµπύλης : x xr - για p 0.72p ult και y 3y 50 : p = 0.5(y/y 50 ) 1/3 - για x x r και y>3y 50 : p = 0.72p ult - για x<x r και 3y 50 y 15y 50 : Ευθύγραµµο τµήµα που ορίζεται από τα σηµεία [3y 50,0.72p ult ] και [15y 50,0.72p ult (x/x r )] x<x r - για x<x r και y>15y 50 : p = 0.72p ult (x/x r ) 6

7 7

8 Στατική φόρτιση Οριακή πλευρική αντίσταση: pult = min(put, pud) Εξίσωση Καµπύλης: Ανακυκλιζόμενη φόρτιση p = 0.5(y/y 50 ) 1/4, y 16y 50 = 2.5 ε D, ε = 0,005 0, 02 y Εξίσωση Καµπύλης: p = 0.5(y/y 50 ) 1/4, y 16y 50 4 y = y + y C logn, C = 9.6 (p /p c s 50 ult) 8

9 Οριακή πλευρική αντίσταση: p ult =A s p c ή p ult =A c p c - Για x<x t : Ko x tanφ tanβ tanβ + (D + x tanβ tanα) + p β φ α β φ ct = γ x tan( ) cos tan( ) + K o x tan β (tan φ tan β tan α ) Κα D - Για x x t : p cd = Kα D γ x (tan β 1) +Κο - Συντελεστές Α s, A c : 8 D γ x tanφ tan 4 β x/d α φ/2 β 45+φ/2 9

10 Εξίσωση Καµπύλης : - για y y u =3D/80 : p = p ult = A p c - για y u > y y m =D/60 : Ευθύγραµµο τµήµα κλίσης m που ορίζεται από τα σηµεία (y m, B p c ) και (y u, p ult ) - για y m > y y k =(C/k x) n(n-1) : p = C y 1/n p m n =, C = m ym - για y < y k : p = k x y p y m 1 n m Σχετική Πυκνότητα k (kpa) Χαλαρή Αµµος 5500 Μέσης Πυκνότητας Πυκνή x/d x/d x/d 10

11 Οριακή πλευρική αντίσταση: - Για 0 x r 3D : x = α σ + r pult r c D D - Για x r >3D : pult = 5.2 αr σc D Κλίση του αρχικού τµήµατος της καµπύλης P- y: E' mi = k i E mi 400 xr - Για 0 x r 3D : ki = D - Για 0 x r 3D : k i = 500 Εξίσωση Καµπύλης : - για y < y Α : p = Ε mi y - για y y A και p p ult : p = (p ult /2) (y/y m ) 0.25 y 5 4 m = km D, km = p = p ult 11

12 ιάταξη δοκιµαστικής φόρτισης Ενοργάνωση - οπτικές ίνες - αποκλισιόµετρο - µηκυνσιόµετρα - load cell Βήµατα φόρτισης (Η1): ΜΝ (Η2): ΜΝ Αποτελέσµατα δοκιµαστικής φόρτισης 12

13 Μέθοδος p-y οκιµαστική φόρτιση Αριθµητική ανάλυση (a) Συνθήκες ελεύθερης κεφαλής (b) Συνθήκες πακτωµένης κεφαλής 13

14 M=E p I p φ Επίδραση αξονικού φορτίου 14

15 ΣΥΣΧΕΤΙΣΗ ΤΗΣ ΑΠΟΚΡΙΣΗΣ ΟΜΑΔΑΣ ΠΑΣΣΑΛΩΝ ΜΕ ΤΗΝ ΑΠΟΚΡΙΣΗ ΜΕΜΟΝΩΜΕΝΟΥ ΠΑΣΣΑΛΟΥ y ng R a = = y ns y y G s y G = μετακίνηση ομάδας y s = μετακίνηση μεμονωμένου πασσάλου y ng R a = = y ns y y G s 15

16 Παραμετρική ανάλυση D = 1.0 m L/D = 25.0 Διατάξεις: 2 x 2 Αξ. αποστάσεις: 2.0 D 3 x D 4 x D 5 x D C1 C2 C3 C4 S1 S2 S3 Μέτρο του Young Ε (MPa) 400 cu 300 cu 200 cu 150 cu Αριθμητικό προσομοίωμα Συντελεστής Poisson ν Αστράγγιστη συνοχή cu (kpa) z z z z Συνάφεια εδάφους πασσάλου στη διεπιφάνεια ca (kpa) Γωνία τριβής φ ( ο ) Γωνία τριβής διεπιφάνειας φi ( ο ) Φαινόµενο βάρος γ (kn/m 3 ) Επίδραση: - επιπέδου μετακίνησης -διάταξης - αξονικής απόστασης - διατμητικής αντοχής 16

17 Q Q G15 : οριζόντια φέρουσα ικανότητα οµάδας πασσάλων, αντιστοιχούσα σε µετακίνηση15%d, Q S15 : η οριζόντια φέρουσα ικανότητα µεµονωµένου πασσάλου, αντιστοιχούσα σε µετακίνηση15% 15%D, η L15 : ο συντελεστής απόδοσης φέρουσας ικανότητας για µετακίνηση 15%D, n : G15 = η L15 n Q S15 ο αριθµός πασσάλων της οµάδας Τύπος εδάφους s C1 C2 C3 C4 2.0D D D D D D D D D D D D D D D D η L15 1.0, για μεγάλη αξονική απόσταση K G = R K n 1 G y ns R G = = = Ra yng S Μέγιστη επίπτωση της αλληλεπίδρασης σε μικρά επίπεδα μετακίνησης, σε πυκνά διατεταγμένες ομάδες, με μεγάλο αριθμό πασσάλων και μεγάλης συνεκτικότητας αργίλους. y y s G Τύπος εδάφους s C1 C2 C3 C4 R G1 R G5 R G10 R G1 R G5 R G10 R G1 R G5 R G10 R G1 R G5 R G10 2.0D D D D D D D D D D D D D D D D

18 120% 155% 65% 3 3, 3.0D 57% 5 5, 3.0D 110% 130% 79% 3 3, 9.0D 70% 5 5, 9.0D 65% ΚΑΤΑΝΟΜΗ ΦΟΡΤΙΟΥ ΣΤΙΣ ΣΕΙΡΕΣ H 1 η σειρά αναλαμβάνει πάντα το μεγαλύτερο φορτίο Για y<10%dη τελευταία σειράπροηγείται πάντα της προτελευταίας Για μεγάλες μετακινήσεις ακολουθούν οι επόμενες σειρές διαδοχικά (2 η, 3 η, 4 η και 5 η ) 18

19 65% Η αύξηση της συνοχήςοδηγεί σε μεγαλύτερη διαφοροποίηση μεταξύ των πασσάλων της ομάδας H αύξηση της μετακίνησης οδηγεί σε μικρότερη διακύμανση μεταξύ των πασσάλων της ίδιας ομάδας και σε µεγαλύτερη διαφοροποίηση µεταξύ των ίδιων πασσάλων διαφορετικής οµάδας Μεγαλύτερος αριθμός πασσάλωνοδηγεί σε μεγαλύτερο εύρος διακύμανσης C1, 3 3, 3.0 D ΔM =20%M P5 ΔM =8%M P5 Σημαντικά μεγαλύτερη ροπή από τον μεμονωμένο Μεγαλύτερη διακύμανση για μικρότερα φορτία Υψηλότερο σημείο μηδενισμού ροπών για μικρότερα φορτία Μικρότερη διακύµανση σε σχέση µε τις τέµνουσες y G =1.3%D, H m = 350 kn y G = 10.3%D, H m = 1750 kn 19

20 C1, 3 3, 3.0 D C3, 3 3, 3.0 D 65% Η αύξηση της διατμητικής αντοχής οδηγεί σε μικρότερες ροπές τέμνουσες, με μεγαλύτερο εύρος διακύμανσης Υψηλότερο σημείο μηδενισμού ροπών για στιφρότερες αργίλους H m = 1400 kn H m = 1300kN 65% C1, 5 5, 3.0 D Για την ίδια μετακίνηση, ο μεμονωμένος πάσσαλος αναπτύσσει σημαντικά μεγαλύτερη ροπή από τους πασσάλους της ομάδας. H s = H m = 1400 kn y G = y s 10%D (H s = 2100 kn, H m = 1400 kn) 20

21 Η αύξηση του αριθμού των πασσάλων και η μείωση της αξονικής τους απόστασης εντείνουντην αλληλεπίδραση και οδηγούν σε μεγαλύτερες τιμές συντελεστών R a. Μικρότερες τιμές R a σε σχέση με τις αργίλους Τύπος εδάφους S1 S2 S3 s η L10 η L15 η L10 η L15 η L10 η L15 2.0D D D D D D D D D D D D D D D D Συντελεστής φέρουσας ικανότητας η L15 : - ίδιας τάξης µε των αργιλικών εδαφών - αυξάνεται µε την αύξηση της διατµητικής αντοχής της άµµου 21

22 Μέγιστη επίπτωση της αλληλεπίδρασης σε μικρά επίπεδα μετακίνησης, σε πυκνά διατεταγμένες ομάδες, με μεγάλο αριθμό πασσάλων καιχαμηλής πυκνότητας άμμους (αντίθετη επίπτωση διατμητικής αντοχής σε σχέση με τις αργίλους) Τύπος εδάφους s S1 S2 S3 R G1 R G5 R G10 R G1 R G5 R G10 R G1 R G5 R G10 2.0D D D D D D D D D D D D D D D D , 9.0D 5 5, 9.0D 3 3, 3.0D 5 5, 3.0D 22

23 S2, 3 3, 3.0D Αυξανόμενη διατμητική αντοχή διεπιφανειών Σταθερή διατμητική αντοχή διεπιφανειών 65% ΚΑΤΑΝΟΜΗ ΦΟΡΤΙΟΥ ΣΤΙΣ ΣΕΙΡΕΣ H 1 η σειρά αναλαμβάνει πάντα το μεγαλύτερο φορτίο Για μικρές μετακινήσεις η τελευταία σειρά προηγείται πάντα τουλάχιστον της προτελευταίας και έπεται της 1 ης Για μεγάλες μετακινήσεις ακολουθούν οι επόμενες σειρές διαδοχικά (2 η, 3 η, 4 η και 5 η ) 23

24 65% Η αύξηση της πυκνότητας οδηγεί σε μεγαλύτερη διαφοροποίηση μεταξύ των πασσάλων της ομάδας H αύξηση της μετακίνησης οδηγεί σε μεγαλύτερη διακύμανση μεταξύ των πασσάλων της ίδιας ομάδας και σε µεγαλύτερη διαφοροποίηση µεταξύ των ίδιων πασσάλων διαφορετικής οµάδας Μεγαλύτερος αριθμός πασσάλωνοδηγεί σε μεγαλύτερο εύρος διακύμανσης S1, 3 3, 3.0 D Σημαντικά μεγαλύτερη ροπή από τον μεμονωμένο ΔM=20%M P5 Υψηλότερο σημείο μηδενισμού ροπών για μικρότερα φορτία Μικρότερη διακύμανση σε σχέση με τις τέμνουσες y G =1.4%D, H m = 350 kn y G = 12.5%D, H m = 1750 kn 24

25 S1, 3 3, 3.0 D S2, 3 3, 3.0 D Η αύξηση της διατμητικής αντοχής οδηγεί σε μικρότερες ροπές τέμνουσες Υψηλότερο σημείο μηδενισμού ροπών τεμνουσών για πυκνότερες άμμους H m = 1400 kn H m = 1300kN S1, 5 5, 3.0 D Για την ίδια μετακίνηση, ο μεμονωμένος πάσσαλος αναπτύσσει σημαντικά μεγαλύτερη ροπή από τους πασσάλους της ομάδας. H s = H m = 1050 kn y G = y s 9.5%D (H s = 2100 kn, H m = 1050kN) 25

26 Συσχέτιση απόκρισης ομάδας και μεμονωμένου πασσάλου, αξιοποιώντας τα αποτελέσματα της παραμετρικής ανάλυσης. d b Ra = 1+ ( m 1) yns d 5 d Ra = 1+ 2( m 1) 20 a a y d b ns 1.3 m + 3 m ln 3 ( log nc ) log ( 1 2 y ), tanφ 30 log o tan25 d u 15 d 4 2 m= log( n + n ) n ( 1 2 y ), m= log( n + n ) n 2 ns ns x x y y x x y y ng G = R = R a a y y s ns Υπολογισμός του μέσου σφάλματος δυσκαμψίας και του σφάλματος δυναμικής ενέργειας για τις 112 περιπτώσεις της τριδιάστατης ανάλυσης. K m err = K K W i i 1 G Gp G Gp j W i err = i= 1, j K G WG W 26

27 τύπος εδάφους s Κerr,m (%) C1 C2 C3 C4 Werr (%) Κerr,m (%) Werr (%) Κerr,m (%) Werr (%) Κerr,m (%) Werr (%) 2.0D R d m 15 1 y 5 3 d a b 1.3 a = + ( m 1) yns d + u 2 ( log nc ) log ( 1 ) ns D D D D D D D D D D D D D D D Εύρος εφαρμογής:1%d y ns 15%D Πειραματικά στοιχεία από διατάξεις ομάδας: Brown κ.ά., 1987: 3 x3, 3.0D, c u = kPa, οριακές συνθήκες ίσης μετακίνησης και ελεύθερης περιστροφής κεφαλής Rollins κ.ά..1998:3 x3, 3.0D, c u = 25 50kPa(τοπικά 100kPa), οριακές συνθήκες ίσης μετακίνησης και ελεύθερης περιστροφής κεφαλής Ilyasκ.ά., 2004: σε φυγοκεντριστή, 2 x 2και 3 x3, 3.0D, ΝC καολίνης c u = 0 20kPa, ΟC καολίνηςc u = kpa, πακτωμένης κεφαλής Επαλήθευση μεθοδολογίας για συνθήκες ελεύθερης κεφαλής και για μικρότερο μήκος πασσάλων (L/D = 12): 27

28 τύπος εδάφους s Κerr,m (%) S1 S2 S3 Werr (%) Κerr,m (%) Werr (%) Κerr,m (%) Werr (%) 2.0D R = a d + 2( m 1) 20 y m tanφ 30 ln log o d 3 tan25 d a b ns 1 ns ( 1 2y ) D D D D D D D D D D D D D D D Σύγκριση απόκρισης πρόβλεψης και 3D ανάλυσης Επαλήθευση µεθοδολογίας για µεταβαλλόµενο µέτρο ελαστικότητας µε το βάθος Πειραματικά στοιχεία από διατάξεις ομάδας: Brown κ.ά., 1988: 3 x3, 3.0D, φ= 38.5 ο, οριακές συνθήκες ίσης μετακίνησης και ελεύθερης περιστροφής κεφαλής Rollins κ.ά., 2005: 3 x 3, 3.3D, φ = ο, οριακές συνθήκες ίσης µετακίνησης και ελεύθερης περιστροφής κεφαλής Ruesta& Townsend, 1997: πραγματικής κλίμακας, 4 x 4, 3.0D, φ = 32 ο, ελεύθερης κεφαλής 28

29 Κατανοµή φορτίου στους χαρακτηριστικούς πασσάλους 3x3, s=2.0d 3x3, s=3.0d 3x3, s=6.0d 3x3, s=3.0d, Ν=0.4MΝ 3x3, s=3.0d, Ν=0.8MΝ 29

30 ιεύθυνση φόρτισης s P 3 P 6 P 9 P2 P5 P8 P 1 P 4 P 7 s έδαφος 2.0D 3.0D 9.0D C s έδαφος 2.0D 3.0D 9.0D C Πολλαπλασιαστές p για y G = y s = 5%D µ.ό. σειράς C µ.ό. σειράς C µ.ό. σειράς C Πολλαπλασιαστές p για y G = y s = 10%D µ.ό. σειράς C µ.ό. σειράς C µ.ό. σειράς C µ.ό. σειράς µ.ό. σειράς

31 Φέρουσα Ικανότητα Πασσάλου σε Οριζόντια Φόρτιση Μέθοδος Broms Εμπειρική μέθοδος με εξ αρχής θεώρηση μηχανισμών αστοχίας Φέρουσα Ικανότητα Πασσάλου σε Οριζόντια Φόρτιση Μέθοδος Broms Πάσσαλος Ελεύθερης Κεφαλής σε συνεκτικό έδαφος, µικρού µήκους 31

32 Φέρουσα Ικανότητα Πασσάλου σε Οριζόντια Φόρτιση Μέθοδος Broms Πάσσαλος Ελεύθερης Κεφαλής σε συνεκτικό έδαφος, µικρού µήκους Φέρουσα Ικανότητα Πασσάλου σε Οριζόντια Φόρτιση Μέθοδος Broms Πάσσαλος Ελεύθερης Κεφαλής σε συνεκτικό έδαφος, µεγάλου µήκους 32

33 Φέρουσα Ικανότητα Πασσάλου σε Οριζόντια Φόρτιση Μέθοδος Broms Πάσσαλος Ελεύθερης Κεφαλής σε συνεκτικό έδαφος, µεγάλου µήκους Φέρουσα Ικανότητα Πασσάλου σε Οριζόντια Φόρτιση Μέθοδος Broms Πάσσαλος Πακτωµένης Κεφαλής σε συνεκτικό έδαφος, µικρού µήκους 33

34 Φέρουσα Ικανότητα Πασσάλου σε Οριζόντια Φόρτιση Μέθοδος Broms Πάσσαλος Πακτωµένης Κεφαλής σε συνεκτικό έδαφος, ενδιάµεσου µήκους Φέρουσα Ικανότητα Πασσάλου σε Οριζόντια Φόρτιση Μέθοδος Broms Πάσσαλος Πακτωµένης Κεφαλής σε συνεκτικό έδαφος, µεγάλου µήκους 34

35 35

36 Φέρουσα Ικανότητα Πασσάλου σε Οριζόντια Φόρτιση Μέθοδος Broms Πάσσαλος Ελεύθερης Κεφαλής σε µη συνεκτικό έδαφος, µεγάλου µήκους 36

37 Φέρουσα Ικανότητα Πασσάλου σε Οριζόντια Φόρτιση Μέθοδος Broms Πάσσαλος Πακτωµένης Κεφαλής σε µη συνεκτικό έδαφος, µικρού µήκους Φέρουσα Ικανότητα Πασσάλου σε Οριζόντια Φόρτιση Μέθοδος Broms Πάσσαλος Πακτωµένης Κεφαλής σε µη συνεκτικό έδαφος, ενδιάµεσου µήκους 37

38 Φέρουσα Ικανότητα Πασσάλου σε Οριζόντια Φόρτιση Μέθοδος Broms Πάσσαλος Ελεύθερης Κεφαλής σε συνεκτικό έδαφος, µεγάλου µήκους Φέρουσα Ικανότητα Πασσάλου σε Οριζόντια Φόρτιση Μέθοδος Broms Τέλος Broms 38

39 Πειραµατική και αριθµητική διερεύνηση απόκρισης ρηγµατωµένης διατοµής πασσάλου από οπλισµένο σκυρόδεµα Κωµοδρόµος Α. Μ., Ρεντζεπέρης Ι.Κ., Παπαδοπούλου Μ. Κ. Τµήµα Πολιτικών Μηχανικών - Πανεπιστήµιο Θεσσαλίας 77 Κατά τη διερεύνηση της απόκρισης κατασκευών η ανάλυση περιορίζεται κατά κύριο λόγο στην µετελαστική συµπεριφορά της ανωδοµής (η απόκριση της θεµελίωσης θεωρείται ελαστική ή ακόµη στερεοπλαστική) Πιο αξιόπιστη προσέγγιση σύζευξη της απόκρισης ανωδοµής και θεµελίωσης Μέθοδος ανάλυσης αλληλεπίδραση εδάφους - ανωδοµής τεχνική υποσυστηµάτων (substructuring) 78 39

40 Μη γραµµική απόκριση πασσάλων Μη γραµµική συµπεριφορά τους εδάφους Αλληλεπίδραση πασσάλων λόγω λειτουργίας οµάδας Μετελαστική συµπεριφορά πασσάλου 79 Μετελαστική συµπεριφορά πασσάλου Πειραµατική διερεύνηση δοκιµαστική φόρτιση πασσάλου προσδιορισµός απόκρισης δεδοµένα για επαλήθευση προσαρµογή παραµέτρων αντοχής και παραµορφωσιµότητας Αριθµητική διερεύνηση αντίστροφη ανάλυση επαλήθευση παραµέτρων επίλυση πασσάλου σε διαφορετικές συνθήκες φόρτισης και διάταξης 80 40

41 οκιµαστική φόρτιση: Εδαφική τοµή γεωτεχνικά στοιχεία Θέση κατασκευής γέφυρας σύνδεσης 6 ου προβλήτα Θεσσαλονίκης και εθνικής οδού Αθήνας Θεσ/νίκης 81 οκιµαστική φόρτιση: Ενοργάνωση Τοποθέτηση αισθητήρων οπτικών ινών και αποκλισιοµετρικού σωλήνα 82 41

42 οκιµαστική φόρτιση: ιάταξη 83 οκιµαστική φόρτιση: Επιβολή φορτίου Κύκλος Η1: ΜΝ Κύκλος Η2: ΜΝ 84 42

43 οκιµαστική φόρτιση: απόκριση φορτίου µετακίνησης 1.2 Horizontal Load H (MN) Test Cycle H1 Test Cycle H2 P-y analysis Hcr Hnom Displacement y (mm) 85 οκιµαστική φόρτιση: καταγραφή αισθητήρων οπτικών ινών SA-2 ελκυσµός, SB-2 θλίψη υπολογισµός παραµορφώσεων, καµπυλότητας, δυσκαµψίας και ροπής M= E I φ = (Ε I + E Σηµείο εκδήλωσης ρηγµάτωσης p p φ= c ε c t + h ε c s I ) φ s 86 43

44 3-D Αριθµητική προσοµοίωση δοκιµαστικής φόρτισης Μη γραµµική ανάλυση (µε προσοµοίωση ρηγµάτωσης) κόµβους στοιχεία 342 στοιχεία ράβδου Στοιχεία διεπιφάνειας πασσάλους - έδαφος ράβδους χάλυβα - σκυρόδεµα 87 3-D Αριθµητική προσοµοίωση δοκιµαστικής φόρτισης 2/3 Αντοχή σκυροδέµατος σε ελκυσµό, Ευρωκώδικας 2 f f ctm ct = = 0.30 f 2 f ck ck Αντοχή σκυροδέµατος σε ελκυσµό, ACI ιαγράµµατα τάσεων-παραµορφώσεων σκυροδέµατος και χάλυβα σύµφωνα µε τον Ευρωκώδικα

45 3-D Αριθµητική προσοµοίωση δοκιµαστικής φόρτισης ιαδοχικές επιλύσεις µε 1 διορθώσεις των παραµέτρων µέχρι να επέλθει ικανοποιητική προσέγγιση. Οι τιµές των Οριζόν τιο φορτίο N (MN) Test Cycle H1 Test Cycle H2 Pile Test Simulation παραµέτρων βέλτιστης 0.2 προσέγγισης χρησιµοποιούνται στις περαιτέρω επιλύσεις Μετακίνηση κεφαλής y (mm) 89 Η επίδραση της ρηγµάτωσης στην απόκριση πασσάλου οπλισµένου σκυροδέµατος υπό οριζόντια φόρτιση Κωµοδρόµος Α. Μ., Παπαδοπούλου Μ. Κ., Ρεντζεπέρης Ι.Κ., Τµήµα Πολιτικών Μηχανικών - Πανεπιστήµιο Θεσσαλίας 90 45

46 Προσοµοίωση θεµελίωσης µε πασσάλους Αντικατάσταση µε οριακές συνθήκες πάκτωσης ιδιότυπη περίπτωση της τεχνικής substructuring όπου δεν ικανοποιούνται οι αρχές συµβιβαστού στο κοινό όριο ανωδοµής και θεµελίωσης Αλληλεπίδραση εδάφους ανωδοµής σύζευξη της απόκρισης ανωδοµής και θεµελίωσης Μέθοδος υποσυστηµάτων (substructuring) ξεχωριστή µη γραµµική επίλυση ανωδοµής και θεµελίωσης στο πλαίσιο εξασφάλισης συµβιβαστού παραµορφώσεων και τάσεων στο κοινό όριο 91 Εφαρµογή σε περίπτωση χαραδρογέφυρας πλήρης αλληλεπίδραση (υπερβολικές υπολογιστικές απαιτήσεις) τεχνική υποσυστηµάτων (επαναληπτική διαδικασία επίλυσης µε απλούστερη προσέγγιση και συγκριτικά πολύ µικρότερο υπολογιστικό κόστος) 92 46

47 Εφαρµογή σε περίπτωση χαραδρογέφυρας Αντικατάσταση της θεµελίωσης πασσάλων µε µητρώο δυσκαµψίας 6 x 6 το οποίο συµπεριλαµβάνει και τις επιπτώσεις λόγω λειτουργίας οµάδας Οι επιπτώσεις της ρηγµάτωσης αγνοούνται σχεδόν σε όλες τις περιπτώσεις 93 3-D Αριθµητική ανάλυση απόκριση οκιµαστικής φόρτισης Προσοµοίωσης.Φ. Πασσάλου ελεύθερης κεφαλής Πασσάλου πακτωµένης κεφαλής Οριζόν τιο φορτίο N (MN) Test Cycle H1 Test Cycle H2 Pile Test Simulation Free-Head Single Pile Fix-Head Single Pile Μετακίνηση κεφαλήςy (mm) 94 47

48 3-D Αριθµητική ανάλυση απόκριση οκιµαστικής φόρτισης Προσοµοίωσης.Φ. Πασσάλου ελεύθερης κεφαλής Πασσάλου πακτωµένης κεφαλής Οριζόντιο φορτίο H(MN) Test Cycle H1 Test Cycle H2 Pile Test Simulation Ελεύθερης κεφαλής Πακτωµένης κεφαλής Η δοκιµαστική φόρτιση αντιστοιχεί σε συνθήκες ελεύθερης κεφαλής (ανάπτυξη µεγάλων καµπυλοτήτων στο άνω µέρος του πασσάλου ρηγµάτωση και εκδήλωση µεγαλύτερων µετακινήσεων) Μετακίνηση κεφαλής y (mm) 3-D Αριθµητική ανάλυση Οι οριακές συνθήκες καθιστούν τον πάσσαλο ελεύθερης κεφαλής πιο ευπαθή λόγω της διαφορετικής τοπολογίας ρηγµάτωσης. Για το ίδιο φορτίο η ρηγµατωµένη περιοχή εµφανίζει πολύ µεγαλύτερο εύρος απ ό,τι στον πάσσαλο πακτωµένης κεφαλής 96 48

49 Ρηγµάτωση Μεταβολή της δυσκαµψίας vs ανηγµένου εύρους ρηγµάτωσης (d cr / D) M = E p I p φ = (Ε c I c + E s I s ) φ 97 Ρηγµάτωση Μεταβολή της δυσκαµψίας vs ανηγµένου εύρους ρηγµάτωσης (d cr / D) Ενσωµάτωση σε κώδικα µη γραµµικής µονοδιάστατης ανάλυσης µε επαναληπτική διαδικασία υσκαµψία E I (MN.m 2 ) 700 Ep Ip 600 Ec Ici 500 Es Isi Αν ηγµέν ο εύρος ρηγµάτωσης dcr/d 98 49

50 Ευεργετική δράση θλιπτικής αξονικής δύναµης (3-D ανάλυση) Η συνύπαρξη θλιπτικής αξονικής δύναµης περιορίζει τη διεύρυνση της ρηγµάτωσης µε ευεργετικά αποτελέσµατα στην απόκριση και την αντοχή Οριζόντιο φορτίο H (MN) Free-Head Single Pile Pile Test Simulation, assuming pile as linear elastic Pile Test Simulation, Axial Load N= 3.0 MN Μετακίνηση κεφαλής y (mm) 99 Ευεργετική δράση θλιπτικής αξονικής δύναµης (1-D ανάλυση) Η συνύπαρξη θλιπτικής αξονικής δύναµης περιορίζει τη διεύρυνση της ρηγµάτωσης µε ευεργετικά αποτελέσµατα στην απόκριση και την αντοχή Καµπτική Ροπή M (kn.m) D=0.80m, 16Φ18, Ν=0.0 MN D=0.80m, 16Φ18, Ν=0.5 MΝ 200 D=0.80m, 16Φ18, Ν=2.0 MΝ Καµπυλότητα φ (1/m)

51 Ευεργετική δράση θλιπτικής αξονικής δύναµης (1-D ανάλυση) Η συνύπαρξη θλιπτικής αξονικής δύναµης περιορίζει τη διεύρυνση της ρηγµάτωσης µε ευεργετικά αποτελέσµατα στην απόκριση και την αντοχή Καµπτική Ροπή M (kn.m) D=0.80m, 16Φ18, Ν=0.0 MN D=0.80m, 16Φ18, Ν=0.5 MΝ D=0.80m, 16Φ18, Ν=2.0 MΝ υσκαµψία πασσάλου Ep Ip (MN.m 2) 101 Λάθος εκτίµηση καµπτικής ροπής

52 Συγκεντρωτική παρουσίαση αποκρίσεων Πειραµατικά αποτελέσµατα και αριθµητικός προσδιορισµός 103 Πρόβλεψη απόκρισης χαρακτηριστικών πασσάλων οµάδας

53 Συµπεράσµατα Η ρηγµάτωση των πασσάλων οδηγεί σε σηµαντικές επιπτώσεις στην απόκριση των πασσαλοθεµελιώσεων (µικρότερη αντοχή και δυσκαµψία). Η µεταβολή αυτή επηρεάζει µε τη σειρά της την απόκριση των ανωδοµών. Για την αποτίµηση των επιπτώσεων πραγµατοποιήθηκε δοκιµαστική φόρτιση µε κατάλληλη ενοργάνωση. Τα αποτελέσµατα χρησιµοποιήθηκαν στη συνέχεια για τη διεξαγωγή 3-D µη γραµµικής ανάλυσης. Κατά τον τρόπο αυτό προσδιορίσθηκαν µε υψηλή ακρίβεια οι παράµετροι διατµητικής αντοχής και παραµορφωσιµότητας των συστατικών στοιχείων. 105 Συµπεράσµατα ιερευνήθηκε στη συνέχεια η ευεργετική δράση θλιπτικής αξονικής δύναµης και οι επιπτώσεις των οριακών συνθηκών στην ανάπτυξη της ρηγµάτωσης Η διερεύνηση πραγµατοποιήθηκε τόσο µε σύνθετη ανάλυση (τρισδιάστατη µη γραµµική ανάλυση) όσο και µε απλούστερη προσέγγιση (µονοδιάστατη ανάλυση µε χρήση στοιχείων δοκού). Η τρισδιάστατη ανάλυση επιτρέπει την ακριβέστερη δυνατή ανάλυση µε πολύ υψηλό εντούτοις υπολογιστικό κόστος Η µονοδιάστατη ανάλυση φαίνεται ιδιαίτερα ενδιαφέρουσα δεδοµένου ότι µε µικρό υπολογιστικό κόστος δίνει ικανοποιητικά αποτελέσµατα, ενώ µπορεί εύκολα να ενταχθεί σε κώδικα πλήρους ανάλυσης

54 Μη γραµµική απόκριση πασσάλων Μη γραµµική συµπεριφορά τους εδάφους Αλληλεπίδραση πασσάλων λόγω λειτουργίας οµάδας Μετελαστική συµπεριφορά πασσάλου 107 Αριθμητική διερεύνηση απόκρισης ομάδας πασσάλων C1, 3 x3, 2.0D y G = 14.4 cm C1, 3 x3, 3.0D y G = 10.3 cm C1, 3 x3, 6.0D y G = 8.6 cm 54

55 Αριθμητική διερεύνηση απόκρισης ομάδας πασσάλων Κατηγορία C4 C1, 3 3, 3.0 D ΔV=80%V P5 y G = 1.3%D, H m = 350 kn y G = 10.3%D, H m = 1750 kn 55

56 S1, 3 3, 3.0 D ΔV=50%V P5 y G = 1.4%D, H m = 350 kn y G = 12.5%D, H m = 1750 kn m W K err err 56

57 m W K err err Εύρος εφαρμογής:1%d y ns 15%D (Βrownet al, 1987) 3 x 3, 3.0D c u = 100 kpa (Rollins et al, 1998) 3 x 3, 3.0D c u = 50 kpa 57

58 Επαλήθευση για οριακές συνθήκες ελεύθερης κεφαλής Επαλήθευση για L/D = 12 m W K err err 58

59 Σύγκριση αποκρίσεων για μέτρο ελαστικότητας σταθερό (Ε = 30 ΜPa)και μεταβαλλόμενο (Ε=20+1.1z = MPa) (Rollins et al, 2005) 3 x 3, 3.0D c u = 50 kpa 59

60 Αποτίμηση της προτεινόμενης μεθόδου P 3 ιεύθυνση P2 φόρτισης P 1 P 6 P5 P 4 s P 9 P8 P 7 s έδαφος 2.0D 3.0D 9.0D C s έδαφος 2.0D 3.0D 9.0D C Πολλαπλασιαστές p για y G = y s = 5%D µ.ό. σειράς C µ.ό. σειράς C µ.ό. σειράς C Πολλαπλασιαστές p για y G = y s = 10%D µ.ό. σειράς C µ.ό. σειράς C µ.ό. σειράς C µ.ό. σειράς µ.ό. σειράς

ΠIΝΑΚΑΣ ΠΕΡIΕΧΟΜΕΝΩΝ

ΠIΝΑΚΑΣ ΠΕΡIΕΧΟΜΕΝΩΝ ΠIΝΑΚΑΣ ΠΕΡIΕΧΟΜΕΝΩΝ Πρόλογος...11 Πίνακας κυριότερων συμβόλων...13 ΚΕΦΑΛΑIΟ 1: Εισαγωγή 21 ΚΕΦΑΛΑIΟ 2: Απόκριση μεμονωμένου πασσάλου υπό κατακόρυφη φόρτιση 29 2.1 Εισαγωγή...29 2.2 Οριακό και επιτρεπόμενο

Διαβάστε περισσότερα

ΟΡΙΑΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ (ΠΙΝΑΚΑΣ ΕΝΔΕΙΚΤΙΚΟΣ)

ΟΡΙΑΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ (ΠΙΝΑΚΑΣ ΕΝΔΕΙΚΤΙΚΟΣ) Σχεδιασμός Θεμελιώσεων με Πασσάλους με βάση τον Ευρωκώδικα 7.1 Β. Παπαδόπουλος Τομέας Γεωτεχνικής ΕΜΠ ΘΕΜΕΛΙΩΣΕΙΣ ΜΕ ΠΑΣΣΑΛΟΥΣ ΟΡΙΑΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ (ΠΙΝΑΚΑΣ ΕΝΔΕΙΚΤΙΚΟΣ) ΑΣΤΟΧΙΑΣ Απώλεια συνολικής ευστάθειας

Διαβάστε περισσότερα

Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ 4

Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ 4 Τεχνολογικό Εκπαιδευτικό Ίδρυµα Σερρών Σχολή Τεχνολογικών Εφαρµογών Τµήµα Πολιτικών οµικών Έργων Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ 4 Βαθιές θεµελιώσεις ιδάσκων: Κίρτας Εµµανουήλ Σέρρες, Σεπτέµβριος 2010 1

Διαβάστε περισσότερα

Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών Μεταπτυχιακό πρόγραµµα σπουδών «Αντισεισµικός Σχεδιασµός Τεχνικών Έργων» Μάθηµα: «Αντισεισµικός Σχεδιασµός Θεµελιώσεων,

Διαβάστε περισσότερα

Απόκριση πασσάλου μετά τη ρηγμάτωση: Οριζόντια δοκιμαστική φόρτιση με χρήση οπτικών ινών 3D μη γραμμική ανάλυση

Απόκριση πασσάλου μετά τη ρηγμάτωση: Οριζόντια δοκιμαστική φόρτιση με χρήση οπτικών ινών 3D μη γραμμική ανάλυση Απόκριση πασσάλου μετά τη ρηγμάτωση: Οριζόντια δοκιμαστική φόρτιση με χρήση οπτικών ινών 3D μη γραμμική ανάλυση Pile response after cracking: horizontal pile load test using fiber optics 3D nonlinear analysis

Διαβάστε περισσότερα

ΠIΝΑΚΑΣ ΠΕΡIΕΧΟΜΕΝΩΝ

ΠIΝΑΚΑΣ ΠΕΡIΕΧΟΜΕΝΩΝ ΠIΝΑΚΑΣ ΠΕΡIΕΧΟΜΕΝΩΝ Πρόλογος...13 Πίνακας κυριότερων συμβόλων...17 Εισαγωγή...25 ΚΕΦΑΛΑIΟ 1: Επιφανειακές θεμελιώσεις 33 1.1 Εισαγωγή...33 1.2 Διατάξεις Ευρωκώδικα ΕΝ 1997-1...35 1.3 Μεμονωμένα πέδιλα...39

Διαβάστε περισσότερα

Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή

Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή Ευρωκώδικες Εγχειρίδιο αναφοράς Αθήνα, Μάρτιος 01 Version 1.0.3 Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή Με το Fespa έχετε τη δυνατότητα να μελετήσετε

Διαβάστε περισσότερα

XΑΛΥΒΔOΦΥΛΛΟ SYMDECK 73

XΑΛΥΒΔOΦΥΛΛΟ SYMDECK 73 XΑΛΥΒΔOΦΥΛΛΟ SYMDECK 73 20 1 XΑΛΥΒΔΌΦΥΛΛΟ SYMDECK 73 ΓΕΝΙΚΑ ΠΕΡΙ ΣΥΜΜΙΚΤΩΝ ΠΛΑΚΩΝ Σύμμικτες πλάκες ονομάζονται οι φέρουσες πλάκες οροφής κτιρίων, οι οποίες αποτελούνται από χαλυβδόφυλλα και επί τόπου έγχυτο

Διαβάστε περισσότερα

ΣΧΕ ΙΑΣΜΟΣ ΤΩΝ ΕΠΙΦΑΝΕΙΑΚΩΝ ΘΕΜΕΛΙΩΣΕΩΝ ΜΕ ΤΟΥΣ ΕΥΡΩΚΩ ΙΚΕΣ 7, 2 & 8

ΣΧΕ ΙΑΣΜΟΣ ΤΩΝ ΕΠΙΦΑΝΕΙΑΚΩΝ ΘΕΜΕΛΙΩΣΕΩΝ ΜΕ ΤΟΥΣ ΕΥΡΩΚΩ ΙΚΕΣ 7, 2 & 8 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΣΧΕ ΙΑΣΜΟΣ ΤΩΝ ΕΠΙΦΑΝΕΙΑΚΩΝ ΘΕΜΕΛΙΩΣΕΩΝ ΜΕ ΤΟΥΣ ΕΥΡΩΚΩ ΙΚΕΣ 7, 2 & 8 Μπελόκας Γεώργιος ιδάκτωρ Πολιτικός Μηχανικός

Διαβάστε περισσότερα

ΕΔΑΦΟΜΗΧΑΝΙΚΗ. Κεφάλαιο 4. Εδαφομηχανική - Μαραγκός Ν. (2009) σελ. 4.2

ΕΔΑΦΟΜΗΧΑΝΙΚΗ. Κεφάλαιο 4. Εδαφομηχανική - Μαραγκός Ν. (2009) σελ. 4.2 ΕΔΑΦΟΜΗΧΑΝΙΚΗ Κεφάλαιο 4 Προσδιορισμός συνθηκών υπεδάφους Επιτόπου δοκιμές Είδη θεμελίωσης Εδαφομηχανική - Μαραγκός Ν. (2009) σελ. 4.1 Προσδιορισμός των συνθηκών υπεδάφους Με δειγματοληπτικές γεωτρήσεις

Διαβάστε περισσότερα

ADAPTOR. Λογισµικό Προσαρµογής του ETABS στις Απαιτήσεις της Ελληνικής Πράξης. Εγχειρίδιο Επαλήθευσης για Μεµονωµένα Πέδιλα

ADAPTOR. Λογισµικό Προσαρµογής του ETABS στις Απαιτήσεις της Ελληνικής Πράξης. Εγχειρίδιο Επαλήθευσης για Μεµονωµένα Πέδιλα ADAPTOR Λογισµικό Προσαρµογής του ETABS στις Απαιτήσεις της Ελληνικής Πράξης Εγχειρίδιο Επαλήθευσης για Μεµονωµένα Πέδιλα Version 1.0 Ιανουάριος 004 ΠΝΕΥΜΑΤΙΚΑ ΙΚΑΙΩΜΑΤΑ Το λογισµικό Adaptor και όλα τα

Διαβάστε περισσότερα

f cd = θλιπτική αντοχή σχεδιασμού σκυροδέματος f ck = χαρακτηριστική θλιπτική αντοχή σκυροδέματος

f cd = θλιπτική αντοχή σχεδιασμού σκυροδέματος f ck = χαρακτηριστική θλιπτική αντοχή σκυροδέματος v ΣΥΜΒΟΛΑ Λατινικά A b A g A e A f = εμβαδόν ράβδου οπλισμού = συνολικό εμβαδόν διατομής = εμβαδόν περισφιγμένου σκυροδέματος στη διατομή = εμβαδόν διατομής συνθέτων υλικών A f,tot = συνολικό εμβαδόν συνθέτων

Διαβάστε περισσότερα

www.runet.gr 1-Μοντέλο πεπερασμένων στοιχείων (FEM) Διαστασιολόγηση κατασκευής από Χάλυβα Σελ. 1

www.runet.gr 1-Μοντέλο πεπερασμένων στοιχείων (FEM) Διαστασιολόγηση κατασκευής από Χάλυβα Σελ. 1 Διαστασιολόγηση κατασκευής από Χάλυβα Σελ. 1 1Μοντέλο πεπερασμένων στοιχείων (FEM) Κόμβοι κατασκευής Κόμβος x [m] y[m] 1 0.000 0.000 2 0.000 4.600 3 8.400 4.600 4 8.400 0.000 Στηρίξεις κατασκευής Κόμβος

Διαβάστε περισσότερα

Σήραγγες Μέθοδος ΝΑΤΜ. Αιμίλιος Κωμοδρόμος, Καθηγητής, Εργαστήριο Υ.Γ.Μ. Πανεπιστήμιο Θεσσαλίας Τμήμα Πολιτικών Μηχανικών

Σήραγγες Μέθοδος ΝΑΤΜ. Αιμίλιος Κωμοδρόμος, Καθηγητής, Εργαστήριο Υ.Γ.Μ. Πανεπιστήμιο Θεσσαλίας Τμήμα Πολιτικών Μηχανικών 1 ΜΕΤΡΑ ΑΜΕΣΗΣ ΥΠΟΣΤΗΡΙΞΗΣ ΕΚΤΟΞΕΥΟΜΕΝΟ ΣΚΥΡΟΔΕΜΑ Συστατικά Υλικά Τσιμέντο, λεπτόκοκκα αδρανή (έως 10 mm), νερό, πρόσμικτα επιτάχυνσης πήξης Μέθοδος Εφαρμογής Εκτόξευση Υγρού Μίγματος (μεγάλες απαιτούμενες

Διαβάστε περισσότερα

Ανοξείδωτοι Χάλυβες - Μέρος 1.4 του Ευρωκώδικα 3 Ιωάννη Ραυτογιάννη Γιώργου Ιωαννίδη

Ανοξείδωτοι Χάλυβες - Μέρος 1.4 του Ευρωκώδικα 3 Ιωάννη Ραυτογιάννη Γιώργου Ιωαννίδη Ανοξείδωτοι Χάλυβες - Μέρος 1.4 του Ευρωκώδικα 3 Ιωάννη Ραυτογιάννη Γιώργου Ιωαννίδη 1. Εισαγωγή Οι ανοξείδωτοι χάλυβες ως υλικό κατασκευής φερόντων στοιχείων στα δομικά έργα παρουσιάζει διαφορές ως προ

Διαβάστε περισσότερα

Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ

Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών ομικών Έργων Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ Παραδόσεις Θεωρίας ιδάσκων: Κίρτας Εμμανουήλ Σέρρες, Σεπτέμβριος 2010 Τεχνολογικό

Διαβάστε περισσότερα

Fespa 10 EC. For Windows. Προσθήκη ορόφου και ενισχύσεις σε υφιστάμενη κατασκευή. Αποτίμηση

Fespa 10 EC. For Windows. Προσθήκη ορόφου και ενισχύσεις σε υφιστάμενη κατασκευή. Αποτίμηση Fespa 10 EC For Windows Προσθήκη ορόφου και ενισχύσεις σε υφιστάμενη κατασκευή Αποτίμηση της φέρουσας ικανότητας του κτιρίου στη νέα κατάσταση σύμφωνα με τον ΚΑΝ.ΕΠΕ 2012 Αθήνα, εκέμβριος 2012 Version

Διαβάστε περισσότερα

4. Ανάλυση & Σχεδιασμός

4. Ανάλυση & Σχεδιασμός 4. Ανάλυση & Σχεδιασμός ΑΓΚΥΡΩΣΕΩΝ Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. ΜΑΡΤΙΟΣ 2009 ΠΕΡΙΕΧΟΜΕΝΑ 4.1 Περιγραφή Κατασκευή Αγκυρώσεων 4.2 Αστοχία Αγκυρίου 4.3 Αστοχία Σφήνας Εδάφους 4.4 Σύνθετη Αστοχία Εδάφους

Διαβάστε περισσότερα

BETONexpress, www.runet.gr

BETONexpress, www.runet.gr Πέδιλα ΠΕΡΙΕΧΟΜΕΝΑ 1. Υπ ολογισμοί τμήματος κατασκευής : ΠΕΔΙΛΟ-001, Μεμονωμένο, κεντρικό πέδιλο, με ροπ ή και σεισμό 1.1. Διαστάσεις-Υλικά-Φορτία 1.2. Κανονισμοί 1.3. Ελεγχοι φέρουσας ικανότητας εδάφους

Διαβάστε περισσότερα

ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η

ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η Σκοπός Σκοπός του πειράµατος είναι ο προσδιορισµός των χαρακτηριστικών τιµών αντοχής του υλικού που ορίζονταιστηκάµψη, όπωςτοόριοδιαρροήςσεκάµψηκαιτοόριοαντοχής

Διαβάστε περισσότερα

ιερεύνηση της συµπεριφοράς οµάδας πασσάλων εδραζοµένων σε βραχώδες υπόβαθρο

ιερεύνηση της συµπεριφοράς οµάδας πασσάλων εδραζοµένων σε βραχώδες υπόβαθρο ιερεύνηση της συµπεριφοράς οµάδας πασσάλων εδραζοµένων σε βραχώδες υπόβαθρο Response evaluation of pile groups based οn rock ΜΠΑΡΕΚΑ Σ., Πολιτικός Μηχανικός, Υπ. ιδάκτωρ, Π.Θ ΛΑΖΟΥ Η Ρ., Πολιτικός Μηχανικός,

Διαβάστε περισσότερα

ΣΤΕΡΕΟΠΟΙΗΣΗ - ΚΑΘΙΖΗΣΕΙΣ

ΣΤΕΡΕΟΠΟΙΗΣΗ - ΚΑΘΙΖΗΣΕΙΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ Διδάσκων: Κωνσταντίνος Λουπασάκης,

Διαβάστε περισσότερα

ΤΕΥΧΟΣ ΣΤΑΤΙΚΗΣ ΜΕΛΕΤΗΣ ΕΠΑΡΚΕΙΑΣ METAΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ

ΤΕΥΧΟΣ ΣΤΑΤΙΚΗΣ ΜΕΛΕΤΗΣ ΕΠΑΡΚΕΙΑΣ METAΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ ΕΡΓΟ : ΡΥΘΜΙΣΗ ΒΑΣΕΙ Ν.4178/2013 ΚΑΤΑΣΚΕΥΗΣ ΜΕΤΑΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ ΘΕΣΗ : Λεωφόρος Χαλανδρίου και οδός Παλαιών Λατομείων, στα Μελίσσια του Δήμου Πεντέλης ΤΕΥΧΟΣ ΣΤΑΤΙΚΗΣ ΜΕΛΕΤΗΣ ΕΠΑΡΚΕΙΑΣ METAΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ

Διαβάστε περισσότερα

Γενικές πληροφορίες μαθήματος: Τίτλος CE07_S04 Πιστωτικές. Φόρτος εργασίας μονάδες:

Γενικές πληροφορίες μαθήματος: Τίτλος CE07_S04 Πιστωτικές. Φόρτος εργασίας μονάδες: Γενικές πληροφορίες μαθήματος: Τίτλος Μεταλλικές Κωδικός CE07_S04 μαθήματος: Κατασκευές ΙI μαθήματος: Πιστωτικές Φόρτος εργασίας μονάδες: 5 150 (ώρες): Επίπεδο μαθήματος: Προπτυχιακό Μεταπτυχιακό Τύπος

Διαβάστε περισσότερα

Ευρωκώδικας EΝ 1993 Σχεδιασμός Μεταλλικών Κατασκευών

Ευρωκώδικας EΝ 1993 Σχεδιασμός Μεταλλικών Κατασκευών Χάρης Ι. Γαντές Αναπληρωτής Καθηγητής Εργαστήριο Μεταλλικών Κατασκευών Εθνικό Μετσόβιο Πολυτεχνείο Σχεδιασμός Κατασκευών με Ευρωκώδικες Εφαρμογές Εθνικά Προσαρτήματα Κέρκυρα Ιούνιος 2009 Περιεχόμενα παρουσίασης

Διαβάστε περισσότερα

Υπόδειξη: Στην ισότροπη γραμμική ελαστικότητα, οι τάσεις με τις αντίστοιχες παραμορφώσεις συνδέονται μέσω των κάτωθι σχέσεων:

Υπόδειξη: Στην ισότροπη γραμμική ελαστικότητα, οι τάσεις με τις αντίστοιχες παραμορφώσεις συνδέονται μέσω των κάτωθι σχέσεων: Μάθημα: Εδαφομηχανική Ι, 5 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Π.Δ.407/80, Δρ Πολιτικός Μηχανικός Ε.Μ.Π. Θεματική περιοχή: Σχέσεις τάσεων παραμορφώσεων στο έδαφος. Ημερομηνία: Δευτέρα

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων. 1. Υπολογισμός Διατμητικής Αντοχής Εδάφους. 2. Γεωστατικές τάσεις

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων. 1. Υπολογισμός Διατμητικής Αντοχής Εδάφους. 2. Γεωστατικές τάσεις ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ 3 η Σειρά Ασκήσεων 1. Υπολογισμός Διατμητικής Αντοχής Εδάφους Συνοχή (c) Γωνία τριβής (φ ο ) 2. Γεωστατικές τάσεις Ολικές τάσεις Ενεργές τάσεις Πιέσεις πόρων Διδάσκοντες: Β. Χρηστάρας

Διαβάστε περισσότερα

BETONexpress, www.runet.gr

BETONexpress, www.runet.gr Τοίχοι Αντιστήριξης ΠΕΡΙΕΧΟΜΕΝΑ 1. Υπ ολογισμοί τμήματος κατασκευής : Τ. ΑΝΤ-001, Τοίχος αντιστήριξης ωπ λισμένου σκυροδέματος 1.1. Στοιχεία τοίχου-παράμετροι-κανονισμοί 1.. Επ ιμέρους συντελεστές για

Διαβάστε περισσότερα

Παρουσίαση Ευρωκώδικα 2 Εφαρµογή στο FESPA. Χάρης Μουζάκης Επίκουρος Καθηγητής Ε.Μ.Π

Παρουσίαση Ευρωκώδικα 2 Εφαρµογή στο FESPA. Χάρης Μουζάκης Επίκουρος Καθηγητής Ε.Μ.Π Παρουσίαση Ευρωκώδικα 2 Επίκουρος Καθηγητής Ε.Μ.Π Εισαγωγή Ο Ευρωκώδικας 2 περιλαµβάνει τα ακόλουθα µέρη: Μέρος 1.1: Γενικοί κανόνες και κανόνες για κτίρια Μέρος 1.2: Σχεδιασµός για πυρασφάλεια Μέρος 2:

Διαβάστε περισσότερα

Σχεδιασμός Μεταλλικών Κατασκευών

Σχεδιασμός Μεταλλικών Κατασκευών Χάρης Ι. Γαντές Αναπληρωτής Καθηγητής Εργαστήριο Μεταλλικών Κατασκευών Εθνικό Μετσόβιο Πολυτεχνείο Σχεδιασμός Κατασκευών με Ευρωκώδικες Εφαρμογές Εθνικά Προσαρτήματα Κέρκυρα Ιούνιος 2009 Περιεχόμενα παρουσίασης

Διαβάστε περισσότερα

Οριακή κατάσταση αστοχίας έναντι ιάτµησης-στρέψης- ιάτρησης

Οριακή κατάσταση αστοχίας έναντι ιάτµησης-στρέψης- ιάτρησης Σχεδιασµός φορέων από σκυρόδεµα µε βάση τον Ευρωκώδικα 2 Οριακή κατάσταση αστοχίας έναντι ιάτµησης-στρέψης- ιάτρησης Καττής Μαρίνος, Αναπληρωτής Καθηγητής ΕΜΠ Λιβαδειά, 26 Σεπτεµβρίου 2009 1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1. Παραδόσεις Θεωρίας. Προσομοίωση φορέα με χρήση πεπερασμένων στοιχείων. ιδάσκων: Κίρτας Εμμανουήλ. Σέρρες, Σεπτέμβριος 2008

ΚΕΦΑΛΑΙΟ 1. Παραδόσεις Θεωρίας. Προσομοίωση φορέα με χρήση πεπερασμένων στοιχείων. ιδάσκων: Κίρτας Εμμανουήλ. Σέρρες, Σεπτέμβριος 2008 ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΟΜΙΚΩΝ ΕΡΓΩΝ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΟΜΙΚΩΝ ΕΡΓΩΝ ΕΙ ΙΚΑ

Διαβάστε περισσότερα

Επιπτώσεις αλληλεπίδρασης και κατανοµή φορτίου στους πασσάλους και την πλάκα κεφαλόδεσµο πασσαλοθεµελιώσεων

Επιπτώσεις αλληλεπίδρασης και κατανοµή φορτίου στους πασσάλους και την πλάκα κεφαλόδεσµο πασσαλοθεµελιώσεων Επιπτώσεις αλληλεπίδρασης και κατανοµή φορτίου στους πασσάλους και την πλάκα κεφαλόδεσµο πασσαλοθεµελιώσεων Piled raft foundations: load distribution and interaction effects to the iles and the raft ΜΠΑΡΕΚΑ,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΘΕΜΕΛΙΩΣΕΙΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ. Ν. Σαμπατακάκης Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών

ΚΕΦΑΛΑΙΟ 6 ΘΕΜΕΛΙΩΣΕΙΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ. Ν. Σαμπατακάκης Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών ΚΕΦΑΛΑΙΟ 6 ΘΕΜΕΛΙΩΣΕΙΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ κύριο ερώτημα ΘΕΜΕΛΙΩΣΗ ΑΝΩΔΟΜΗΣ το γενικό πρόβλημα πως θα αντιδράσει η απεριόριστη σε έκταση εδαφική μάζα??? ζητούμενο όχι «θραύση» εδαφικής μάζας εύρος καθιζήσεων

Διαβάστε περισσότερα

fespa (10EC) E u r o c o d e s fespa (10NL) FESPA 10 Ευρωκώδικες Performance Pushover Analysis

fespa (10EC) E u r o c o d e s fespa (10NL) FESPA 10 Ευρωκώδικες Performance Pushover Analysis FESPA 10 Ευρωκώδικες & Pushover fespa (10EC) E u r o c o d e s fespa (10NL) Performance Pushover Analysis Γραφική αναπαράσταση των κριτηρίων δυστρεψίας και περιορισµού στατικής εκκεντρότητας Έλλειψη δυστρεψίας

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ ΓΙΑ ΤΟ ΜΕΤΑΛΛΙΚΟ ΦΟΡΕΑ

ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ ΓΙΑ ΤΟ ΜΕΤΑΛΛΙΚΟ ΦΟΡΕΑ Έργο Ιδιοκτήτες Θέση ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ ΓΙΑ ΤΟ ΜΕΤΑΛΛΙΚΟ ΦΟΡΕΑ Η µελέτη συντάχθηκε µε το πρόγραµµα VK.STEEL 5.2 της Εταιρείας 4M -VK Προγράµµατα Πολιτικού Μηχανικού. Το VK.STEEL είναι πρόγραµµα επίλυσης χωρικού

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης

ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης 5.1. Μορφές κάµψης ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης Η γενική κάµψη (ή κάµψη), κατά την οποία εµφανίζεται στο φορέα (π.χ. δοκό) καµπτική ροπή (Μ) και τέµνουσα δύναµη (Q) (Σχ. 5.1.α).

Διαβάστε περισσότερα

Παράδειγμα διαστασιολόγησης και όπλισης υποστυλώματος

Παράδειγμα διαστασιολόγησης και όπλισης υποστυλώματος ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΡΧΙΤΕΚΤΟΝΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΣΥΝΘΕΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΙΧΜΗΣ ΠΕΡΙΟΧΗ ΔΟΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ Μάθημα: Δομική Μηχανική 3 Διδάσκουσα: Μαρίνα Μωρέττη Ακαδ. Έτος 014 015 Παράδειγμα

Διαβάστε περισσότερα

Οι απώλειες προέντασης διακρίνονται σε:

Οι απώλειες προέντασης διακρίνονται σε: ΑΠΩΛΕΙΕΣ ΠΡΟΕΝΤΑΣΗΣ Οι απώλειες προέντασης διακρίνονται σε: Στιγµιαίες απώλειες: Εµφανίζονται κατά την επιβολή της δύναµης προέντασης (τάνυσης), δηλαδή σε χρόνο t = 0 και οφείλονται (α) στην τριβή που

Διαβάστε περισσότερα

Σχήμα 1: Διάταξη δοκιμίου και όργανα μέτρησης 1 BUILDNET

Σχήμα 1: Διάταξη δοκιμίου και όργανα μέτρησης 1 BUILDNET Παραμετρική ανάλυση κοχλιωτών συνδέσεων με μετωπική πλάκα χρησιμοποιώντας πεπερασμένα στοιχεία Χριστόφορος Δημόπουλος, Πολιτικός Μηχανικός, Υποψήφιος Διδάκτωρ ΕΜΠ Περίληψη Η εν λόγω εργασία παρουσιάζει

Διαβάστε περισσότερα

STATICS 2013 ΝΕΕΣ ΥΝΑΤΟΤΗΤΕΣ

STATICS 2013 ΝΕΕΣ ΥΝΑΤΟΤΗΤΕΣ STATICS 2013 ΝΕΕΣ ΥΝΑΤΟΤΗΤΕΣ * ENΙΣΧΥΣΕΙΣ ΠΕΣΣΩΝ ΦΕΡΟΥΣΑΣ ΤΟΙΧΟΠΟΙΪΑΣ ΜΕ ΜΑΝ ΥΕΣ ΟΠΛ. ΣΚΥΡΟ ΕΜΑΤΟΣ Κτίρια από Φέρουσα Τοιχοποιία µε ενισχύσεις από µανδύες οπλισµένου σκυροδέµατος. Οι Μανδύες µπορεί να

Διαβάστε περισσότερα

ιαλέξεις 30-34 Μέθοδοι των δυνάµεων Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Στατική Ανάλυση των Κατασκευών Ι 1

ιαλέξεις 30-34 Μέθοδοι των δυνάµεων Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Στατική Ανάλυση των Κατασκευών Ι 1 ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 30-34 Μέθοδοι επίλυσης υπερστατικών φορέων: Μέθοδοι των δυνάµεων Τρίτη, 16, Τετάρτη, 17, Παρασκευή 19 Τρίτη, 23, και Τετάρτη 24 Νοεµβρίου 2004 Πέτρος

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 11 ΕΙΣΑΓΩΓΗ... 15. 10. Εσχάρες... 17

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 11 ΕΙΣΑΓΩΓΗ... 15. 10. Εσχάρες... 17 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 11 ΕΙΣΑΓΩΓΗ... 15 10. Εσχάρες... 17 Γενικότητες... 17 10.1 Κύρια χαρακτηριστικά της φέρουσας λειτουργίας... 18 10.2 Στατική διάταξη και λειτουργία λοξών γεφυρών... 28 11. Πλάκες...

Διαβάστε περισσότερα

Ανελαστικότητες υλικού σ = Ε ε Ελαστική Ανάλυση : Μ = ΕΙ κ [P] = [K] [δ] σ = Ε ε Ανελαστική Ανάλυση : Μ = ΕΙκ [P] = [K] [δ] 4/61

Ανελαστικότητες υλικού σ = Ε ε Ελαστική Ανάλυση : Μ = ΕΙ κ [P] = [K] [δ] σ = Ε ε Ανελαστική Ανάλυση : Μ = ΕΙκ [P] = [K] [δ] 4/61 Στατική Ανελαστική Ανάλυση [µέθοδος ελέγχου των µετατοπίσεων] [µέθοδος pushover] Τι είναι η ανάλυση pushover ορισµός κατανόηση λεπτοµερειών Παράδειγµα - εφαρµογή Προσδιορισµός της στοχευόµενης µετακίνησης

Διαβάστε περισσότερα

Fespa 10 EC. For Windows. Στατικό παράδειγμα προσθήκης ορόφου σε υφιστάμενη κατασκευή. Αποτίμηση φέρουσας ικανότητας του κτιρίου στη νέα κατάσταση

Fespa 10 EC. For Windows. Στατικό παράδειγμα προσθήκης ορόφου σε υφιστάμενη κατασκευή. Αποτίμηση φέρουσας ικανότητας του κτιρίου στη νέα κατάσταση Fespa 10 EC For Windows Στατικό παράδειγμα προσθήκης ορόφου σε υφιστάμενη κατασκευή & Αποτίμηση φέρουσας ικανότητας του κτιρίου στη νέα κατάσταση σύμφωνα με τον ΚΑΝ.ΕΠΕ 2012 Αθήνα, Οκτώβριος 2012 Version

Διαβάστε περισσότερα

Γιώργος Μπουκοβάλας. Φεβρουάριος 2015. Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 3.1

Γιώργος Μπουκοβάλας. Φεβρουάριος 2015. Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 3.1 3. Ανάλυση & Σχεδιασμός ΕΥΚΑΜΠΤΩΝ ΑΝΤΙΣΤΗΡΙΞΕΩΝ Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. Φεβρουάριος 2015 Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 3.1 Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής

Διαβάστε περισσότερα

Οι ασυνέχειες επηρεάζουν τη συμπεριφορά του τεχνικού έργου και πρέπει να λαμβάνονται υπόψη στο σχεδιασμό του.

Οι ασυνέχειες επηρεάζουν τη συμπεριφορά του τεχνικού έργου και πρέπει να λαμβάνονται υπόψη στο σχεδιασμό του. ΠΕΡΙΓΡΑΦΗ ΑΣΥΝΕΧΕΙΩΝ ΒΡΑΧΟΥ Όπως έχουμε ήδη αναφέρει οι ασυνέχειες αποτελούν επίπεδα αδυναμίας της βραχόμαζας που διαχωρίζει τα τεμάχια του ακέραιου πετρώματος. Κάθετα σε αυτή η εφελκυστική αντοχή είναι

Διαβάστε περισσότερα

Ανάλυση Ισοστατικών ικτυωµάτων

Ανάλυση Ισοστατικών ικτυωµάτων ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 5 η και 6 η Ανάλυση Ισοστατικών ικτυωµάτων Τετάρτη,, 15, Παρασκευή, 17 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk

Διαβάστε περισσότερα

Νέα έκδοση προγράμματος STeel CONnections 2013.099

Νέα έκδοση προγράμματος STeel CONnections 2013.099 http://www.sofistik.gr/ Μεταλλικές και Σύμμικτες Κατασκευές Νέα έκδοση προγράμματος STeel CONnections 2013.099 Aξιότιμοι συνάδελφοι, Κυκλοφόρησε η νέα έκδοση του προγράμματος διαστασιολόγησης κόμβων μεταλλικών

Διαβάστε περισσότερα

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ 2. ΣΤΑΤΙΚΗ Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στη δοκό του σχήματος: Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στον φορέα του σχήματος: Ασκήσεις υπολογισμού τάσεων Άσκηση 1 η (Αξονικός εφελκυσμός

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 Βασικά προσοµοιώµατα συµπεριφοράς. Ελισάβετ Βιντζηλαίου ΕΜΠ

ΚΕΦΑΛΑΙΟ 6 Βασικά προσοµοιώµατα συµπεριφοράς. Ελισάβετ Βιντζηλαίου ΕΜΠ ΚΕΦΑΛΑΙΟ 6 Βασικά προσοµοιώµατα συµπεριφοράς Ελισάβετ Βιντζηλαίου ΕΜΠ 1 6.1 ΠΡΟΣΟΜΟΙΩΜΑΤΑ ΜΗΧΑΝΙΣΜΩΝ ΜΕΤΑΦΟΡΑΣ ΥΝΑΜΕΩΝ(διεπιφάνειες υλικών) 6.2 ΠΕΡΙΣΦΙΓΞΗ ΣΚΥΡΟ ΕΜΑΤΟΣ(µέσω συνδετήρων ή µέσω ΙΩΠ) 6.3 ΕΝΙΣΧΥΣΗ

Διαβάστε περισσότερα

ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ. Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών

ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ. Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών Δεξαμενές Ο/Σ (Μέρος 2 ο ) -Σιλό Ορθογωνικές δεξαμενές Διάκριση ως προς την ύπαρξη ή μη επικάλυψης

Διαβάστε περισσότερα

2. ΚΑΤΑΝΟΜΕΣ ΤΑΣΕΩΝ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΕΩΝ 3. ΓΥΡΩ ΑΠΟ ΚΥΚΛΙΚΗ ΣΗΡΑΓΓΑ

2. ΚΑΤΑΝΟΜΕΣ ΤΑΣΕΩΝ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΕΩΝ 3. ΓΥΡΩ ΑΠΟ ΚΥΚΛΙΚΗ ΣΗΡΑΓΓΑ ΚΕΦΑΛΑΙΟ 3. ΚΑΤΑΝΟΜΕΣ ΤΑΣΕΩΝ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΕΩΝ 3. ΓΥΡΩ ΑΠΟ ΚΥΚΛΙΚΗ ΣΗΡΑΓΓΑ 3. Παραδοχές Σήραγγα κυκλικής διατοµής (ακτίνα ) Συνθήκες επίπεδης παραµόρφωσης (κατά τον άξονα της σήραγγας z) Ισότροπη γεωστατική

Διαβάστε περισσότερα

Ευρωκώδικας 7 ENV 1997 Γεωτεχνικός Σχεδιασµός

Ευρωκώδικας 7 ENV 1997 Γεωτεχνικός Σχεδιασµός Ευρωκώδικας 7 ENV 1997 Γεωτεχνικός Σχεδιασµός 1. Αντικείµενο των Ευρωκωδίκων Οι οµικοί Ευρωκώδικες αποτελούν µια οµάδα προτύπων για τον στατικό και γεωτεχνικό σχεδιασµό κτιρίων και έργων πολιτικού µηχανικού.

Διαβάστε περισσότερα

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1.

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1. ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ 1. Γενικά Με τη δοκιμή κάμψης ελέγχεται η αντοχή σε κάμψη δοκών από διάφορα

Διαβάστε περισσότερα

Τ.Ε.Ι. ΣΕΡΡΩΝ Τµήµα Πολιτικών οµικών Έργων Κατασκευές Οπλισµένου Σκυροδέµατος Ι Ασκήσεις ιδάσκων: Παναγόπουλος Γεώργιος Ονοµατεπώνυµο: Σέρρες 18-6-2010 Εξάµηνο Α Βαθµολογία: ΖΗΤΗΜΑ 1 ο (µονάδες 4.0) ίνεται

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Ονοματεπώνυμο:

Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Ονοματεπώνυμο: Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Α Σέρρες 6-6-009 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία: ΖΗΤΗΜΑ 1 ο Δίνεται ο ξυλότυπος

Διαβάστε περισσότερα

ΑΠΟΚΑΤΑΣΤΑΣΗ ΑΝΕΠΑΡΚΩΝ ΜΗΚΩΝ ΠΑΡΑΘΕΣΗΣ ΜΕ ΣΥΝΘΕΤΑ ΥΛΙΚΑ. ΣΥΓΚΡΙΣΗ ΚΑΝ.ΕΠΕ. ΚΑΙ EC8-3.

ΑΠΟΚΑΤΑΣΤΑΣΗ ΑΝΕΠΑΡΚΩΝ ΜΗΚΩΝ ΠΑΡΑΘΕΣΗΣ ΜΕ ΣΥΝΘΕΤΑ ΥΛΙΚΑ. ΣΥΓΚΡΙΣΗ ΚΑΝ.ΕΠΕ. ΚΑΙ EC8-3. ΑΠΟΚΑΤΑΣΤΑΣΗ ΑΝΕΠΑΡΚΩΝ ΜΗΚΩΝ ΠΑΡΑΘΕΣΗΣ ΜΕ ΣΥΝΘΕΤΑ ΥΛΙΚΑ. ΣΥΓΚΡΙΣΗ ΚΑΝ.ΕΠΕ. ΚΑΙ EC8-3. ΡΑΥΤΟΠΟΥΛΟΥ ΜΑΡΙΝΑ Περίληψη Οι κανονισμοί που ασχολούνται με τις επεμβάσεις κτιρίων στη χώρα μας είναι ο ΚΑΝ.ΕΠΕ. και

Διαβάστε περισσότερα

ΑΠΟΤΙΜΗΣΗ ΥΦΙΣΤΑΜΕΝΗΣ ΚΑΤΑΣΚΕΥΗΣ ΜΕ ΑΝΕΛΑΣΤΙΚΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΤΑ ΚΑΝ.ΕΠΕ. - ΠΡΟΣΘΗΚΗ ΟΡΟΦΟΥ ΚΑΙ ΕΛΕΓΧΟΣ ΕΠΑΡΚΕΙΑΣ ΓΙΑ ΔΙΑΦΟΡΕΣ ΣΕΙΣΜΙΚΕΣ ΦΟΡΤΙΣΕΙΣ

ΑΠΟΤΙΜΗΣΗ ΥΦΙΣΤΑΜΕΝΗΣ ΚΑΤΑΣΚΕΥΗΣ ΜΕ ΑΝΕΛΑΣΤΙΚΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΤΑ ΚΑΝ.ΕΠΕ. - ΠΡΟΣΘΗΚΗ ΟΡΟΦΟΥ ΚΑΙ ΕΛΕΓΧΟΣ ΕΠΑΡΚΕΙΑΣ ΓΙΑ ΔΙΑΦΟΡΕΣ ΣΕΙΣΜΙΚΕΣ ΦΟΡΤΙΣΕΙΣ Αποτίμηση υφιστάμενης κατασκευής με ανελαστική στατική ανάλυση κατά ΚΑΝ.ΕΠΕ.- Προσθήκη ορόφου και έλεγχος επάρκειας για διάφορες σεισμικές φορτίσεις ΑΠΟΤΙΜΗΣΗ ΥΦΙΣΤΑΜΕΝΗΣ ΚΑΤΑΣΚΕΥΗΣ ΜΕ ΑΝΕΛΑΣΤΙΚΗ ΓΡΑΜΜΙΚΗ

Διαβάστε περισσότερα

Μεθοδολογία επίλυσης εργασίας Εδαφομηχανικής (εαρινό εξάμηνο 2010-2011)

Μεθοδολογία επίλυσης εργασίας Εδαφομηχανικής (εαρινό εξάμηνο 2010-2011) Μεθοδολογία ίλυσης εργασίας Εδαφομηχανικής (εαρινό εξάμηνο 2010-2011) Στη συνέχεια δίνονται ενδεικτικά τα βήματα που πρέπει να γίνουν, όπως και κάποια σημεία που χρίζουν ιδιαίτερης προσοχής, κατά τη διαδικασία

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΣΧΕΣΕΙΣ ΤΑΣΕΩΝ-ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΤΩΝ Ε ΑΦΙΚΩΝ ΥΛΙΚΩΝ

ΚΕΦΑΛΑΙΟ 6 ΣΧΕΣΕΙΣ ΤΑΣΕΩΝ-ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΤΩΝ Ε ΑΦΙΚΩΝ ΥΛΙΚΩΝ Σχέσεις Τάσεων-Παραµορφώσεων των Εδαφικών Υλικών Σελίδα ΚΕΦΑΛΑΙΟ 6 ΣΧΕΣΕΙΣ ΤΑΣΕΩΝ-ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΤΩΝ Ε ΑΦΙΚΩΝ ΥΛΙΚΩΝ 6. Εισαγωγή Η µηχανική συµπεριφορά των υλικών εκφράζεται ποσοτικά µε τους καταστατικούς

Διαβάστε περισσότερα

Πρόλογος... 5 Σκοπός του Οδηγού...5 Διάρθρωση του Οδηγού...5 Ευχαριστίες...5. 1. Εισαγωγή... 15

Πρόλογος... 5 Σκοπός του Οδηγού...5 Διάρθρωση του Οδηγού...5 Ευχαριστίες...5. 1. Εισαγωγή... 15 Περιεχόμενα Πρόλογος... 5 Σκοπός του Οδηγού...5 Διάρθρωση του Οδηγού...5 Ευχαριστίες...5 1. Εισαγωγή... 15 1.1. Πεδίο εφαρμογής του Ευρωκώδικα 8... 15 1.2. Πεδίο εφαρμογής του Ευρωκώδικα 8 Μέρος 1... 16

Διαβάστε περισσότερα

Μελέτη τοίχου ανιστήριξης

Μελέτη τοίχου ανιστήριξης FESPA 5.2.0.88-2012 LH Λογισμική Μελέτη τοίχου ανιστήριξης Σύμφωνα με τους Ευρωκώδικες Ο Μηχανικός Σχέδιο τοίχου αντιστήριξης 0 0.55 1.1 1.65 2.2 2.75 3.3 3.85 4.4 4.95 5.5 0 0.53 1.06 1.59 2.12 2.65 3.18

Διαβάστε περισσότερα

Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 1

Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 1 Εύκαμπτες Αντιστηρίξεις & Αγκυρώσεις Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 1 2. ΥΠΟΛΟΓΙΣΜΟΣ ΕΔΑΦΙΚΩΝ ΩΘΗΣΕΩΝ (& επανάληψη Εδαφομηχανικής) Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. ΦΕΒΡΟΥΑΡΙΟΣ

Διαβάστε περισσότερα

Η σκληρότητα των πετρωμάτων ως γνωστόν, καθορίζεται από την αντίσταση που αυτά παρουσιάζουν κατά τη χάραξή τους

Η σκληρότητα των πετρωμάτων ως γνωστόν, καθορίζεται από την αντίσταση που αυτά παρουσιάζουν κατά τη χάραξή τους Η σκληρότητα των πετρωμάτων ως γνωστόν, καθορίζεται από την αντίσταση που αυτά παρουσιάζουν κατά τη χάραξή τους σφυρί αναπήδησης Schmidt τύπου L (Schmidt rebound hammer) Κατηγορία πετρωμάτων Μέση ένδειξη

Διαβάστε περισσότερα

Πλαστική Κατάρρευση Δοκών

Πλαστική Κατάρρευση Δοκών Πλαστική Κατάρρευση Δοκών ΠΕΡΙΕΧΟΜΕΝΑ Σταδιακή Μελέτη Πλαστικής Κατάρρευσης o Παράδειγμα 1 (ισοστατικός φορέας) o Παράδειγμα 2 (υπερστατικός φορέας) Αμεταβλητότητα Φορτίου Πλαστικής Κατάρρευσης Προσδιορισμός

Διαβάστε περισσότερα

ιαλέξεις 24-27 Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Πέτρος Κωµοδρόµος

ιαλέξεις 24-27 Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Πέτρος Κωµοδρόµος ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 24-27 Αρχή υνατών Έργων (Α Ε) Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 και Τρίτη, 9 Νοεµβρίου, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk

Διαβάστε περισσότερα

Συνέχεια από το 4ο Τεύχος. Ληξούρι Κεφαλονιάς 3 Φεβρουαρίου 2014

Συνέχεια από το 4ο Τεύχος. Ληξούρι Κεφαλονιάς 3 Φεβρουαρίου 2014 Ι. Μπαϊκούσης Πτυχιούχος Πολιτικός Μηχανικός ΤΕ - MS Συνέχεια από το 4ο Τεύχος Ληξούρι Κεφαλονιάς 3 Φεβρουαρίου 2014 Θραύση υποστυλώματος σε καθαρή διάτμηση. Το υποστύλωμα λειτούργησε ως κοντό, στην περιοχή

Διαβάστε περισσότερα

Ανάλυση κτηρίου πριν και μετά την Επέμβαση

Ανάλυση κτηρίου πριν και μετά την Επέμβαση Ανάλυση κτηρίου πριν και μετά την Επέμβαση Βασίλειος Γ. Μπαρδάκης Πολιτικός Μηχανικός, Δρ Παν. Πατρών Ειδ. Δομοστατικός, ΕΜΠ p υπέρβασης σεισμ. δράσης εντός του συμβ. t ζωής Άμεση Χρήση μετά τον σεισμό

Διαβάστε περισσότερα

ΕΠΙΣΚΕΥΗ ΕΝΙΣΧΥΣΗ ΥΠΟΣΤΥΛΩΜΑΤΩΝ ΚΑΡΑΒΑ ΑΛΕΞΑΝΔΡΑ ΦΙΛΙΠΠΑΚΗ ΑΘΗΝΑ 1.ΕΙΣΑΓΩΓΗ

ΕΠΙΣΚΕΥΗ ΕΝΙΣΧΥΣΗ ΥΠΟΣΤΥΛΩΜΑΤΩΝ ΚΑΡΑΒΑ ΑΛΕΞΑΝΔΡΑ ΦΙΛΙΠΠΑΚΗ ΑΘΗΝΑ 1.ΕΙΣΑΓΩΓΗ 9 0 Φοιτητικό Συνέδριο «Επισκευές Κατασκευών 03», Μάρτιος 2003 ΕΠΙΣΚΕΥΗ ΕΝΙΣΧΥΣΗ ΥΠΟΣΤΥΛΩΜΑΤΩΝ ΚΑΡΑΒΑ ΑΛΕΞΑΝΔΡΑ ΦΙΛΙΠΠΑΚΗ ΑΘΗΝΑ Περίληψη Στα πλαίσια αυτής της εργασίας επιχειρείται μια προσπάθεια πρακτικής

Διαβάστε περισσότερα

sin ϕ = cos ϕ = tan ϕ =

sin ϕ = cos ϕ = tan ϕ = Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΟΜΙΚΩΝ ΕΡΓΩΝ ΜΗΧΑΝΙΚΗ 1 ΠΑΡΑ ΕΙΓΜΑ 1 ΚΑΤΑΣΚΕΥΗ ΙΑΓΡΑΜΜΑΤΩΝ MQN ΣΕ ΟΚΟ ιδάσκων: Αριστοτέλης Ε. Χαραλαµπάκης Εισαγωγή Με το παράδειγµα αυτό αναλύεται

Διαβάστε περισσότερα

ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ. Μέθοδος θαλάμων και στύλων

ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ. Μέθοδος θαλάμων και στύλων ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ και A. Μπενάρδος Λέκτορας ΕΜΠ Δ. Καλιαμπάκος Καθηγητής ΕΜΠ και - Hunt Midwest (Subtroolis) και - Hunt Midwest (Subtroolis) Εφαρμογής - Η μέθοδος και (rooms and illars) ανήκει στην κατηγορία

Διαβάστε περισσότερα

SCADA Pro. Ανάλυση & Διαστασιολόγηση των κατασκευών

SCADA Pro. Ανάλυση & Διαστασιολόγηση των κατασκευών SCADA Pro Ανάλυση & Διαστασιολόγηση των κατασκευών Ανάλυση & Διαστασιολόγηση των κατασκευών ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ - Γενικά Χαρακτηριστικά του προγράμματος - Τεχνικά Χαρακτηριστικά του προγράμματος - Συνεργασία

Διαβάστε περισσότερα

ΠΛΗΜΜΥΡΕΣ & ΑΝΤΙΠΛΗΜΜΥΡΙΚΑ ΕΡΓΑ

ΠΛΗΜΜΥΡΕΣ & ΑΝΤΙΠΛΗΜΜΥΡΙΚΑ ΕΡΓΑ ΠΛΗΜΜΥΡΕΣ & ΑΝΤΙΠΛΗΜΜΥΡΙΚΑ ΕΡΓΑ Αντιπλημμυρικά έργα Μέρος Γ Σχολή Πολιτικών Μηχανικών Τ.Υ.Π.&.Περ.- ΔΠΜΣ Μάθημα: Πλημμύρες & Αντιπλημμυρικά Έργα - Ν.Ι.Μουτάφης Λίμνη ΥΗΕ Καστρακίου Τεχνικό έργο υπερχείλισης

Διαβάστε περισσότερα

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης. ΕργαστηριακήΆσκηση 3 η

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης. ΕργαστηριακήΆσκηση 3 η ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης ΕργαστηριακήΆσκηση 3 η Σκοπός Σκοπός του πειράµατος είναι ηκατανόησητωνδιαδικασιώνκατάτηκαταπόνησηστρέψης, η κατανόηση του διαγράµµατος διατµητικής τάσης παραµόρφωσης η ικανότητα

Διαβάστε περισσότερα

Νέα έκδοση προγράμματος STeel CONnections 2010.354

Νέα έκδοση προγράμματος STeel CONnections 2010.354 http://www.sofistik.gr/ Μεταλλικές και Σύμμικτες Κατασκευές Νέα έκδοση προγράμματος STeel CONnections 2010.354 Aξιότιμοι συνάδελφοι, Κυκλοφόρησε η νέα έκδοση του προγράμματος διαστασιολόγησης κόμβων μεταλλικών

Διαβάστε περισσότερα

Παρασκευουλάκου Χαρίλαου

Παρασκευουλάκου Χαρίλαου Εθνικο Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τομέας Γεωτεχνικής National Technical University of Athens School of Civil Engineering Geotechnical Division Διπλωματική εργασία Παρασκευουλάκου Χαρίλαου

Διαβάστε περισσότερα

Στόχοι μελετητή. (1) Ασφάλεια (2) Οικονομία (3) Λειτουργικότητα (4) Αισθητική

Στόχοι μελετητή. (1) Ασφάλεια (2) Οικονομία (3) Λειτουργικότητα (4) Αισθητική Στόχοι μελετητή (1) Ασφάλεια (2) Οικονομία (3) Λειτουργικότητα (4) Αισθητική Τρόπος εκτέλεσης Διάρκεια Κόστος Εξέταση από το μελετητή κάθε κατάστασης ή φάσης του φορέα : Ανέγερση Επισκευές / μετατροπές

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2010

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2010 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 010 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα: Βασικά Στοιχεία Εφαρμοσμένης Μηχανικής

Διαβάστε περισσότερα

Πεδίο Ορισµού του Μέτρου Ελαστικότητας και του Μέτρου Παραµόρφωσης σε οµοιογενή εδαφικά υλικά

Πεδίο Ορισµού του Μέτρου Ελαστικότητας και του Μέτρου Παραµόρφωσης σε οµοιογενή εδαφικά υλικά Πεδίο Ορισµού του Μέτρου Ελαστικότητας και του Μέτρου Παραµόρφωσης σε οµοιογενή εδαφικά υλικά Α. Μουρατίδης Καθηγητής ΑΠΘ Λ. Παντελίδης Πολιτικός Μηχανικός, Υποψήφιος ιδάκτορας ΑΠΘ ΠΕΡΙΛΗΨΗ: Το Μέτρο Ελαστικότητας

Διαβάστε περισσότερα

Σέρρες 20-1-2006. Βαθμολογία:

Σέρρες 20-1-2006. Βαθμολογία: Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι (Εργαστήριο) Διδάσκοντες: Λιαλιαμπής Ι., Μελισσανίδης Σ., Παναγόπουλος Γ. A Σέρρες 20-1-2006 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία:

Διαβάστε περισσότερα

Περιεχόμενα. 1 Εισαγωγή... 17

Περιεχόμενα. 1 Εισαγωγή... 17 Περιεχόμενα 1 Εισαγωγή... 17 1.1 Αντικείμενο... 17 1. Δομικά στοιχεία με σύμμικτη δράση... 17 1.3 Κτίρια από σύμμικτη κατασκευή... 19 1.4 Περιορισμοί... 19 Βάσεις σχεδιασμού... 1.1 Δομικά υλικά... 1.1.1

Διαβάστε περισσότερα

ΙΕΡΕΥΝΗΣΗ ΣΥΜΜΟΡΦΩΣΗΣ ΤΩΝ ΛΙΘΟΣΩΜΑΤΩΝ Κ250 ΚΑΙ Κ300 ΠΡΟΣ ΤΙΣ ΙΑΤΑΞΕΙΣ ΤΩΝ EN 1996 ΚΑΙ 1998. Κ. Στυλιανίδης, Καθηγητής Α.Π.Θ.

ΙΕΡΕΥΝΗΣΗ ΣΥΜΜΟΡΦΩΣΗΣ ΤΩΝ ΛΙΘΟΣΩΜΑΤΩΝ Κ250 ΚΑΙ Κ300 ΠΡΟΣ ΤΙΣ ΙΑΤΑΞΕΙΣ ΤΩΝ EN 1996 ΚΑΙ 1998. Κ. Στυλιανίδης, Καθηγητής Α.Π.Θ. ΗΜΕΡΙ Α ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΦΕΡΟΥΣΑ ΤΟΙΧΟΠΟΙΙΑ ΚΑΤΑ ΤΟΥΣ EC6, EC8 ΚΑΙ Κ.ΕΝ.Α.Κ. ΙΕΡΕΥΝΗΣΗ ΣΥΜΜΟΡΦΩΣΗΣ ΤΩΝ ΛΙΘΟΣΩΜΑΤΩΝ Κ250 ΚΑΙ Κ300 ΠΡΟΣ ΤΙΣ ΙΑΤΑΞΕΙΣ ΤΩΝ EN 1996 ΚΑΙ 1998 ΕΙΣΗΓΗΤΗΣ Κ. Στυλιανίδης, Καθηγητής

Διαβάστε περισσότερα

Γιώργος ΒΑ ΑΛΟΥΚΑΣ 1, Κρίστης ΧΡΥΣΟΣΤΟΜΟΥ 2. Λέξεις κλειδιά: Ευρωκώδικας 2, CYS159, όγκος σκυροδέµατος, βάρος χάλυβα

Γιώργος ΒΑ ΑΛΟΥΚΑΣ 1, Κρίστης ΧΡΥΣΟΣΤΟΜΟΥ 2. Λέξεις κλειδιά: Ευρωκώδικας 2, CYS159, όγκος σκυροδέµατος, βάρος χάλυβα Συγκριτική µελέτη τυπικών κτιρίων οπλισµένου σκυροδέµατος µε το Ευρωκώδικα 2 και τον CYS 159 Comparative Study of typical reinforced concrete structures according το EC2 and CYS 159 Γιώργος ΒΑ ΑΛΟΥΚΑΣ

Διαβάστε περισσότερα

Ενότητα ΑΡΧΕΣ ΣΧΕΔΙΑΣΜΟΥ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΙΙ

Ενότητα ΑΡΧΕΣ ΣΧΕΔΙΑΣΜΟΥ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΙΙ Ενότητα Β ΑΡΧΕΣ ΣΧΕΔΙΑΣΜΟΥ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΙΙ ΜΕΘΟ ΟΛΟΓΙΑ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΤΩΝ ΡΑΣΕΩΝ ΕΝΤΟΠΙΣΜΟΣ ΣΤΑΤΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΙΑΚΡΙΣΗ ΦΟΡΤΙΩΝ-ΣΤΗΡΙΞΕΩΝ-ΕΠΙΠΟΝΗΣΕΩΝ ΣΤΑΤΙΚΗ ΕΠΙΛΥΣΗ ΜΕΘΟ ΟΛΟΓΙΑ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Εισαγωγή... 1

ΚΕΦΑΛΑΙΟ 1 Εισαγωγή... 1 Περιεχόμενα ΚΕΦΑΛΑΙΟ 1 Εισαγωγή... 1 1.1 Ιστορική αναδρομή...1 1. Μικροδομή του χάλυβα...19 1.3 Τεχνολογία παραγωγής χάλυβα...30 1.4 Μηχανικές ιδιότητες χάλυβα...49 1.5 Ποιότητες δομικού χάλυβα...58 ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Οριακές Καταστάσεις Σχεδιασµού - Συντελεστές Ασφαλείας - ράσεις Σχεδιασµού - Συνδυασµοί ράσεων - Εντατικές Καταστάσεις

ΚΕΦΑΛΑΙΟ 1 Οριακές Καταστάσεις Σχεδιασµού - Συντελεστές Ασφαλείας - ράσεις Σχεδιασµού - Συνδυασµοί ράσεων - Εντατικές Καταστάσεις ΚΕΦΑΛΑΙΟ 1 Οριακές Καταστάσεις Σχεδιασµού - Συντελεστές Ασφαλείας - ράσεις Σχεδιασµού - Συνδυασµοί ράσεων - Εντατικές Καταστάσεις 1.1. Οριακές καταστάσεις σχεδιασµού (Limit States) Κατά τη διάρκεια ζωής

Διαβάστε περισσότερα

Αποτίµηση και Επεµβάσεις σε Υφιστάµενες Κατασκευές µε Βάση ΕΚ8 και τον ΚΑΝ.ΕΠΕ.

Αποτίµηση και Επεµβάσεις σε Υφιστάµενες Κατασκευές µε Βάση ΕΚ8 και τον ΚΑΝ.ΕΠΕ. ΤΕΧΝΙΚΟ ΕΠΙΜΕΛΗΤΗΡΙΟ ΕΛΛΑ ΑΣ ΣΥΛΛΟΓΟΣ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΛΛΑ ΑΣ ΟΡΓΑΝΙΣΜΟΣ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ ΚΑΙ ΠΡΟΣΤΑΣΙΑΣ Αποτίµηση και Επεµβάσεις σε Υφιστάµενες Κατασκευές µε Βάση ΕΚ8 και τον ΚΑΝ.ΕΠΕ. Τηλέµαχος

Διαβάστε περισσότερα

Eφαρµογές σκυροδεµάτων υψηλής επιτελεστικότητας σε νέες κατασκευές η στην ενίσχυση υφισταµένων

Eφαρµογές σκυροδεµάτων υψηλής επιτελεστικότητας σε νέες κατασκευές η στην ενίσχυση υφισταµένων Eφαρµογές σκυροδεµάτων υψηλής επιτελεστικότητας σε νέες κατασκευές η στην ενίσχυση υφισταµένων Α. Κανελλόπουλος Dr..tehn. ETH Zuerih, CUBUS HELLAS Ltd E. Mυστακίδης Αναπληρωτής Καθηγητής. Εργαστήριο ανάλυσης

Διαβάστε περισσότερα

Υπολογισμός τιμής του συντελεστή συμπεριφοράς «q» για κατασκευές προ του 1985 στην Αθήνα.

Υπολογισμός τιμής του συντελεστή συμπεριφοράς «q» για κατασκευές προ του 1985 στην Αθήνα. Υπολογισμός τιμής του συντελεστή συμπεριφοράς «q» για κατασκευές προ του 1985 στην Αθήνα. Ε.Μ. Παγώνη Πολιτικός Μηχανικός Α. Παπαχρηστίδης Πολιτικός Μηχανικός 4Μ-VK Προγράμματα Πολιτικών Μηχανικών ΕΠΕ

Διαβάστε περισσότερα

Προχωρημένη Εδαφομηχανική Π. Ντακούλας, Αν. Καθηγητής Πανεπιστήμιο Θεσσαλίας, Βόλος

Προχωρημένη Εδαφομηχανική Π. Ντακούλας, Αν. Καθηγητής Πανεπιστήμιο Θεσσαλίας, Βόλος Πρόγραμμα Μεταπτυχιακών Σπουδών Προχωρημένη Εδαφομηχανική Π. Ντακούλας, Αν. Καθηγητής Πανεπιστήμιο Θεσσαλίας, Βόλος Στόχος του μαθήματος Η μελέτη και εφαρμογή προχωρημένων καταστατικών σχέσεων για την

Διαβάστε περισσότερα

Μελέτες και Κατασκευές Προσεισμικών Ενισχύσεων 12 & 13 Μαρτίου 2009

Μελέτες και Κατασκευές Προσεισμικών Ενισχύσεων 12 & 13 Μαρτίου 2009 ΤΕΧΝΙΚΟ ΕΠΙΜΕΛΗΤΗΡΙΟ ΕΛΛΑΔΑΣ Μελέτες και Κατασκευές Προσεισμικών Ενισχύσεων 12 & 13 Μαρτίου 2009 Παραδείγματα υπολογισμού και εφαρμογής ενίσχυσης κτιρίων από οπλισμένο σκυρόδεμα με τοιχώματα και πυρήνες

Διαβάστε περισσότερα

ΚΑΝΟΝΙΣΜΟΣ ΕΠΕΜΒΑΣΕΩΝ

ΚΑΝΟΝΙΣΜΟΣ ΕΠΕΜΒΑΣΕΩΝ ΚΑΝΟΝΙΣΜΟΣ ΕΠΕΜΒΑΣΕΩΝ ΚΕΦΑΛΑΙΟ 3 ιερεύνηση, τεκµηρίωση φέροντος οργανισµού υφιστάµενου δοµήµατος Αθήνα 2012 Παρουσίαση: ΣΤΑΥΡΟΣ Μ. ΘΕΟ ΩΡΑΚΗΣ Πολιτικός Μηχανικός (1) ιερεύνηση:προσεκτικήέρευναγιαεξακρίβωση

Διαβάστε περισσότερα

Fespa 10 EC. Αποτίμηση στατικής επάρκειας ΚΑΝ.ΕΠΕ 2012. For Windows. Υφιστάμενης κατασκευής σύμφωνα με τον. Αθήνα, Οκτώβριος 2012 Version 1.0.

Fespa 10 EC. Αποτίμηση στατικής επάρκειας ΚΑΝ.ΕΠΕ 2012. For Windows. Υφιστάμενης κατασκευής σύμφωνα με τον. Αθήνα, Οκτώβριος 2012 Version 1.0. Fespa 10 EC For Windows Αποτίμηση στατικής επάρκειας Υφιστάμενης κατασκευής σύμφωνα με τον ΚΑΝ.ΕΠΕ 2012 Αθήνα, Οκτώβριος 2012 Version 1.0.43 Περιεχόμενα 3 Πίνακας περιεχομένων 1 Στατικό παράδειγμα αποτίμησης

Διαβάστε περισσότερα

Υ Π Ο Μ Ο Ν Α Δ Α «Ε Ν Ι Σ Χ Υ Σ Ε Ι Σ»

Υ Π Ο Μ Ο Ν Α Δ Α «Ε Ν Ι Σ Χ Υ Σ Ε Ι Σ» Σ Τ Α Τ Ι Κ Ε Σ Μ Ε Λ Ε Τ Ε Σ Κ Τ Η Ρ Ι Ω Ν Υ Π Ο Μ Ο Ν Α Δ Α «Ε Ν Ι Σ Χ Υ Σ Ε Ι Σ» ΕΝΙΣΧΥΣΕΙΣ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΜΕ ΒΑΣΗ ΤΟΥΣ ΕΚ 8.3 ΚΑΙ ΚΑΝ.ΕΠΕ. Ε Γ Χ Ε Ι Ρ Ι Δ Ι Ο Θ Ε Ω Ρ Η Τ Ι Κ Η Σ Τ Ε Κ Μ Η

Διαβάστε περισσότερα

ΑΓΚΥΡΩΣΕΙΣ ΟΠΛΙΣΜΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ

ΑΓΚΥΡΩΣΕΙΣ ΟΠΛΙΣΜΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ Ημερίδα: ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΚΤΙΡΙΩΝ & ΓΕΩΤΕΧΝΙΚΩΝ ΕΡΓΩΝ Σ.Π.Μ.Ε. ΗΡΑΚΛΕΙΟ 14.11.2008 ΑΓΚΥΡΩΣΕΙΣ ΟΠΛΙΣΜΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΓΙΑΝΝΟΠΟΥΛΟΣ ΠΛΟΥΤΑΡΧΟΣ Δρ. Πολ. Μηχανικός Αν. Καθηγητής Ε.Μ.Π.

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΣΥΝΤΟΜΗ ΠΑΡΟΥΣΙΑΣΗ

ΠΕΡΙΕΧΟΜΕΝΑ ΣΥΝΤΟΜΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΑ ΣΥΝΤΟΜΗ ΠΑΡΟΥΣΙΑΣΗ 89 Α. ΑΡΧΗ ΚΑΙ ΤΕΧΝΙΚΗ ΠΡΟΕΝΤΕΤΑΜΕΝΩΝ ΦΟΡΕΩΝ 1. Οι περιορισμοί των Συνήθων Φορέων από Ο.Σ 99 2. Η Λύση του Προεντεταμένου Σκυροδέματος- Οι τρεις Οπτικές 100 3. Η Τεχνική

Διαβάστε περισσότερα

Επίδραση υψηλών θερμοκρασιών στη συνάφεια χάλυβα σκυροδέματος

Επίδραση υψηλών θερμοκρασιών στη συνάφεια χάλυβα σκυροδέματος Επίδραση υψηλών θερμοκρασιών στη συνάφεια χάλυβα σκυροδέματος Κ.Γ. Τρέζος, Δ.Θ. Σαγιάς Εργαστήριο Ωπλισμένου Σκυροδέματος Ε.Μ.Π. Λέξεις κλειδιά: Συνάφεια, χάλυβας οπλισμού σκυροδέματος, πυρκαγιά, υψηλές

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΤΕΧΝΟΛΟΙΚΟ ΕΚΠΙΕΥΤΙΚΟ ΙΡΥΜ ΘΗΝΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΙΚΩΝ ΕΦΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική Ι 15 Φεβρουαρίου 1 ιδάσκων:, Ph.D. ιάρκεια εξέτασης : ΛΥΣΕΙΣ ΘΕΜΤΩΝ ΡΠΤΗ ΕΞΕΤΣΗ (1 η περίοδος χειμερινού

Διαβάστε περισσότερα