Σύνοψη Μαθήµατος. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Σύνοψη Μαθήµατος. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων"

Transcript

1 Σύνοψη Μαθήµατος Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης Ασύγχρονα Κατανεµηµένα Συστήµατα Σφάλµατα ιεργασιών Αδυναµία Εύρεσης Λύσης Ανιχνευτές Σφαλµάτων ευτέρα, 26 Ιανουαρίου, 2009 Αίθουσα Β3 Πρόβληµα: To stop or not to stop waiting Πρόβληµα: To stop or not to stop waiting Σε ένα ϱεαλιστικό ασύγχρονο σύστηµα εµφανίζονται γεγονότα µε πολύ κοινά χαρακτηριστικά που οµως πρέπει να αντιµετωπιστούν διαφορετικά Μηνύµατα που στέλνει µια διεργασια χάνονται πρωτού παραληφθούν Μια διεργασία εκτελει ϐήµατα µε πολύ αργο ϱυθµό Μια διεργασια έχει καταρρεύσει Κοινό χαρακτηριστικό Η παρουσία της διεργασίας δε γίνεται αισθητή από το υπόλοιπο δικτυο Το κοινό χαρακτηριστικό δυσκολεύει το διαχωρισµό των γεγονότων Ωστόσο ο διαχωρισµός είναι αναγκαιος στις περισσότερες περιπτώσεις Καθώς µια διεργασια δεν ανταποκρίνεται προκύπτει το διληµµα αν αξίζει το υπόλοιπο δίκτυο να την περιµένει Το πρόβληµα έχει τις ϐάσεις του στο συνδιασµό time free και fault vulnerable συστήµατος Μήπως κάνουµε λάθος που µπλέκουµε αυτα τα δύο; Το time free µοντέλο παρέχει ένα αναγκαίο abstraction για τη µοντελοποίηση των περισσοτερων πραγµατικών συστηµάτων Σφάλµατα συµβαίνουν χωρίς να µπορούν να προβλεφθούν ή να αποφευχθούν, σε διάφορα επίπεδα(hardware failures, software bugs..) Στην περίπτωσή µας λοιπόν και στραβός ειναι ο γυαλός (time free συστήµατα) και στραβά αρµενίζουµε (fault vulnerabilities)! Αφού δεν µπορούµε να αποφύγουµε το πρόβληµα, ας προσπαθήσουµε να το λύσουµε!

2 Προσεγγίσεις Ανιχνευτές Σφαλατων Πόσο µας δυσκολεύει αυτή η ; Οι Fischer, Lynch, Paterson έδειξαν ότι το πρόβληµα του Consensus είναι άλυτο για οποιοδήποτε δίκτυο άκοµα και υπό την παρουσία ενός µόνο process failure Λύσεις : Randomization Weaker Problems Strongest Model (Partial Synchrony..) Failure Detectors Σφάλµατα σε ασύγχρονα κατανεµηµένα συστηµατα οδηγούν σε αδυναµία λύσης πολλών προβληµάτων Για να παρακαµφθούν εισάγουµε το module του Failure Detector Εχει την ικανότητα να κάνει εκτιµήσεις για το ποιες διεργασίες έχουν πέσει Οι εκτιµήσεις χαρακτηρίζονται από µετρικές ακρίβειας και πληρότητας Για κάθε πρόβληµα µας ενδιαφέρει ποια η ασθενέστερη κλάση failure detectors που είναι αναγκαια και ικανή για τη λύση του Στην περίπτωση του Consensus είδαµε δυο λύσεις µε διαφορετικούς περιορισµούς και δυνατότητες failure detection Γιατί Failure Detectors Πρακτικά Οι σχετικά ασθενείς Failure Detectors µπορούν να υλοποιηθούν µέσα από κατάλληλα πρωτόκολλα(realistic failure detectors). πχ στατικά και δυναµικά timeouts αποτελούν υλοποίηση συγκεκριµένων κλάσεων failure detectors Θεωρητικά Εύρεση της ασθενέστερης κλάσης που είναι αναγκαια και ικανή για τη λύση ενός προβλήµατος αποκαλύπτει κάτι για το ίδιο το πρόβληµα και ϕαίνεται να χαρακτηριζει τη ϕυση του Απόδειξη ότι µια πολύ ισχυρή και πρακτικά µη υλοποιήσιµη κλάση είναι η ασθενέστερη που χρειάζεται για να λυθεί το πρόβληµα αποτελεί ένα ειδος impossibility result Προβλήµατα ιεραρχούνται µε ϐάση την ασθενέστερη κλάση που είναι αναγκαία και ικανή για τη λύση τους Σύνοψη 9 ης ιάλεξης Προηγούµενο Μάθηµα Προηγούµενο Μάθηµα Ασύγχρονα Κατανεµηµένα Συστήµατα Σταθεροποίηση Σταθεροποιούµενοι Κατανεµηµένοι Αλγόριθµοι Τεχνική Power Supply Σύνοψη Μαθήµατος Σύνοψη Μαθήµατος Βιβλιογραφία Επόµενο Μάθηµα

3 Βιώσιµοι Αλγόριθµοι (Robust Algorithms) Αυτο-σταθεροποιούµενοι Αλγόριθµοι (1) Εως τώρα µελετήσαµε την συµπεριφορά των κατανεµηµένων συστηµάτων όταν οι διεργασίες ή τα κανάλια είναι αξιόπιστα Μελετήσαµε ποια ϑα είναι η πιθανή συµπεριφορά των διεργασιών Οταν οι διεργασίες µπορεί να αποτύχουν Τα κανάλια επικοινωνίας είναι αναξιόπιστα Οι λύσεις για ανοχή σε λάθη είναι εξειδικευµένες Προσπαθούν να διατηρούν το σύστηµα σε µια λειτουργική ( καλή ) Περιορίζουν το πρόβληµα κάνοντας παραδοχές Μερικές ϕορές είναι πολύπλοκοι στην υλοποίηση Οι αυτο-σταθεροποιούµενοι αλγόριθµοι επιτυγχάνουν µια συµπεριφορά ανοχής λαθών µε ένα ϱιζικά διαφορετικό τρόπο Οι ϐιώσιµοι αλγόριθµοι ακολουθούν µια απαισιόδοξη (pessimistic) προσέγγιση Σε κάθε γύρο εκτελούν µια σειρά ελέγχων για να εγγυηθούν την εγκυρότητα των ϐηµάτων Θεωρούν ότι όλα τα πιθανά σφάλµατα που µπορεί να συµβούν, ϑα συµβούν Οι σταθεροποιούµενοι αλγόριθµοι είναι αισιόδοξοι (optimistic) Τα σφάλµατα που εµφανίζονται είναι παροδικά Οι σωστές διεργασίες µπορεί να συµπεριφέρονται ασυνεπώς Αυτο-σταθεροποιούµενοι Αλγόριθµοι (2) Αυτο-σταθεροποιούµενοι Αλγόριθµοι (3) Βασική ιδέα Το σύστηµα έχει την ικανότητα να συγκλίνει µε πεπερασµένο αριθµό ϐηµάτων από οποιαδήποτε (ασταθή) σε µια επιθυµητή (ευσταθή) εχόµαστε ότι τελικά επέρχεται επιδιόρθωση Μπορούµε να εγκαταλείψουµε µοντέλα αποτυχίας και όρια στον αριθµό αποτυχιών Υποθέτουµε ότι όλες οι διεργασίες λειτουργούν σωστά, αλλά η εκτέλεση µπορεί αυθαίρετα να καταστραφεί κατά τη διάρκεια µιας παροδικής αποτυχίας εν χρειάζεται να εξετάζουµε τις λανθασµένες διεργασίες Αγνοούµε το ιστορικό της εκτέλεσης του υπολογισµού Κατά τη διάρκεια της αποτυχίας, η εκτέλεση µε την οποία αρχίσαµε την ανάλυση του αλγόριθµου ϑεωρείται και η αρχική του σωστού αλγόριθµου Ενας αλγόριθµος ονοµάζεται αυτο-σταθεροποιούµενος (ή σταθεροποιούµενος) αν τελικά συµπεριφέρεται σωστά ηλαδή σύµφωνα µε τις προδιαγραφές και ανεξάρτητα από την αρχική του εκτέλεση Η έννοια της σταθεροποίησης προτάθηκε από το Dijkstra Μικρή πρόοδος έγινε µέχρι το τέλος της δεκαετίας του 80 Η κυριότερες έρευνες έγιναν στη δεκαετία του 90, έτσι το ϑέµα ϑεωρείτε ακόµα σχετικά καινούργιο

4 Ορισµοί Οι σταθεροποιούµενοι αλγόριθµοι µοντελοποιούνται ως σύστηµα µετάβασης χωρίς αρχική Για ένα Ϲεύγος καταστάσεων κ, κ, κ κ αν υπάρχει ενέργεια ɛ τέτοια ώστε (κ, ɛ, κ ) trans(a) Ο αλγόριθµος A σταθεροποιείται στην προδιαγραφή Π αν υπάρχει υποσύνολο καταστάσεων L states(a) τέτοιο ώστε Κάθε εκτέλεση που ξεκινά από µια στο L ικανοποιεί την προδιαγραφή Π (ορθότητα) Κάθε εκτέλεση περιέχει µια στο L (σύγκλιση) Αποδεικνύοντας τη σταθεροποίηση (1) Για να δείξουµε κατά πόσο ένας αλγόριθµος είναι σταθεροποιούµενος ϐασιζόµαστε στην χρήση νόµιµων ή ευσταθών εκτελέσεων Αρχικά υποθέτουµε ότι ο αλγόριθµος ξεκινά από µια που ανήκει στο L Θέλουµε να αποδείξουµε ότι υπάρχει µια συνάρτηση σύγκλισης προς µια νόµιµη/ευσταθή εκτέλεση Αποδεικνύοντας τη σταθεροποίηση (1) Για να δείξουµε κατά πόσο ένας αλγόριθµος είναι σταθεροποιούµενος ϐασιζόµαστε στην χρήση νόµιµων ή ευσταθών εκτελέσεων Αρχικά υποθέτουµε ότι ο αλγόριθµος ξεκινά από µια που ανήκει στο L Θέλουµε να αποδείξουµε ότι υπάρχει µια συνάρτηση σύγκλισης προς µια νόµιµη/ευσταθή εκτέλεση Αποδεικνύοντας τη σταθεροποίηση (1) Για να δείξουµε κατά πόσο ένας αλγόριθµος είναι σταθεροποιούµενος ϐασιζόµαστε στην χρήση νόµιµων ή ευσταθών εκτελέσεων Αρχικά υποθέτουµε ότι ο αλγόριθµος ξεκινά από µια που ανήκει στο L Θέλουµε να αποδείξουµε ότι υπάρχει µια συνάρτηση σύγκλισης προς µια νόµιµη/ευσταθή εκτέλεση

5 Αποδεικνύοντας τη σταθεροποίηση (1) Για να δείξουµε κατά πόσο ένας αλγόριθµος είναι σταθεροποιούµενος ϐασιζόµαστε στην χρήση νόµιµων ή ευσταθών εκτελέσεων Αρχικά υποθέτουµε ότι ο αλγόριθµος ξεκινά από µια που ανήκει στο L Θέλουµε να αποδείξουµε ότι υπάρχει µια συνάρτηση σύγκλισης προς µια νόµιµη/ευσταθή εκτέλεση Αποδεικνύοντας τη σταθεροποίηση (1) Για να δείξουµε κατά πόσο ένας αλγόριθµος είναι σταθεροποιούµενος ϐασιζόµαστε στην χρήση νόµιµων ή ευσταθών εκτελέσεων Αρχικά υποθέτουµε ότι ο αλγόριθµος ξεκινά από µια που ανήκει στο L Θέλουµε να αποδείξουµε ότι υπάρχει µια συνάρτηση σύγκλισης προς µια νόµιµη/ευσταθή εκτέλεση Αποδεικνύοντας τη σταθεροποίηση (1) Για να δείξουµε κατά πόσο ένας αλγόριθµος είναι σταθεροποιούµενος ϐασιζόµαστε στην χρήση νόµιµων ή ευσταθών εκτελέσεων Αρχικά υποθέτουµε ότι ο αλγόριθµος ξεκινά από µια που ανήκει στο L Θέλουµε να αποδείξουµε ότι υπάρχει µια συνάρτηση σύγκλισης προς µια νόµιµη/ευσταθή εκτέλεση Αποδεικνύοντας τη σταθεροποίηση (1) Για να δείξουµε κατά πόσο ένας αλγόριθµος είναι σταθεροποιούµενος ϐασιζόµαστε στην χρήση νόµιµων ή ευσταθών εκτελέσεων Αρχικά υποθέτουµε ότι ο αλγόριθµος ξεκινά από µια που ανήκει στο L Θέλουµε να αποδείξουµε ότι υπάρχει µια συνάρτηση σύγκλισης προς µια νόµιµη/ευσταθή εκτέλεση

6 Αποδεικνύοντας τη σταθεροποίηση (2) Ιδιότητες Σταθεροποιούµενων Αλγόριθµων (1) Εποµένως στην απόδειξη λαµβάνουµε υπόψιν µόνο τις εκτελέσεις οι οποίες αρχικά αρχίζουν από το L Λήµµα Εστω ότι Ολες οι τερµατικές καταστάσεις είναι στο L, δηλ. halt(a) L Υπάρχει συνάρτηση f : states(a) W (όπου το W είναι ένα καλά ορισµένο σύνολο) τέτοια ώστε αν κ κ τότε είτε f(κ) > f(κ ) ή κ L Τότε ο A ικανοποιεί τη σύγκλιση Τα πλεονεκτήµατα των σταθεροποιούµενων αλγόριθµων σε σχέση µε τους κλασικούς ϐιώσιµους αλγόριθµους 1. Ανοχή Λαθών προσφέρουν πλήρη και αυτόµατη προστασία έναντι όλων των παροδικών αποτυχιών των διεργασιών καθώς συγκλίνουν στην ϕυσιολογική λειτουργία 2. Αρχικοποίηση δεν υπάρχει ουσιαστική ανάγκη για αρχικοποίηση του αλγόριθµου, παρόλαυτά, η τελική συµπεριφορά είναι εγγυηµένη 3. υναµική Τοπολογία Αν συµβεί µια αλλαγή, ο αλγόριθµος υπολογίζει µια συνάρτηση που εξαρτάται από την τοπολογία και συγκλίνει σε µια νέα λύση Ιδιότητες Σταθεροποιούµενων Αλγόριθµων (2) Αµοιβαίος Αποκλεισµός Τα µειονεκτήµατα των σταθεροποιούµενων αλγόριθµων σε σχέση µε τους κλασικούς ϐιώσιµους αλγόριθµους 1. Αρχικές ασυνέπειες έως ότου ϕτάσουν σε µια ευσταθή, ο αλγόριθµος µπορεί να παράγει κάποιο αναξιόπιστο αποτέλεσµα 2. Υψηλή πολυπλοκότητα λόγω της συνεχόµενης ανταλλαγής πληροφοριών, είναι συνήθως πολύ λιγότερο αποδοτικοί 3. Ελλειψη µεθόδου ανίχνευσης της σταθεροποίησης αδύνατο να γίνει γνωστό µέσα από το σύστηµα πότε έχει διασφαλιστεί µια νόµιµη εκτέλεση, εποµένως οι διεργασίες δεν γνωρίζουν πότε η συµπεριφορά τους έχει γίνει αξιόπιστη Οι διεργασίες διαµοιράζονται ορισµένους κοινούς πόρους Κάποιοι πόροι απαιτούν αποκλειστική πρόσβαση από µία διεργασία µόνο Το µέρος της διεργασίας που χρειάζεται να χειριστεί τον πόρο αποκλειστικά ονοµάζεται κρίσιµο τµήµα (ΚΤ) Απαιτείται συντονισµένη πρόσβαση Κεντρικοποιηµένα Συστήµατα Χρήση semaphores, συντονιστών... Το πρόβληµα του Αµοιβαίου Αποκλεισµού ορίστηκε για πρώτη ϕορά από τον Edsger Dijkstra το 1965

7 Απαραίτητες ιδιότητες Ελάχιστες Υποθέσεις Ασφάλεια (safety) -- µια µόνο από τις διεργασίες µπορεί να αποκτήσει πρόσβαση στον κοινό πόρο σε ένα ορισµένο χρονικό διάστηµα Βιωσιµότητα (liveness) -- αν µια διεργασία επιθυµεί να εισέλθει στο κρίσιµο τµήµα τελικά ϑα το καταφέρει αν ο κοινός πόρος δεν χρησιµοποιείται, τότε όποια διεργασία Ϲητήσει πρόσβαση ϑα πρέπει να την αποκτήσει σε πεπερασµένο χρονικό διάστηµα ιάταξη (ordering) -- η άδεια εισόδου στο κρίσιµο τµήµα πρέπει να παραχωρηθεί σύµφωνα µε τη σχέση συνέβη-πριν: οι αιτήσεις των διεργασιών εξυπηρετούνται µε τη σειρά που έχουν εκδοθεί Οι διεργασίες έχουν µοναδικές ταυτότητες Κάθε διεργασία έχει µέρη του κώδικα της µε κρίσιµα τµήµατα Για ευκολία οι διεργασίες ανταγωνίζονται για ένα µόνο πόρο εν υπάρχει κάποιο καθολικό ϱολόι Οι διεργασίες επικοινωνούν µε την ανταλλαγή µηνυµάτων Υποθέτουµε ότι τα κανάλια είναι αξιόπιστα, FIFO Το δίκτυο είναι δακτύλιος Κριτήρια Απόδοσης Σταθεροποιούµενος Αλγόριθµος του Dijkstra (1) 1. Ορθότητα (Correctness) οι συνθήκες ασφάλειας, ϐιωσιµότητας και διάταξης ισχύουν 2. Πολυπλοκότητα Επικοινωνίας (Communication Complexity) επεξεργασία των αιτήσεων ελαχιστοποιώντας τον αριθµό µηνυµάτων 3. Απόκριση (Latency) ελαχιστοποίηση της καθυστέρησης εισόδου στο κρίσιµο τµήµα 1. Κάθε διεργασία u διατηρεί µια µεταβλητή σu {0, 1,..., K 1} το K είναι ένα ακέραιος µεγαλύτερος του n 2. Η διεργασία u µπορεί να διαβάσει την µεταβλητή της u 1 και η διεργασία u0 της un 1 κατευθυνόµενος δακτύλιος 3. Ολες οι διεργασίες είναι ίσες, εκτός από την διεργασία u0 4. Η διεργασία u0 έχει το προνόµιο αν σ0 = σn 1 5. Η διεργασία u 0 έχει το προνόµιο αν σu σu 1

8 Σταθεροποιούµενος Αλγόριθµος του Dijkstra (2) 1. Μια διεργασία που έχει το προνόµιο µπορεί να αλλάξει την της αφού ολοκληρώσει την εκτέλεση του κρίσιµου τµήµατος 2. Η αλλαγή ς µιας διεργασίας προκαλεί πάντα την απώλεια του προνοµίου της 3. Η διεργασία u 0 µπορεί να εξισώσει τα σu, σu 1 ϑέτοντάς σu = σu 1 Σταθεροποιούµενος Αλγόριθµος του Dijkstra (3) Αλγόριθµος του Dijkstra Κάθε διεργασία u διατηρεί µια µεταβλητή σu {0, 1,..., K 1}. Η διεργασία u0 αποκτά το δικαίωµα να εισέλθει στο ΚΤ αν σ0 = σn 1. Κάθε άλλη διεργασία u αποκτά το δικαίωµα να εισέλθει στο ΚΤ αν σu σu 1. Η διεργασία που έχει το δικαίωµα µπορεί να αλλάξει την της και για να το παραχωρήσει πρέπει να ϑέσει: { σu 1 αν u 0 σu = σn 1 mod K αν u = 0 αφού είναι ενεργή ϑα ισχύει σu σu 1 4. Η διεργασία u0 µπορεί να κάνει το σ0 να µην είναι ίσο µε το σn 1 ϑέτοντας σ0 = σn 1 mod K αφού είναι αρχικά ίσα Αρχική Κατάσταση u n 2 n 1 σu Σταθεροποιούµενος Αλγόριθµος του Dijkstra (3) Αλγόριθµος του Dijkstra Κάθε διεργασία u διατηρεί µια µεταβλητή σu {0, 1,..., K 1}. Η διεργασία u0 αποκτά το δικαίωµα να εισέλθει στο ΚΤ αν σ0 = σn 1. Κάθε άλλη διεργασία u αποκτά το δικαίωµα να εισέλθει στο ΚΤ αν σu σu 1. Η διεργασία που έχει το δικαίωµα µπορεί να αλλάξει την της και για να το παραχωρήσει πρέπει να ϑέσει: { σu 1 αν u 0 σu = σn 1 mod K αν u = 0 Σταθεροποιούµενος Αλγόριθµος του Dijkstra (3) Αλγόριθµος του Dijkstra Κάθε διεργασία u διατηρεί µια µεταβλητή σu {0, 1,..., K 1}. Η διεργασία u0 αποκτά το δικαίωµα να εισέλθει στο ΚΤ αν σ0 = σn 1. Κάθε άλλη διεργασία u αποκτά το δικαίωµα να εισέλθει στο ΚΤ αν σu σu 1. Η διεργασία που έχει το δικαίωµα µπορεί να αλλάξει την της και για να το παραχωρήσει πρέπει να ϑέσει: { σu 1 αν u 0 σu = σn 1 mod K αν u = 0 Ενδιάµεσες Καταστάσεις Ενδιάµεσες Καταστάσεις u n 2 n 1 u n 2 n 1 σu σu

9 Σταθεροποιούµενος Αλγόριθµος του Dijkstra (3) Αλγόριθµος του Dijkstra Κάθε διεργασία u διατηρεί µια µεταβλητή σu {0, 1,..., K 1}. Η διεργασία u0 αποκτά το δικαίωµα να εισέλθει στο ΚΤ αν σ0 = σn 1. Κάθε άλλη διεργασία u αποκτά το δικαίωµα να εισέλθει στο ΚΤ αν σu σu 1. Η διεργασία που έχει το δικαίωµα µπορεί να αλλάξει την της και για να το παραχωρήσει πρέπει να ϑέσει: { σu 1 αν u 0 σu = σn 1 mod K αν u = 0 Σταθεροποιούµενος Αλγόριθµος του Dijkstra (3) Αλγόριθµος του Dijkstra Κάθε διεργασία u διατηρεί µια µεταβλητή σu {0, 1,..., K 1}. Η διεργασία u0 αποκτά το δικαίωµα να εισέλθει στο ΚΤ αν σ0 = σn 1. Κάθε άλλη διεργασία u αποκτά το δικαίωµα να εισέλθει στο ΚΤ αν σu σu 1. Η διεργασία που έχει το δικαίωµα µπορεί να αλλάξει την της και για να το παραχωρήσει πρέπει να ϑέσει: { σu 1 αν u 0 σu = σn 1 mod K αν u = 0 Ενδιάµεσες Καταστάσεις Ενδιάµεσες Καταστάσεις u n 2 n 1 u n 2 n 1 σu σu Σταθεροποιούµενος Αλγόριθµος του Dijkstra (3) Αλγόριθµος του Dijkstra Κάθε διεργασία u διατηρεί µια µεταβλητή σu {0, 1,..., K 1}. Η διεργασία u0 αποκτά το δικαίωµα να εισέλθει στο ΚΤ αν σ0 = σn 1. Κάθε άλλη διεργασία u αποκτά το δικαίωµα να εισέλθει στο ΚΤ αν σu σu 1. Η διεργασία που έχει το δικαίωµα µπορεί να αλλάξει την της και για να το παραχωρήσει πρέπει να ϑέσει: { σu 1 αν u 0 σu = σn 1 mod K αν u = 0 Σταθεροποιούµενος Αλγόριθµος του Dijkstra (3) Αλγόριθµος του Dijkstra Κάθε διεργασία u διατηρεί µια µεταβλητή σu {0, 1,..., K 1}. Η διεργασία u0 αποκτά το δικαίωµα να εισέλθει στο ΚΤ αν σ0 = σn 1. Κάθε άλλη διεργασία u αποκτά το δικαίωµα να εισέλθει στο ΚΤ αν σu σu 1. Η διεργασία που έχει το δικαίωµα µπορεί να αλλάξει την της και για να το παραχωρήσει πρέπει να ϑέσει: { σu 1 αν u 0 σu = σn 1 mod K αν u = 0 Ενδιάµεσες Καταστάσεις Ενδιάµεσες Καταστάσεις u n 2 n 1 u n 2 n 1 σu σu

10 Σταθεροποιούµενος Αλγόριθµος του Dijkstra (3) Αλγόριθµος του Dijkstra Κάθε διεργασία u διατηρεί µια µεταβλητή σu {0, 1,..., K 1}. Η διεργασία u0 αποκτά το δικαίωµα να εισέλθει στο ΚΤ αν σ0 = σn 1. Κάθε άλλη διεργασία u αποκτά το δικαίωµα να εισέλθει στο ΚΤ αν σu σu 1. Η διεργασία που έχει το δικαίωµα µπορεί να αλλάξει την της και για να το παραχωρήσει πρέπει να ϑέσει: { σu 1 αν u 0 σu = σn 1 mod K αν u = 0 Σταθεροποιούµενος Αλγόριθµος του Dijkstra (3) Αλγόριθµος του Dijkstra Κάθε διεργασία u διατηρεί µια µεταβλητή σu {0, 1,..., K 1}. Η διεργασία u0 αποκτά το δικαίωµα να εισέλθει στο ΚΤ αν σ0 = σn 1. Κάθε άλλη διεργασία u αποκτά το δικαίωµα να εισέλθει στο ΚΤ αν σu σu 1. Η διεργασία που έχει το δικαίωµα µπορεί να αλλάξει την της και για να το παραχωρήσει πρέπει να ϑέσει: { σu 1 αν u 0 σu = σn 1 mod K αν u = 0 Ενδιάµεσες Καταστάσεις Ενδιάµεσες Καταστάσεις u n 2 n 1 u n 2 n 1 σu σu Σταθεροποιούµενος Αλγόριθµος του Dijkstra (3) Αλγόριθµος του Dijkstra Κάθε διεργασία u διατηρεί µια µεταβλητή σu {0, 1,..., K 1}. Η διεργασία u0 αποκτά το δικαίωµα να εισέλθει στο ΚΤ αν σ0 = σn 1. Κάθε άλλη διεργασία u αποκτά το δικαίωµα να εισέλθει στο ΚΤ αν σu σu 1. Η διεργασία που έχει το δικαίωµα µπορεί να αλλάξει την της και για να το παραχωρήσει πρέπει να ϑέσει: { σu 1 αν u 0 σu = σn 1 mod K αν u = 0 Ενδιάµεσες Καταστάσεις u σu n 2 n Ιδιότητες Αλγόριθµου του Dijkstra (1) Τουλάχιστον µια διεργασία έχει δικαίωµα Αν καµία άλλη, σίγουρα η u0 Κανένα ϐήµα δεν αυξάνει τον αριθµό των διεργασιών µε δικαίωµα Αυτή που κάνει το ϐήµα χάνει το δικαίωµα Η µόνη που µπορεί να ωφεληθεί είναι η επόµενη L = {κ : το δικαίωµα το έχει µία διεργασία} Αν είµαστε στο L, παραµένουµε εκεί και το δικαίωµα κάνει κύκλο (ορθότητα) f = u V (n u) Οπου V = {u : u 1 και έχει το δικαίωµα} Η f µειώνεται σε κάθε ϐήµα της u αν u 0

11 Ιδιότητες Αλγόριθµου του Dijkstra (2) Αναζήτηση κατά Εύρος Το πολύ n(n 1) ϐήµατα γίνονται χωρίς ϐήµα της 2 u0 Η αρχική κ0 µπορεί να περιέχει το πολύ n διαφορετικές τιµές Η u0 µετά από το πολύ n ϐήµατα της ϑα έχει τιµή k που δεν έχουν οι άλλες, οι οποίες απλώς αντιγράφουν τιµές Το k ϑα διασχίσει το δακτύλιο και πριν το επόµενο ϐήµα της u0 ϑα υπάρχει µόνο µία διεργασία µε δικαίωµα σ1 = σ2 =... = σn 1 = σ0 = k Σύνολο ϐηµάτων για σύγκλιση είναι O(n 3 ) πιο προσεκτικά O(n 2 ) Αναζήτηση κατά Εύρος Σε ένα ασύγχρονο δίκτυο G, η αναζήτηση κατά εύρος απαιτεί την κατασκευή ενός επικαλυπτικού δέντρου T(G), µε ϱίζα την διεργασία u0 όπου οι κορυφές που είναι σε απόσταση d από την u0 στο G, ϐρίσκονται στο επίπεδο d στο δέντρο T(G). Ο αυτο-σταθεροποιούµενος αλγόριθµος πρέπει να ικανοποιεί Σε κάθε ασταθή υπάρχει τουλάχιστον ένας ενεργός κόµβος Σε µια ευσταθή κανένας κόµβος δεν είναι ενεργός, δηλ. το σύστηµα ϐρίσκεται σε αδιέξοδο Για όλες τις αρχικές καταστάσεις και για όλους τους τρόπους επιλογής ενός ενεργού κόµβου, το σύστηµα εξασφαλίζει την σύγκλιση σε µια ευσταθή σε πεπερασµένο αριθµό ϐηµάτων Ο Αλγόριθµος StabBFS Αλγόριθµος StabBFS Κάθε διεργασία u διατηρεί µια µεταβλητή pu όπου αποθηκεύει τον γονέα της στο δέντρο και µια µεταβλητή du όπου αποθηκεύει την απόσταση της από την u0 (σύµφωνα µε τις τρέχουσες συνθήκες), αρχικά αν u u0 : pu =, du = αλλιώς αν u = u0 : pu = u0, du = 0. Σε κάθε γύρο, κάθε διεργασία u στέλνει την τιµή du στους γείτονες της. Στην συνέχεια, ελέγχει τις τιµές που έλαβε και αν υπάρχει διεργασία v τέτοια ώστε dv < du, ϑέτει du = dv + 1 και την µεταβλητή γονέας µε την ταυτότητα της v. Η u0 είναι η ϱίζα του δέντρου εκ των προτέρων γνωστή Εστω n το πλήθος των διεργασιών Εστω d(u) η απόσταση της u0 από την u στο G Η απόσταση ονοµάζεται επίσης και ύψος εν είναι απαραίτητο οι διεργασίες να στέλνουν την τιµή d κάθε γύρο Ορισµοί Για το ύψος ισχύει 0 d(u) n 1 Σε µια ασταθή κάθε κόµβος εκτός από την ϱίζα u0 µπορεί να έχει οποιοδήποτε ύψος µεταξύ 0 και n 1 Σε µια ασταθή κάθε κόµβος εκτός από την ϱίζα u0 µπορεί να ϑεωρεί ως γονέα του στο δέντρο οποιοδήποτε κόµβο εκτός της u0 Για κάθε κόµβο ορίζουµε το σύνολο Su ως εξής Su = {v : v = nbrsu du = mini nbrsu{di}} το σύνολο Su περιέχει όλους τους γειτονικούς κόµβους της u µε ελάχιστο ύψος µπορεί να περιέχει περισσότερους από έναν κόµβους αλλά δεν είναι ποτέ άδειο Ολοι οι κόµβοι στο Su έχουν το ίδιο ύψος d(su)

12 Ευσταθής (1) Ευσταθής (2) Ορίζουµε ως ευσταθή κάθε όπου το ακόλουθο καθολικό κατηγόρηµα είναι αληθές u u0 : du = d (Su) + 1 u Su Ο όρος u Su σηµαίνει ότι η µεταβλητή γονέας για την διεργασία u περιέχει έναν γειτονικό κόµβο της u Λήµµα 1 Για κάθε συνεκτικό συµµετρικό γράφηµα, οι παραπάνω ευσταθής εκφράζει ένα δένδρο αναζήτησης κατά εύρος µε ϱίζα την διεργασία u0 Η ϱίζα του δέντρου u0 έχει σταθερό ύψος 0 Εποµένως σε µια ευσταθή, όλοι οι γειτονικοί κόµβοι της u0 πρέπει να έχουν ύψος 1 Αντίστοιχα, οι γειτονικοί κόµβοι των κόµβων που έχουν ύψος 1 πρέπει να έχουν ύψος 2 Και η µεταβλητή γονέας δείχνει σε ένα κόµβο µε ύψος 1 Επεκτείνοντας το επιχείρηµα για όλους τους κόµβους, είναι εµφανές ότι όλες οι µεταβλητές γονέας και τα ύψη των κόµβων σε µια ευσταθή ορίζουν ένα δένδρο αναζήτησης κατά εύρος µε ϱίζα την u0 Με αυτόν τον τρόπο δείχνουµε ότι το Λήµµα 1 ισχύει Ο στόχος του αλγόριθµου είναι να επαναφέρει το σύστηµα σε µια ευσταθή Λειτουργία Αλγόριθµου Βασική ιδέα: όταν το σύστηµα ϐρίσκεται σε µια ασταθή, τουλάχιστον ένας κόµβος είναι σε ϑέση να το αντιληφθεί και να εκτελέσει κάποιες διορθωτικές κινήσεις Ο αλγόριθµος εφαρµόζει έναν απλό οµοιόµορφο κανόνα για όλους τους κόµβους του δικτύου εκτός από την ϱίζα Ο κανόνας αποτελείται από δύο µέρη: έλεγχος και ενέργεια Ο έλεγχος είναι µια λογική συνάρτηση που ϐασίζεται στο ύψος του κόµβου και το ύψος των γειτονικών κόµβων Η ενέργεια οδηγεί τον κόµβο σε µια τοπικά ευσταθή, αλλάζοντας το ύψος του κόµβου και/ή την µεταβλητή γονέας Η διεργασία r είναι η ϱίζα Κάθε κόµβος έχει ένα διακριτικό και το ύψος του στο δένδρο Η κατεύθυνση της ακµής απεικονίζει την µεταβλητή γονέας Σε κάθε γύρο, ο ενεργός κόµβος είναι υπογραµµισµένος Ο κόµβος r δεν γίνεται ποτέ ενεργός Αρχικά ο κόµβος e γίνεται ενεργός u u0 d (Su) n 1 {du d (Su) + 1 pu Su} = du = d (Su) + 1; pu = v, v Su Υπάρχουν πολλές διαφορετικές εκτελέσεις για να καταλήξουµε σε µια ευσταθή ξεκινώντας από την ίδια αρχική Σε αυτό το παράδειγµα, ο αλγόριθµος συγκλίνει σε 6 ϐήµατα

13 Η διεργασία r είναι η ϱίζα Κάθε κόµβος έχει ένα διακριτικό και το ύψος του στο δένδρο Η κατεύθυνση της ακµής απεικονίζει την µεταβλητή γονέας Σε κάθε γύρο, ο ενεργός κόµβος είναι υπογραµµισµένος Ο κόµβος r δεν γίνεται ποτέ ενεργός Αρχικά ο κόµβος e γίνεται ενεργός Η διεργασία r είναι η ϱίζα Κάθε κόµβος έχει ένα διακριτικό και το ύψος του στο δένδρο Η κατεύθυνση της ακµής απεικονίζει την µεταβλητή γονέας Σε κάθε γύρο, ο ενεργός κόµβος είναι υπογραµµισµένος Ο κόµβος r δεν γίνεται ποτέ ενεργός Αρχικά ο κόµβος e γίνεται ενεργός Υπάρχουν πολλές διαφορετικές εκτελέσεις για να καταλήξουµε σε µια ευσταθή ξεκινώντας από την ίδια αρχική Σε αυτό το παράδειγµα, ο αλγόριθµος συγκλίνει σε 6 ϐήµατα Υπάρχουν πολλές διαφορετικές εκτελέσεις για να καταλήξουµε σε µια ευσταθή ξεκινώντας από την ίδια αρχική Σε αυτό το παράδειγµα, ο αλγόριθµος συγκλίνει σε 6 ϐήµατα Η διεργασία r είναι η ϱίζα Κάθε κόµβος έχει ένα διακριτικό και το ύψος του στο δένδρο Η κατεύθυνση της ακµής απεικονίζει την µεταβλητή γονέας Σε κάθε γύρο, ο ενεργός κόµβος είναι υπογραµµισµένος Ο κόµβος r δεν γίνεται ποτέ ενεργός Αρχικά ο κόµβος e γίνεται ενεργός Η διεργασία r είναι η ϱίζα Κάθε κόµβος έχει ένα διακριτικό και το ύψος του στο δένδρο Η κατεύθυνση της ακµής απεικονίζει την µεταβλητή γονέας Σε κάθε γύρο, ο ενεργός κόµβος είναι υπογραµµισµένος Ο κόµβος r δεν γίνεται ποτέ ενεργός Αρχικά ο κόµβος e γίνεται ενεργός Υπάρχουν πολλές διαφορετικές εκτελέσεις για να καταλήξουµε σε µια ευσταθή ξεκινώντας από την ίδια αρχική Σε αυτό το παράδειγµα, ο αλγόριθµος συγκλίνει σε 6 ϐήµατα Υπάρχουν πολλές διαφορετικές εκτελέσεις για να καταλήξουµε σε µια ευσταθή ξεκινώντας από την ίδια αρχική Σε αυτό το παράδειγµα, ο αλγόριθµος συγκλίνει σε 6 ϐήµατα

14 Η διεργασία r είναι η ϱίζα Κάθε κόµβος έχει ένα διακριτικό και το ύψος του στο δένδρο Η κατεύθυνση της ακµής απεικονίζει την µεταβλητή γονέας Σε κάθε γύρο, ο ενεργός κόµβος είναι υπογραµµισµένος Ο κόµβος r δεν γίνεται ποτέ ενεργός Αρχικά ο κόµβος e γίνεται ενεργός Η διεργασία r είναι η ϱίζα Κάθε κόµβος έχει ένα διακριτικό και το ύψος του στο δένδρο Η κατεύθυνση της ακµής απεικονίζει την µεταβλητή γονέας Σε κάθε γύρο, ο ενεργός κόµβος είναι υπογραµµισµένος Ο κόµβος r δεν γίνεται ποτέ ενεργός Αρχικά ο κόµβος e γίνεται ενεργός Υπάρχουν πολλές διαφορετικές εκτελέσεις για να καταλήξουµε σε µια ευσταθή ξεκινώντας από την ίδια αρχική Σε αυτό το παράδειγµα, ο αλγόριθµος συγκλίνει σε 6 ϐήµατα Υπάρχουν πολλές διαφορετικές εκτελέσεις για να καταλήξουµε σε µια ευσταθή ξεκινώντας από την ίδια αρχική Σε αυτό το παράδειγµα, ο αλγόριθµος συγκλίνει σε 6 ϐήµατα Απόδειξη Ορθότητας (1) Η διεργασία r είναι η ϱίζα Κάθε κόµβος έχει ένα διακριτικό και το ύψος του στο δένδρο Η κατεύθυνση της ακµής απεικονίζει την µεταβλητή γονέας Σε κάθε γύρο, ο ενεργός κόµβος είναι υπογραµµισµένος Ο κόµβος r δεν γίνεται ποτέ ενεργός Αρχικά ο κόµβος e γίνεται ενεργός Υπάρχουν πολλές διαφορετικές εκτελέσεις για να καταλήξουµε σε µια ευσταθή ξεκινώντας από την ίδια αρχική Σε αυτό το παράδειγµα, ο αλγόριθµος συγκλίνει σε 6 ϐήµατα Ο στόχος µας είναι να αποδείξουµε τα τρία κριτήρια που ϑέσαµε αρχικά Λήµµα 2 Σε κάθε ασταθή υπάρχει τουλάχιστον ένας ενεργός κόµβος Σε µια ευσταθή κανένας κόµβος δεν είναι ενεργός, δηλ. το σύστηµα ϐρίσκεται σε αδιέξοδο Για όλες τις αρχικές καταστάσεις και για όλους τους τρόπους επιλογής ενός ενεργού κόµβου, το σύστηµα εξασφαλίζει την σύγκλιση σε µια ευσταθή σε πεπερασµένο αριθµό ϐηµάτων Σε µια ευσταθή κανένας κόµβος δεν είναι ενεργός Προκύπτει από τον κανόνα

15 Απόδειξη Ορθότητας (2) Λήµµα 3 Σε κάθε ασταθή υπάρχει τουλάχιστον ένας ενεργός κόµβος, δηλ. σε κάθε ασταθή είναι εγγυηµένο ότι κάποιος κόµβος ϑα εκτελέσει µια ενέργεια Αποδεικνύουµε το λήµµα µε εις άτοπον απαγωγή Εστω ότι υπάρχει µια ασταθή όπου κανένας κόµβος δεν είναι ενεργός Τότε υπάρχει ένας κόµβος u u0 τέτοιος ώστε ισχύει ότι du d (Su) + 1 ή pu Su ή και τα δυο Τότε το Su πρέπει να έχει ύψος n 1 αλλιώς ο κόµβος u ϑα γινόταν ενεργός λόγο του κανόνα Ας ϑεωρήσουµε τώρα όλους τους γειτονικοί κόµβοι του u0 (που έχει ύψος 0) Αυτοί οι κόµβοι έχουν ύψος 1 Απόδειξη Ορθότητας (3) Στην συνέχεια ϑεωρούµε όλους τους γειτονικούς κόµβους αυτών των κόµβων Αυτοί οι κόµβοι έχουν ύψος 2 Συνεχίζουµε κατά αυτόν τον τρόπο έως ότου εξαντλήσουµε όλους τους κόµβους του δικτύου Στην χειρότερη περίπτωση ένας κόµβος v µπορεί να έχει ύψος n 1... το γράφηµα είναι γραµµή / αλυσίδα µήκους n 1 Ακόµα και τότε το Su είναι αυστηρά µικρότερο του n 1 Εποµένως όταν κανένας κόµβος δεν είναι ενεργός, δεν µπορούµε να εντοπίσουµε έναν κόµβο u που να ικανοποιεί την αρχική µας υπόθεση Με αυτόν τον τρόπο δείχνουµε ότι το Λήµµα 3 ισχύει Απόδειξη Ορθότητας (4) Λήµµα 4 Ανεξαρτήτως της αρχικής ς και ανεξαρτήτως της σειράς ενεργοποίησης των κόµβων, το σύστηµα είναι εγγυηµένο ότι ϑα καταλήξει σε µια ευσταθή σε πεπερασµένο αριθµό ϐηµάτων Εφόσον το πλήθος των καταστάσεων είναι πεπερασµένο, αρκεί να δείξουµε ότι ξεκινώντας από οποιαδήποτε αρχική ασταθή, το σύστηµα δεν µπορεί να επανέρθει στην ίδια αρχική Αποδεικνύουµε το λήµµα µε εις άτοπον απαγωγή Εστω η x-οστή και y-οστή είναι πανοµοιότυπες και x y Η x-οστή είναι η που ϐρίσκεται το σύστηµα µετά από x ενέργειες, ξεκινώντας από την αρχική ασταθή Απόδειξη Ορθότητας (5) Επίσης υποθέτουµε ότι στην x-οστή ο κόµβος u (µπορεί και άλλοι κόµβοι) είναι ενεργός Αρα ο u ϑα εκτελέσει την ενέργεια x + 1 Εξετάζουµε αναλυτικά τις πιθανές ενέργειες που µπορεί να εκτελέσει ο u 1. Ο u µειώνει το ύψος κατά k 1 2. Ο u αυξάνει το ύψος κατά k 1 Και στις δύο περιπτώσεις επιχειρηµατολογούµε µε αντίστοιχο τρόπο Ας εξετάσουµε την 1η περίπτωση Πρέπει να υπάρχει κάποιος κόµβος v γειτονικός στον u µε ύψος du k 1 που οδήγησε τον u να κάνει µια ενέργεια Λειτουργούµε επαγωγικά αν υπάρχει ένας κόµβος i µε ύψος di που οδήγησε κάποιον κόµβο να κάνει µια ενέργεια

16 Απόδειξη Ορθότητας (6) Τότε πρέπει να υπάρχει ένας κόµβος j µε ύψος di 1 ή µικρότερο που οδήγησε τον i να κάνει µια ενέργεια Αρα πρέπει να υπάρχει και κάποιος άλλος κόµβος h γειτονικός του i που άλλαξε το ύψος του σε di + 1 Εστω ότι αυτή είναι η ενέργεια m όπου x < m < y Υπάρχουν δύο υπο-περιπτώσεις 1. Ο i ενεργοποιήθηκε, µεταξύ της ς x και m 2. Ο i δεν ενεργοποιήθηκε µεταξύ της ς x και m Στην πρώτη περίπτωση δείχνουµε ότι πρέπει να υπάρχει κάποιος κόµβος j στην δεύτερη περίπτωση ότι υπάρχει κάποιος κόµβος h Ακολουθώντας τα ϐήµατα της επαγωγής καταλήγουµε σε µια όπου κάποιος κόµβος που ενεργοποιεί έναν γειτονικό κόµβο, έχει αρνητικό ύψος... Τεχνική Power-supply Η τεχνική power-supply είναι ιδιαίτερα απλή και αρκετά γενική για να αναπτύξουµε αυτο-σταθεροποιούµενους αλγόριθµους Μπορούµε να σχεδιάσουµε αλγόριθµους για διαφορετικά προβλήµατα Εκλογή αρχηγού Αναζήτηση κατά εύρος Αναζήτηση κατά ϐάθος Οι αλγόριθµοι που ϐασίζονται στην τεχνική power-supply σταθεροποιούνται σε O(n) ϐήµατα εν απαιτείτε κάποια γνώση στην τοπολογία του δικτύου ή για το πλήθος των διεργασιών Ο αλγόριθµος που µελετήσαµε για το πρόβληµα της Αναζήτησης κατά Εύρος, µπορεί να περιγραφεί µε την τεχνική power-supply Ορίστηκε από τους Afek και Bremler το 1997 (SODA) Αυτοσταθεροποιούµενη Εκλογή Αρχηγού (1) Εφαρµόζουµε την τεχνική power-supply για να αναπτύξουµε έναν αυτο-σταθεροποιούµενο αλγόριθµο για την εκλογή αρχηγού εν απαιτεί καµία γνώση για το µέγεθος του δικτύου, την διάµετρο... Ο αλγόριθµος σταθεροποιείται σε O(n) ϐήµατα Ο αλγόριθµος εκλέγει ως αρχηγό την διεργασία µε την µικρότερη ταυτότητα Πως µπορούµε να ξεχωρίσουµε την διεργασία µε την µικρότερη ταυτότητα από άλλες διεργασίες που δηλώνουν ψεύτικες ταυτότητες ; Οι ψεύτικες ταυτότητες που µπορεί να προκύψουν απορρίπτονται από το σύστηµα χρησιµοποιώντας δύο απλούς κανόνες Κάθε κόµβος υπολογίζει την απόσταση του από τον κόµβο που ϑεωρεί αρχηγό Αυτοσταθεροποιούµενη Εκλογή Αρχηγού (2) Περιοδικά οι κόµβοι ελέγχουν την απόσταση τους µε τους γονείς τους ο γονέας είναι ο κόµβος µέσω του οποίου έµαθε για τον κόµβο που ϑεωρεί αρχηγό Οµως αυτό δεν αρκεί, καθότι µπορεί να κυκλοφορεί µια ψεύτικη ταυτότητα σε κάποιο κύκλο που έχει σχηµατιστεί, αυξάνοντας συνεχώς την απόσταση Υπάρχουν πολλοί τρόποι να αποφύγεις αυτό το πρόβληµα, π.χ. ορίζοντας ένα δένδρο, χρησιµοποιώντας κάποιο αλγόριθµο επανεκκίνησης κλπ. Η τεχνική power-supply έχει το πλεονέκτηµα ότι δουλεύει σε οποιοδήποτε δίκτυο, χωρία καµία γνώση του δικτύου Η ενέργεια είναι µια ϐασική ιδέα ένας νόµιµος αρχηγός γίνεται πηγή ενέργειας που διοχετεύει ενέργεια στο δίκτυο Οι ψεύτικοι αρχηγοί δεν µπορούν να παράγουν ενέργεια

17 Αυτοσταθεροποιούµενη Εκλογή Αρχηγού (3) Αυτοσταθεροποιούµενη Εκλογή Αρχηγού (4) Για να ϑεωρήσει κάποιος κόµβος έναν κόµβο ως αρχηγό, πρέπει να καταναλώσει ένα σταθερό ποσό ενέργειας Εποµένως οι ψεύτικες ταυτότητες που δεν συνδέονται µε κάποια πηγή ενέργειας, τελικά ϑα εξαφανιστούν Η ϐασική ιδέα λειτουργεί ως εξής: Ενας κόµβος u ϑεωρεί ως αρχηγό έναν νέο κόµβο umin αν λάβει ένα µήνυµα µε την ταυτότητα umin για δύο διαδοχικούς γύρους από τον ίδιο γείτονα και δεν λάβει κανένα άλλο µήνυµα µε µικρότερη ταυτότητα από κάποιον άλλο γείτονα Παρόλα αυτά, όταν ο u ϑεωρεί τον κόµβο v ως αρχηγό, δεν λάβει ένα µήνυµα µε την ταυτότητα v σε κάποιον γύρο, τότε αυτόµατα ο u αυτοανακηρύσσεται αρχηγός Για να εφαρµόσουµε την ιδέα αυτή σε ασύγχρονα κατανεµηµένα συστήµατα πρέπει να λάβουµε υπόψιν τις καθυστερήσεις που µπορεί να υπάρχουν κατά την παράδοση µηνυµάτων Κάθε µήνυµα περιέχει την ταυτότητα της διεργασίας που αυτοανακηρύχθηκε αρχηγός και την απόσταση d από την διεργασία Κανόνας 1: Για να παραµείνει µια διεργασία υπό την ηγεσία µιας διεργασίας v µε απόσταση dv > 0 ϑα πρέπει να λαµβάνει σε κάθε γύρο ένα µήνυµα µε ταυτότητα v και απόσταση d 1 Ο κανόνας εξασφαλίζει ότι µια διεργασία που είναι σε κάποιο γύρο υπό την ηγεσία µιας διεργασίας µε ψεύτικη ταυτότητα και µε την µικρότερη απόσταση (που πρέπει να είναι αναγκαστικά µεγαλύτερη του µηδενός) ϑα εγκαταλείψει τον ψεύτικο αρχηγό τον επόµενο γύρο Εποµένως εξασφαλίζει ότι η παράµετρος της ελάχιστη απόστασης που σχετίζεται µε την ψεύτικη ταυτότητα ϑα αυξάνει κατά 1 σε κάθε γύρο Αυτοσταθεροποιούµενη Εκλογή Αρχηγού (5) Ψευδοκώδικας Αλγόριθµου Κανόνας 2: Για να ϑεωρήσει για πρώτη ϕορά την διεργασία v ως αρχηγό µε απόσταση dv, ϑα πρέπει το µήνυµα < v, dv 1 > να έχει την µικρότερη ταυτότητα και να λάβει το ίδιο µήνυµα για δύο συνεχόµενους γύρους Εξασφαλίζει ότι η παράµετρος της µέγιστης απόστασης που σχετίζεται µε µια ψεύτικη ταυτότητα δεν µπορεί να αυξηθεί κατά ένα κάθε γύρο αλλά κάθε δύο γύρους εφόσον καταναλώνει την ενέργεια του αρχηγού και οι ψεύτικοι αρχηγοί δεν παράγουν ενέργεια Αν σε µια αρχικά ασταθή το σύνολο των διαφορετικών αποστάσεων που συνδέονται µε µια ψεύτικη ταυτότητα είναι d τότε το πολύ σε 2 d γύρους, οι ψεύτικες ταυτότητες ϑα εξαφανιστούν από το δίκτυο (όλη η ενέργεια ϑα έχει καταναλωθεί) Οταν καταναλωθούν όλες οι ψεύτικες ταυτότητες, η διεργασία µε την µικρότερη ταυτότητα ϑα ανακηρυχθεί αρχηγός

18 Ορθότητα Αλγορίθµου (1) Ορθότητα Αλγορίθµου (2) Για να αποδείξουµε την ορθότητα ϑεωρούµε µια εκτέλεση που ξεκινά από µια ακαθόριστη και δεν προκύπτουν περαιτέρω σφάλµατα ή αλλαγές στην τοπολογία Προφανώς, δύο γύρους µετά την αρχική, οι µεταβλητές (new, prev και leader) όλων των κόµβων διατηρούν τις τιµές που είχαν σταλεί από τους γείτονες Αρχικά δείχνουµε ότι σε O(n) γύρους, όλες οι ψεύτικες ταυτότητες εξαφανίζονται (καταναλώνονται) Στην συνέχεια, δείχνουµε ότι µετά από O(δ) γύρους από την εξαφάνιση των ψεύτικων ταυτοτήτων, η διεργασία µε την µικρότερη ταυτότητα στο δίκτυο ανακηρύσσεται αρχηγός από όλους τους κόµβους Θεώρηµα 1 Οι ψεύτικες ταυτότητες τελικά εξαφανίζονται Εστω fid µια ψεύτικη ταυτότητα που κυκλοφορεί στο δίκτυο Το σύνολο των αποστάσεων από την ψεύτικης ταυτότητας fid σε κάποια του δικτύου είναι: heights(fid) = {leaderu.dist u G, leaderu.id = fid} Ισχυριζόµαστε ότι για κάθε ψεύτικη ταυτότητα fid το µέγεθος της heights(fid) µειώνεται σε κάθε γύρο Το Λήµµα 1 αποδεικνύει ότι το µέγεθος της heights(fid) δεν µπορεί να αυξηθεί Το Λήµµα 2 αποδεικνύει ότι το µέγεθος της heights(fid) µειώνετε κάθε δύο γύρους Ορθότητα Αλγορίθµου (3) Ορθότητα Αλγορίθµου (4) Εστω heights r (fid) το σύνολο heights(fid) τον γύρο r Λήµµα 1 heights r 1 (fid) heights r (fid) Η απόδειξη ϐασίζεται στον ψευδοκώδικα, εφόσον για κάθε d heights r (fid) πρέπει να υπάρχει ένα d 1 heights r 1 (fid) Αλλιώς καµία διεργασία δεν ϑα έχει απόσταση d τον τρέχοντα γύρο r Συγκεκριµένα, η διεργασία u που ϑεωρεί ως αρχηγό την fid σε απόσταση d ϑα πρέπει να λάβει στην αρχή του γύρου r το µήνυµα [fid, d 1] Αρα πρέπει να υπάρχει µια γειτονική διεργασία v για την οποία, τον γύρο r 1, leaderv := [fid, d 1] Λήµµα 2 heights r 2 (fid) > heights r (fid) Σύµφωνα µε το Λήµµα 1, για κάθε d heights r (fid) πρέπει να υπάρχει ένα d 2 heights r 2 (fid) Πρέπει λοιπόν να δείξουµε ότι υπάρχει τουλάχιστον µία τιµή dm στο heights r 2 (fid) για την οποία δεν υπάρχει η τιµή dm + 2 στο heights r (fid) Εστω dm = max{heights r 2 (fid)} Θεωρούµε ότι υπάρχει ένα dm + 2 heights r (fid) και ότι η διεργασίας u Θεωρούµε ότι υπάρχει µια διεργασία u όπου leaderu = [fid, dm + 2] Αρα, στον γύρο r 2, leaderu [fid, dm + 2]

19 Ορθότητα Αλγορίθµου (5) Ορθότητα Αλγορίθµου (6) Εποµένως, η διεργασία u έλαβε ένα µήνυµα [fid, dm + 1] στο γύρους r 1 και r Αρα πρέπει να υπάρχει µια γειτονική διεργασία v τέτοια ώστε leaderv = [fid, dm + 1] στον γύρο r 2 Οµως αυτό είναι άτοπο εφόσον ϑεωρήσαµε ότι dm = max{heights r 2 (fid)} Με αυτόν τον τρόπο αποδεικνύουµε το 2ο λήµµα Σύµφωνα µε τα 2 λήµµατα, προκύπτει ότι το µέγεθος του συνόλου heights(fid) µειώνεται κατά τουλάχιστον 1 κάθε δύο γύρους. Με αυτόν τον τρόπο αποδεικνύουµε το ϑεώρηµα Συµπέρασµα Σε O(n) γύρους µετά το τελευταίο λάθος ή αλλαγή στην τοπολογία, όλες οι ψεύτικες ταυτότητες εξαφανίζονται Θεώρηµα 2 Σε O(δ) γύρους µετά την εξαφάνιση όλων των ψεύτικων ταυτοτήτων, η διεργασία µε την µικρότερη ταυτότητα εκλέγεται αρχηγός από όλες τις διεργασίες του δικτύου Εστω IDu η µικρότερη ταυτότητα στο δίκτυο Η απόδειξη ϐασίζεται σε µια επαγωγή στον αριθµό των γύρων µετά την εξαφάνιση όλων των ψεύτικων ταυτοτήτων Προφανώς, leaderu.id = IDu τον γύρο r0 Τον γύρο r0 + 2 κάθε διεργασία v µε απόσταση 1 από την u ϑεωρεί την u αρχηγό σε απόσταση 1 Τον γύρο r0 + 2δ ο αρχηγός όλων των διεργασιών είναι η IDu όπου δ είναι η διάµετρος του δικτύου Αρα η χρονική πολυπλοκότητα είναι O(n) Γενικός Αλγόριθµος Αυτοσταθεροποίησης Σε αντίθεση µε τον προηγούµενο αλγόριθµο, µπορούµε να ϐασιστούµε στην ιδέα της τεχνικής power-supply για να σχεδιάσουµε ένα γενικό αλγόριθµο Ο γενικός αλγόριθµος µπορεί να κατασκευάσει δέντρα αναζήτησης κατά ϐάθος αντί για το δέντρο αναζήτησης κατά εύρος που σχηµατίζεται Στην ουσία αλλάζουµε την µετρική της απόστασης µε µια άλλη µετρική Η διαφορετική µετρική ϐασίζεται στην εργασία των Z.Collin και S.Dolev, Information Processing Letters, 49: , 1994 Η νέα µετρική ϐασίζεται στον ακόλουθο γενικό µηχανισµό Κάθε διεργασία που είναι υποψήφια αρχηγός έχει µια µοναδική τιµή που ονοµάζεται το zero της διεργασίας Η τιµή του zero είναι σταθερή και ορίζεται από το hardware Εχει σχέση µε την µοναδική ταυτότητα της διεργασίας Περιγραφή Μηχανισµού Στον γενικό αλγόριθµο, κάθε υποψήφια διεργασία προσπαθεί να πείσει όλες τις άλλες διεργασίες να επιλέξουν την δικιά της τιµή zero και εποµένως να δεχθούν την ηγεσία της Για να γίνει αυτό, κάθε υποψήφια προτείνει στις γειτονικές διεργασία να είναι ο γονέας της Στέλνει µια ειδική τιµή που υπολογίζεται από την συνάρτηση next στην τιµή zero Σύµφωνα µε τις προτάσεις που δέχεται η διεργασία v, διαλέγει µία µόνο διεργασία ως αρχηγό της Στην συνέχεια προσπαθεί να πείσει τις γειτονικές διεργασίες της να δεχθούν την ίδια διεργασία ως αρχηγό Στέλνει µια ειδική τιµή που υπολογίζεται και πάλι από την συνάρτηση next στην τιµή που έχει η v Η διαδικασία αυτή συνεχίζεται έως ότου µια διεργασία καταφέρει να πείσει όλο το δίκτυο

20 Συζήτηση Σύνοψη 9 ης ιάλεξης Για να εφαρµοστεί σωστά η τεχνική power-supply και να µπορέσουµε να παράγουµε έναν αυτο-σταθεροποιούµενο αλγόριθµο ϐασισµένη στον γενικό αλγόριθµο, πρέπει 1. Να ορίσουµε την συνάρτηση next 2. Να ορίσουµε τα κριτήρια επιλογής 3. Οι τιµές του zero να διασφαλίζουν ότι Καµία ακολουθία νόµιµων επιλογών να µην δηµιουργεί κύκλο στο δίκτυο Αν δεν προκύψουν σφάλµατα τότε ακριβώς µια υποψήφια εκλέγεται Αν δεν προκύψουν σφάλµατα τότε το δίκτυο ϕτάνει σε µια όπου καµία διεργασία δεν αλλάζει την επιλογή της ιαφορετικές επιλογές συναρτήσεων, κριτηρίων επιλογής και τιµών της zero κατασκευάζουν διαφορετικά δένδρα Προηγούµενο Μάθηµα Προηγούµενο Μάθηµα Ασύγχρονα Κατανεµηµένα Συστήµατα Σταθεροποίηση Σταθεροποιούµενοι Κατανεµηµένοι Αλγόριθµοι Τεχνική Power Supply Σύνοψη Μαθήµατος Σύνοψη Μαθήµατος Βιβλιογραφία Επόµενο Μάθηµα Σύνοψη Μαθήµατος Βιβλιογραφία Ασύγχρονα Κατανεµηµένα Συστήµατα Ανοχή σε Λάθη Σταθεροποίηση / Αυτο-σταθεροποιούµενοι αλγόριθµοι Βασικές Εννοιες - ορισµοί Ιδιότητες Αυτο-σταθεροποιούµενοι αλγόριθµοι Αλγόριθµος Dijkstra -- Αµοιβαίος Αποκλεισµός Αλγόριθµος StabBFS -- Αναζήτηση κατά Εύρος Τεχνική Power-supply Τόµος ΙΙ από τις Πανεπιστηµιακές Σηµειώσεις Θεµελιώδη Ζητήµατα Κατανεµηµένων Συστηµάτων (Π.Σπυράκης, Β.Ταµπακάς): 1. Κεφάλαιο 4: Κατανεµηµένα Συστήµατα µε Ανοχή σε Σφάλµατα Βιβλίο Introduction to Distributed Algorithms" (G.Tel) 1. Κεφάλαιο 13: Fault Tolerance in Distributed Systems 2. Κεφάλαιο 17: Stabilization Αλγόριθµος Εκλογής Αρχηγού

21 Επόµενο Μάθηµα Ασύγχρονα Κατανεµηµένα Συστήµατα Πρόβληµα Συγχρονισµού Συγχρονιστές Φυσικά Ρολόγια Συγχρονισµός Ρολογιών

Σύνοψη Μαθήµατος. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων

Σύνοψη Μαθήµατος. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Σύνοψη Μαθήµατος Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης Ασύγχρονα Κατανεµηµένα Συστήµατα Αποτίµηση Καθολικού Κατηγορήµατος

Διαβάστε περισσότερα

Σύνοψη Προηγούµενου Μαθήµατος. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων

Σύνοψη Προηγούµενου Μαθήµατος. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Σύνοψη Προηγούµενου Μαθήµατος Ασύγχρονα Κατανεµηµένα Συστήµατα Σφάλµατα σε Ασύγχρονα Συστήµατα ηµήτρης

Διαβάστε περισσότερα

Μοντέλο Σύγχρονου ικτύου. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων

Μοντέλο Σύγχρονου ικτύου. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Μοντέλο Σύγχρονου ικτύου Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης ευτέρα, Νοεµβρίου, 0 Αίθουσα Β Μία συλλογή υπολογιστικών

Διαβάστε περισσότερα

Το Πρόβληµα Οµοφωνίας Σύγχρονα Συστήµατα Μεταβίβασης Μηνύµατος Μοντέλο Κατάρρευσης (crash model) Οι διεργασίες µπορούν να σταµατούν να εκτελούνται σε

Το Πρόβληµα Οµοφωνίας Σύγχρονα Συστήµατα Μεταβίβασης Μηνύµατος Μοντέλο Κατάρρευσης (crash model) Οι διεργασίες µπορούν να σταµατούν να εκτελούνται σε Οµοφωνία σε σύστηµα µε αϖοτυχίες κατάρρευσης διεργασιών Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 1 Το Πρόβληµα Οµοφωνίας Σύγχρονα Συστήµατα Μεταβίβασης Μηνύµατος Μοντέλο Κατάρρευσης (crash model) Οι διεργασίες

Διαβάστε περισσότερα

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Προηγούµενο Μάθηµα Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης Σύγχρονα Κατανεµηµένα Συστήµατα Μοντελοποίηση Συστήµατος

Διαβάστε περισσότερα

Ενδεικτικές Λύσεις 1ου Σετ Ασκήσεων

Ενδεικτικές Λύσεις 1ου Σετ Ασκήσεων Κ Σ Ι Ενδεικτικές Λύσεις 1ου Σετ Ασκήσεων Παναγιώτα Παναγοπούλου Άσκηση 1. Υποθέστε ότι οι διεργασίες ενός σύγχρονου κατανεμημένου συστήματος έχουν μοναδικές ταυτότητες (UIDs), γνωρίζουν ότι είναι συνδεδεμένες

Διαβάστε περισσότερα

Consensus and related problems

Consensus and related problems Consensus and related s Τι θα δούµε ΟΜΑ Α: Ιωάννα Ζέλιου Α.Μ.: 55 Μελισσόβας Σπύρος Α.Μ.: 21 Παπαδόπουλος Φίλιππος Α.Μ.: 60 Consensus Byzantine generals Interactive consistency Agreement Problems Imposibility

Διαβάστε περισσότερα

Το Πρόβληµα Οµοφωνίας Σύγχρονα Συστήµατα Μεταβίβασης Μηνύµατος Μοντέλο Κατάρρευσης (crash model) Οι διεργασίες µπορούν να σταµατούν να εκτελούνται σε

Το Πρόβληµα Οµοφωνίας Σύγχρονα Συστήµατα Μεταβίβασης Μηνύµατος Μοντέλο Κατάρρευσης (crash model) Οι διεργασίες µπορούν να σταµατούν να εκτελούνται σε Οµοφωνία σε σύγχρονο σύστηµα µε αϖοτυχίες κατάρρευσης διεργασιών Παναγιώτα Φατούρου Κατανεµηµένος Υπολογισµός 1 Το Πρόβληµα Οµοφωνίας Σύγχρονα Συστήµατα Μεταβίβασης Μηνύµατος Μοντέλο Κατάρρευσης (crash

Διαβάστε περισσότερα

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Η σχέση συνέβη-πριν

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Η σχέση συνέβη-πριν Προηγούµενο Μάθηµα Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης ευτέρα, 3 εκεµβρίου, 2007 Αίθουσα Β3 Ασύγχρονα Κατανεµηµένα

Διαβάστε περισσότερα

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Προηγούµενο Μάθηµα Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης ευτέρα, 20 εκεµβρίου, 2010 Αίθουσα Β3 Ασύγχρονα Κατανεµηµένα

Διαβάστε περισσότερα

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Σύνοψη 3 ης ιάλεξης

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Σύνοψη 3 ης ιάλεξης Προηγούµενο Μάθηµα Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης Σύγχρονα Κατανεµηµένα Συστήµατα Μοντελοποίηση Συστήµατος

Διαβάστε περισσότερα

Αµοιβαίοςαποκλεισµός. Κατανεµηµένα Συστήµατα 03-1

Αµοιβαίοςαποκλεισµός. Κατανεµηµένα Συστήµατα 03-1 Αµοιβαίοςαποκλεισµός Εισαγωγή Συγκεντρωτική προσέγγιση Κατανεµηµένη προσέγγιση Αλγόριθµος Lamport Αλγόριθµος Ricart-Agrawala Προσέγγιση µεταβίβασης σκυτάλης Αλγόριθµος LeLann Αλγόριθµος Raymond Αλγόριθµος

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Εκλογή αρχηγού σε γενικά δίκτυα 20 Οκτωβρίου 2016 Παναγιώτα Παναγοπούλου Εκλογή αρχηγού σε γενικά δίκτυα Προηγούμενη διάλεξη Σύγχρονα Κατανεμημένα Συστήματα Μοντελοποίηση συστήματος Πρόβλημα εκλογής αρχηγού

Διαβάστε περισσότερα

Σύνοψη Μαθήµατος. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων

Σύνοψη Μαθήµατος. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης Σύνοψη Μαθήµατος Σύγχρονα Κατανεµηµένα Συστήµατα Βυζαντινά Σφάλµατα Ασύγχρονα

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Κατανεμημένα Συστήματα Ι Εκλογή αρχηγού και κατασκευή BFS δένδρου σε σύγχρονο γενικό δίκτυο Παναγιώτα Παναγοπούλου Περίληψη Εκλογή αρχηγού σε γενικά δίκτυα Ορισμός του προβλήματος Ο αλγόριθμος FloodMax

Διαβάστε περισσότερα

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Η σχέση συνέβη-πριν

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Η σχέση συνέβη-πριν Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Προηγούµενο Μάθηµα Ασύγχρονα Κατανεµηµένα Συστήµατα ιάταξη Γεγονότων Σχέση συνέβη-πριν Λογικός Χρόνος

Διαβάστε περισσότερα

Εκλογήαρχηγού. Εισαγωγή Ισχυρά συνδεδεµένος γράφος ακτύλιος µίας κατεύθυνσης Τοπολογία δένδρου. Κατανεµηµένα Συστήµατα 06-1

Εκλογήαρχηγού. Εισαγωγή Ισχυρά συνδεδεµένος γράφος ακτύλιος µίας κατεύθυνσης Τοπολογία δένδρου. Κατανεµηµένα Συστήµατα 06-1 Εκλογήαρχηγού Εισαγωγή Ισχυρά συνδεδεµένος γράφος ακτύλιος µίας κατεύθυνσης Τοπολογία δένδρου Κατανεµηµένα Συστήµατα 06- Εισαγωγή Πρόβληµα: επιλογή µίας διεργασίας από το σύνολο εν αρκεί να αυτοανακηρυχθεί

Διαβάστε περισσότερα

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Η σχέση συνέβη-πριν

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Η σχέση συνέβη-πριν Προηγούµενο Μάθηµα Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης ευτέρα, 8 εκεµβρίου, 2008 Αίθουσα Β3 Ασύγχρονα Κατανεµηµένα

Διαβάστε περισσότερα

Μοντέλο Σύγχρονου ικτύου. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων

Μοντέλο Σύγχρονου ικτύου. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης Μοντέλο Σύγχρονου ικτύου Μία συλλογή υπολογιστικών µονάδων ή επεξεργαστές κάθε

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Συναίνεση χωρίς την παρουσία σφαλμάτων Κατανεμημένα Συστήματα Ι 4η Διάλεξη 27 Οκτωβρίου 2016 Παναγιώτα Παναγοπούλου Κατανεμημένα Συστήματα Ι 4η Διάλεξη 1 Συναίνεση χωρίς την παρουσία σφαλμάτων Προηγούμενη

Διαβάστε περισσότερα

Γ. Κορίλη Αλγόριθµοι ροµολόγησης

Γ. Κορίλη Αλγόριθµοι ροµολόγησης - Γ. Κορίλη Αλγόριθµοι ροµολόγησης http://www.seas.upenn.edu/~tcom50/lectures/lecture.pdf ροµολόγηση σε ίκτυα εδοµένων Αναπαράσταση ικτύου µε Γράφο Μη Κατευθυνόµενοι Γράφοι Εκτεταµένα έντρα Κατευθυνόµενοι

Διαβάστε περισσότερα

3 Αναδροµή και Επαγωγή

3 Αναδροµή και Επαγωγή 3 Αναδροµή και Επαγωγή Η ιδέα της µαθηµατικής επαγωγής µπορεί να επεκταθεί και σε άλλες δοµές εκτός από το σύνολο των ϕυσικών N. Η ορθότητα της µαθηµατικής επαγωγής ϐασίζεται όπως ϑα δούµε λίγο αργότερα

Διαβάστε περισσότερα

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Προηγούµενο Μάθηµα Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Σύγχρονα Κατανεµηµένα Συστήµατα Μοντελοποίηση Συστήµατος Πρόβληµα Εκλογής Αρχηγού

Διαβάστε περισσότερα

Το Πρόβληµα Οµοφωνίας Σύγχρονα Συστήµατα Μεταβίβασης Μηνύµατος Μοντέλο Κατάρρευσης (crash model) Οι διεργασίες µπορούν να σταµατούν να εκτελούνται σε

Το Πρόβληµα Οµοφωνίας Σύγχρονα Συστήµατα Μεταβίβασης Μηνύµατος Μοντέλο Κατάρρευσης (crash model) Οι διεργασίες µπορούν να σταµατούν να εκτελούνται σε Οµοφωνία σε σύστηµα µε αϖοτυχίες διεργασιών Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 1 Το Πρόβληµα Οµοφωνίας Σύγχρονα Συστήµατα Μεταβίβασης Μηνύµατος Μοντέλο Κατάρρευσης (crash model) Οι διεργασίες µπορούν

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα. Ενότητα # 2: Εκλογή αρχηγού Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Κατανεμημένα Συστήματα. Ενότητα # 2: Εκλογή αρχηγού Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Κατανεμημένα Συστήματα Ενότητα # 2: Εκλογή αρχηγού Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα.

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Συναίνεση με σφάλματα διεργασιών Κατανεμημένα Συστήματα Ι 5η Διάλεξη 10 Νοεμβρίου 2016 Παναγιώτα Παναγοπούλου Κατανεμημένα Συστήματα Ι 5η Διάλεξη 1 Συναίνεση με σφάλματα διεργασιών Προηγούμενη διάλεξη

Διαβάστε περισσότερα

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Υποστήριξη Φοιτητών

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Υποστήριξη Φοιτητών Προηγούµενο Μάθηµα Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης ευτέρα, 24 Οκτωβρίου, 2011 Αίθουσα Β3 Υλικό µαθήµατος Σηµειώσεις,

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα με Java. Ενότητα # 4: Αμοιβαίος αποκλεισμός Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Κατανεμημένα Συστήματα με Java. Ενότητα # 4: Αμοιβαίος αποκλεισμός Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Κατανεμημένα Συστήματα με Java Ενότητα # 4: Αμοιβαίος αποκλεισμός Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Κατανεμημένα Συστήματα Ι Μοντέλο σύγχρονου κατανεμημένου δικτύου Εκλογή αρχηγού σε σύγχρονο δακτύλιο Παναγιώτα Παναγοπούλου Περίληψη Σύγχρονα Κατανεμημένα Συστήματα Μοντέλο Σφάλματα Πολυπλοκότητα Εκλογή

Διαβάστε περισσότερα

Απαντήσεις. Απάντηση. Απάντηση

Απαντήσεις. Απάντηση. Απάντηση 6 η σειρά ασκήσεων Άλκης Γεωργόπουλος Α.Μ. 39 Αναστάσιος Κοντογιώργης Α.Μ. 43 Άσκηση 1. Απαντήσεις Η αλλαγή ενός ρολογιού προς τα πίσω µπορεί να προκαλέσει ανεπιθύµητη συµπεριφορά σε κάποια προγράµµατα.

Διαβάστε περισσότερα

Καθολικέςκαταστάσεις. Ορισµοί Κατασκευή καθολικών καταστάσεων Παθητική στρατηγική Ενεργητική στρατηγική. Κατανεµηµένα Συστήµατα 04-1

Καθολικέςκαταστάσεις. Ορισµοί Κατασκευή καθολικών καταστάσεων Παθητική στρατηγική Ενεργητική στρατηγική. Κατανεµηµένα Συστήµατα 04-1 Καθολικέςκαταστάσεις Ορισµοί Κατασκευή καθολικών καταστάσεων Παθητική στρατηγική Ενεργητική στρατηγική Κατανεµηµένα Συστήµατα 04-1 Ορισµοί Τοπικήιστορία διεργασίας p i Έστω ότι e ij είναι το γεγονός jτης

Διαβάστε περισσότερα

Σκοπός του µαθήµατος. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων

Σκοπός του µαθήµατος. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Σκοπός του µαθήµατος Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης ευτέρα, 4 Ιανουαρίου, 008 Αίθουσα Β3 Μελέτη ϐασικών ϑεωρητικών

Διαβάστε περισσότερα

Το Πρόβληµα της Συναίνεσης. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Παρουσία σφαλµάτων

Το Πρόβληµα της Συναίνεσης. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Παρουσία σφαλµάτων Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης ευτέρα 18 Νοεµβρίου 20131 Αίθουσα Β3 Το Πρόβληµα της Συναίνεσης Υποθέτουµε

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Κατανεμημένα Συστήματα Ι Συναίνεση και Σφάλματα Διεργασιών Παναγιώτα Παναγοπούλου Περίληψη Συναίνεση με σφάλματα διεργασιών Το πρόβλημα Ο αλγόριθμος FloodSet Επικύρωση δοσοληψιών Ορισμός του προβλήματος

Διαβάστε περισσότερα

Κινητά και Διάχυτα Συστήματα. Ενότητα # 8: Εκλογή αρχηγού Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Κινητά και Διάχυτα Συστήματα. Ενότητα # 8: Εκλογή αρχηγού Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Κινητά και Διάχυτα Συστήματα Ενότητα # 8: Εκλογή αρχηγού Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Σύγχρονα Κατανεμημένα Συστήματα 13 Οκτωβρίου 2016 Παναγιώτα Παναγοπούλου Περίληψη 1 Σύγχρονα Κατανεμημένα Συστήματα 2 Το πρόβλημα εκλογής αρχηγού Ο αλγόριθμος LCR Ο αλγόριθμος HS 1 Σύγχρονα Κατανεμημένα

Διαβάστε περισσότερα

Σύνοψη Μαθήµατος. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Βυζαντινοί Στρατηγοί

Σύνοψη Μαθήµατος. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Βυζαντινοί Στρατηγοί Σύνοψη Μαθήµατος Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης ευτέρα, 22 Νοεµβρίου, 2010 Αίθουσα Β Σύγχρονα Κατανεµηµένα

Διαβάστε περισσότερα

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Υποστήριξη Φοιτητών

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Υποστήριξη Φοιτητών Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Προηγούµενο Μάθηµα Υλικό µαθήµατος Σηµειώσεις, Βιβλιογραφία, ιαδίκτυο ιαδικασία Τυπικά Θέµατα, Υλη,

Διαβάστε περισσότερα

Γενικές Παρατηρήσεις. Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα (1) Το Λήµµα της Αντλησης. Χρήση του Λήµµατος Αντλησης.

Γενικές Παρατηρήσεις. Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα (1) Το Λήµµα της Αντλησης. Χρήση του Λήµµατος Αντλησης. Γενικές Παρατηρήσεις Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα () Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Υπάρχουν µη κανονικές γλώσσες, π.χ., B = { n n n }. Αυτό

Διαβάστε περισσότερα

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Αυτόµατα Εισόδου/Εξόδου

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Αυτόµατα Εισόδου/Εξόδου Προηγούµενο Μάθηµα Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης ευτέρα, 1 εκεµβρίου, 2008 Αίθουσα Β Ασύγχρονα Κατανεµηµένα

Διαβάστε περισσότερα

ιεργασίες και Επεξεργαστές στα Κατανεµηµένων Συστηµάτων

ιεργασίες και Επεξεργαστές στα Κατανεµηµένων Συστηµάτων ιεργασίες και Επεξεργαστές στα Κατανεµηµένων Συστηµάτων Μαρία Ι. Ανδρέου ΗΜΥ417, ΗΜΥ 663 Κατανεµηµένα Συστήµατα Χειµερινό Εξάµηνο 2006-2007 Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Ακολουθίες πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας α Κάθε

Διαβάστε περισσότερα

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα. Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Εισαγωγή στην Αλγεβρα Τελική Εξέταση 15 Φεβρουαρίου 2017 1. (Οµάδα Α) Εστω η ακολουθία Fibonacci F 1 = 1, F 2 = 1 και F n = F n 1 + F n 2, για n

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 7 Φεβρουαρίου 03 Ασκηση. είξτε ότι

Διαβάστε περισσότερα

Διάλεξη 10: Αλγόριθμοι Αμοιβαίου Αποκλεισμού σε περιβάλλον ανταλλαγής μηνυμάτων. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 10: Αλγόριθμοι Αμοιβαίου Αποκλεισμού σε περιβάλλον ανταλλαγής μηνυμάτων. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 10: Αλγόριθμοι Αμοιβαίου Αποκλεισμού σε περιβάλλον ανταλλαγής μηνυμάτων ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Τι θα δούμε σήμερα Αλγόριθμος Χρήση Συντονιστή Αλγόριθμος του Lamport Αλγόριθμος LeLann:

Διαβάστε περισσότερα

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών Ενότητα: ιανυσµατικοί χώροι Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Συµπάγεια Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Κατανεμημένα Συστήματα Ι Παναγιώτα Παναγοπούλου Χριστίνα Σπυροπούλου 8η Διάλεξη 8 Δεκεμβρίου 2016 1 Ασύγχρονη κατασκευή BFS δέντρου Στα σύγχρονα συστήματα ο αλγόριθμος της πλημμύρας είναι ένας απλός αλλά

Διαβάστε περισσότερα

Εκλογή αρχηγού σε σύγχρονο δακτύλιο: Οι αλγόριθμοι LCR και HS. 1 Ο αλγόριθμος LCR (Le Lann, Chang, and Roberts)

Εκλογή αρχηγού σε σύγχρονο δακτύλιο: Οι αλγόριθμοι LCR και HS. 1 Ο αλγόριθμος LCR (Le Lann, Chang, and Roberts) Κ Σ Ι Εκλογή αρχηγού σε σύγχρονο δακτύλιο: Οι αλγόριθμοι LCR και HS Παναγιώτα Παναγοπούλου 1 Ο αλγόριθμος LCR (Le Lann, Chang, and Roberts) Ο αλγόριθμος LCR είναι ένας αλγόριθμος εκλογής αρχηγού σε ένα

Διαβάστε περισσότερα

Ανοχή απέναντι σε Σφάλµατα Fault Tolerance

Ανοχή απέναντι σε Σφάλµατα Fault Tolerance Ανοχή απέναντι σε Σφάλµατα Fault Tolerance Μαρία Ι. Ανδρέου ΗΜΥ417, ΗΜΥ 663 Κατανεµηµένα Συστήµατα Χειµερινό Εξάµηνο 2006-2007 Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Κύπρου Βασικές

Διαβάστε περισσότερα

ροµολόγηση πακέτων σε δίκτυα υπολογιστών

ροµολόγηση πακέτων σε δίκτυα υπολογιστών ροµολόγηση πακέτων σε δίκτυα υπολογιστών Συµπληρωµατικές σηµειώσεις για το µάθηµα Αλγόριθµοι Επικοινωνιών Ακαδηµαϊκό έτος 2011-2012 1 Εισαγωγή Οι παρακάτω σηµειώσεις παρουσιάζουν την ανάλυση του άπληστου

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Συνεκτικότητα Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε

Διαβάστε περισσότερα

Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων

Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων Άσκηση 1 α) Η δομή σταθμισμένης ένωσης με συμπίεση διαδρομής μπορεί να τροποποιηθεί πολύ εύκολα ώστε να υποστηρίζει τις

Διαβάστε περισσότερα

Γενικά. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Βασικοί Ορισµοί

Γενικά. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Βασικοί Ορισµοί Γενικά Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης ευτέρα, 24 Σεπτεµβρίου, 2012 Αίθουσα Β3 Σκοπός του µαθήµατος: Κατανόηση

Διαβάστε περισσότερα

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Προηγούµενο Μάθηµα Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης ευτέρα, 22 Οκτωβρίου, 2007 Αίθουσα Β3 Υλικό µαθήµατος Σηµειώσεις,

Διαβάστε περισσότερα

Αιτιώδεις Σχέσεις και Χρονισµός Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 1 Η Σχέση Happens-Before (Συµβαίνει-ϖριν) Οι εκτελέσεις, ως ακολουθίες γεγονότων, καθορίζουν µια καθολική διάταξη σε αυτά. Ωστόσο

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 6η Διάλεξη

Θεωρία Γραφημάτων 6η Διάλεξη Θεωρία Γραφημάτων 6η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 6η Διάλεξη

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος.

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Πληρότητα της μεθόδου επίλυσης

Πληρότητα της μεθόδου επίλυσης Πληρότητα της μεθόδου επίλυσης Λήμμα: Αν κάθε μέλος ενός συνόλου όρων περιέχει ένα αρνητικό γράμμα, τότε το σύνολο είναι ικανοποιήσιμο. Άρα για να είναι μη-ικανοποιήσιμο, θα πρέπει να περιέχει τουλάχιστον

Διαβάστε περισσότερα

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές Κεφάλαιο Παραγοντοποίηση σε Ακέραιες Περιοχές Γνωρίζουµε ότι στο Ÿ κάθε στοιχείο εκτός από το 0 και τα ± γράφεται ως γινόµενο πρώτων αριθµών κατά τρόπο ουσιαστικά µοναδικό Από τη Βασική Άλγεβρα ξέρουµε

Διαβάστε περισσότερα

Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2) Ισοδυναµία CFG και PDA. Σε αυτό το µάθηµα. Αυτόµατα Στοίβας Pushdown Automata

Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2) Ισοδυναµία CFG και PDA. Σε αυτό το µάθηµα. Αυτόµατα Στοίβας Pushdown Automata Σύνοψη Προηγούµενου Γλώσσες χωρίς Συµφραζόµενα (2) Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Αυτόµατα Στοίβας Pushdown utomata Ισοδυναµία µε τις Γλώσσες χωρίς Συµφραζόµενα:

Διαβάστε περισσότερα

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Ορισµοί Τοπική ιστορία

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Ορισµοί Τοπική ιστορία Προηγούµενο Μάθηµα Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης ευτέρα, 10 εκεµβρίου, 2007 Αίθουσα Β3 Ασύγχρονα Κατανεµηµένα

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 3η Θεωρία Γραφηµάτων

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 3η Θεωρία Γραφηµάτων ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ Ε ρ γ α σ ί α η Θεωρία Γραφηµάτων Α π α ν τ ή σ ε ι ς Ε ρ ω τ η µ ά τ ω ν Ερώτηµα. Στο παρακάτω γράφηµα µε βάρη, να βρεθεί το µήκος του µικρότερου µονοπατιού

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 12 Ιανουαρίου 2017 Ασκηση 1. Εστω

Διαβάστε περισσότερα

Παράδειγµα: Προσοµοίωση µιας ουράς FIFO Οι λειτουργίες που υποστηρίζονται από µια ουρά FIFO είναι: [enq(q,x), ack(q)] [deq(q), return(q,x)] όπου x είν

Παράδειγµα: Προσοµοίωση µιας ουράς FIFO Οι λειτουργίες που υποστηρίζονται από µια ουρά FIFO είναι: [enq(q,x), ack(q)] [deq(q), return(q,x)] όπου x είν Wait-free προσοµοιώσεις αυθαίρετων αντικειµένων Έχουµε δει ότι το πρόβληµα της οµοφωνίας δεν µπορεί να επιλυθεί µε χρήση µόνο read/write καταχωρητών. Πολλοί µοντέρνοι επεξεργαστές παρέχουν επιπρόσθετα

Διαβάστε περισσότερα

Γενικό πλάνο. Μαθηµατικά για Πληροφορική. Παράδειγµα αναδροµικού ορισµού. οµική επαγωγή ΠΑΡΑ ΕΙΓΜΑ. 3ο Μάθηµα

Γενικό πλάνο. Μαθηµατικά για Πληροφορική. Παράδειγµα αναδροµικού ορισµού. οµική επαγωγή ΠΑΡΑ ΕΙΓΜΑ. 3ο Μάθηµα Γενικό πλάνο Μαθηµατικά για Πληροφορική 3ο Μάθηµα Ηλίας Κουτσουπιάς, Γιάννης Εµίρης Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 14/10/2008 1 Παράδειγµα δοµικής επαγωγής 2 Ορισµός δοµικής

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Προτεινοµενες Ασκησεις - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Προτεινοµενες Ασκησεις - Φυλλαδιο 9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Προτεινοµενες Ασκησεις - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2015/nt2015.html Παρασκευή 29 Μαίου 2015 Ασκηση 1.

Διαβάστε περισσότερα

ΗΥ180: Λογική Διδάσκων: Δημήτρης Πλεξουσάκης. Φροντιστήριο 8 Επίλυση για Horn Clauses Λογικός Προγραμματισμός Τετάρτη 9 Μαΐου 2012

ΗΥ180: Λογική Διδάσκων: Δημήτρης Πλεξουσάκης. Φροντιστήριο 8 Επίλυση για Horn Clauses Λογικός Προγραμματισμός Τετάρτη 9 Μαΐου 2012 ΗΥ180: Λογική Διδάσκων: Δημήτρης Πλεξουσάκης Φροντιστήριο 8 Επίλυση για Horn Clauses Λογικός Προγραμματισμός Τετάρτη 9 Μαΐου 2012 Πληρότητα της μεθόδου επίλυσης Λήμμα: Αν κάθε μέλος ενός συνόλου όρων περιέχει

Διαβάστε περισσότερα

Πολυπλοκότητα. Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης. Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης. Προσπάθεια υλοποίησης

Πολυπλοκότητα. Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης. Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης. Προσπάθεια υλοποίησης Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης Προσπάθεια υλοποίησης Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι

Διαβάστε περισσότερα

Μαθηµατικά για Πληροφορική

Μαθηµατικά για Πληροφορική Μαθηµατικά για Πληροφορική 3ο Μάθηµα Ηλίας Κουτσουπιάς, Γιάννης Εµίρης Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 14/10/2008 14/10/2008 1 / 24 Γενικό πλάνο 1 Παράδειγµα δοµικής επαγωγής

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

Ασύγχρονο Σύστηµα ιαµοιραζόµενης Μνήµης Το σύστηµα περιέχει n διεργασίες p 0,, p n-1 και m καταχωρητές R 0,, R m-1. Κάθε διεργασία µοντελοποιείται ως

Ασύγχρονο Σύστηµα ιαµοιραζόµενης Μνήµης Το σύστηµα περιέχει n διεργασίες p 0,, p n-1 και m καταχωρητές R 0,, R m-1. Κάθε διεργασία µοντελοποιείται ως Αµοιβαίος Αϖοκλεισµός Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 1 Ασύγχρονο Σύστηµα ιαµοιραζόµενης Μνήµης Το σύστηµα περιέχει n διεργασίες p 0,, p n-1 και m καταχωρητές R 0,, R m-1. Κάθε διεργασία µοντελοποιείται

Διαβάστε περισσότερα

f (x) = l R, τότε f (x 0 ) = l. = lim (0) = lim f(x) = f(x) f(0) = xf (ξ x ). = l. Εστω ε > 0. Αφού lim f (x) = l R, υπάρχει δ > 0

f (x) = l R, τότε f (x 0 ) = l. = lim (0) = lim f(x) = f(x) f(0) = xf (ξ x ). = l. Εστω ε > 0. Αφού lim f (x) = l R, υπάρχει δ > 0 Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 5: Παράγωγος Α Οµάδα. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε πλήρως την απάντησή σας). (α) Αν η f είναι παραγωγίσιµη

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 5η Διάλεξη

Θεωρία Γραφημάτων 5η Διάλεξη Θεωρία Γραφημάτων 5η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 5η Διάλεξη

Διαβάστε περισσότερα

HY Λογική Διδάσκων: Δ. Πλεξουσάκης

HY Λογική Διδάσκων: Δ. Πλεξουσάκης HY-180 - Λογική Διδάσκων: Δ. Πλεξουσάκης Πληρότητα της μεθόδου επίλυσης Λήμμα: Αν κάθε μέλος ενός συνόλου όρων περιέχει ένα αρνητικό γράμμα, τότε το σύνολο είναι ικανοποιήσιμο. Άρα για να είναι μη-ικανοποιήσιμο,

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Πέµπτη 27 εκεµβρίου 2012 Ασκηση

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

Σκοπός του µαθήµατος. Κατανεµηµένα συστήµατα. Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων

Σκοπός του µαθήµατος. Κατανεµηµένα συστήµατα. Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Σκοπός του µαθήµατος Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης ευτέρα, 7 Ιανουαρίου, 2008 Αίθουσα Β3 Μελέτη ϐασικών ϑεωρητικών

Διαβάστε περισσότερα

Μονοπάτια και Κυκλώµατα Euler. Στοιχεία Θεωρίας Γραφηµάτων (3,4) Παραδείγµατα. Κριτήρια Υπαρξης.

Μονοπάτια και Κυκλώµατα Euler. Στοιχεία Θεωρίας Γραφηµάτων (3,4) Παραδείγµατα. Κριτήρια Υπαρξης. Μονοπάτια και Κυκλώµατα Eulr Σε γράφηµα G(V, E): Στοιχεία Θεωρίας Γραφηµάτων (3,4) Ορέστης Τελέλης tllis@unipi.r Κύκλωµα Eulr: Απλό κύκλωµα που διασχίζει κάθε ακµή του G. Μονοπάτι Eulr: Απλό µονοπάτι που

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 15 Ιουνίου 2009 1 / 26 Εισαγωγή Η ϑεωρία

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 5η Διάλεξη

Θεωρία Γραφημάτων 5η Διάλεξη Θεωρία Γραφημάτων 5η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 5η Διάλεξη

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΗΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ:

ΘΕΜΑΤΑ ΕΞΕΤΑΣΗΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ: ΘΕΜΑΤΑ ΕΞΕΤΑΣΗΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ: Ιανουάριος-Φεβρουάριος 7 ΜΑΘΗΜΑ: Αριθµητική Ανάλυση ΕΞΑΜΗΝΟ: ο Ι ΑΣΚΩΝ: Ε Κοφίδης Όλα τα ερωτήµατα είναι ισοδύναµα Καλή επιτυχία! Θέµα ο α Χρησιµοποιείστε

Διαβάστε περισσότερα

Αδιέξοδα (Deadlocks)

Αδιέξοδα (Deadlocks) Αδιέξοδα (Deadlocks) Περίληψη Αδιέξοδα (deadlocks) Τύποι πόρων (preemptable non preemptable) Μοντελοποίηση αδιεξόδων Στρατηγικές Στρουθοκαµηλισµός (ostrich algorithm) Ανίχνευση και αποκατάσταση (detection

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις Επαναληψης

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις Επαναληψης ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις Επαναληψης ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 22 Μαΐου 2013 Ασκηση 1. (1) Να λυθεί η γραµµική

Διαβάστε περισσότερα

Σύνοψη Προηγούµενου. Κανονικές Γλώσσες (1) Προβλήµατα και Γλώσσες. Σε αυτό το µάθηµα. ιαδικαστικά του Μαθήµατος.

Σύνοψη Προηγούµενου. Κανονικές Γλώσσες (1) Προβλήµατα και Γλώσσες. Σε αυτό το µάθηµα. ιαδικαστικά του Μαθήµατος. Σύνοψη Προηγούµενου Κανονικές Γλώσσες () ιαδικαστικά του Μαθήµατος. Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Εισαγωγή: Υπολογισιµότητα και Πολυπλοκότητα. Βασικές

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 7η Διάλεξη

Θεωρία Γραφημάτων 7η Διάλεξη Θεωρία Γραφημάτων 7η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 7η Διάλεξη

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt016/nt016.html Πέµπτη 7 Οκτωβρίου 016 Ασκηση 1. Βρείτε όλους

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι

Προσεγγιστικοί Αλγόριθμοι Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt014/nt014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

Μια TM µπορεί ένα από τα δύο: να αποφασίζει µια γλώσσα L. να αναγνωρίζει (ηµιαποφασίζει) µια γλώσσα L. 1. Η TM «εκτελεί» τον απαριθµητή, E.

Μια TM µπορεί ένα από τα δύο: να αποφασίζει µια γλώσσα L. να αναγνωρίζει (ηµιαποφασίζει) µια γλώσσα L. 1. Η TM «εκτελεί» τον απαριθµητή, E. Οι γλώσσες των Μηχανών Turing Αποφασισιµότητα / Αναγνωρισιµότητα Μια TM µπορεί ένα από τα δύο: να αποφασίζει µια γλώσσα L Αποδέχεται όταν (η είσοδος στην TM) w L. Ορέστης Τελέλης telelis@unipi.gr Τµήµα

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 2: Μαθηματικό Υπόβαθρο Τι θα κάνουμε σήμερα Συναρτήσεις & Σχέσεις (0.2.3) Γράφοι (Γραφήματα) (0.2.4) Λέξεις και Γλώσσες (0.2.5) Αποδείξεις (0.3) 1

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο 2.5 µονάδες ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 2 Σεπτεµβρίου 2005 5:00-8:00 Σχεδιάστε έναν αισθητήρα ercetro

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Επανάληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Επανάληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Ασκησεις - Επανάληψης ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt015b/nt015b.html Πέµπτη 1 Ιανουαρίου 016 Ασκηση 1. (1) Να λυθεί

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις ΕΠΛ2: Θεωρία Υπολογισμού και Πολυπλοκότητα Σειρά Προβλημάτων Λύσεις Άσκηση Να βρείτε το σφάλμα στην πιο κάτω απόδειξη. Ισχυρισμός: Όλα τα βιβλία που έχουν γραφτεί στη Θεωρία Υπολογισμού έχουν τον ίδιο

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

Κρυπτογραφία και Πολυπλοκότητα

Κρυπτογραφία και Πολυπλοκότητα Απόδειξη του Αλγορίθµου Tonelli - Shanks Σχολή Εφαρµοσµένων και Φυσικών Επιστηµών ευτέρα 13 Φεβρουαρίου 2011 Το Πρόβληµα Να ϐρούµε x 1, x 2 Z p τέτοια ώστε: για κάποιο a Z p. x 2 i a (mod p) i 1, 2 (1)

Διαβάστε περισσότερα

Διάλεξη 9: Αλγόριθμοι Αμοιβαίου Αποκλεισμού με τη χρήση μεταβλητών Ανάγνωσης/Εγγραφής. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 9: Αλγόριθμοι Αμοιβαίου Αποκλεισμού με τη χρήση μεταβλητών Ανάγνωσης/Εγγραφής. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 9: Αλγόριθμοι Αμοιβαίου Αποκλεισμού με τη χρήση μεταβλητών Ανάγνωσης/Εγγραφής ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Τι θα δούμε σήμερα Αλγόριθμος Ψησταριάς (Bakery Algorithm) Αλγόριθμος 2- επεξεργαστών

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι

Προσεγγιστικοί Αλγόριθμοι Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)

Διαβάστε περισσότερα

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Ορισµοί Τοπική ιστορία

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Ορισµοί Τοπική ιστορία Προηγούµενο Μάθηµα Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης ευτέρα, 12 Ιανουαρίου, 2008 Αίθουσα Β3 Ασύγχρονα Κατανεµηµένα

Διαβάστε περισσότερα