Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων"

Transcript

1 Προηγούµενο Μάθηµα Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης ευτέρα, 20 εκεµβρίου, 2010 Αίθουσα Β3 Ασύγχρονα Κατανεµηµένα Συστήµατα Καθολικές Καταστάσεις Κατασκευή Καθολικών Καταστάσεων Παθητική Παρατήρηση µε Φυσικά Ρολόγια Παθητική Παρατήρηση µε Λογικά Ρολόγια Συνεπή Ολικά Στιγµιότυπα Συνεπή Ολικά Στιγµιότυπα µε Φυσικά Ρολόγια Συνεπή Ολικά Στιγµιότυπα µε Λογικά Ρολόγια Ο Αλγόριθµος των Chandy και Lamport Συγχρονιστές Συγχρονισµός Ρολογιών Ορισµοί Τοπική ιστορία Ορισµοί Καθολική ιστορία / Καθολική κατάσταση Ορίζουµε ως συµβάν σ u µια ενέργεια ɛ που επιφέρει µια αλλαγή στην κατάσταση κάποιας διεργασίας Pu Υποθέτουµε ότι οι διεργασίες εξελίσσονται σειριακά Υπάρχει µια αυστηρή διάταξη των συµβάντων σ1 u, σu 2,... κάθε διεργασίας Pu όπου σk u, σk+1 u σηµαίνει ότι το σu k συνέβη πριν το σk+1 u Τοπική ιστορία (local history) Η τοπική ιστορία της διεργασίας Pu συµβολίζετε µε hu και αποτελεί την ακολουθία των συµβάντων που πραγµατοποιήθηκαν στην διεργασία, π.χ. hu = σ u 1, σu 2, σu 3, σu 4. Καθολική ιστορία (global history) Η καθολική ιστορία H ενός κατανεµηµένου συστήµατος ορίζεται ως η ένωση των τοπικών ιστοριών όλων των διεργασιών που συµµετέχουν σε αυτό, δηλ. H = h1... hn. Καθολική κατάσταση (global state) Η καθολική κατάσταση ενός κατανεµηµένου συστήµατος συµβολίζετε µε Σ και ορίζεται ως η ένωση των τοπικών καταστάσεων όλων των διεργασιών που συµµετέχουν σε αυτό, δηλ. Σ = {κ 1,... κ n }.

2 Παράδειγµα Καθολική ιστορία / Καθολική κατάσταση Ορισµοί Τοµή / Σύνορο τοµής Εκτέλεση συστήµατος διάγραµµα µηνυµάτων σ 1 1 σ 1 2 σ 1 3 σ 1 4 σ 1 5 σ 1 6 P1 σ 2 1 σ 2 2 σ 2 3 P2 P3 σ 3 1 σ 3 2 σ 3 3 σ 3 4 σ 3 5 σ 3 6 Καθολική ιστορία -- H = h1 h2 h3 Το σύνολο αυτό είναι µόνο µερικώς διατεταµένο. Καθολική κατάσταση -- Σ1 = {κ 1 2, κ2 1, κ3 2 } Καθολική κατάσταση -- Σ2 = {κ 1 3, κ2 2, κ3 4 } Τοµή (cut) Μια τοµή C ενός κατανεµηµένου συστήµατος είναι ένα υποσύνολο της καθολικής ιστορίας H που αποτελείται από σ u 0 αρχικά συµβάντα από κάθε διεργασία Pu, δηλ. C = h1 σ1... hn σn. Εποµένως, µια τοµή προσδιορίζεται µέσω του διανύσµατος {σ 1,... σ n }. Σύνορο τοµής (cut frontier) Το σύνολο των τελευταίων συµβάντων {max(σ 1 ),..., max(σ n )} που περιλαµβάνοντα στην τοµή C καλείται σύνορο της τοµής. Παράδειγµα Τοµή / Σύνορο τοµής Ορισµός Συνεπής Τοµή Εκτέλεση συστήµατος διάγραµµα µηνυµάτων P1 P2 σ 1 1 σ 1 2 σ 1 3 σ 1 4 σ 1 5 σ 1 6 σ 2 1 σ 2 2 σ 2 3 Συνεπής Τοµή (consistent cut) Μια τοµή C είναι συνεπής αν για όλα τα συµβάντα σ και σ ισχύει ότι: σ C ( σ σ ) σ C P3 σ 3 1 σ 3 2 σ 3 3 σ 3 4 C1 σ 3 5 σ 3 6 C1 = h σ1 5 1 h σ2 2 2 h σ3 4 3 = {σ 1 1,..., σ1 5, σ2 1, σ2 2, σ3 1,..., σ3 4 } Σύνορο τοµής της C1 είναι το {σ 1 5, σ2 2, σ3 4 } C2 = h σ1 3 1 h σ2 2 2 h σ3 6 3 = {σ 1 1,..., σ1 3, σ2 1, σ2 2, σ3 1,..., σ3 6 } Σύνορο τοµής της C2 είναι το {σ 1 3, σ2 2, σ3 6 } C2 Μία καθολική κατάσταση είναι συνεπής όταν αντιστοιχεί σε µια συνεπή τοµή Οι συνεπής καθολικές καταστάσεις είναι εκείνες που µπορούν να συµβούν σε µια πραγµατική εκτέλεση ενός κατανεµηµένου συστήµατος

3 Παθητική Κατασκευή Καθολικών Καταστάσεων Μια διεργασία ϑέλει να µάθει την καθολική κατάσταση του κατανεµηµένου συστήµατος Ονοµάζουµε την διεργασία monitor εν στέλνει κανένα µήνυµα παθητικά παρακολουθεί το σύστηµα Οι άλλες διεργασίες µόλις επεξεργαστούν ένα συµβάν, στέλνουν ένα µήνυµα στην P0 περιγράφοντας το Η P0 κατασκευάζει µια παρατήρηση (observation) της συγκεκριµένης εκτέλεσης (run) του κατανεµηµένου συστήµατος Η κατασκευή της παρατήρησης προκύπτει από την ακολουθία των γεγονότων, µε την σειρά µε την οποία έλαβε η P0 τα αντίστοιχα µηνύµατα Παράδειγµα Παρατήρησης O 1 = {σ 2 1, σ 1 1, σ 3 1, σ 3 2, σ 3 4, σ 1 2, σ 2 2, σ 3 3, σ 1 3, σ 1 4, σ 3 5,...} P0 P1 P2 P3 σ 0 1 σ 0 2 σ 0 3 σ0 4 σ0 5 σ 0 6 σ0 7 σ0 8 σ 0 9 σ 0 10 σ 0 11 σ 1 1 σ 1 2 σ 1 3 σ 1 4 σ 1 5 σ 1 6 σ 2 1 σ 2 2 σ 2 3 σ 3 1 σ 3 2 σ 3 3 σ 3 4 σ 3 5 σ 3 6 εν αντιστοιχεί σε εκτέλεση Η διάταξη των συµβάντων της P3 παραβιάζει τη διάταξή τους στο τοπικό ιστορικό της διεργασίας Το σ 3 4 εµφανίζεται πριν από το σ3 3 Παθητική Παρατήρηση µε Φυσικά Ρολόγια Παθητική Παρατήρηση µε Λογικά Ρολόγια Θεωρούµε ότι οι κόµβοι διαθέτουν ένα ϱολόι Τα ϱολόγια των κόµβων είναι συγχρονισµένα Υπάρχει ένα άνω ϕράγµα µ l + d το οποίο είναι γνωστό Η διεργασία monitor, τη χρονική στιγµή t καταγράφει όλα τα µηνύµατα που έχει λάβει µε σφραγίδες χρόνου µέχρι t µ µε αύξουσα διάταξη σφραγίδων χρόνου Οι παρατηρήσεις της διεργασίας monitor µπορούν να χρησιµοποιηθούν για την κατασκευή συνεπών καθολικών καταστάσεων Βασισµένο στον σχεδιασµό του Συγχρονιστής των Tel και Leeuwen Ο αλγόριθµος LogicalTimeSnapshot Θεωρούµε ότι οι κόµβοι έχουν πρόσβαση σε ένα λογικό ϱολόι που διατηρεί µια τοπική διεργασία που εκτελεί τον αλγόριθµο LamportTime Υποθέτουµε ότι τα κανάλια επικοινωνίας παραδίδουν τα µηνύµατα µε σειρά FIFO. Εισάγουµε έναν µηχανισµό ανίχνευσης χάσµατος (gap detection) για να ελένξουµε αν τα µηνύµατα είναι ευσταθή Η διεργασία monitor, τη χρονική στιγµή t καταγράφει όλα τα ευσταθή µηνύµατα που έχει λάβει µε αύξουσα διάταξη χρονοσφραγίδων Οι παρατηρήσεις της διεργασίας monitor µπορούν να χρησιµοποιηθούν για την κατασκευή συνεπών καθολικών καταστάσεων

4 Ανίχνευση Χάσµατος (Gap Detection) Ενεργητική Κατασκευή Καθολικών Καταστάσεων Ανίχνευση Χάσµατος εδοµένων δύο συµβάντων σ και σ µε χρονοσφραγίδες LC(σ) και LC(σ ) για τις οποίες ισχύει LC(σ) < LC(σ ), αποφάσισε αν υπάρχει κάποιο άλλο συµβάν σ τέτοιο ώστε LC(σ) < LC(σ ) < LC(σ ) Μπορεί να παραλάβουµε ένα µήνυµα που αφορά το συµβάν σ µετά από το µήνυµα που αφορά το συµβάν σ ενώ LC(σ ) < LC(σ ) Οµως, αν η P0 παραλάβει ένα µήνυµα m από την διεργασία Pu µε χρονοσφραγίδα LC(m) είναι ϐέβαιο ότι κανένα άλλο µήνυµα m δεν µπορεί να ληφθεί από την Pu µε χρονοσφραγίδα LC(m ) < LC(m) Το µήνυµα m χαρακτηρίζεται ευσταθές Η προσέγγιση των στιγµιότυπων δίνει ενεργό ϱόλο στην διεργασία monitor η οποία καθορίζει πότε ϑα εκτελεστεί η διαδικασία της σύνθεσης της καθολικής κατάστασης Με άλλα λόγια η P0 λαµβάνει φωτογραφίες του συστήµατος, τις οποίες αποκαλούµε στιγµιότυπα (snapshots) Επίσης, κατά την καταγραφή της καθολικής κατάστασης του συστήµατος, µας ενδιαφέρει να αποτυπώσουµε την κατάσταση των καναλιών Κατάσταση καναλιού (channel state) Η κατάσταση κάθε καναλιού Cuv που συνδέει την διεργασία Pu µε την διεργασία Pv, είναι όλα τα µηνύµατα που έχει στείλει η Pu στην διεργασία Pv, και η Pv δεν έχει ακόµη λάβει. Συνεπή Ολικά Στιγµιότυπα µε Φυσικά Ρολόγια Συνεπή Ολικά Στιγµιότυπα µε Λογικά Ρολόγια Θεωρούµε ότι οι κόµβοι διαθέτουν ένα ϱολόι Τα ϱολόγια των κόµβων είναι συγχρονισµένα Υπάρχει ένα άνω ϕράγµα µ l + d το οποίο είναι γνωστό Η διεργασία monitor, επιλέγει µια χρονική στιγµή t αρκετά µεγάλη, έτσι ώστε να εγγυηθεί ότι ένα µήνυµα που εστάλη τώρα ϑα έχει ληφθεί από όλες τις υπόλοιπες διεργασίες πριν την t Οι διεργασίες καταγράφουν την καθολική τους κατάσταση και την κατάσταση των καναλιών, στον ίδιο πραγµατικό χρόνο Εφόσον τα ϕυσικά ϱολόγια ικανοποιούν τη συνθήκη του ϱολογιού, η κατασκευασµένη καθολική κατάσταση είναι συνεπής Εφόσον τα λογικά ϱολόγια ικανοποιούν τη συνθήκη του ϱολογιού, ϑα ήταν καλύτερο να χρησιµοποιήσουµε λογικά ϱολόγια Οµως πως ϑα ορίσουµε την χρονική στιγµή t µε την χρήση λογικών ϱολογιών; Επίσης, στο προηγούµενο πρωτόκολλο υποθέσαµε ότι η P0 µπορεί να υπολογίσει το t Τώρα υποθέτουµε ότι η P0 µπορεί να υπολογίσει µια αντίστοιχη τιµή για το λογικό ϱολόι ω αρκετά µεγάλη, ώστε κανένα λογικό ϱολόι να µπορεί να ϕτάσει την τιµή αυτήν Ασθενέστερη υπόθεση

5 Λογικά Ρολόγια Αλγόριθµος των Chandy και Lamport Ορθότητα του Αλγόριθµου των Chandy και Lamport (1) Ο αλγόριθµος των Chandy και Lamport κατασκευάζει συνεπή ολικά στιγµιότυπα χωρίς την χρήση λογικών ϱολογιών Οι Chandy και Lamport παρατήρησαν ότι η διεργασία δεν κάνει τίποτα µεταξύ της λήψης του µηνύµατος ΠάρεΣτιγµιότυπο(ω ) και της λήψης ενός κενού µηνύµατος από µια άλλη διεργασία Εποµένως το λογικό ϱολόι της διεργασίας εξαναγκάζεται να πάρει την τιµή ω Μπορούµε να αντικαταστήσουµε το µήνυµα ΠάρεΣτιγµιότυπο(ω ) µε ένα απλό µήνυµα ΠάρεΣτιγµιότυπο η διεργασία καταγράφει την τοπική της κατάσταση µόλις λάβει το µήνυµα ΠάρεΣτιγµιότυπο Οι ιδιότητες των λογικών ϱολογιών αντικαθιστώνται από την ανταλλαγή τοπικών µηνυµάτων ελέγχου Θεώρηµα (ChandyLamportSnapshot.1) Ο αλγόριθµος ChandyLamportSnapshot καταχωρεί ένα συνεπές ολικό στιγµιότυπο για τον Α. Απόδειξη: Εστω η εκτέλεση α της διεργασίας του υψηλότερου επίπεδου A Εστω ότι κατά την διάρκεια της εκτέλεσης, στην κατάσταση Σɛ ενεργοποιήθηκε ο αλγόριθµος ChandyLamportSnapshot, ο οποίος τερµάτισε στην κατάσταση Στ και κατέγραψε την κατάσταση Σ Εστω α1 το µέρος της α πριν από την κατάσταση Σɛ Εστω α2 το µέρος της α µετά από την κατάσταση Στ Ορθότητα του Αλγόριθµου των Chandy και Lamport (2) Ορθότητα του Αλγόριθµου των Chandy και Lamport (3) Το ολικό στιγµιότυπο Σ είναι συνεπές αν υπάρχει εκτέλεση α τέτοια ώστε καµία διεργασία δεν µπορεί να ξεχωρίσει την α από την α Η α ξεκινά µε α1 και καταλήγει µε α2 Τα Σɛ, Σ, Στ εµφανίζονται µε αυτή την σειρά στην α Ο στόχος µας είναι να επαναδιατάξουµε τα συµβάντα της α έτσι ώστε να καταλήξουµε σε µια εκτέλεση α στην οποία τα Σɛ, Σ, Στ εµφανίζονται µε την ίδια σειρά. Στην ουσία επιλέγουµε λογικά ανεξάρτητα συµβάντα που πραγµατοποιούνται σε διαφορετικές διεργασίες και τα επαναδιατάσουµε. Εστω σk και σk+1 διαδοχικά συµβάντα στην α τα οποία έλαβαν χώρα στις διεργασίες Pu και Pv και είναι µετά και προ καταχώρισης αντίστοιχα Αρα, δεν µπορεί το σk να είναι η αποστολή ενός µηνύµατος m και το σk+1 να είναι η παραλαβή του m Οταν η Pu καταχώρησε την κατάσταση της έστειλε αµέσως το µήνυµα P arestigmi otupo στη Pv Εφόσον τα κανάλια είναι FIFO το µήνυµα έφτασε στην Pv πριν το m γιατί το σk+1 ϑα ήταν µετά την καταχώρηση, άτοπο. Επιπλέον, η κατάσταση της Pv µετά το σk+1 δεν επηρεάζεται από το σk γιατί αυτό συµβαίνει σε άλλη διεργασία Επίσης, η κατάσταση της Pu µετά το σk δεν επηρεάζεται από το σk+1 Εποµένως, µπορούµε να εναλλάξουµε τα σk και σk+1

6 Ορθότητα του Αλγόριθµου των Chandy και Lamport (4) Χαρακτηριστικά του Αλγόριθµου των Chandy και Lamport Με συνεχείς τέτοιες εναλλαγές παίρνουµε µια εκτέλεση α όπου όλα τα συµβάντα προ καταχώρισης προηγούνται όλων των συµβάντων µετά καταχώρισης Η α ξεκινά µε α1 και καταλήγει µε α2 Η Σ εµφανίζεται στην α αµέσως πριν την α2 Ολες οι εναλλαγές που έγιναν αφορούσαν συµβάντα µετά την Σɛ και πριν την Στ Το Σ είναι η κατάσταση του δικτύου µετά το τελευταίο προ καταχώρισης συµβάν στην εκτέλεση α και πριν το πρώτο µετά καταχώρισης συµβάν Με αυτό τον τρόπο καταλήγουµε στην εκτέλεση α όπου καµία διεργασία δεν µπορεί να ξεχωρίσει την α από την α. Ο αλγόριθµος είναι σωστός κατασκευάζει συνεπή ολικά στιγµιότυπα Η πολυπλοκότητα επικοινωνίας είναι O ( E ) Η χρονική πολυπλοκότητα δεν είναι εύκολο να υπολογιστεί διότι ταυτόχρονα στέλνει µηνύµατα και η διεργασία υψηλότερου επιπέδου Αν αγνοήσουµε πιθανές καθυστερήσεις που προκύπτουν από τις αποστολές των µηνυµάτων της διεργασίας του υψηλότερου επιπέδου, ο αλγόριθµος ChandyLamportSnapshot ϑα τερµατίσει εντός χρόνου O (δ(l + d)) Σύνοψη 8 ης ιάλεξης Γενικά Προηγούµενο Μάθηµα Καθολικές Καταστάσεις Κατασκευή Καθολικών Καταστάσεων Συνεπή Ολικά Στιγµιότυπα Ασύγχρονα Κατανεµηµένα Συστήµατα Αποτίµηση Καθολικού Κατηγορήµατος Ανίχνευση Τερµατισµού Σύνοψη Μαθήµατος Σύνοψη Μαθήµατος Βιβλιογραφία Επόµενη ιάλεξη Σε πολλά ϑεµελιώδη προβλήµατα του κατανεµηµένου υπολογισµού, π.χ. Ανίχνευση αδιεξόδων Ανίχνευση τερµατισµού Παρακολούθηση και αποσφαλµάτωση ιαµοιρασµός πόρων Garbage collection Ανίχνευση απώλειας σκυτάλης Πρέπει να χαρακτηρίσουµε µια καθολική κατάσταση Κατασκευή µιας καθολικής κατάστασης Αποτίµηση ενός καθολικού κατηγορήµατος στην κατάσταση

7 Χαρακτηριστικά Προβλήµατος Καθολικά Κατηγορήµατα Καταγραφή µιας καθολικής κατάστασης Ενεργητικά ή Παθητικά Απαιτεί την ανταλλαγή µηνυµάτων Το σύστηµα µπορεί να παρουσιάσει σφάλµατα Η καταγραφή µπορεί να είναι ελλιπείς/λανθασµένη Μια καθολική κατάσταση (ή ένα ολικό στιγµιότυπο) Μπορεί να µην είναι συνεπής Μπορεί να είναι ξεπερασµένο υο διαφορετικές διεργασίες monitor µπορεί να κατασκευάσουν δυο διαφορετικές παρατηρήσεις για την ίδια εκτέλεση Ενα καθολικό κατηγόρηµα (global predicate) Φ είναι µια συνάρτηση από το σύνολο των συνεπών καθολικών καταστάσεων ενός συστήµατος στο σύνολο {true, false} Η Αποτίµησης Καθολικού Κατηγορήµατος (Global Predicate Evaluation, GPE) καθορίζει αν µια καθολική κατάσταση ικανοποιεί κάποιο κατηγόρηµα Φ Ευσταθή Κατηγορήµατα (1) Ευσταθή Κατηγορήµατα (2) Κάποιες ιδιότητες του συστήµατος από τη στιγµή που γίνουν αληθείς, παραµένουν αληθείς Ονοµάζουµε αυτές τις ιδιότητες, ευσταθείς (stable) Ενα κατηγόρηµα που περιγράφει ευσταθείς ιδιότητες χαρακτηρίζεται ευσταθές Οταν το σύστηµα ϐρεθεί σε µια κατάσταση στην οποία το κατηγόρηµα είναι αληθές Παραµένει αληθές σε όλες τις µελλοντικές καταστάσεις που είναι προσπελάσιµες από την κατάσταση αυτήν Παραδείγµατα ευσταθών κατηγορηµάτων Αδιέξοδο Τερµατισµός Απώλεια σκυτάλης Garbage collection Εστω η εκτέλεση α µιας διεργασίας υψηλότερου επίπεδου A Εστω η εκτέλεση ενός αλγόριθµου κατασκευής καθολικών καταστάσεων Κατά την διάρκεια της εκτέλεσης, στην κατάσταση Σɛ ενεργοποιήθηκε ο αλγόριθµος Τερµατίζει στην κατάσταση Στ Καταγράφει την κατάσταση Σ Αν το Φ είναι ευσταθές, τότε (Φ αληθεύει στη Σ ) (Φ αληθεύει στη Στ ) (Φ δεν αληθεύει στη Σ ) (Φ δεν αληθεύει στη Στ )

8 Ασταθή Κατηγορήµατα (1) Ασταθή Κατηγορήµατα (2) Μερικές καταστάσεις που ϑέλουµε να ανιχνεύσουµε δεν µπορούν πάντα να περιγραφούν µε ευσταθή κατηγορήµατα Ελεγχος δύο ουρών ειδοποίηση του χρήστη όταν το άθροισµα ξεπεράσει µια τιµή Οι ουρές µεταβάλλονται δυναµικά το κατηγόρηµα που περιγράφει την κατάσταση αυτή είναι ασταθές Οταν ϑελήσουµε να αποτιµήσουµε ένα ασταθές κατηγόρηµα µια χρονική στιγµή Μπορεί να αποτιµηθεί ψευδές και µια επόµενη ή προηγούµενη χρονική στιγµή να αποτιµηθεί αληθές Μπορεί να αποτιµηθεί αληθές ενώ όλες τις χρονικές στιγµές να είναι ψευδές ιάγραµµα µηνυµάτων ενός κατανεµηµένου υπολογισµού P1 P2 Φ1 : x == y Φ2 : y x == 2 x = 3 x = 4 x = 5 σ 1 1 σ 1 2 σ 1 3 σ 1 4 σ 1 5 σ 1 6 σ 2 1 σ 2 2 σ 2 3 σ 2 4 σ 2 5 y = 6 y = 4 y = 2 Αν ένα ασταθές κατηγόρηµα ισχύει σε µια καθολική κατάσταση µίας παρατήρησης, τότε η συνθήκη ίσως να ίσχυε κατά τη διάρκεια της πραγµατικής εκτέλεσης Πιθανώς ή Αναµφίβολα Αποτίµηση Πιθανώς Επεκτείνουµε τα καθολικά κατηγορήµατα έτσι ώστε Εφαρµόζονται σε ολόκληρο τον κατανεµηµένο υπολογισµό Σε αντίθεση µε µια µεµονωµένη εκτέλεση ή σε συγκεκριµένες καθολικές καταστάσεις των εκτελέσεων Σκοπός µας είναι να καθορίσουµε περιπτώσεις όπου Ενα καθολικό κατηγόρηµα ήταν αναµφίβολα αληθές (definitely) σε κάποιο σηµείο της εκτέλεσης που παρατηρήσαµε Ενα καθολικό κατηγόρηµα ήταν πιθανώς αληθές (possibly) Υπάρχουν περιπτώσεις που µας ενδιαφέρει να µάθουµε αν πιθανώς µια ιδιότητα ισχύει -- possibly Αλλες ϕορές µας ενδιαφέρει να γνωρίζουµε ακριβώς τι συνέβη κατά την πραγµατική εκτέλεση -- definitely Possibly(Φ) Υπάρχει τουλάχιστον µια συνεπής παρατήρηση Π τέτοια ώστε το Φ αληθεύει σε µια καθολική κατάσταση της Σ(Π) Αν υπάρχει τουλάχιστον µια καθολική κατάσταση για την οποία το Φ είναι αληθές, τότε ϑα υπάρχει τουλάχιστον µια εκτέλεση που να περνάει από την κατάσταση αυτήν Η αποτίµηση του Possibly(Φ) απαιτεί την αναζήτηση ανάµεσα σε όλες τις συνεπείς καθολικές καταστάσεις Μόνο αν το Φ(Σ) είναι ψευδές για όλες τις συνεπείς καθολικές καταστάσεις Σ µπορούµε να αποκλείσουµε το Possibly(Φ)

9 Αποτίµηση Αναµφίβολα Τερµατισµός Κατανεµηµένου Υπολογισµού (1) Definitely(Φ) Για κάθε συνεπή παρατήρηση Π υπάρχει τουλάχιστον µια καθολική κατάσταση Σ(Π) στην οποία το Φ αληθεύει Ολες οι πιθανές εκτελέσεις ενός υπολογισµού πρέπει να περνούν από µια καθολική κατάσταση, η οποία ικανοποιεί το Φ Πρέπει να ϐρούµε ένα σύνολο καταστάσεων, όπου από µία τουλάχιστον περνά κάθε µία από τις πιθανές εκτελέσεις και σε κάθε µια από τις οποίες το Φ είναι αληθές Η αναζήτηση είναι γραµµική ως προς το πλήθος των συµβάντων Η αναζήτηση είναι εκθετική ως προς το πλήθος των διεργασιών Εστω max(σ) ο µέγιστος αριθµός συµβάντων, τότε το πλήθος των καθολικών καταστάσεων είναι O (max(σ) n ) Κάθε υπολογισµός ενός κατανεµηµένου αλγόριθµου τερµατίζει όταν ο αλγόριθµος ϕτάσει σε µια τερµατική κατάσταση Σε µια κατάσταση που δεν µπορούν να εφαρµοστούν άλλα ϐήµατα του αλγόριθµου Αν όλες οι διεργασίες ϐρίσκονται σε µια τερµατική κατάσταση τότε ο αλγόριθµος έχει τερµατίσει εξωτερικός τερµατισµός Οµως µπορεί ένας αλγόριθµος να είναι σε µια τερµατική κατάσταση ακόµα και αν κάποιες (ή όλες) οι διεργασίες δεν ϐρίσκονται σε µια τερµατική κατάσταση π.χ. κάθε διεργασία δέχεται µηνύµατα αλλά δεν στέλνει Ο υπολογισµός έχει τερµατίσει αλλά οι διεργασίες δεν το γνωρίζουν εσωτερικός τερµατισµός Τερµατισµός Κατανεµηµένου Υπολογισµού (2) Ιδιότητες Τερµατισµού Ο εσωτερικός τερµατισµός καλείται αλλιώς και τερµατισµός µηνυµάτων Παύουν να ανταλλάσσονται µηνύµατα Ο εξωτερικός τερµατισµός καλείται αλλιώς και τερµατισµός διεργασιών Ολες οι διεργασίες ϐρίσκονται σε τερµατική κατάσταση Γενικά, είναι ευκολότερο να σχεδιαστεί ένας αλγόριθµος µε εσωτερικό τερµατισµό από ότι µε εξωτερικό Κατά τον σχεδιασµό του αλγορίθµου όλα τα ϑέµατα που έχουν σχέση µε τον τερµατισµό µπορεί να αγνοηθούν Μπορεί να είναι απαραίτητο όλες οι διεργασίες να ϕτάσουν σε τερµατικές καταστάσεις Επικύρωση αποτελεσµάτων, αποδέσµευση πόρων... Βασιζόµαστε στον ορισµό του προβλήµατος της ανίχνευσης τερµατισµού όπως παρουσιάστηκε από τον Dijkstra Κάθε διεργασία µπορεί να ϐρίσκεται σε µία κατάσταση Ενεργή (active) Παθητική (passive) Μόνο οι ενεργές διεργασίες µπορούν να στείλουν µηνύµατα (ενέργεια εξόδου) Με την λήψη ενός µηνύµατος (ενέργεια εισόδου), µια παθητική διεργασία µετατρέπεται σε ενεργή Η παραλαβή ενός µηνύµατος είναι το µόνο συµβάν που προκαλεί τη µετάβαση µιας παθητικής διεργασίας σε ενεργή Κάθε ενεργή διεργασία µπορεί να γίνει παθητική αυθόρµητα, ανά πάσα στιγµή (εσωτερική ενέργεια)

10 Αλγόριθµος των Dijkstra και Scholten (1) Αλγόριθµος των Dijkstra και Scholten (2) Εστω P0 η διεργασία συντονιστής Ο αλγόριθµος ϐασίζεται στην κατασκευή ενός επικαλυπτικού αντεστραµµένου δέντρου (inverted tree) µε ϱίζα την διεργασία P Το δέντρο µεταβάλετε κατά την εκτέλεση του ϐασικού αλγόριθµου έτσι ώστε οι ενεργές διεργασίες να έχουν µικρό ύψος (κοντά στην ϱίζα) οι παθητικές διεργασίες να έχουν µεγάλο ύψος (µακριά από την ϱίζα) Τα δέντρα αυτά είναι γνωστά ως έντρα Υπολογισµού Ο τερµατισµός ανιχνεύεται όταν η διεργασία που ϐρίσκεται στην ϱίζα του δέντρου γίνει παθητική Αρχικά υποθέτουµε ότι όλες οι διεργασίες είναι παθητικές εκτός από την διεργασία P0 Εποµένως, ο αλγόριθµος περιορίζεται στους υπολογισµούς διάχυσης (diffusing computations) Κάθε διεργασία αποθηκεύει έναν δείκτη parent προς τον γονέα της στο δέντρο Αν για κάποια διεργασία Pu, parent == null, την ονοµάζουµε ελεύθερη Κάθε διεργασία διατηρεί µια µεταβλητή children που καταγράφει τον αριθµό των παιδιών της στο δέντρο Αλγόριθµος των Dijkstra και Scholten (3) Ορθότητα Αλγόριθµου (1) Εστω ότι η διεργασία Pu P0 είναι ελεύθερη και λαµβάνει ένα µήνυµα από την διεργασία Pv Θέτει parent = Pv (εισάγεται η ακµή uv στο δέντρο) Ενηµερώνει την Pv (µήνυµα ελέγχου) Η διεργασία Pv ϑέτει childrenv + + Η Pu δεν είναι ελεύθερη και κάποια στιγµή γίνεται παθητική Ενηµερώνει την Pv (µήνυµα ελέγχου) Η διεργασία Pv ϑέτει childrenv + + Θέτει parent = null (αφαιρείται η ακµή uv από το δέντρο) Αρα όλες οι αποµονωµένες διεργασίες (χωρίς καµία προσκήµενη ακµή) είναι παθητικές Οταν η P0 γίνει παθητική, ο αλγόριθµος τερµατίζει Θεώρηµα 1 Ο αλγόριθµος των Dijkstra και Scholten είναι ένας ορθός αλγόριθµος ανίχνευσης τερµατισµού και χρησιµοποιεί M µηνύµατα ελέγχου, όπου M είναι ο αριθµός των µηνυµάτων που ανταλλάσονται από τον ϐασικό αλγόριθµο. Ο αλγόριθµος επιτυγχάνει αξιοσηµείωτη ισορροπία µεταξύ µηνυµάτων ελέγχου και ϐασικών µηνυµάτων Σύµφωνα µε το κάτω ϕράγµα M στην πολυπλοκότητα επικοινωνίας (ϑεώρηµα 2.2), ο αλγόριθµος είναι ϐέλτιστος

11 Ορθότητα Αλγόριθµου (2) Ορθότητα Αλγόριθµου (3) Εστω ένα δέντρο υπολογισµού T = (VT, ET ) Το T είναι άδειο ή είναι προσανατολισµένο δέντρο µε ϱίζα P0 Το σύνολο VT περιλαµβάνει όλες τις ενεργές διεργασίες και όλα τα ϐασικά µηνύµατα υπό µεταφορά Ο συντονιστής P0 καλεί τον αλγόριθµο διάδοσης µηνύµατος τερµατισµού όταν P0 VT Εφόσον VT = 0 το κατηγόρηµα term είναι αληθές Στην ουσία, το T διευρύνεται κάθε ϕορά που στέλνεται ένα ϐασικό µήνυµα ή όταν µια διεργασία που δεν υπάρχει στο δέντρο ενεργοποιείται Για να εξασφαλίσουµε την πρόοδο του αλγόριθµου ανίχνευσης, το δέντρο πρέπει να αδειάσει σε πεπερασµένο αριθµό γύρων µετά τον τερµατισµό Η απόδειξη ορθότητας προϋποθέτει ότι το γράφηµα T είναι δέντρο και ότι ϑα αδειάσει µόνο µετά τον τερµατισµό του ϐασικού αλγορίθµου Για κάθε εκτέλεση γ του αλγόριθµου ορίζουµε VT = {u : parentu null} {ϐασικό µήνυµα υπό µεταφορά} {µήνυµα ελέγχου υπό µεταφορά} Ορθότητα Αλγόριθµου (4) Ορθότητα Αλγόριθµου (5) ET = {(u, parentu) : parentu null parentu u} {ϐασικό µήνυµα υπό µεταφορά} {µήνυµα ελέγχου υπό µεταφορά} Η ασφάλεια του αλγόριθµου πηγάζει από την παραδοχή P που ορίζεται ως P = stateu == active u VT (1) (u, v) ET u VT v VT P (2) childrenu = #v : (v, u) ET (3) VT T δέντρο µε ϱίζα P0 (4) (stateu == passive childrenu == 0) u VT (5) stateu == active u VT Το γράφηµα T περιλαµβάνει όλες τις ενεργές διεργασίες (u, v) ET u VT v VT P Το T είναι όντως γράφηµα και όλες οι ακµές κατευθύνονται προς κάποια διεργασία childrenu = #v : (v, u) ET Η καταµέτριση των παιδιών κάθε διεργασίες γίνεται µε σωστό τρόπο VT T δέντρο µε ϱίζα P0 Το T είναι δέντρο µε ϱίζα την P0 (stateu == passive childrenu == 0) u VT Το δέντρο αδειάζει όταν τερµατίσει ο ϐασικός αλγόριθµος

12 Ορθότητα Αλγόριθµου (6) Ορθότητα Αλγόριθµου (7) Η απόδειξη της ορθότητα ϐασίζεται στην παρατήρηση ότι στην παραδοχή P ισχύει parentu == u µόνο για u == P0 Λήµα 1 Η παραδοχή P ισχύει για τον αλγόριθµο των Dijkstra και Scholten. Εστω S = n u=0 childrenu το άθροισµα όλων των µετρητών παιδιών Αρχικά S = 0 Αυξάνεται όταν στέλνεται ένα ϐασικό µήνυµα Μειώνεται όταν λαµβάνεται ένα µήνυµα ελέγχου εν µπορεί να πάρει αρνητική τιµή, λόγω της (3) Μετά τον τερµατισµό µόνο ενέργειες του αλγόριθµου ανίχνευσης µπορούν να συµβούν Εφόσον το S ελαττώνεται κατά ένα σε κάθε τέτοια µεταβολή, ο αλγόριθµος ϕτάνει σε τερµατική κατάσταση Σε αυτή την κατάσταση το VT δεν περιέχει κανένα µήνυµα Λόγω της (5) το VT δεν περιέχει καµία διεργασία που είναι παθητική Εποµένως το T δεν έχει ϕύλλα και άρα είναι άδειο Το δέντρο άδειασε όταν η P0 διέγραψε τον εαυτό της Ισχύει η απαίτηση της ϐιωσιµότητας (liveness) Ορθότητα Αλγόριθµου (8) Σύνοψη 8 ης ιάλεξης Η απόδειξη της ασφάλειας (safety) προκύπτει εφόσον η P0 καλεί τον αλγόριθµο διάδοσης µηνύµατος τερµατισµού µόνο όταν σβήσει τον εαυτό της από το VT Αρα, λόγω της (4) το T ϑα είναι άδειο όταν συµβεί αυτό Η απόδειξη του µη-επιρεασµού (non-interference) ικανοποιείται (εµφανώς) Προηγούµενο Μάθηµα Καθολικές Καταστάσεις Κατασκευή Καθολικών Καταστάσεων Συνεπή Ολικά Στιγµιότυπα Ασύγχρονα Κατανεµηµένα Συστήµατα Αποτίµηση Καθολικού Κατηγορήµατος Ανίχνευση Τερµατισµού Σύνοψη Μαθήµατος Σύνοψη Μαθήµατος Βιβλιογραφία Επόµενη ιάλεξη

13 Σύνοψη Μαθήµατος Βιβλιογραφία Ασύγχρονα Κατανεµηµένα Συστήµατα Αποτίµηση Καθολικού Κατηγορήµατος Ανίχνευση Τερµατισµού Αλγόριθµος Francez Αλγόριθµος Dijkstra Αλγόριθµος των Dijkstra και Scholten Βιβλίο Distributed Algorithms" (N.Lynch) 1. Κεφάλαιο 19: Global Snapshots and Stable Properties Βιβλίο Introduction to Distributed Algorithms" (G.Tel) 1. Κεφάλαιο 10: Snapshots Βιβλίο Κατανεµηµένα Συστήµατα µε Java (Ι.Κ.Κάβουρας, Ι.Ζ.Μήλης, Γ.Β.Ξυλωµένος, Α.Α.Ρουκουνάκη) 1. Κεφάλαιο 5: Αποτίµηση καθολικού κατηγορήµατος Επόµενη ιάλεξη Πρωτόκολλα Πληθυσµών

ιεργασίες και Επεξεργαστές στα Κατανεµηµένων Συστηµάτων

ιεργασίες και Επεξεργαστές στα Κατανεµηµένων Συστηµάτων ιεργασίες και Επεξεργαστές στα Κατανεµηµένων Συστηµάτων Μαρία Ι. Ανδρέου ΗΜΥ417, ΗΜΥ 663 Κατανεµηµένα Συστήµατα Χειµερινό Εξάµηνο 2006-2007 Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο

Διαβάστε περισσότερα

Πρόλογος... xv. Κεφάλαιο 1: Εισαγωγή... 1

Πρόλογος... xv. Κεφάλαιο 1: Εισαγωγή... 1 Περιεχόµενα Πρόλογος... xv Κεφάλαιο 1: Εισαγωγή... 1 1.1. Συστήµατα πολλών επεξεργαστών... 1 1.1.1. Λειτουργικά συστήµατα πολυεπεξεργαστών... 3 1.1.2. Λειτουργικά συστήµατα δικτύων... 4 1.1.3. Κατανεµηµένα

Διαβάστε περισσότερα

Αιτιώδεις Σχέσεις και Χρονισµός Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 1 Η Σχέση Happens-Before (Συµβαίνει-ϖριν) Οι εκτελέσεις, ως ακολουθίες γεγονότων, καθορίζουν µια καθολική διάταξη σε αυτά. Ωστόσο

Διαβάστε περισσότερα

Διάλεξη 6: Εκλογή Προέδρου σε Σύγχρονους Δακτύλιους. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 6: Εκλογή Προέδρου σε Σύγχρονους Δακτύλιους. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 6: Εκλογή Προέδρου σε Σύγχρονους Δακτύλιους ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Τι θα δούμε σήμερα Μη Ομοιόμορφος Αλγόριθμος Εκλογής Προέδρου σε Σύγχρονο Δακτύλιο Ομοιόμορφος Αλγόριθμος Εκλογής Προέδρου

Διαβάστε περισσότερα

Εισαγωγή στους Αλγόριθµους. Αλγόριθµοι. Ιστορικά Στοιχεία. Ο πρώτος Αλγόριθµος. Παραδείγµατα Αλγορίθµων. Τι είναι Αλγόριθµος

Εισαγωγή στους Αλγόριθµους. Αλγόριθµοι. Ιστορικά Στοιχεία. Ο πρώτος Αλγόριθµος. Παραδείγµατα Αλγορίθµων. Τι είναι Αλγόριθµος Εισαγωγή στους Αλγόριθµους Αλγόριθµοι Τι είναι αλγόριθµος; Τι µπορεί να υπολογίσει ένας αλγόριθµος; Πως αξιολογείται ένας αλγόριθµος; Παύλος Εφραιµίδης pefraimi@ee.duth.gr Αλγόριθµοι Εισαγωγικές Έννοιες

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνολα Συναρτήσεις και Σχέσεις Γραφήματα Λέξεις και Γλώσσες Αποδείξεις ΕΠΛ 211 Θεωρία

Διαβάστε περισσότερα

Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25)

Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25) Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25) Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ο αλγόριθµος των BellmanFord Ο αλγόριθµος του Dijkstra ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 61

Διαβάστε περισσότερα

Αλγόριθµοι Οπισθοδρόµησης

Αλγόριθµοι Οπισθοδρόµησης Αλγόριθµοι Οπισθοδρόµησης Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Η οπισθοδρόµηση στο σχεδιασµό αλγορίθµων Το πρόβληµα των σταθερών γάµων και ο αλγόριθµος των Gale-Shapley Το πρόβληµα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ 1. ίνεται το γνωστό πρόβληµα των δύο δοχείων: «Υπάρχουν δύο δοχεία

Διαβάστε περισσότερα

Ταιριάσματα. Γράφημα. Ταίριασμα (matching) τέτοιο ώστε κάθε κορυφή να εμφανίζεται σε το πολύ μια ακμή του

Ταιριάσματα. Γράφημα. Ταίριασμα (matching) τέτοιο ώστε κάθε κορυφή να εμφανίζεται σε το πολύ μια ακμή του Ταιριάσματα Γράφημα Ταίριασμα (matching) Σύνολο ακμών τέτοιο ώστε κάθε κορυφή να εμφανίζεται σε το πολύ μια ακμή του Θέλουμε να βρούμε ένα μέγιστο ταίριασμα (δηλαδή με μέγιστο αριθμό ακμών) Ταιριάσματα

Διαβάστε περισσότερα

Έλεγχος Ταυτοχρονισμού

Έλεγχος Ταυτοχρονισμού Έλεγχος Ταυτοχρονισμού Κεφάλαιο 17 Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke Ελληνική Μετάφραση: Γεώργιος Ευαγγελίδης 1 Συγκρουσιακώς Σειριοποιήσιμα Χρονοπρογράμματα Δυο χρονοπρογράμματα

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 1: Εισαγωγή- Χαρακτηριστικά Παραδείγματα Αλγορίθμων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Αλγόριθµοι Τύπου Μείωσης Προβλήµατος

Αλγόριθµοι Τύπου Μείωσης Προβλήµατος Αλγόριθµοι Τύπου Μείωσης Προβλήµατος Περίληψη Αλγόριθµοι Τύπου Μείωσης Προβλήµατος ( Decrease and Conquer ) Μείωση κατά µια σταθερά (decrease by a constant) Μείωση κατά ένα ποσοστό (decrease by a constant

Διαβάστε περισσότερα

Εισαγωγή Μοντέλο Βασικοί Αλγόριθµοι Γράφων Κατανεµηµένα Συστήµατα Ένα κατανεµηµένο σύστηµα είναι µια συλλογή από αυτόνοµες διεργασίες οι οποίες έχουν τη δυνατότητα να επικοινωνούν µεταξύ τους. Με βάση

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/ Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Άπληστοι Αλγόριθµοι (CLR, κεφάλαιο 17)

Άπληστοι Αλγόριθµοι (CLR, κεφάλαιο 17) Άπληστοι Αλγόριθµοι (CLR, κεφάλαιο 17) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Σχεδιασµός αλγορίθµων µε Άπληστους Αλγόριθµους Στοιχεία άπληστων αλγορίθµων Το πρόβληµα επιλογής εργασιών ΕΠΛ 232

Διαβάστε περισσότερα

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 15/1/2008

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 15/1/2008 Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 5//008 Πρόβληµα ο Στα παρακάτω ερωτήµατα επισηµαίνουµε ότι perceptron είναι ένας νευρώνας και υποθέτουµε, όπου χρειάζεται, τη χρήση δικτύων

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ 1) Πότε χρησιμοποιείται η δομή επανάληψης

Διαβάστε περισσότερα

Άρα, Τ ser = (A 0 +B 0 +B 0 +A 0 ) επίπεδο 0 + (A 1 +B 1 +A 1 ) επίπεδο 1 + +(B 5 ) επίπεδο 5 = 25[χρονικές µονάδες]

Άρα, Τ ser = (A 0 +B 0 +B 0 +A 0 ) επίπεδο 0 + (A 1 +B 1 +A 1 ) επίπεδο 1 + +(B 5 ) επίπεδο 5 = 25[χρονικές µονάδες] Α. Στο παρακάτω διάγραµµα εµφανίζεται η εκτέλεση ενός παράλληλου αλγόριθµου που λύνει το ίδιο πρόβληµα µε έναν ακολουθιακό αλγόριθµο χωρίς πλεονασµό. Τα Α i και B i αντιστοιχούν σε ακολουθιακά υποέργα

Διαβάστε περισσότερα

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1) ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (22 Σεπτεµβρίου) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ 1ο ΘΕΜΑ 1. Αφού ορίσετε ακριβώς τι σηµαίνει πίσω ευσταθής υπολογισµός, να εξηγήσετε αν ο υ- πολογισµός του εσωτερικού γινοµένου δύο διανυσµάτων

Διαβάστε περισσότερα

Παράδειγμα 2. Λύση & Επεξηγήσεις. Τέλος_επανάληψης Εμφάνισε "Ναι" Τέλος Α2

Παράδειγμα 2. Λύση & Επεξηγήσεις. Τέλος_επανάληψης Εμφάνισε Ναι Τέλος Α2 Διδακτική πρόταση ΕΝΟΤΗΤΑ 2η, Θέματα Θεωρητικής Επιστήμης των Υπολογιστών Κεφάλαιο 2.2. Παράγραφος 2.2.7.4 Εντολές Όσο επανάλαβε και Μέχρις_ότου Η διαπραγμάτευση των εντολών επανάληψης είναι σημαντικό

Διαβάστε περισσότερα

Φρ. Κουτελιέρης. Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων ΠΛΗΡΟΦΟΡΙΚΗ Ι

Φρ. Κουτελιέρης. Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων ΠΛΗΡΟΦΟΡΙΚΗ Ι Φρ. Κουτελιέρης Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων ΠΛΗΡΟΦΟΡΙΚΗ Ι Πληροφορική Ι Ακαδ. Έτος 2008-9 1/30 ΚΕΦΑΛΑΙΟ 2 Πληροφορική Ι Ακαδ. Έτος 2008-9 2/30 1. Εισαγωγή 3. Ανάπτυξη αλγορίθµου 4. οµηµένος

Διαβάστε περισσότερα

(GNU-Linux, FreeBSD, MacOsX, QNX

(GNU-Linux, FreeBSD, MacOsX, QNX 1.7 διαταξεις (σελ. 17) Παράδειγµα 1 Θα πρέπει να κάνουµε σαφές ότι η επιλογή των λέξεων «προηγείται» και «έπεται» δεν έγινε απλώς για λόγους αφαίρεσης. Μπορούµε δηλαδή να ϐρούµε διάφορα παραδείγµατα στα

Διαβάστε περισσότερα

Χαρακτηρισµός Κατανεµηµένων Συστηµάτων

Χαρακτηρισµός Κατανεµηµένων Συστηµάτων Εισαγωγή Χαρακτηρισµός Κατανεµηµένων Συστηµάτων Μαρία Ι. Ανδρέου ΗΜΥ417, ΗΜΥ 663 Κατανεµηµένα Συστήµατα Χειµερινό Εξάµηνο 2006-2007 Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Κύπρου

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 2007 ιδάσκων : Ηλίας Κουτσουπιάς

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 2007 ιδάσκων : Ηλίας Κουτσουπιάς ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 007 ιδάσκων : Ηλίας Κουτσουπιάς Μάθηµα : Overview Of The Algorithmic Game Theory Ηµεροµηνία : 007/04/19 Σηµειώσεις : Ελενα Χατζηγιωργάκη,

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 10β: Αλγόριθμοι Γραφημάτων-Γραφήματα- Αναπαράσταση Γραφημάτων- Διερεύνηση Πρώτα σε Πλάτος (BFS) Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

ιαδίκτυα & Ενδοδίκτυα Η/Υ

ιαδίκτυα & Ενδοδίκτυα Η/Υ ιαδίκτυα & Ενδοδίκτυα Η/Υ ΙΑ ΙΚΤΥΑΚΗ ΛΕΙΤΟΥΡΓΙΑ (Kεφ. 16) ΠΡΩΤΟΚΟΛΛΑ ΡΟΜΟΛΟΓΗΣΗΣ Αυτόνοµα Συστήµατα Πρωτόκολλο Συνοριακών Πυλών OSPF ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΟΛΟΚΛΗΡΩΜΕΝΩΝ ΥΠΗΡΕΣΙΩΝ (ISA) Κίνηση ιαδικτύου Προσέγγιση

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι;

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; ΘΕΜΑΤΑ ΔΕΝΔΡΩΝ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΠΛΗ0 ΑΣΚΗΣΗ Για τις ερωτήσεις - θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; Β Ε Α 6 Δ 5 9 8 0 Γ 7 Ζ Η. Σ/Λ Δυο από τα συνδετικά

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 12: Θεωρία υπολογισµών

ΚΕΦΑΛΑΙΟ 12: Θεωρία υπολογισµών ΚΕΦΑΛΑΙΟ 12: Θεωρία υπολογισµών 1 Συναρτήσεις και ο υπολογισµός τους 2 Μηχανές Turing 3 Καθολικές γλώσσες προγραµµατισµού 4 Μια µη υπολογίσιµη συνάρτηση 5 Πολυπλοκότητα προβληµάτων 1 Συναρτήσεις Μία συνάρτηση

Διαβάστε περισσότερα

Mathematics and its Applications, 5th

Mathematics and its Applications, 5th Μαθηµατικα για Πληροφορικη Εφαρµογες και τεχνικες Ηλιας Κουτσουπιάς Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών Σχετικα µε το µαθηµα Σχετικα µε το µαθηµα Το µαθηµα πραγµατευεται καποια ϑεµατα

Διαβάστε περισσότερα

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ)

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) ΜΙΧΑΛΗΣ ΤΖΟΥΜΑΣ ΕΣΠΟΤΑΤΟΥ 3 ΑΓΡΙΝΙΟ. ΠΕΡΙΛΗΨΗ Η έννοια της συνάρτησης είναι στενά συνυφασµένη µε τον πίνακα τιµών και τη γραφική παράσταση.

Διαβάστε περισσότερα

3. Σηµειώσεις Access. # Εισαγωγή ψηφίου ή κενού διαστήµατος. Επιτρέπονται τα ση-

3. Σηµειώσεις Access. # Εισαγωγή ψηφίου ή κενού διαστήµατος. Επιτρέπονται τα ση- Μάθηµα 3 Προχωρηµένες ιδιότητες πεδίων Μάσκες εισαγωγής Οι ιδιότητες Μορφή και Μάσκα εισαγωγής περιγράφονται µαζί γιατί έχουν κοινά χαρακτηριστικά που αφορούν την εµφάνιση. Με την ιδιότητα Μορφή καθορίζουµε

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

Ορισµός Νήµα (thread) είναι µια ακολουθιακή ροή ελέγχου (δηλ. κάτι που έχει αρχή, ακολουθία εντολών και τέλος) σ ένα

Ορισµός Νήµα (thread) είναι µια ακολουθιακή ροή ελέγχου (δηλ. κάτι που έχει αρχή, ακολουθία εντολών και τέλος) σ ένα ΝΗΜΑΤΑ ΣΤΗ JAVA (1) Ορισµός Νήµα (thread) είναι µια ακολουθιακή ροή ελέγχου (δηλ. κάτι που έχει αρχή, ακολουθία εντολών και τέλος) σ ένα πρόγραµµα. Αιτία Η δυνατότητα αποµόνωσης (ή αυτονόµησης) κάποιων

Διαβάστε περισσότερα

ροµολόγηση πακέτων σε δίκτυα υπολογιστών

ροµολόγηση πακέτων σε δίκτυα υπολογιστών ροµολόγηση πακέτων σε δίκτυα υπολογιστών Συµπληρωµατικές σηµειώσεις για το µάθηµα Αλγόριθµοι Επικοινωνιών Ακαδηµαϊκό έτος 2011-2012 1 Εισαγωγή Οι παρακάτω σηµειώσεις παρουσιάζουν την ανάλυση του άπληστου

Διαβάστε περισσότερα

ΑΡΧΗ 2ΗΣ ΣΕΛΙΔΑΣ Γ Α... Β

ΑΡΧΗ 2ΗΣ ΣΕΛΙΔΑΣ Γ Α... Β ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΑΠΡΙΛΙΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ

Διαβάστε περισσότερα

Αλγόριθµοι Ροής σε Γράφους (CLR, κεφάλαιο 27)

Αλγόριθµοι Ροής σε Γράφους (CLR, κεφάλαιο 27) Αλγόριθµοι Ροής σε Γράφους (CLR, κεφάλαιο 27) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: ίκτυα ροής και το πρόβληµα της µέγιστης ροής Η µεθοδολογία Ford-Fulkerson Ο αλγόριθµος Edmonds-Karps ΕΠΛ 232

Διαβάστε περισσότερα

o AND o IF o SUMPRODUCT

o AND o IF o SUMPRODUCT Πληροφοριακά Εργαστήριο Management 1 Information Συστήματα Systems Διοίκησης ΤΕΙ Τμήμα Ελεγκτικής Ηπείρου Χρηματοοικονομικής (Παράρτημα Πρέβεζας) και Αντικείµενο: Μοντελοποίηση προβλήµατος Θέµατα που καλύπτονται:

Διαβάστε περισσότερα

ΘΕΜΑ Α: Μονάδες 12. Δ. Δίνεται ο πίνακας δύο διαστάσεων

ΘΕΜΑ Α: Μονάδες 12. Δ. Δίνεται ο πίνακας δύο διαστάσεων 1 ΘΕΜΑ Α: Α. Να αναφέρετε ονομαστικά τις βασικές λειτουργίες ( πράξεις ) επί των δομών δεδομένων. Β. Μια ουρά 10 θέσεων έχει την αρχική μορφή Α Ζ Τ Ε Λ Γνωρίζουμε τα εξής στοιχεία: 1. Μετά από μια σειρά

Διαβάστε περισσότερα

Κεφάλαιο 8 Διατήρηση της Ενέργειας

Κεφάλαιο 8 Διατήρηση της Ενέργειας Κεφάλαιο 8 Διατήρηση της Ενέργειας ΔΥΝΑΜΗ ΕΡΓΟ ΕΝΕΡΓΕΙΑ µηχανική, χηµική, θερµότητα, βαρυτική, ηλεκτρική, µαγνητική, πυρηνική, ραδιοενέργεια, τριβής, κινητική, δυναµική Περιεχόµενα Κεφαλαίου 8 Συντηρητικές

Διαβάστε περισσότερα

ΤΕΙ Κρήτης, Παράρτηµα Χανίων

ΤΕΙ Κρήτης, Παράρτηµα Χανίων ΠΣΕ, Τµήµα Τηλεπικοινωνιών & ικτύων Η/Υ Εργαστήριο ιαδίκτυα & Ενδοδίκτυα Η/Υ ( ηµιουργία συστήµατος µε ροint-tο-ροint σύνδεση) ρ Θεοδώρου Παύλος Χανιά 2003 Περιεχόµενα 1 ΕΙΣΑΓΩΓΗ...2 2 ΤΟ ΚΑΝΑΛΙ PΟINT-TΟ-PΟINT...2

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο Να περιγραφεί η δομή επανάληψης Αρχή_επανάληψης Μέχρις_ότου

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο Να περιγραφεί η δομή επανάληψης Αρχή_επανάληψης Μέχρις_ότου 2.87 Να περιγραφεί η δομή επανάληψης Μέχρις_ότου Ημορφή της δομής επανάληψης Μέχρις_ότου είναι: Μέχρις_ότου Συνθήκη Η ομάδα εντολών στο εσωτερικό της επανάληψης, εκτελείται μέχρις ότου ισχύει η συνθήκη

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Βοηθος Ασκησεων: Χ. Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://www.math.uoi.gr/ abeligia/linearalgebrai/lai.html

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις ΚΕΦΑΛΑΙΟ 2 Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις 2.1 ΕΙΣΑΓΩΓΗ Όπως έχουµε δει, για να προσδιορίσουµε τις αποκρίσεις ενός κυκλώµατος, πρέπει να λύσουµε ένα σύνολο διαφορικών

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ Α1. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-6 και

Διαβάστε περισσότερα

Διάλεξη 18: Πρόβλημα Βυζαντινών Στρατηγών. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 18: Πρόβλημα Βυζαντινών Στρατηγών. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 8: Πρόβλημα Βυζαντινών Στρατηγών ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Ορισμός Προβλήματος Τι θα δούμε σήμερα Συνθήκες Συμφωνίας κάτω από Βυζαντινό Στρατηγό Πιθανοτικοί αλγόριθμοι επίλυσης Βυζαντινής

Διαβάστε περισσότερα

Kalman Filter Γιατί ο όρος φίλτρο;

Kalman Filter Γιατί ο όρος φίλτρο; Kalman Filter Γιατί ο όρος φίλτρο; Συνήθως ο όρος φίλτρο υποδηλώνει µια διαδικασία αποµάκρυνσης µη επιθυµητών στοιχείων Απότολατινικόόροfelt : το υλικό για το φιλτράρισµα υγρών Στη εποχή των ραδιολυχνίων:

Διαβάστε περισσότερα

Είναι η διαδικασία εύρεσης της διαδρομής που πρέπει να ακολουθήσει ένα πακέτο για να φτάσει στον προορισμό του. Η διαδικασία αυτή δεν είναι πάντα

Είναι η διαδικασία εύρεσης της διαδρομής που πρέπει να ακολουθήσει ένα πακέτο για να φτάσει στον προορισμό του. Η διαδικασία αυτή δεν είναι πάντα 1 Είναι η διαδικασία εύρεσης της διαδρομής που πρέπει να ακολουθήσει ένα πακέτο για να φτάσει στον προορισμό του. Η διαδικασία αυτή δεν είναι πάντα εύκολη, τη στιγμή που γνωρίζουμε ότι ένα σύνθετο δίκτυο

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

ΗΜΙΟΥΡΓΙΑ ΠΑΙΧΝΙ ΙΟΥ ΣΤΟ SCRATCH ΒΗΜΑ ΠΡΟΣ ΒΗΜΑ

ΗΜΙΟΥΡΓΙΑ ΠΑΙΧΝΙ ΙΟΥ ΣΤΟ SCRATCH ΒΗΜΑ ΠΡΟΣ ΒΗΜΑ ΗΜΙΟΥΡΓΙΑ ΠΑΙΧΝΙ ΙΟΥ ΣΤΟ SCRATCH ΒΗΜΑ ΠΡΟΣ ΒΗΜΑ ΣΕΝΑΡΙΟ ΠΑΙΧΝΙ ΙΟΥ Το παιχνίδι θα αποτελείται από δυο παίκτες, οι οποίοι θα βρίσκονται αντικριστά στις άκρες ενός γηπέδου δεξιά και αριστερά, και µια µπάλα.

Διαβάστε περισσότερα

Ισοζυγισµένο έντρο (AVL Tree)

Ισοζυγισµένο έντρο (AVL Tree) Εργαστήριο 7 Ισοζυγισµένο έντρο (AVL Tree) Εισαγωγή Εκτός από τα δυαδικά δέντρα αναζήτησης (inry serh trees) που εξετάσαµε σε προηγούµενο εργαστήριο, υπάρχουν αρκετά είδη δέντρων αναζήτησης µε ξεχωριστό

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 4 ΣΥΝΟΛΑ - ΛΕΞΙΚΑ

ΕΝΟΤΗΤΑ 4 ΣΥΝΟΛΑ - ΛΕΞΙΚΑ ΕΝΟΤΗΤΑ 4 ΣΥΝΟΛΑ - ΛΕΞΙΚΑ ΗΥ240 - Παναγιώτα Φατούρου Σύνολα (Sets) Τα µέλη ενός συνόλου προέρχονται από κάποιο χώρο U αντικειµένων/στοιχείων (π.χ., σύνολα αριθµών, λέξεων, ζευγών αποτελούµενων από έναν

Διαβάστε περισσότερα

Κεφάλαιο Πέµπτο: Η Εξάσκηση

Κεφάλαιο Πέµπτο: Η Εξάσκηση Κεφάλαιο Πέµπτο: Η Εξάσκηση 1. Γενικά Η εξάσκηση στο Εργαστήριο προϋποθέτει τη γνώση των εντολών (τουλάχιστον) τις οποίες καλείται ο σπουδαστής κάθε φορά να εφαρµόσει. Αυτές παρέχονται µέσω της Θεωρίας

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική Προγραμματισμός-Λειτουργικά

Εισαγωγή στην Πληροφορική Προγραμματισμός-Λειτουργικά Εισαγωγή στην Πληροφορική Προγραμματισμός-Λειτουργικά Ηλ. Γκρίνιας Τ. Ε. Ι. Σερρών Τμήμα Πληροφορικής και Επικοινωνιών Αλγόριθμοι Ορισμός: ο αλγόριθμος είναι μια σειρά από πεπερασμένα βήματα που καθορίζουν

Διαβάστε περισσότερα

Ασυμπτωτικός Συμβολισμός

Ασυμπτωτικός Συμβολισμός Ασυμπτωτικός Συμβολισμός ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Υπολογιστική πολυπλοκότητα αλγόριθμου Α: Ποσότητα

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π.

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π. Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων CO.RE.LAB. ΣΗΜΜΥ - Ε.Μ.Π. Άσκηση 1 η : Παιχνίδι επιλογής ακμών Έχουμε ένα ακυκλικό κατευθυνόμενο γράφο, μια αρχική κορυφή και δυο παίκτες. Οι παίκτες διαδοχικά

Διαβάστε περισσότερα

Διαδικασιακός Προγραμματισμός

Διαδικασιακός Προγραμματισμός Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 12 η Αναζήτηση/Ταξινόμηση Πίνακα Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην

Διαβάστε περισσότερα

υαδικό έντρο Αναζήτησης (BSTree)

υαδικό έντρο Αναζήτησης (BSTree) Εργαστήριο 6 υαδικό έντρο Αναζήτησης (BSTree) Εισαγωγή Οι περισσότερες δοµές δεδοµένων, που εξετάσαµε µέχρι τώρα (λίστες, στοίβες, ουρές) ήταν γραµ- µικές (ή δοµές δεδοµένων µιας διάστασης). Στην παράγραφο

Διαβάστε περισσότερα

Περίληψη ιπλωµατικής Εργασίας

Περίληψη ιπλωµατικής Εργασίας Περίληψη ιπλωµατικής Εργασίας Θέµα: Εναλλακτικές Τεχνικές Εντοπισµού Θέσης Όνοµα: Κατερίνα Σπόντου Επιβλέπων: Ιωάννης Βασιλείου Συν-επιβλέπων: Σπύρος Αθανασίου 1. Αντικείµενο της διπλωµατικής Ο εντοπισµός

Διαβάστε περισσότερα

Αδιέξοδα (Deadlocks)

Αδιέξοδα (Deadlocks) Αδιέξοδα (Deadlocks) Περίληψη Αδιέξοδα (deadlocks) Τύποι πόρων (preemptable non preemptable) Μοντελοποίηση αδιεξόδων Στρατηγικές Στρουθοκαµηλισµός (ostrich algorithm) Ανίχνευση και αποκατάσταση (detection

Διαβάστε περισσότερα

Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων

Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων Π Π Τ Μ Τ Μ Η/Υ Π Δ Μ Π Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων Φοιτητής: Ν. Χασιώτης (AM: 0000) Καθηγητής: Ι. Χατζηλυγερούδης 22 Οκτωβρίου 2010 ΑΣΚΗΣΗ 1. Δίνεται

Διαβάστε περισσότερα

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ Α ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ

Διαβάστε περισσότερα

Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής

Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 8: Γραμμική Αναζήτηση και Δυαδική Αναζήτηση-Εισαγωγή στα Δέντρα και Δυαδικά Δέντρα-Δυαδικά Δέντρα Αναζήτησης & Υλοποίηση ΔΔΑ με δείκτες Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Αδιέξοδα. Μαρία Ι. Ανδρέου

Αδιέξοδα. Μαρία Ι. Ανδρέου Συγχρονισµός (Synchronization) Συγχρονισµός Ρολογιών, Τοπικά Ρολόγια, Καθολική Κατάσταση, Αµοιβαίος Αποκλεισµός, Κατανεµηµένες Συναλλαγές, Κατανεµηµένα Αδιέξοδα Μαρία Ι. Ανδρέου ΗΜΥ417, ΗΜΥ 663 Κατανεµηµένα

Διαβάστε περισσότερα

Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα:

Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: υναµικός Προγραµµατισµός Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Σχεδιασµός αλγορίθµων µε υναµικό Προγραµµατισµό Το πρόβληµα του πολλαπλασιασµού πινάκων ΕΠΛ 3 Αλγόριθµοι και Πολυπλοκότητα 3- υναµικός

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Πρόβληµα, Στιγµιότυπο, Αλγόριθµος Εργαλεία εκτίµησης πολυπλοκότητας: οι τάξεις Ο(n), Ω(n), Θ(n) Ανάλυση Πολυπλοκότητας Αλγορίθµων

Διαβάστε περισσότερα

Το υδρογράφηµα και τα χαρακτηριστικά του

Το υδρογράφηµα και τα χαρακτηριστικά του Το υδρογράφηµα απορροής Το διάγραµµα της παροχής σαν συνάρτηση του χρόνου σε ένα ορισµένο σηµείο της κοίτης ενός υδατορρεύµατος [Q = Q(t)] καλείται υδρογράφηµα και έχει τα γενικά χαρακτηριστικά που φαίνονται

Διαβάστε περισσότερα

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 7 ο. έντρο. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 7 ο. έντρο. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 7 ο έντρο Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης έντρο Ορισµός Υλοποίηση µε Πίνακα Υλοποίηση µε είκτες υαδικό έντρο

Διαβάστε περισσότερα

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Η πλέον γνωστή και περισσότερο χρησιµοποιηµένη µέθοδος για την επίλυση ενός γενικού προβλήµατος γραµµικού προγραµµατισµού, είναι η µέθοδος Simplex η οποία αναπτύχθηκε

Διαβάστε περισσότερα

Ελάχιστα Γεννητορικά ένδρα

Ελάχιστα Γεννητορικά ένδρα λάχιστα Γεννητορικά ένδρα Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ο αλγόριθµος του Prim και ο αλγόριθµος του Kruskal για εύρεση λάχιστων Γεννητορικών ένδρων ΠΛ 23 οµές εδοµένων και Αλγόριθµοι

Διαβάστε περισσότερα

ΤΕΙ - ΧΑΛΚΙ ΑΣ. παθητικά: προκαλούν την απώλεια ισχύος ενός. ενεργά: όταν τροφοδοτηθούν µε σήµα, αυξάνουν

ΤΕΙ - ΧΑΛΚΙ ΑΣ. παθητικά: προκαλούν την απώλεια ισχύος ενός. ενεργά: όταν τροφοδοτηθούν µε σήµα, αυξάνουν 1. Εισαγωγικά στοιχεία ηλεκτρονικών - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1 1. ΘΕΜΕΛΙΩ ΕΙΣ ΕΝΝΟΙΕΣ ΚΑΙ ΕΙΣΑΓΩΓΙΚΑ ΣΤΟΙΧΕΙΑ ΗΛΕΚΤΡΟΝΙΚΗΣ Ηλεκτρικό στοιχείο: Κάθε στοιχείο που προσφέρει, αποθηκεύει και καταναλώνει

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΕΙ ΠΑΤΡΑΣ ΤΕΙ ΠΑΤΡΑΣ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΏΝ ΠΑΙΓΝΙΩΝ- ΠΡΟΓΡΑΜΜΑ GAMBIT

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΕΙ ΠΑΤΡΑΣ ΤΕΙ ΠΑΤΡΑΣ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΏΝ ΠΑΙΓΝΙΩΝ- ΠΡΟΓΡΑΜΜΑ GAMBIT ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Α Κ Α Η Μ Α Ι Κ Ο Ε Τ Ο Σ 2 0 1 1-2 0 1 2 ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΏΝ ΠΑΙΓΝΙΩΝ- ΠΡΟΓΡΑΜΜΑ GAMBIT Ο συγκεκριµένος οδηγός για το πρόγραµµα

Διαβάστε περισσότερα

Κεφάλαιο M11. Στροφορµή

Κεφάλαιο M11. Στροφορµή Κεφάλαιο M11 Στροφορµή Στροφορµή Η στροφορµή παίζει σηµαντικό ρόλο στη δυναµική των περιστροφών. Αρχή διατήρησης της στροφορµής Η αρχή αυτή είναι ανάλογη µε την αρχή διατήρησης της ορµής. Σύµφωνα µε την

Διαβάστε περισσότερα

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή KΕΦΑΛΑΙΟ ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ιατεταγµένα σώµατα-αξίωµα πληρότητας Ένα σύνολο Σ καλείται διατεταγµένο σώµα όταν στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι

Διαβάστε περισσότερα

Αλγοριθμικές Τεχνικές. Brute Force. Διαίρει και Βασίλευε. Παράδειγμα MergeSort. Παράδειγμα. Τεχνικές Σχεδιασμού Αλγορίθμων

Αλγοριθμικές Τεχνικές. Brute Force. Διαίρει και Βασίλευε. Παράδειγμα MergeSort. Παράδειγμα. Τεχνικές Σχεδιασμού Αλγορίθμων Τεχνικές Σχεδιασμού Αλγορίθμων Αλγοριθμικές Τεχνικές Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr Ορισμένες γενικές αρχές για τον σχεδιασμό αλγορίθμων είναι: Διαίρει και Βασίλευε (Divide and

Διαβάστε περισσότερα

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ ΜΕΡΟΣ ΙΙ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ 36 ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Πολλές από τις αποφάσεις

Διαβάστε περισσότερα

if(συνθήκη) {... // οµάδα εντολών } C: Από τη Θεωρία στην Εφαρµογή 5 ο Κεφάλαιο

if(συνθήκη) {... // οµάδα εντολών } C: Από τη Θεωρία στην Εφαρµογή 5 ο Κεφάλαιο C: Από τη Θεωρία στην Εφαρµογή Κεφάλαιο 5 ο Έλεγχος Προγράµµατος Γ. Σ. Τσελίκης Ν. Δ. Τσελίκας Η εντολή if (Ι) Η εντολή if είναι µία από τις βασικότερες δοµές ελέγχου ροής στη C, αλλά και στις περισσότερες

Διαβάστε περισσότερα

6. Α ΙΕΞΟ Α Στέφανος Γκρίτζαλης Αναπληρωτής Καθηγητής Κωνσταντίνος Καραφασούλης ιδάσκων (Π 407) 6.1 ΠΟΡΟΙ (1/2) Υπάρχουν δύο τύποι πόρων σε υπολογιστικά συστήµατα: προεκχωρήσιµοι πόροι (preemptable resources):

Διαβάστε περισσότερα

Επιλογή και επανάληψη. Λογική έκφραση ή συνθήκη

Επιλογή και επανάληψη. Λογική έκφραση ή συνθήκη Επιλογή και επανάληψη Η ύλη που αναπτύσσεται σε αυτό το κεφάλαιο είναι συναφής µε την ύλη που αναπτύσσεται στο 2 ο κεφάλαιο. Όπου υπάρχουν διαφορές αναφέρονται ρητά. Προσέξτε ιδιαίτερα, πάντως, ότι στο

Διαβάστε περισσότερα

ΗΥ335 - Δίκτυα Υπολογιστών Χειμερινό εξάμηνο 2010-2011 Φροντιστήριο Ασκήσεις στο TCP

ΗΥ335 - Δίκτυα Υπολογιστών Χειμερινό εξάμηνο 2010-2011 Φροντιστήριο Ασκήσεις στο TCP ΗΥ335 - Δίκτυα Υπολογιστών Χειμερινό εξάμηνο 2010-2011 Φροντιστήριο Ασκήσεις στο TCP Άσκηση 1 η : Καθυστερήσεις Θεωρείστε μία σύνδεση μεταξύ δύο κόμβων Χ και Υ. Το εύρος ζώνης του συνδέσμου είναι 10Gbits/sec

Διαβάστε περισσότερα

Εικονική Μνήµη. Κεφάλαιο 8. Dr. Garmpis Aristogiannis - EPDO TEI Messolonghi

Εικονική Μνήµη. Κεφάλαιο 8. Dr. Garmpis Aristogiannis - EPDO TEI Messolonghi Εικονική Μνήµη Κεφάλαιο 8 Υλικό και δοµές ελέγχου Οι αναφορές στην µνήµη υπολογίζονται δυναµικά κατά την εκτέλεση Ηδιεργασίαχωρίζεταισετµήµατα τα οποία δεν απαιτείται να καταλαµβάνουν συνεχόµενες θέσεις

Διαβάστε περισσότερα

ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 05/03/2012 ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ Α Α1. Α2. 1. ΣΩΣΤΟ 1 στ 2. ΛΑΘΟΣ 2 δ 3. ΣΩΣΤΟ 3 ε 4. ΛΑΘΟΣ 4 β 5. ΣΩΣΤΟ 5 γ

ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 05/03/2012 ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ Α Α1. Α2. 1. ΣΩΣΤΟ 1 στ 2. ΛΑΘΟΣ 2 δ 3. ΣΩΣΤΟ 3 ε 4. ΛΑΘΟΣ 4 β 5. ΣΩΣΤΟ 5 γ ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΑΠΟΦΟΙΤΟΙ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 05/03/2012 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. Α2. 1. ΣΩΣΤΟ 1 στ 2. ΛΑΘΟΣ 2 δ 3. ΣΩΣΤΟ 3 ε 4. ΛΑΘΟΣ 4 β 5. ΣΩΣΤΟ 5 γ Α3. α. (σελ. 183-184) Στοίβα: ώθηση, απώθηση Ουρά:

Διαβάστε περισσότερα

7.5 Πρωτόκολλο IP. Τεχνολογία ικτύων Επικοινωνιών ΙΙ

7.5 Πρωτόκολλο IP. Τεχνολογία ικτύων Επικοινωνιών ΙΙ Τεχνολογία ικτύων Επικοινωνιών ΙΙ 7.5 Πρωτόκολλο IP 38. Τι είναι το πρωτόκολλο ιαδικτύου (Internet Protocol, IP); Είναι το βασικό πρωτόκολλο του επιπέδου δικτύου της τεχνολογίας TCP/IP. Βασίζεται στα αυτοδύναµα

Διαβάστε περισσότερα

Διδακτική της Πληροφορικής ΙΙ

Διδακτική της Πληροφορικής ΙΙ Διδακτική της Πληροφορικής ΙΙ Ομάδα Γ Βότσης Ευστάθιος Γιαζιτσής Παντελής Σπαής Αλέξανδρος Τάτσης Γεώργιος Προβλήματα που αντιμετωπίζουν οι αρχάριοι προγραμματιστές Εισαγωγή Προβλήματα Δυσκολίες Διδακτικό

Διαβάστε περισσότερα

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α 1. (2.5 μονάδες) Ο κ. Ζούπας παρέλαβε μία μυστηριώδη τσάντα από το ταχυδρομείο. Όταν

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

Αριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA

Αριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA Αριθµοθεωρητικοί Αλγόριθµοι και το Κρυπτοσύστηµα RSA Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Υπολογισµός Μέγιστου Κοινού ιαιρέτη Αλγόριθµος του Ευκλείδη Κλάσεις Ισοδυναµίας και Αριθµητική modulo

Διαβάστε περισσότερα

SusX - SusCity. Εγχειρίδιο σχεδιασµού παιχνιδιών

SusX - SusCity. Εγχειρίδιο σχεδιασµού παιχνιδιών SusX - SusCity Εγχειρίδιο σχεδιασµού παιχνιδιών Εργαστήριο Εκπαιδευτικής Τεχνολογίας 2011 Περιεχόµενα Εισαγωγή...3 Λίγα λόγια για το SusCity...3 Σκοπός του εγχειριδίου...3 Η διττή αξιοποίηση του SusCity...3

Διαβάστε περισσότερα

Διάλεξη 9: Αλγόριθμοι Αμοιβαίου Αποκλεισμού με τη χρήση μεταβλητών Ανάγνωσης/Εγγραφής. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 9: Αλγόριθμοι Αμοιβαίου Αποκλεισμού με τη χρήση μεταβλητών Ανάγνωσης/Εγγραφής. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 9: Αλγόριθμοι Αμοιβαίου Αποκλεισμού με τη χρήση μεταβλητών Ανάγνωσης/Εγγραφής ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Τι θα δούμε σήμερα Αλγόριθμος Ψησταριάς (Bakery Algorithm) Αλγόριθμος 2- επεξεργαστών

Διαβάστε περισσότερα

Υπολογιστικές Μέθοδοι στις Κατασκευές

Υπολογιστικές Μέθοδοι στις Κατασκευές Γενικά Για Τη Βελτιστοποίηση Η βελτιστοποίηση µπορεί να χωριστεί σε δύο µεγάλες κατηγορίες: α) την Βελτιστοποίηση Τοπολογίας (Topological Optimization) και β) την Βελτιστοποίηση Σχεδίασης (Design Optimization).

Διαβάστε περισσότερα

Αλγόριθµοι δροµολόγησης µε µέσα µαζικής µεταφοράς στο µεταφορικό δίκτυο των Αθηνών

Αλγόριθµοι δροµολόγησης µε µέσα µαζικής µεταφοράς στο µεταφορικό δίκτυο των Αθηνών 1 Αλγόριθµοι δροµολόγησης µε µέσα µαζικής µεταφοράς στο µεταφορικό δίκτυο των Αθηνών ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ της Κωτσογιάννη Μαριάννας Περίληψη 1. Αντικείµενο- Σκοπός Αντικείµενο της διπλωµατικής αυτής εργασίας

Διαβάστε περισσότερα

Κεφάλαιο 2. Η δοµή δεδοµένων Σωρός και η Ταξινόµηση Σωρού (The Heap data structure and Heapsort) Έκδοση 1.1, 12/05/2010

Κεφάλαιο 2. Η δοµή δεδοµένων Σωρός και η Ταξινόµηση Σωρού (The Heap data structure and Heapsort) Έκδοση 1.1, 12/05/2010 Κεφάλαιο 2 Η δοµή δεδοµένων Σωρός και η Ταξινόµηση Σωρού (The Heap data structure and Heapsort) Έκδοση., 2/05/200 Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Σωρός και Ταξινόµηση

Διαβάστε περισσότερα

Προγραµµατισµός Η/Υ. Μέρος2

Προγραµµατισµός Η/Υ. Μέρος2 Προγραµµατισµός Η/Υ Μέρος2 Περιεχόμενα Επανάληψη Βασικών Σύμβολων Διαγραμμάτων Ροής Αλγόριθμος Ψευδοκώδικας Παραδείγματα Αλγορίθμων Γλώσσες προγραμματισμού 2 Επανάληψη Βασικών Σύμβολων Διαγραμμάτων Ροής

Διαβάστε περισσότερα

Λογικοί πράκτορες. Πράκτορες βασισµένοι στη γνώση

Λογικοί πράκτορες. Πράκτορες βασισµένοι στη γνώση Λογικοί πράκτορες Πράκτορες βασισµένοι στη γνώση Βάση γνώσης (knowledge base: Σύνολο προτάσεων (sentences Γλώσσα αναπαράστασης της γνώσης Γνωστικό υπόβαθρο: «Αµετάβλητο» µέρος της ΒΓ Βασικές εργασίες:

Διαβάστε περισσότερα

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x. Κεφάλαιο 4 Μήκη και ορθές γωνίες Μήκος διανύσµατος Στο επίπεδο, R 2, ϐρίσκουµε το µήκος ενός διανύσµατος x = (x 1, x 2 ) χρησιµοποιώντας το Πυθαγόρειο ϑεώρηµα : x 2 = x 2 1 + x 2 2. Στο χώρο R 3, εφαρµόζουµε

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

Φροντιστήριο 9 Λύσεις

Φροντιστήριο 9 Λύσεις Άσκηση 1 Φροντιστήριο 9 Λύσεις Να κατασκευάσετε μια μηχανή Turing με δύο ταινίες η οποία να αποδέχεται στην πρώτη της ταινία μια οποιαδήποτε λέξη w {a,b} * και να γράφει τη λέξη w R στη δεύτερη της ταινία.

Διαβάστε περισσότερα