Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Η σχέση συνέβη-πριν

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Η σχέση συνέβη-πριν"

Transcript

1 Προηγούµενο Μάθηµα Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης ευτέρα, 3 εκεµβρίου, 2007 Αίθουσα Β3 Ασύγχρονα Κατανεµηµένα Συστήµατα ιάταξη Γεγονότων Σχέση συνέβη-πριν Λογικός Χρόνος Λογικά Ρολόγια Lamport Αµοιβαίος Αποκλεισµός Συγκεντρωτική Λύση Χρήση Λογικών Ρολογιών Χρήση Λογικών οµών ιάταξη Γεγονότων Ο συγχρονισµός ϱολογιών σε ένα κατανεµηµένο σύστηµα δεν είναι καθόλου εύκολο πρόβληµα Ο συγχρονισµός διεργασιών µπορεί να λυθεί και µε ασθενέστερες συνθήκες Ο Lamport παρατηρεί ότι αρκεί να εξασφαλίσουµε ότι όλα τα γεγονότα είναι πλήρως διατεταγµένα κατά έναν απολύτως συνεπή τρόπο Από το µοντέλλο των Ασύγχρονων Κατανεµηµένων Συστηµάτων: Κάθε διεργασία Pu χαρακτηρίζεται απο την κατάσταση της stateu Ορίζουµε ως συµβάν σ u µια ενέργεια ɛ που επιφέρει µια αλλαγή στην κατάσταση κάποιας διεργασίας Pu Υποθέτουµε ότι οι διεργασίες εξελίσσονται σειριακά Η σχέση συνέβη-πριν Εστω α µία εκτέλεση του συστήµατος S Η εκτέλεση α αποτελείτε από µια ακολουθία συµβάντων σ1, σ2,..., σk,... Θέλουµε να διατάξουµε τα συµβάντα που συµβαίνουν σε διαφορετικές διεργασίες Η σχέση συνέβη-πριν µοντελοποιεί την λογική σχέση εξάρτησης των συµβάντων Αν σi σj τότε το συµβάν σi συνέβη πριν το σj Η διάταξη ϐασίζεται στα παρακάτω: 1. αν δύο συµβάντα συνέβησαν στην ίδια διεργασία Pu τότε συνέβησαν µε τη σειρά που τα παρατήρησε η Pu -- όπως προκύπτει απο την ιστορία Hu 2. αν η Pu στείλει ένα µήνυµα m στην Pv όπου σi u = send(m) και σj v = receive(m) τότε η αποστολή του µηνύµατος (συµβάν στον αποστολέα) προηγείται λογικά της παραλαβής του (συµβάν στον παραλήπτη)

2 Παράδειγµα Εκτέλεσης Λογικά Ανεξάρτητα Συµβάντα Η διάταξη ικανοποιεί την Μεταβατική ιδιότητα αν σi σj και (στην συνέχεια) σj σk, τότε σi σk Εποµένως e1.1 e3.3 εφόσον e1.1 e1.2 e2.2 e2.3 e3.3 e3.1 e1.4 εφόσον Παράδειγµα εκτέλεσης ύο συµβάντα που δεν συνδέονται µεταξύ τους µέσω της σχέσης ονοµάζονται λογικά ανεξάρτητα ή λογικά ταυτόχρονα : σ u i σ v j ( ) ( ) σ u i σ v j σ v j σ u i Εποµένως Παράδειγµα εκτέλεσης e3.1 e3.2 e1.4 e1.1 e3.2 e2.1 e1.4 Λογικός Χρόνος Ο Αλγόριθµος του Lamport (1) Ο Lamport προτείνει τον µηχανισµό λογικό ρολόι για τον ορισµό των χρονοσφραγίδων που ικανοποιούν την σχέση συνέβη-πριν Ενα λογικό ϱολόι είναι ένας µονότονα αυξανόµενος µετρητής, του οποίου η τιµή δεν χρειάζεται να έχει κάποια ιδιαίτερη σχέση µε κάποιο ϕυσικό ϱολόι Κάθε διεργασία Pu διατηρεί το δικό της λογικό ϱολόι LCu ίνει σε κάθε συµβάν σ µια χρονοσφραγίδα TS(σ) T, όπου T είναι ένα πλήρως διατεταγµένο σύνολο Η χρονοσφραγίδα του συµβάντος σi όπου σi σj έχει µικρότερη απο την χρονοσφραγίδα του σj δηλ. TS(σi) < TS(σj) Χρησιµοποιούµε την τιµή του λογικού ϱολογιού ως χρονοσφραγίδα για κάθε συµβάν Αλγόριθµος LamportTime Οι διεργασίες διατηρούν µια µεταβλητή LC η οποία αρχικά είναι 0. Για κάθε εσωτερικό συµβάν ή ένα συµβάν send(m) ϑέτουν LC + +. Μαζί µε κάθε µήνυµα m που στέλνουν οι διεργασίες, επισυνάπτουν την τιµή της µεταβλητής LC. Μόλις λάβουν ένα µήνυµα m µε χρονοσφραγίδα TS(m) ϑέτουν LC = max{lc, TS(m)} + 1. Αν για δύο συµβάντα σi και σj ισχύει σi σj ο αλγόριθµος LamportTime εξασφαλίζει ότι TS(σi) < TS(σj) Αν TS(σi) < TS(σj) δεν ισχύει αναγκαστικά ότι σi σj

3 Ο Αλγόριθµος του Lamport (2) Ερώτηση Προηγούµενης ιάλεξης Εστιάσαµε στο πρόβληµα του Αµοιβαίου Αποκλεισµού Είναι πιθανό δύο συµβάντα σi και σj που πραγµατοποιούνται σε δύο διαφορετικές διεργασίες να µην συνδέονται µε την σχέση και να έχουν τις ίδιες χρονοσφραγίδες Οµως δεν επιτρέπουµε σε ένα συµβάν να συµβεί ακριβώς την ίδια χρονική στιγµή µε κάποιο άλλο Για να ικανοποιούν τα λογικά ϱολόγια του Lamport αυτή την συνθήκη, µια απλή λύση είναι η χρήση των ταυτοτήτων των διεργασιών για τον υπολογισµό των χρονοσφραγίδων εδώ υποθέτουµε ότι οι διεργασίες διαθέτουν µοναδικές ταυτότητες Εποµένως οι χρονοσφραγίδες των γεγονότων σ u i και σ v i ϑα είναι i.u και i.v -- π.χ και Βασικό πρόβληµα έχει µελετηθεί σε προηγούµενα µαθήµατα Υποθέσαµε ότι: Οι διεργασίες έχουν µοναδικές ταυτότητες Κάθε διεργασία έχει µέρη του κώδικα της µε κρίσιµα τµήµατα εν υπάρχει κάποιο καθολικό ϱολόι Το δίκτυο είναι πλήρες Υποθέτουµε ότι τα κανάλια είναι αξιόπιστα, FIFO Είδαµε ορισµένους αλγόριθµους που ϐασίζονται στον λογικό χρόνο στην σχέση συνέβη-πρίν Ο Lamport πρότεινε έναν αλγόριθµο που χρησιµοποιεί λογικά ϱολόγια Ερώτηση 7 ης ιάλεξης Αποδείξτε την ορθότητα του αλγόριθµου LamportME. Ο Αλγόριθµος του Lamport Αλγόριθµος LamportME Οι διεργασίες διατηρούν ένα τοπικό λογικό ϱολόι σύµφωνα µε τον αλγόριθµο LamportTime. Οι διεργασίες διατηρούν µια ουρά για τις εισερχόµενες αιτήσεις. Κάθε διεργασία που επιθυµεί να µπει σε ΚΤ στέλνει µια αίτηση (µε χρονοσφραγίδα) σε όλες τις άλλες διεργασίες, και τοποθετεί την αίτηση στην ουρά της. Οταν µια διεργασία παραλάβει µια αίτηση την προσθέτει στην ουρά και απαντάει επιβεβαιώνοντας την παραλαβή. Η διεργασία µε µικρότερη χρονοσφραγίδα εισέρχεται στο ΚΤ. Οταν η διεργασία ϐγει απο το ΚΤ στέλνει ένα µήνυµα εξόδου σε όλες τις διεργασίες και αφαιρεί την αίτηση απο την ουρά της αντίστοιχα διαγράφουν και οι άλλες διεργασίες την αίτηση απο την ουρά που διατηρούν. Πρώτη κατανεµηµένη προσέγγιση 1978 Πολύ εύκολη υλοποίηση 3 είδη µηνυµάτων: request, reply, release Απαραίτητες ιδιότητες Θεωρούµε ότι ένας αλγόριθµος λύνει το πρόβληµα του Αµοιβαίου Αποκλεισµού αν ικανοποιεί τις παρακάτω συνθήκες: 1. Ασφάλεια (safety) -- µια µόνο από τις διεργασίες µπορεί να αποκτήσει πρόσβαση στον κοινό πόρο σε ένα ορισµένο χρονικό διάστηµα 2. Βιωσιµότητα (liveness) -- αν µια διεργασία επιθυµεί να εισέλθει στο κρίσιµο τµήµα τελικά ϑα το καταφέρει αν ο κοινός πόρος δεν χρησιµοποιείται, τότε όποια διεργασία Ϲητήσει πρόσβαση ϑα πρέπει να την αποκτήσει σε πεπερασµένο χρονικό διάστηµα 3. ιάταξη (ordering) -- η άδεια εισόδου στο κρίσιµο τµήµα πρέπει να παραχωρηθεί σύµφωνα µε τη σχέση συνέβη-πριν: οι αιτήσεις των διεργασιών εξυπηρετούνται µε τη σειρά που έχουν εκδοθεί

4 Ορθότητα του Αλγόριθµου LamportME (1) Ορθότητα του Αλγόριθµου LamportME (2) Λήµµα (LamportME.1) Ο αλγόριθµος LamportME ικανοποιεί την ιδιότητα της ασφάλειας. Απόδειξη: Με εις άτοπο απαγωγή στον τρόπο λειτουργίας του αλγόριθµου. Εστω σε κάποια εκτέλεση του συστήµατος όπου δύο διεργασίες u και v ϐρίσκονται στο ΚΤ την ίδια στιγµή. Εστω το µήνυµα requestu, το έστειλε η u τον λογικό χρόνο tu και το µήνυµα requestv το έστειλε η v τον λογικό χρόνο tv. Ας υποθέσουµε ότι tu < tv. Αρα για να µπορέσει η v να µπεί στο ΚΤ, η ουρά της v ϑα πρέπει να περιέχει κάποιο µήνυµα από την u µε χρονοσφραγίδα µεγαλύτερη του tv και άρα µεγαλύτερη του tu. Εφόσον τα κανάλια είναι FIFO για να συµβεί αυτό ϑα πρέπει η v να έλαβε το µήνυµα requestu όταν εκτελούσε το ΚΤ. Οµως για να µπορέσει να εκτελέσει η v το ΚΤ ϑα πρέπει να είχε λάβει το µήνυµα releaseu. Αρα για να συµβεί αυτό, η u είχε ήδη ϐγεί από το ΚΤ την στιγµή που η v εκτέλεσε το ΚΤ. Οµως υποθέσαµε ότι η u και η v ϐρίσκονται στο ΚΤ την ίδια στιγµή. Ορθότητα του Αλγόριθµου LamportME (3) Λήµµα (LamportME.2) Ο αλγόριθµος LamportME ικανοποιεί την ιδιότητα της ϐιωσιµότητας. Απόδειξη: Η ιδιότητα της ϐιωσιµότητας προκύπτει από την χρήση των λογικών ϱολογιών και την εξυπηρέτηση των αιτήσεων µε ϐάση τον λογικό χρόνο των µυνηµάτων request. Αρκεί να δείξουµε ότι η διεργασία που έστειλε το µήνυµα request µε την µικρότερη χρονοσφραγίδα είναι αυτή που εισέρχεται πρώτη στο ΚΤ. Βασιζόµαστε στο γεγονός ότι τα κανάλια είναι αξιόπιστα και FIFO. Εφόσον το σύνολο των µηνυµάτων request που έχουν χρονοσφραγίδα µικρότερη από ένα γεγονός είναι πεπερασµένο, µε επαγωγικό τρόπο µπορούµε να δείξουµε ότι όλες οι αιτήσεις ικανοποιούνται. Ορθότητα του Αλγόριθµου LamportME (4) Λήµµα (LamportME.3) Ο αλγόριθµος LamportME ικανοποιεί την ιδιότητα της διάταξης. Απόδειξη: Η ιδιότητα της διάταξης προκύπτει από την χρήση των λογικών ϱολογιών και την εξυπηρέτηση των αιτήσεων µε ϐάση τον λογικό χρόνο των µυνηµάτων request καθώς και την υπόθεση ότι τα κανάλια είναι αξιόπιστα και FIFO. Θεώρηµα (LamportME.4) Ο αλγόριθµος LamportME λύνει το πρόβληµα του αµοιβαίου αποκλεισµού. Απόδειξη: Προκύπτει από τα παραπάνω 3 λήµµατα.

5 Σύνοψη 8 ης ιάλεξης Γενικά (1) Προηγούµενο Μάθηµα Προηγούµενο Μάθηµα ιάταξη Γεγονότων Λογικός Χρόνος Ερώτηση Προηγούµενης ιάλεξης Ασύγχρονα Κατανεµηµένα Συστήµατα Καθολικές Καταστάσεις Κατασκευή Καθολικών Καταστάσεων Συνεπή Ολικά Στιγµιότυπα Σύνοψη Μαθήµατος Σύνοψη Μαθήµατος Ερώτηση ιάλεξης Επόµενη ιάλεξη Η κατάσταση ενός κεντρικοποιηµένου συστήµατος µια δεδοµένη στιγµή χαρακτηρίζεται από την κατάσταση όλων των διεργασιών που περιλαµβάνει Εστω n διεργασίες Κάθε διεργασία Pu την χρονική στιγµή i ϐρίσκεται στην κατάσταση κ u i Η περιγραφή της κατάστασης του συστήµατος, την χρονική στιγµή i απαιτεί την καταγραφή των καταστάσεων όλων των διεργασιών, την χρονική στιγµή i Σε ένα κεντρικοποιηµένο σύστηµα η καταγραφή της κατάστασης όλων των διεργασιών είναι απλή: Ταυτόχρονη προσωρινή παύση των διεργασιών Καταγραφή της µνήµης του συστήµατος Γενικά (2) Εφαρµογές Πως µπορούµε να καταγράψουµε την κατάσταση ενός κατανεµηµένου συστήµατος; Η προσωρινή παύση των διεργασιών δεν µπορεί να γίνει ταυτόχρονα Οι διεργασίες εκτελούνται σε διαφορετικές µονάδες Τα µηνύµατα ελέγχου δεν παραδίδονται ταυτόχρονα εν είναι εύκολο να συντονίσουµε τις διεργασίες σε µια προκαθορισµένη χρονική στιγµή (ϑέµατα συγχρονισµού ϱολογιών κλπ.) Σε πραγµατικές συνθήκες δεν είναι επιθυµητό να γίνει παύση της εκτέλεσης (έστω και προσωρινά) π.χ. για λόγους απόδοσης, ή δεν είναι εφικτό Η καταγραφή της κατάσταση ενός κατανεµηµένου συστήµατος εφαρµόζεται: Μέτρηση ποσοτήτων που αλλάζουν δυναµικά (π.χ. χρήµατα σε τραπεζικό λογαριασµό) Αντίγραφα ασφαλείας Ανίχνευση τερµατισµού Ανίχνευση deadlock / livelock Αποσφαλµάτωση ενός κατανεµηµένου αλγορίθµου ελέγχοντας αν έχει παραβιαστεί µια συνθήκη / ιδιότητα

6 Ορισµοί Τοπική ιστορία Παράδειγµα Τοπική ιστορία Εκτέλεση συστήµατος διάγραµµα µηνυµάτων Ορίζουµε ως συµβάν σ u µια ενέργεια ɛ που επιφέρει µια αλλαγή στην κατάσταση κάποιας διεργασίας Pu Υποθέτουµε ότι οι διεργασίες εξελίσσονται σειριακά Υπάρχει µια αυστηρή διάταξη των συµβάντων σ1 u, σu 2,... κάθε διεργασίας Pu όπου σk u, σk+1 u σηµαίνει ότι το σu k συνέβη πριν το σk+1 u P1 P2 P3 σ 1 1 σ 1 2 σ 1 3 σ 1 4 σ 1 5 σ 1 6 σ 2 1 σ 2 2 σ 2 3 σ 3 1 σ 3 2 σ 3 3 σ 3 4 σ 3 5 σ 3 6 Τοπική ιστορία (local history) Η τοπική ιστορία της διεργασίας Pu συµβολίζετε µε hu και αποτελεί την ακολουθία των συµβάντων που πραγµατοποιήθηκαν στην διεργασία, π.χ. hu = σ u 1, σu 2, σu 3, σu 4. Τοπική ιστορία -- h1 = σ1 1, σ1 2, σ1 3, σ1 4, σ1 5, σ1 6 Τοπική ιστορία -- h2 = σ1 2, σ2 2, σ2 3 Τοπική ιστορία -- h3 = σ1 3, σ3 2, σ3 3, σ3 4, σ3 5, σ3 6 Η τοπική ιστορία κάθε διεργασίας είναι χρονικά πλήρως διατεταγµένη Ορισµοί Καθολική ιστορία / Καθολική κατάσταση Παράδειγµα Καθολική ιστορία / Καθολική κατάσταση Εκτέλεση συστήµατος διάγραµµα µηνυµάτων Καθολική ιστορία (global history) Η καθολική ιστορία H ενός κατανεµηµένου συστήµατος ορίζεται ως η ένωση των τοπικών ιστοριών όλων των διεργασιών που συµµετέχουν σε αυτό, δηλ. H = h1... hn. P1 P2 σ 1 1 σ 1 2 σ 1 3 σ 1 4 σ 1 5 σ 1 6 σ 2 1 σ 2 2 σ 2 3 Καθολική κατάσταση (global state) Η καθολική κατάσταση ενός κατανεµηµένου συστήµατος συµβολίζετε µε Σ και ορίζεται ως η ένωση των τοπικών καταστάσεων όλων των διεργασιών που συµµετέχουν σε αυτό, δηλ. Σ = {κ 1,... κ n }. P3 σ 3 1 σ 3 2 σ 3 3 σ 3 4 σ 3 5 σ 3 6 Καθολική ιστορία -- H = h1 h2 h3 Το σύνολο αυτό είναι µόνο µερικώς διατεταµένο. Καθολική κατάσταση -- Σ1 = {κ 1 2, κ2 1, κ3 2 } Καθολική κατάσταση -- Σ2 = {κ 1 3, κ2 2, κ3 4 }

7 Ορισµοί Τοµή / Σύνορο τοµής Παράδειγµα Τοµή / Σύνορο τοµής Εκτέλεση συστήµατος διάγραµµα µηνυµάτων Τοµή (cut) Μια τοµή C ενός κατανεµηµένου συστήµατος είναι ένα υποσύνολο της καθολικής ιστορίας H που αποτελείται από σ u 0 αρχικά συµβάντα από κάθε διεργασία Pu, δηλ. C = h1 σ1... hn σn. Εποµένως, µια τοµή προσδιορίζεται µέσω του διανύσµατος {σ 1,... σ n }. Σύνορο τοµής (cut frontier) Το σύνολο των τελευταίων συµβάντων {max(σ 1 ),..., max(σ n )} που περιλαµβάνοντα στην τοµή C καλείται σύνορο της τοµής. P1 P2 P3 σ 1 1 σ 1 2 σ 1 3 σ 1 4 σ 1 5 σ 1 6 σ 2 1 σ 2 2 σ 2 3 σ 3 1 σ 3 2 σ 3 3 σ 3 4 C1 σ 3 5 σ 3 6 C1 = h σ1 5 1 h σ2 2 2 h σ3 4 3 = {σ 1 1,..., σ1 5, σ2 1, σ2 2, σ3 1,..., σ3 4 } Σύνορο τοµής της C1 είναι το {σ 1 5, σ2 2, σ3 4 } C2 C2 = h σ1 3 1 h σ2 2 2 h σ3 6 3 = {σ 1 1,..., σ1 3, σ2 1, σ2 2, σ3 1,..., σ3 6 } Σύνορο τοµής της C2 είναι το {σ 1 3, σ2 2, σ3 6 } Συζήτηση Ορισµός Συνεπής Τοµή Κάθε τοµή ενός κατανεµηµένου συστήµατος αντιστοιχεί σε µία καθολική κατάσταση Ορισµένες µόνο τοµές αντιστοιχούν σε καθολικές καταστάσεις που ϑα µπορούσαν να συµβούν κατά τη διάρκεια µιας εκτέλεσης Στην εκτέλεση του προηγούµενου παραδείγµατος, η τοµή C1 είναι µια εφικτή καθολική κατάσταση Η τοµή C2 δεν µπορεί να συµβεί εφόσον η διεργασία P3 λαµβάνει ένα µήνυµα από την P1, το οποίο η P1 δεν έχει στείλει µέσα στα χρονικά όρια που ορίζονται από την τοµή Συνεπής Τοµή (consistent cut) Μια τοµή C είναι συνεπής αν για όλα τα συµβάντα σ και σ ισχύει ότι: σ C ( σ σ ) σ C Μία καθολική κατάσταση είναι συνεπής όταν αντιστοιχεί σε µια συνεπή τοµή Οι συνεπής καθολικές καταστάσεις είναι εκείνες που µπορούν να συµβούν σε µια πραγµατική εκτέλεση ενός κατανεµηµένου συστήµατος

8 Συνεπής Τοµή Συζήτηση Γενικά Εκτέλεση συστήµατος διάγραµµα µηνυµάτων P1 P2 P3 σ 1 1 σ 1 2 σ 1 3 σ 1 4 σ 1 5 σ 1 6 σ 2 1 σ 2 2 σ 2 3 σ 3 1 σ 3 2 σ 3 3 σ 3 4 C1 σ 3 5 σ 3 6 Εύκολος τρόπος να προσδιορίσουµε αν µία τοµή είναι συνεπής: Ολα τα ϐέλη που κόβουν την τοµή ξεκινούν από τα αριστερά και καταλήγουν στα δεξιά της τοµής C1 είναι συνεπής-- τα ϐέλη σ4 1 σ3 2, σ1 5 σ6 3 κόβουν την τοµή από αριστερά προς δεξιά C2 δεν είναι το ϐέλος σ5 1 σ6 3 κόβει από δεξιά προς αριστερά C2 Μια διεργασία ϑέλει να µάθει την καθολική κατάσταση του κατανεµηµένου συστήµατος Ονοµάζουµε την διεργασία monitor Πρέπει να συλλέξει τις τοπικές καταστάσεις όλων των διεργασιών του συστήµατος Λόγω της χρονικής αβεβαιότητας (ως προς την εκτέλεση και την παράδοση µηνυµάτων) που χαρακτηρίζει ένα ασύγχρονο κατανεµηµένο σύστηµα, η κατασκευή καθολικών καταστάσεων δεν είναι καθόλου εύκολη. Θεµελιώδες πρόβληµα Παθητική Κατασκευή Καθολικών Καταστάσεων Ιδιότητες Παρατηρήσεων Εστω ότι η διεργασία P0 είναι monitor του συστήµατος και ϑέλει να κατασκευάσει την καθολική κατάσταση του συστήµατος εν στέλνει κανένα µήνυµα παθητικά παρακολουθεί το σύστηµα Οι άλλες διεργασίες µόλις επεξεργαστούν ένα συµβάν, στέλνουν ένα µήνυµα στην P0 περιγράφοντας το Η P0 κατασκευάζει µια παρατήρηση (observation) της συγκεκριµένης εκτέλεσης (run) του κατανεµηµένου συστήµατος Η κατασκευή της παρατήρησης προκύπτει από την ακολουθία των γεγονότων, µε την σειρά µε την οποία έλαβε η P0 τα αντίστοιχα µηνύµατα Εξαιτίας των απροσδιόριστων καθυστερήσεων κατά την αποστολή των µηνυµάτων, δυο διαφορετικές διεργασίες monitor µπορεί να κατασκευάσουν δυο διαφορετικές παρατηρήσεις για την ίδια εκτέλεση Μια παρατήρηση µπορεί να µην αποτυπώνει σωστά την εκτέλεση

9 Παράδειγµα Εκτέλεσης R = {σ 3 1, σ 1 1, σ 3 2, σ 2 1, σ 3 3, σ 3 4, σ 2 2, σ 1 2, σ 3 5, σ 1 3, σ 1 4, σ 1 5, σ 3 6, σ 2 3, σ 1 6} Παράδειγµα Παρατήρησης O 1 = {σ 2 1, σ 1 1, σ 3 1, σ 3 2, σ 3 4, σ 1 2, σ 2 2, σ 3 3, σ 1 3, σ 1 4, σ 3 5,...} P1 P2 P3 σ 1 1 σ 1 2 σ 1 3 σ 1 4 σ 1 5 σ 1 6 σ 2 1 σ 2 2 σ 2 3 σ 3 1 σ 3 2 σ 3 3 σ 3 4 σ 3 5 σ 3 6 P0 P1 P2 P3 σ 0 1 σ 0 2 σ 0 3 σ0 4 σ0 5 σ 0 6 σ0 7 σ0 8 σ 0 9 σ 0 10 σ 0 11 σ 1 1 σ 1 2 σ 1 3 σ 1 4 σ 1 5 σ 1 6 σ 2 1 σ 2 2 σ 2 3 Οι παρακάτω είναι πιθανές παρατηρήσεις της R O1 = {σ1 2, σ1 1, σ3 1, σ3 2, σ3 4, σ1 2, σ2 2, σ3 3, σ1 3, σ1 4, σ3 5,...} O2 = {σ1 1, σ3 1, σ2 1, σ3 2, σ1 2, σ1 3, σ3 3, σ3 4, σ2 2, σ3 5, σ3 6,...} O3 = {σ1 3, σ2 1, σ1 1, σ1 2, σ3 2, σ3 3, σ1 3, σ3 4, σ1 4, σ2 2, σ1 5,...} σ 3 1 σ 3 2 σ 3 3 σ 3 4 σ 3 5 σ 3 6 εν αντιστοιχεί σε εκτέλεση Η διάταξη των συµβάντων της P3 παραβιάζει τη διάταξή τους στο τοπικό ιστορικό της διεργασίας Το σ 3 4 εµφανίζεται πριν από το σ3 3 Παθητική Παρατήρηση µε Φυσικά Ρολόγια Θέµατα Συγχρονισµού Ρολογιών Θεωρούµε ότι οι κόµβοι διαθέτουν ένα ρολόι Τα ϱολόγια των κόµβων είναι συγχρονισµένα Υπάρχει ένα άνω ϕράγµα µ l + d το οποίο είναι γνωστό Η διεργασία monitor, τη χρονική στιγµή t καταγράφει όλα τα µηνύµατα που έχει λάβει µε σφραγίδες χρόνου µέχρι t µ µε αύξουσα διάταξη σφραγίδων χρόνου Οι παρατηρήσεις της διεργασίας monitor µπορούν να χρησιµοποιηθούν για την κατασκευή συνεπών καθολικών καταστάσεων Βασισµένο στον σχεδιασµό του Συγχρονιστή των Tel και Leeuwen Ο συγχρονισµός ϱολογιών σε ένα κατανεµηµένο σύστηµα δεν είναι καθόλου εύκολο πρόβληµα Η κατασκευή συνεπών καθολικών καταστάσεων µπορεί να ϐασιστεί και σε ασθενέστερες συνθήκες Αρκεί να µπορούµε να εγγυηθούµε την χρονολογική σειρά των γεγονότων Χρησιµοποιούµε τον αλγόριθµο LamportTime για τον ορισµό των χρονοσφραγίδων που ικανοποιούν την σχέση συνέβη-πριν

10 Παθητική Παρατήρηση µε Λογικά Ρολόγια (1) Παθητική Παρατήρηση µε Λογικά Ρολόγια (2) Θεωρούµε ότι οι κόµβοι έχουν πρόσβαση σε ένα λογικό ρολόι που διατηρεί µια τοπική διεργασία που εκτελεί τον αλγόριθµο LamportTime Η διεργασία monitor, τη χρονική στιγµή t καταγράφει όλα τα µηνύµατα που έχει λάβει µε αύξουσα διάταξη χρονοσφραγίδων Οι παρατηρήσεις της διεργασίας monitor µπορούν να χρησιµοποιηθούν για την κατασκευή συνεπών καθολικών καταστάσεων π.χ. O4 = {σ 1 1, σ2 1, σ3 1, σ1 2, σ3 2, σ3 3, σ1 3, σ3 4, σ1 4, σ2 2, σ3 5,...} είναι συνεπής Ο παραπάνω αλγόριθµος δεν είναι απολύτως σωστός Μπορεί να παραλάβουµε ένα µήνυµα που αφορά το συµβάν σ µετά από το µήνυµα που αφορά το συµβάν σ ενώ LC(σ ) < LC(σ ) Αυτό συµβαίνει, διότι τα λογικά ϱολόγια δεν µπορούν να ανιχνεύσουν το χάσµα (gap detection) µεταξύ χρονοσφραγίδων διαφορετικών διεργασιών Ανίχνευση Χάσµατος εδοµένων δύο συµβάντων σ και σ µε χρονοσφραγίδες LC(σ) και LC(σ ) για τις οποίες ισχύει LC(σ) < LC(σ ), αποφάσισε αν υπάρχει κάποιο άλλο συµβάν σ τέτοιο ώστε LC(σ) < LC(σ ) < LC(σ ) Παθητική Παρατήρηση µε Λογικά Ρολόγια (3) Συζήτηση Υποθέτουµε ότι τα κανάλια επικοινωνίας παραδίδουν τα µηνύµατα µε σειρά FIFO. Τότε, αν η P0 παραλάβει ένα µήνυµα m από την διεργασία Pu µε χρονοσφραγίδα LC(m) είναι ϐέβαιο ότι κανένα άλλο µήνυµα m δεν µπορεί να ληφθεί από την Pu µε χρονοσφραγίδα LC(m ) < LC(m) Αυτό συµβαίνει, διότι τα λογικά ϱολόγια δεν µπορούν να ανιχνεύσουν το χάσµα (gap detection) µεταξύ χρονοσφραγίδων διαφορετικών διεργασιών Το µήνυµα m χαρακτηρίζεται ευσταθές Εποµένως, η διεργασία monitor, τη χρονική στιγµή t καταγράφει όλα τα ευσταθή µηνύµατα που έχει λάβει µε αύξουσα διάταξη χρονοσφραγίδων Ο αλγόριθµος είναι γνωστός ως LogicalTimeSnapshot Παρατηρούµε ότι τα ϕυσικά ϱολόγια στερούνται επίσης της ιδιότητας ανίχνευσης χάσµατος Οµως, λόγο τη υπόθεσης ενός άνω ϕράγµατος µ l + d το οποίο είναι γνωστό στις διεργασίες, οδηγούµαστε σε µια ισοδύναµη υπόθεση: τη χρονική στιγµή t, όλα τα µηνύµατα µε χρονοσφραγίδες µικρότερες από t µ είναι ευσταθή

11 Στιγµιότυπα Ορισµοί Οι δύο αλγόριθµοι που είδαµε ϐασίζονται στον παθητικό ϱόλο της διεργασίας monitor Ολες οι άλλες διεργασίες που συµµετείχαν στο κατανεµηµένο σύστηµα ενηµέρωναν την P0 Η προσέγγιση των στιγµιότυπων δίνει ενεργό ϱόλο στην διεργασία monitor η οποία καθορίζει πότε ϑα εκτελεστεί η διαδικασία της σύνθεσης της καθολικής κατάστασης Με άλλα λόγια η P0 λαµβάνει φωτογραφίες του συστήµατος, τις οποίες αποκαλούµε στιγµιότυπα (snapshots) Κατάσταση καναλιού (channel state) Η κατάσταση κάθε καναλιού Cuv που συνδέει την διεργασία Pu µε την διεργασία Pv, είναι όλα τα µηνύµατα που έχει στείλει η Pu στην διεργασία Pv, και η Pv δεν έχει ακόµη λάβει. Συµβολίζουµε ως nbrs in u = {v (v, u) E} όλες τις κορυφές που είναι εισερχόµενες γειτονικές της u Συµβολίζουµε ως nbrsu out = {v (u, v) E} όλες τις κορυφές που είναι εξερχόµενες γειτονικές της κορυφής u Συνεπή Ολικά Στιγµιότυπα µε Φυσικά Ρολόγια (1) Συνεπή Ολικά Στιγµιότυπα µε Φυσικά Ρολόγια (2) Θεωρούµε ότι οι κόµβοι διαθέτουν ένα ρολόι Τα ϱολόγια των κόµβων είναι συγχρονισµένα Υπάρχει ένα άνω ϕράγµα µ l + d το οποίο είναι γνωστό Οπως και πριν, το πρωτόκολλο ϐασίζεται στο ότι όλες οι διεργασίες καταγράφουν την καθολική τους κατάσταση στον ίδιο πραγµατικό χρόνο Η διεργασία monitor, επιλέγει µια χρονική στιγµή t αρκετά µεγάλη, έτσι ώστε να εγγυηθεί ότι ένα µήνυµα που εστάλη τώρα ϑα έχει ληφθεί από όλες τις υπόλοιπες διεργασίες πριν την t Αρχικά, η διεργασία P0 στέλνει το µήνυµα ΠάρεΣτιγµιότυπο(t ) σε όλες τις διεργασίες. Την στιγµή t κάθε διεργασία Pu Καταγράφει την τοπική της κατάσταση σu Στέλνει ένα κενό µήνυµα στις nbrsu out Θέτει κάθε σύνολο κατάσταση(cvu) µε το κενό σύνολο Καταγράφει τα µηνύµατα από τις nbrsu in Οταν η Pu λάβει από την Pv µήνυµα µε χρονοσφραγίδα(m)> t Σταµατάει την καταγραφή των µηνυµάτων που δέχεται από την Pv ηλώνει στην P0 την κατάσταση(cvu)

12 Συζήτηση Παρατηρήσεις (1) Συζήτηση Παρατηρήσεις (2) Για κάθε Pv nbrsu in η κατάσταση του καναλιού Cvu περιέχει το σύνολο των µηνυµάτων που έστειλε η Pv πριν από τη χρονική στιγµή t και έλαβε η Pu µετά από τη χρονική στιγµή t ηλαδή, όλα τα µηνύµατα τα οποία την χρονική στιγµή t είναι σε µεταφορά Τα κενά µηνύµατα εγγυώνται ότι η διεργασία Pu ϑα λάβει τελικά ένα µήνυµα m για το οποίο χρονοσφραγίδα(m) t Εστω ένα συµβάν σ που ανήκει στην τοµή C, η οποία σχετίζεται µε την καθολική κατάσταση που έχει δηµιουργηθεί, τότε χρονοσφραγίδα(σ)< t Αρα, (σ C ) ( χρονοσφραγίδα(σ ) < χρονοσφραγίδα(σ) ) σ C Εφόσον τα ϕυσικά ϱολόγια ικανοποιούν τη συνθήκη του ϱολογιού, η παραπάνω σχέση αποδεικνύει ότι η τοµή C είναι συνεπής, άρα και η καθολική κατάσταση είναι συνεπής Συνεπή Ολικά Στιγµιότυπα µε Λογικά Ρολόγια (1) Συνεπή Ολικά Στιγµιότυπα µε Λογικά Ρολόγια (2) Εφόσον τα λογικά ϱολόγια ικανοποιούν τη συνθήκη του ϱολογιού, ϑα ήταν καλύτερο να χρησιµοποιήσουµε λογικά ϱολόγια Οµως πως ϑα ορίσουµε την χρονική στιγµή t µε την χρήση λογικών ϱολογιών; Επίσης, στο προηγούµενο πρωτόκολλο υποθέσαµε ότι η P0 µπορεί να υπολογίσει το t Τώρα υποθέτουµε ότι η P0 µπορεί να υπολογίσει µια αντίστοιχη τιµή για το λογικό ϱολόι ω αρκετά µεγάλη, ώστε κανένα λογικό ϱολόι να µπορεί να ϕτάσει την τιµή αυτήν Ασθενέστερη υπόθεση Αρχικά, η διεργασία P0 στέλνει το µήνυµα ΠάρεΣτιγµιότυπο(ω ) σε όλες τις διεργασίες και ϑέτει το λογικό ϱολόι της στην τιµή ω Την στιγµή ω κάθε διεργασία Pu Καταγράφει την τοπική της κατάσταση σu Στέλνει ένα κενό µήνυµα στις nbrsu out Αρχίζει να καταγράφει τα µηνύµατα από τις nbrsu in Οταν η Pu λάβει από την Pv µήνυµα µε χρονοσφραγίδα(m) ω Σταµατάει την καταγραφή των µηνυµάτων που δέχεται από την Pv ηλώνει στην P0 την κατάσταση(cvu)

13 Ο Αλγόριθµος των Chandy και Lamport (1) Ο Αλγόριθµος των Chandy και Lamport (2) Οι Chandy και Lamport παρατήρησαν ότι η διεργασία δεν κάνει τίποτα µεταξύ της λήψης του µηνύµατος ΠάρεΣτιγµιότυπο(ω ) και της λήψης ενός κενού µηνύµατος από µια άλλη διεργασία Εποµένως το λογικό ϱολόι της διεργασίας εξαναγκάζεται να πάρει την τιµή ω Μπορούµε να αντικαταστήσουµε το µήνυµα ΠάρεΣτιγµιότυπο(ω ) µε ένα απλό µήνυµα ΠάρεΣτιγµιότυπο η διεργασία καταγράφει την τοπική της κατάσταση µόλις λάβει το µήνυµα ΠάρεΣτιγµιότυπο Με αυτή την σκέψη οι Chandy και Lamport προτείνουν έναν αλγόριθµου που δεν χρησιµοποιεί λογικά ϱολόγια Αρχικά, η διεργασία P0 στέλνει το µήνυµα ΠάρεΣτιγµιότυπο στον εαυτό της Οταν η διεργασία Pu λάβει το µήνυµα ΠάρεΣτιγµιότυπο από την διεργασία Pπ για πρώτη ϕορά Καταγράφει την τοπική της κατάσταση σu Στέλνει το µήνυµα ΠάρεΣτιγµιότυπο στις nbrsu out Θέτει κάθε σύνολο κατάσταση(cπu) µε το κενό σύνολο Αρχίζει να καταγράφει τα µηνύµατα από τις nbrsu in εκτός από την Pπ Οταν η Pu λάβει ξανά από την Pδ το µήνυµα ΠάρεΣτιγµιότυπο Σταµατάει την καταγραφή των µηνυµάτων που δέχεται από την Pδ ηλώνει στην P0 την κατάσταση(cδu) Συζήτηση Παρατηρήσεις Ορθότητα του Αλγόριθµου των Chandy και Lamport (1) Το µήνυµα ΠάρεΣτιγµιότυπο µεταβιβάζεται στα εξερχόµενα κανάλια µια διεργασίας, µόλις η διεργασία αυτή λάβει το µήνυµα για πρώτη ϕορά Αν το σύστηµα είναι ισχυρά συνεκτικό, τότε είναι ϐέβαιο ότι το µήνυµα ΠάρεΣτιγµιότυπο ϑα διασχίσει κάθε κανάλι ακριβώς µία ϕορά Οταν µια διεργασία δέχεται ένα µήνυµα ΠάρεΣτιγµιότυπο από όλα τα εισερχόµενα κανάλια της, η συνεισφορά της στην κατασκευή της καθολικής κατάστασης έχει ολοκληρωθεί Τερµατίζει η συµµετοχή της στο πρωτόκολλο στιγµιότυπου Θεώρηµα (ChandyLamportSnapshot.1) Ο αλγόριθµος ChandyLamportSnapshot καταχωρεί ένα συνεπές ολικό στιγµιότυπο για τον Α. Απόδειξη: Εστω η εκτέλεση α της διεργασίας του υψηλότερου επίπεδου A Εστω ότι κατά την διάρκεια της εκτέλεσης, στην κατάσταση Σɛ ενεργοποιήθηκε ο αλγόριθµος ChandyLamportSnapshot, ο οποίος τερµάτισε στην κατάσταση Στ και κατέγραψε την κατάσταση Σ Εστω α1 το µέρος της α πριν από την κατάσταση Σɛ Εστω α2 το µέρος της α µετά από την κατάσταση Στ

14 Ορθότητα του Αλγόριθµου των Chandy και Lamport (2) Ορθότητα του Αλγόριθµου των Chandy και Lamport (3) Το ολικό στιγµιότυπο Σ είναι συνεπές αν υπάρχει εκτέλεση α τέτοια ώστε καµία διεργασία δεν µπορεί να ξεχωρίσει την α από την α Η α ξεκινά µε α1 και καταλήγει µε α2 Τα Σɛ, Σ, Στ εµφανίζονται µε αυτή την σειρά στην α Ο στόχος µας είναι να επαναδιατάξουµε τα συµβάντα της α έτσι ώστε να καταλήξουµε σε µια εκτέλεση α στην οποία τα Σɛ, Σ, Στ εµφανίζονται µε την ίδια σειρά. Στην ουσία επιλέγουµε λογικά ανεξάρτητα συµβάντα που πραγµατοποιούνται σε διαφορετικές διεργασίες και τα επαναδιατάσουµε. Εστω σk και σk+1 διαδοχικά συµβάντα στην α τα οποία έλαβαν χώρα στις διεργασίες Pu και Pv και είναι µετά και προ καταχώρισης αντίστοιχα Αρα, δεν µπορεί το σk να είναι η αποστολή ενός µηνύµατος m και το σk+1 να είναι η παραλαβή του m Οταν η Pu καταχώρησε την κατάσταση της έστειλε αµέσως το µήνυµα P arestigmi otupo στη Pv Εφόσον τα κανάλια είναι FIFO το µήνυµα έφτασε στην Pv πριν το m γιατί το σk+1 ϑα ήταν µετά την καταχώρηση, άτοπο. Επιπλέον, η κατάσταση της Pv µετά το σk+1 δεν επηρεάζεται από το σk γιατί αυτό συµβαίνει σε άλλη διεργασία Επίσης, η κατάσταση της Pu µετά το σk δεν επηρεάζεται από το σk+1 Εποµένως, µπορούµε να εναλλάξουµε τα σk και σk+1 Ορθότητα του Αλγόριθµου των Chandy και Lamport (4) Χαρακτηριστικά του Αλγόριθµου των Chandy και Lamport Με συνεχείς τέτοιες εναλλαγές παίρνουµε µια εκτέλεση α όπου όλα τα συµβάντα προ καταχώρισης προηγούνται όλων των συµβάντων µετά καταχώρισης Η α ξεκινά µε α1 και καταλήγει µε α2 Η Σ εµφανίζεται στην α αµέσως πριν την α2 Ολες οι εναλλαγές που έγιναν αφορούσαν συµβάντα µετά την Σɛ και πριν την Στ Το Σ είναι η κατάσταση του δικτύου µετά το τελευταίο προ καταχώρισης συµβάν στην εκτέλεση α και πριν το πρώτο µετά καταχώρισης συµβάν Με αυτό τον τρόπο καταλήγουµε στην εκτέλεση α όπου καµία διεργασία δεν µπορεί να ξεχωρίσει την α από την α. Ο αλγόριθµος είναι σωστός κατασκευάζει συνεπή ολικά στιγµιότυπα Η πολυπλοκότητα επικοινωνίας είναι O ( E ) Η χρονική πολυπλοκότητα δεν είναι εύκολο να υπολογιστεί διότι ταυτόχρονα στέλνει µηνύµατα και η διεργασία υψηλότερου επιπέδου Αν αγνοήσουµε πιθανές καθυστερήσεις που προκύπτουν από τις αποστολές των µηνυµάτων της διεργασίας του υψηλότερου επιπέδου, ο αλγόριθµος ChandyLamportSnapshot ϑα τερµατίσει εντός χρόνου O (δ(l + d))

15 Σύνοψη 8 ης ιάλεξης Σύνοψη Μαθήµατος Προηγούµενο Μάθηµα Προηγούµενο Μάθηµα ιάταξη Γεγονότων Λογικός Χρόνος Ερώτηση Προηγούµενης ιάλεξης Ασύγχρονα Κατανεµηµένα Συστήµατα Καθολικές Καταστάσεις Κατασκευή Καθολικών Καταστάσεων Συνεπή Ολικά Στιγµιότυπα Ασύγχρονα Κατανεµηµένα Συστήµατα Καθολικές Καταστάσεις Κατασκευή Καθολικών Καταστάσεων Συνεπή Ολικά Στιγµιότυπα Σύνοψη Μαθήµατος Σύνοψη Μαθήµατος Ερώτηση ιάλεξης Επόµενη ιάλεξη Βιβλιογραφία Ερώτηση ιάλεξης Βιβλίο Distributed Algorithms" (N.Lynch) 1. Κεφάλαιο 19: Global Snapshots and Stable Properties Βιβλίο Introduction to Distributed Algorithms" (G.Tel) 1. Κεφάλαιο 10: Snapshots Βιβλίο Κατανεµηµένα Συστήµατα µε Java (Ι.Κ.Κάβουρας, Ι.Ζ.Μήλης, Γ.Β.Ξυλωµένος, Α.Α.Ρουκουνάκη) 1. Κεφάλαιο 4: Καθολικές καταστάσεις Ερώτηση 8 ης ιάλεξης Θεωρείστε ένα ασύγχρονο κατανεµηµένο σύστηµα µε n διεργασίες συνδεδεµένες µέσω ενός γενικού δικτύου. Κάθε διεργασία έχει µια µοναδική ταυτότητα και δεν γνωρίζει το σύνολο των διεργασιών ή την τοπολογία του δικτύου. Σχεδιάστε έναν αλγόριθµο που επιτρέπει σε όλες τις διεργασίες να υπολογίσει την διάµετρο του δικτύου. Συζητήστε την χρονική πολυπλοκότητα και πολυπλοκότητα επικοινωνίας του αλγόριθµου σας. Παράδοση στην επόµενη διάλεξη Σύντοµες απαντήσεις

16 Επόµενη ιάλεξη Ασύγχρονα Κατανεµηµένα Συστήµατα Αποτίµηση καθολικού κατηγορήµατος Ιδιότητες καθολικών κατηγορηµάτων, αδιέξοδα, κατανεµηµένος τερµατισµός

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Η σχέση συνέβη-πριν

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Η σχέση συνέβη-πριν Προηγούµενο Μάθηµα Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης ευτέρα, 8 εκεµβρίου, 2008 Αίθουσα Β3 Ασύγχρονα Κατανεµηµένα

Διαβάστε περισσότερα

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Η σχέση συνέβη-πριν

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Η σχέση συνέβη-πριν Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Προηγούµενο Μάθηµα Ασύγχρονα Κατανεµηµένα Συστήµατα ιάταξη Γεγονότων Σχέση συνέβη-πριν Λογικός Χρόνος

Διαβάστε περισσότερα

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Προηγούµενο Μάθηµα Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης ευτέρα, 20 εκεµβρίου, 2010 Αίθουσα Β3 Ασύγχρονα Κατανεµηµένα

Διαβάστε περισσότερα

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Ορισµοί Τοπική ιστορία

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Ορισµοί Τοπική ιστορία Προηγούµενο Μάθηµα Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης ευτέρα, 12 Ιανουαρίου, 2008 Αίθουσα Β3 Ασύγχρονα Κατανεµηµένα

Διαβάστε περισσότερα

Καθολικέςκαταστάσεις. Ορισµοί Κατασκευή καθολικών καταστάσεων Παθητική στρατηγική Ενεργητική στρατηγική. Κατανεµηµένα Συστήµατα 04-1

Καθολικέςκαταστάσεις. Ορισµοί Κατασκευή καθολικών καταστάσεων Παθητική στρατηγική Ενεργητική στρατηγική. Κατανεµηµένα Συστήµατα 04-1 Καθολικέςκαταστάσεις Ορισµοί Κατασκευή καθολικών καταστάσεων Παθητική στρατηγική Ενεργητική στρατηγική Κατανεµηµένα Συστήµατα 04-1 Ορισµοί Τοπικήιστορία διεργασίας p i Έστω ότι e ij είναι το γεγονός jτης

Διαβάστε περισσότερα

Σύνοψη Μαθήµατος. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων

Σύνοψη Μαθήµατος. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης Σύνοψη Μαθήµατος Σύγχρονα Κατανεµηµένα Συστήµατα Βυζαντινά Σφάλµατα Ασύγχρονα

Διαβάστε περισσότερα

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Αυτόµατα Εισόδου/Εξόδου

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Αυτόµατα Εισόδου/Εξόδου Προηγούµενο Μάθηµα Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης ευτέρα, 1 εκεµβρίου, 2008 Αίθουσα Β Ασύγχρονα Κατανεµηµένα

Διαβάστε περισσότερα

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Ορισµοί Τοπική ιστορία

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Ορισµοί Τοπική ιστορία Προηγούµενο Μάθηµα Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης ευτέρα, 10 εκεµβρίου, 2007 Αίθουσα Β3 Ασύγχρονα Κατανεµηµένα

Διαβάστε περισσότερα

Σύνοψη Μαθήµατος. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Βυζαντινοί Στρατηγοί

Σύνοψη Μαθήµατος. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Βυζαντινοί Στρατηγοί Σύνοψη Μαθήµατος Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης ευτέρα, 22 Νοεµβρίου, 2010 Αίθουσα Β Σύγχρονα Κατανεµηµένα

Διαβάστε περισσότερα

Αµοιβαίοςαποκλεισµός. Κατανεµηµένα Συστήµατα 03-1

Αµοιβαίοςαποκλεισµός. Κατανεµηµένα Συστήµατα 03-1 Αµοιβαίοςαποκλεισµός Εισαγωγή Συγκεντρωτική προσέγγιση Κατανεµηµένη προσέγγιση Αλγόριθµος Lamport Αλγόριθµος Ricart-Agrawala Προσέγγιση µεταβίβασης σκυτάλης Αλγόριθµος LeLann Αλγόριθµος Raymond Αλγόριθµος

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα με Java. Ενότητα # 4: Αμοιβαίος αποκλεισμός Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Κατανεμημένα Συστήματα με Java. Ενότητα # 4: Αμοιβαίος αποκλεισμός Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Κατανεμημένα Συστήματα με Java Ενότητα # 4: Αμοιβαίος αποκλεισμός Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού

Διαβάστε περισσότερα

Σύνοψη Μαθήµατος. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων

Σύνοψη Μαθήµατος. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Σύνοψη Μαθήµατος Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης Ασύγχρονα Κατανεµηµένα Συστήµατα Αποτίµηση Καθολικού Κατηγορήµατος

Διαβάστε περισσότερα

Μοντέλο Σύγχρονου ικτύου. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων

Μοντέλο Σύγχρονου ικτύου. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Μοντέλο Σύγχρονου ικτύου Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης ευτέρα, Νοεµβρίου, 0 Αίθουσα Β Μία συλλογή υπολογιστικών

Διαβάστε περισσότερα

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Υποστήριξη Φοιτητών

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Υποστήριξη Φοιτητών Προηγούµενο Μάθηµα Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης ευτέρα, 24 Οκτωβρίου, 2011 Αίθουσα Β3 Υλικό µαθήµατος Σηµειώσεις,

Διαβάστε περισσότερα

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Προηγούµενο Μάθηµα Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης Σύγχρονα Κατανεµηµένα Συστήµατα Μοντελοποίηση Συστήµατος

Διαβάστε περισσότερα

Το Πρόβληµα Οµοφωνίας Σύγχρονα Συστήµατα Μεταβίβασης Μηνύµατος Μοντέλο Κατάρρευσης (crash model) Οι διεργασίες µπορούν να σταµατούν να εκτελούνται σε

Το Πρόβληµα Οµοφωνίας Σύγχρονα Συστήµατα Μεταβίβασης Μηνύµατος Μοντέλο Κατάρρευσης (crash model) Οι διεργασίες µπορούν να σταµατούν να εκτελούνται σε Οµοφωνία σε σύστηµα µε αϖοτυχίες κατάρρευσης διεργασιών Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 1 Το Πρόβληµα Οµοφωνίας Σύγχρονα Συστήµατα Μεταβίβασης Μηνύµατος Μοντέλο Κατάρρευσης (crash model) Οι διεργασίες

Διαβάστε περισσότερα

Διάλεξη 10: Αλγόριθμοι Αμοιβαίου Αποκλεισμού σε περιβάλλον ανταλλαγής μηνυμάτων. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 10: Αλγόριθμοι Αμοιβαίου Αποκλεισμού σε περιβάλλον ανταλλαγής μηνυμάτων. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 10: Αλγόριθμοι Αμοιβαίου Αποκλεισμού σε περιβάλλον ανταλλαγής μηνυμάτων ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Τι θα δούμε σήμερα Αλγόριθμος Χρήση Συντονιστή Αλγόριθμος του Lamport Αλγόριθμος LeLann:

Διαβάστε περισσότερα

ιεργασίες και Επεξεργαστές στα Κατανεµηµένων Συστηµάτων

ιεργασίες και Επεξεργαστές στα Κατανεµηµένων Συστηµάτων ιεργασίες και Επεξεργαστές στα Κατανεµηµένων Συστηµάτων Μαρία Ι. Ανδρέου ΗΜΥ417, ΗΜΥ 663 Κατανεµηµένα Συστήµατα Χειµερινό Εξάµηνο 2006-2007 Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο

Διαβάστε περισσότερα

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Υποστήριξη Φοιτητών

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Υποστήριξη Φοιτητών Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Προηγούµενο Μάθηµα Υλικό µαθήµατος Σηµειώσεις, Βιβλιογραφία, ιαδίκτυο ιαδικασία Τυπικά Θέµατα, Υλη,

Διαβάστε περισσότερα

Πρόλογος... xv. Κεφάλαιο 1: Εισαγωγή... 1

Πρόλογος... xv. Κεφάλαιο 1: Εισαγωγή... 1 Περιεχόµενα Πρόλογος... xv Κεφάλαιο 1: Εισαγωγή... 1 1.1. Συστήµατα πολλών επεξεργαστών... 1 1.1.1. Λειτουργικά συστήµατα πολυεπεξεργαστών... 3 1.1.2. Λειτουργικά συστήµατα δικτύων... 4 1.1.3. Κατανεµηµένα

Διαβάστε περισσότερα

Μοντέλο Σύγχρονου ικτύου. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων

Μοντέλο Σύγχρονου ικτύου. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης Μοντέλο Σύγχρονου ικτύου Μία συλλογή υπολογιστικών µονάδων ή επεξεργαστές κάθε

Διαβάστε περισσότερα

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Σύνοψη 3 ης ιάλεξης

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Σύνοψη 3 ης ιάλεξης Προηγούµενο Μάθηµα Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης Σύγχρονα Κατανεµηµένα Συστήµατα Μοντελοποίηση Συστήµατος

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα με Java. Ενότητα # 2: Διάταξη συμβάντων, καθολικές καταστάσεις Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Κατανεμημένα Συστήματα με Java. Ενότητα # 2: Διάταξη συμβάντων, καθολικές καταστάσεις Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Κατανεμημένα Συστήματα με Java Ενότητα # 2: Διάταξη συμβάντων, καθολικές καταστάσεις Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια

Διαβάστε περισσότερα

Γενικά. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Βασικοί Ορισµοί

Γενικά. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Βασικοί Ορισµοί Γενικά Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης ευτέρα, 24 Σεπτεµβρίου, 2012 Αίθουσα Β3 Σκοπός του µαθήµατος: Κατανόηση

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Συναίνεση χωρίς την παρουσία σφαλμάτων Κατανεμημένα Συστήματα Ι 4η Διάλεξη 27 Οκτωβρίου 2016 Παναγιώτα Παναγοπούλου Κατανεμημένα Συστήματα Ι 4η Διάλεξη 1 Συναίνεση χωρίς την παρουσία σφαλμάτων Προηγούμενη

Διαβάστε περισσότερα

Διάλεξη 1: Εισαγωγή στον Κατανεμημένο Υπολογισμό. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 1: Εισαγωγή στον Κατανεμημένο Υπολογισμό. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 1: Εισαγωγή στον Κατανεμημένο Υπολογισμό ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Τι θα δούμε σήμερα Τι είναι ένα Κατανεμημένο Σύστημα; Επικοινωνία, Χρονισμός, Σφάλματα Μοντέλο Ανταλλαγής Μηνυμάτων 1

Διαβάστε περισσότερα

Αιτιώδεις Σχέσεις και Χρονισµός Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 1 Η Σχέση Happens-Before (Συµβαίνει-ϖριν) Οι εκτελέσεις, ως ακολουθίες γεγονότων, καθορίζουν µια καθολική διάταξη σε αυτά. Ωστόσο

Διαβάστε περισσότερα

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Προηγούµενο Μάθηµα Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης ευτέρα, 22 Οκτωβρίου, 2007 Αίθουσα Β3 Υλικό µαθήµατος Σηµειώσεις,

Διαβάστε περισσότερα

Συνεπείς καθολικές καταστάσεις & επιβεβαίωση ιδιοτήτων. Κατανεμημένα Συστήματα 1

Συνεπείς καθολικές καταστάσεις & επιβεβαίωση ιδιοτήτων. Κατανεμημένα Συστήματα 1 Συνεπείς καθολικές καταστάσεις & επιβεβαίωση ιδιοτήτων Κατανεμημένα Συστήματα 1 lalis@inf.uth.gr Λογικά συνεπείς τομές Τμήμα τοπικής ιστορίας: h i.k {e i.1,e i.2,e i.k } τμήμα της τοπικής εκτέλεσης στην

Διαβάστε περισσότερα

Συνεπής παρατήρηση εκτέλεσης & συνεπείς καθολικές καταστάσεις. Κατανεμημένα Συστήματα 1

Συνεπής παρατήρηση εκτέλεσης & συνεπείς καθολικές καταστάσεις. Κατανεμημένα Συστήματα 1 Συνεπής παρατήρηση εκτέλεσης & συνεπείς καθολικές καταστάσεις Κατανεμημένα Συστήματα 1 lalis@inf.uth.gr Λογικά συνεπείς τομές Τμήμα τοπικής ιστορίας: h i.k {e i.1,e i.2,e i.k } τμήμα της τοπικής εκτέλεσης

Διαβάστε περισσότερα

Απαντήσεις. Απάντηση. Απάντηση

Απαντήσεις. Απάντηση. Απάντηση 6 η σειρά ασκήσεων Άλκης Γεωργόπουλος Α.Μ. 39 Αναστάσιος Κοντογιώργης Α.Μ. 43 Άσκηση 1. Απαντήσεις Η αλλαγή ενός ρολογιού προς τα πίσω µπορεί να προκαλέσει ανεπιθύµητη συµπεριφορά σε κάποια προγράµµατα.

Διαβάστε περισσότερα

οµήτης παρουσίασης Marzullo και Neiger αλγόριθµος Παράδειγµα Distributed Debugging Εισαγωγικά

οµήτης παρουσίασης Marzullo και Neiger αλγόριθµος Παράδειγµα Distributed Debugging Εισαγωγικά Distributed Debugging Τσώτσος Θοδωρής Φωλίνας Νίκος Εισαγωγικά Επιθυµούµε να µπορούµε να παρατηρούµε την εκτέλεση του προγράµµατος κατά τη διάρκειά του. Έχουµε τη δυνατότητα να ελέγξουµε αν οι απαιτούµενες

Διαβάστε περισσότερα

Σύνοψη Προηγούµενου Μαθήµατος. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων

Σύνοψη Προηγούµενου Μαθήµατος. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Σύνοψη Προηγούµενου Μαθήµατος Ασύγχρονα Κατανεµηµένα Συστήµατα Σφάλµατα σε Ασύγχρονα Συστήµατα ηµήτρης

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Συναίνεση με σφάλματα διεργασιών Κατανεμημένα Συστήματα Ι 5η Διάλεξη 10 Νοεμβρίου 2016 Παναγιώτα Παναγοπούλου Κατανεμημένα Συστήματα Ι 5η Διάλεξη 1 Συναίνεση με σφάλματα διεργασιών Προηγούμενη διάλεξη

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Σύγχρονα Κατανεμημένα Συστήματα 13 Οκτωβρίου 2016 Παναγιώτα Παναγοπούλου Περίληψη 1 Σύγχρονα Κατανεμημένα Συστήματα 2 Το πρόβλημα εκλογής αρχηγού Ο αλγόριθμος LCR Ο αλγόριθμος HS 1 Σύγχρονα Κατανεμημένα

Διαβάστε περισσότερα

Ενδεικτικές Λύσεις 1ου Σετ Ασκήσεων

Ενδεικτικές Λύσεις 1ου Σετ Ασκήσεων Κ Σ Ι Ενδεικτικές Λύσεις 1ου Σετ Ασκήσεων Παναγιώτα Παναγοπούλου Άσκηση 1. Υποθέστε ότι οι διεργασίες ενός σύγχρονου κατανεμημένου συστήματος έχουν μοναδικές ταυτότητες (UIDs), γνωρίζουν ότι είναι συνδεδεμένες

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Κατανεμημένα Συστήματα Ι Συναίνεση και Σφάλματα Διεργασιών Παναγιώτα Παναγοπούλου Περίληψη Συναίνεση με σφάλματα διεργασιών Το πρόβλημα Ο αλγόριθμος FloodSet Επικύρωση δοσοληψιών Ορισμός του προβλήματος

Διαβάστε περισσότερα

Το Πρόβληµα Οµοφωνίας Σύγχρονα Συστήµατα Μεταβίβασης Μηνύµατος Μοντέλο Κατάρρευσης (crash model) Οι διεργασίες µπορούν να σταµατούν να εκτελούνται σε

Το Πρόβληµα Οµοφωνίας Σύγχρονα Συστήµατα Μεταβίβασης Μηνύµατος Μοντέλο Κατάρρευσης (crash model) Οι διεργασίες µπορούν να σταµατούν να εκτελούνται σε Οµοφωνία σε σύγχρονο σύστηµα µε αϖοτυχίες κατάρρευσης διεργασιών Παναγιώτα Φατούρου Κατανεµηµένος Υπολογισµός 1 Το Πρόβληµα Οµοφωνίας Σύγχρονα Συστήµατα Μεταβίβασης Μηνύµατος Μοντέλο Κατάρρευσης (crash

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Εκλογή αρχηγού σε γενικά δίκτυα 20 Οκτωβρίου 2016 Παναγιώτα Παναγοπούλου Εκλογή αρχηγού σε γενικά δίκτυα Προηγούμενη διάλεξη Σύγχρονα Κατανεμημένα Συστήματα Μοντελοποίηση συστήματος Πρόβλημα εκλογής αρχηγού

Διαβάστε περισσότερα

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Προηγούµενο Μάθηµα Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Σύγχρονα Κατανεµηµένα Συστήµατα Μοντελοποίηση Συστήµατος Πρόβληµα Εκλογής Αρχηγού

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Κατανεμημένα Συστήματα Ι Μοντέλο σύγχρονου κατανεμημένου δικτύου Εκλογή αρχηγού σε σύγχρονο δακτύλιο Παναγιώτα Παναγοπούλου Περίληψη Σύγχρονα Κατανεμημένα Συστήματα Μοντέλο Σφάλματα Πολυπλοκότητα Εκλογή

Διαβάστε περισσότερα

Σύνοψη Μαθήµατος. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων

Σύνοψη Μαθήµατος. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Σύνοψη Μαθήµατος Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης Ασύγχρονα Κατανεµηµένα Συστήµατα Σφάλµατα ιεργασιών Αδυναµία

Διαβάστε περισσότερα

Διάλεξη 11: Αιτιότητα Διάταξη Γεγονότων. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 11: Αιτιότητα Διάταξη Γεγονότων. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 11: Αιτιότητα Διάταξη Γεγονότων ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Τι θα δούμε σήμερα Ορισμός του «Πριν- Από» (Happens- Before) Λογικά Ρολόγια Αλγόριθμος Χρονοσφραγίδων του Lamport Διανυσματικά

Διαβάστε περισσότερα

Σκοπός του µαθήµατος. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων

Σκοπός του µαθήµατος. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Σκοπός του µαθήµατος Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης ευτέρα, 4 Ιανουαρίου, 008 Αίθουσα Β3 Μελέτη ϐασικών ϑεωρητικών

Διαβάστε περισσότερα

Αιτιώδεις Σχέσεις και Χρονισµός. Παναγιώτα Φατούρου Αρχές Κατανεµηµένου Υπολογισµού

Αιτιώδεις Σχέσεις και Χρονισµός. Παναγιώτα Φατούρου Αρχές Κατανεµηµένου Υπολογισµού Αιτιώδεις Σχέσεις και Χρονισµός Η Σχέση Happens-Before (Συµβαίνει-πριν) Οι εκτελέσεις, ως ακολουθίες γεγονότων, καθορίζουν µια καθολική διάταξη σε αυτά. Ωστόσο είναι δυνατό δύο υπολογιστικά γεγονότα από

Διαβάστε περισσότερα

Διάλεξη 5: Κάτω Φράγμα για Αλγόριθμους Εκλογής Προέδρου. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 5: Κάτω Φράγμα για Αλγόριθμους Εκλογής Προέδρου. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 5: Κάτω Φράγμα για Αλγόριθμους Εκλογής Προέδρου ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Κάτω Φράγμα στον Αριθμό Μηνυμάτων Ένας οποιοσδήποτε αλγόριθμος εκλογής προέδρου Α ο οποίος 1. Δουλεύει σε ασύγχρονο

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Κατανεμημένα Συστήματα Ι Εκλογή αρχηγού και κατασκευή BFS δένδρου σε σύγχρονο γενικό δίκτυο Παναγιώτα Παναγοπούλου Περίληψη Εκλογή αρχηγού σε γενικά δίκτυα Ορισμός του προβλήματος Ο αλγόριθμος FloodMax

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Ακολουθίες πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας α Κάθε

Διαβάστε περισσότερα

Εκλογήαρχηγού. Εισαγωγή Ισχυρά συνδεδεµένος γράφος ακτύλιος µίας κατεύθυνσης Τοπολογία δένδρου. Κατανεµηµένα Συστήµατα 06-1

Εκλογήαρχηγού. Εισαγωγή Ισχυρά συνδεδεµένος γράφος ακτύλιος µίας κατεύθυνσης Τοπολογία δένδρου. Κατανεµηµένα Συστήµατα 06-1 Εκλογήαρχηγού Εισαγωγή Ισχυρά συνδεδεµένος γράφος ακτύλιος µίας κατεύθυνσης Τοπολογία δένδρου Κατανεµηµένα Συστήµατα 06- Εισαγωγή Πρόβληµα: επιλογή µίας διεργασίας από το σύνολο εν αρκεί να αυτοανακηρυχθεί

Διαβάστε περισσότερα

Διάλεξη 4: Εκλογή Προέδρου σε Δακτύλιους. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 4: Εκλογή Προέδρου σε Δακτύλιους. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 4: Εκλογή Προέδρου σε Δακτύλιους ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Τι θα δούμε σήμερα Δακτύλιοι Το πρόβλημα της Εκλογής Προέδρου Εκλογή Προέδρου σε Ανώνυμους Δακτύλιους Ασύγχρονος Αλγόριθμος με

Διαβάστε περισσότερα

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών Ενότητα: ιανυσµατικοί χώροι Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ροµολόγηση πακέτων σε δίκτυα υπολογιστών

ροµολόγηση πακέτων σε δίκτυα υπολογιστών ροµολόγηση πακέτων σε δίκτυα υπολογιστών Συµπληρωµατικές σηµειώσεις για το µάθηµα Αλγόριθµοι Επικοινωνιών Ακαδηµαϊκό έτος 2011-2012 1 Εισαγωγή Οι παρακάτω σηµειώσεις παρουσιάζουν την ανάλυση του άπληστου

Διαβάστε περισσότερα

3 Αναδροµή και Επαγωγή

3 Αναδροµή και Επαγωγή 3 Αναδροµή και Επαγωγή Η ιδέα της µαθηµατικής επαγωγής µπορεί να επεκταθεί και σε άλλες δοµές εκτός από το σύνολο των ϕυσικών N. Η ορθότητα της µαθηµατικής επαγωγής ϐασίζεται όπως ϑα δούµε λίγο αργότερα

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Κατανεμημένα Συστήματα Ι Εισαγωγή Παναγιώτα Παναγοπούλου Τι είναι ένα Κατανεμημένο Σύστημα; Ένα κατανεμημένο σύστημα αποτελείται από ένα πλήθος αυτόνομων κόμβων που επικοινωνούν μεταξύ τους με κάποιο τρόπο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάµε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων. Αυτές συνδέονται µεταξύ τους µε την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

Γενικές Παρατηρήσεις. Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα (1) Το Λήµµα της Αντλησης. Χρήση του Λήµµατος Αντλησης.

Γενικές Παρατηρήσεις. Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα (1) Το Λήµµα της Αντλησης. Χρήση του Λήµµατος Αντλησης. Γενικές Παρατηρήσεις Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα () Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Υπάρχουν µη κανονικές γλώσσες, π.χ., B = { n n n }. Αυτό

Διαβάστε περισσότερα

Το Πρόβληµα Οµοφωνίας Σύγχρονα Συστήµατα Μεταβίβασης Μηνύµατος Μοντέλο Κατάρρευσης (crash model) Οι διεργασίες µπορούν να σταµατούν να εκτελούνται σε

Το Πρόβληµα Οµοφωνίας Σύγχρονα Συστήµατα Μεταβίβασης Μηνύµατος Μοντέλο Κατάρρευσης (crash model) Οι διεργασίες µπορούν να σταµατούν να εκτελούνται σε Οµοφωνία σε σύστηµα µε αϖοτυχίες διεργασιών Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 1 Το Πρόβληµα Οµοφωνίας Σύγχρονα Συστήµατα Μεταβίβασης Μηνύµατος Μοντέλο Κατάρρευσης (crash model) Οι διεργασίες µπορούν

Διαβάστε περισσότερα

Φυσικά και λογικά ρολόγια. Κατανεμημένα Συστήματα 1

Φυσικά και λογικά ρολόγια. Κατανεμημένα Συστήματα 1 Φυσικά και λογικά ρολόγια Κατανεμημένα Συστήματα 1 lalis@inf.uth.gr Τοπικά γεγονότα/συμβάντα Ορίζουμε ως γεγονός e i.x την x-οστή ενέργεια που έλαβε χώρα τοπικά στην διεργασία P i Το επίπεδο αφαίρεσης

Διαβάστε περισσότερα

Διάλεξη 6: Εκλογή Προέδρου σε Σύγχρονους Δακτύλιους. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 6: Εκλογή Προέδρου σε Σύγχρονους Δακτύλιους. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 6: Εκλογή Προέδρου σε Σύγχρονους Δακτύλιους ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Τι θα δούμε σήμερα Μη Ομοιόμορφος Αλγόριθμος Εκλογής Προέδρου σε Σύγχρονο Δακτύλιο Ομοιόμορφος Αλγόριθμος Εκλογής Προέδρου

Διαβάστε περισσότερα

Εκλογή αρχηγού σε σύγχρονο δακτύλιο: Οι αλγόριθμοι LCR και HS. 1 Ο αλγόριθμος LCR (Le Lann, Chang, and Roberts)

Εκλογή αρχηγού σε σύγχρονο δακτύλιο: Οι αλγόριθμοι LCR και HS. 1 Ο αλγόριθμος LCR (Le Lann, Chang, and Roberts) Κ Σ Ι Εκλογή αρχηγού σε σύγχρονο δακτύλιο: Οι αλγόριθμοι LCR και HS Παναγιώτα Παναγοπούλου 1 Ο αλγόριθμος LCR (Le Lann, Chang, and Roberts) Ο αλγόριθμος LCR είναι ένας αλγόριθμος εκλογής αρχηγού σε ένα

Διαβάστε περισσότερα

Σκοπός του µαθήµατος. Κατανεµηµένα συστήµατα. Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων

Σκοπός του µαθήµατος. Κατανεµηµένα συστήµατα. Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Σκοπός του µαθήµατος Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης ευτέρα, 7 Ιανουαρίου, 2008 Αίθουσα Β3 Μελέτη ϐασικών ϑεωρητικών

Διαβάστε περισσότερα

Γραµµική Αλγεβρα Ι. Ενότητα: Εισαγωγικές Εννοιες. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

Γραµµική Αλγεβρα Ι. Ενότητα: Εισαγωγικές Εννοιες. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών Ενότητα: Εισαγωγικές Εννοιες Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Αποτίµησηκαθολικού κατηγορήµατος

Αποτίµησηκαθολικού κατηγορήµατος Αποτίµησηκαθολικού κατηγορήµατος Εισαγωγή Ιδιότητες καθολικών κατηγορηµάτων Αδιέξοδα Ανίχνευση αδιεξόδων Συγκεντρωτική ανίχνευση Ιεραρχική ανίχνευση Κατανεµηµένη ανίχνευση Επανόρθωση αδιεξόδων Κατανεµηµένος

Διαβάστε περισσότερα

1 Οι πραγµατικοί αριθµοί

1 Οι πραγµατικοί αριθµοί 1 Οι πραγµατικοί αριθµοί 1.1 Σύνολα αριθµών Το σύνολο των ϕυσικών αριθµών N = {1, 2, 3,...} Το σύνολο των ακεραίων Z = {... 3, 2, 1, 0, 1, 2, 3,...}. Οι ακέραιοι διαµερίζονται σε άρτιους και περιττούς

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Τοπολογικοί χώροι Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

= s 2m 1 + s 1 m 2 s 1 s 2

= s 2m 1 + s 1 m 2 s 1 s 2 ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ, 203 ΣΗΜΕΙΩΣΕΙΣ ΧΑΡΑ ΧΑΡΑΛΑΜΠΟΥΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, ΑΠΘ Οι σηµειώσεις αυτές είναι ϐασισµένες στις διαλέξεις του µαθήµατος. Καταγράϕηκαν αρχικά ηλεκτρονικά από τη κ.

Διαβάστε περισσότερα

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα. Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Εισαγωγή στην Αλγεβρα Τελική Εξέταση 15 Φεβρουαρίου 2017 1. (Οµάδα Α) Εστω η ακολουθία Fibonacci F 1 = 1, F 2 = 1 και F n = F n 1 + F n 2, για n

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα. Ενότητα # 2: Εκλογή αρχηγού Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Κατανεμημένα Συστήματα. Ενότητα # 2: Εκλογή αρχηγού Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Κατανεμημένα Συστήματα Ενότητα # 2: Εκλογή αρχηγού Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα.

Διαβάστε περισσότερα

Άρα, Τ ser = (A 0 +B 0 +B 0 +A 0 ) επίπεδο 0 + (A 1 +B 1 +A 1 ) επίπεδο 1 + +(B 5 ) επίπεδο 5 = 25[χρονικές µονάδες]

Άρα, Τ ser = (A 0 +B 0 +B 0 +A 0 ) επίπεδο 0 + (A 1 +B 1 +A 1 ) επίπεδο 1 + +(B 5 ) επίπεδο 5 = 25[χρονικές µονάδες] Α. Στο παρακάτω διάγραµµα εµφανίζεται η εκτέλεση ενός παράλληλου αλγόριθµου που λύνει το ίδιο πρόβληµα µε έναν ακολουθιακό αλγόριθµο χωρίς πλεονασµό. Τα Α i και B i αντιστοιχούν σε ακολουθιακά υποέργα

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Τοπικές έννοιες Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Σύνοψη Προηγούµενου. Κανονικές Γλώσσες (1) Προβλήµατα και Γλώσσες. Σε αυτό το µάθηµα. ιαδικαστικά του Μαθήµατος.

Σύνοψη Προηγούµενου. Κανονικές Γλώσσες (1) Προβλήµατα και Γλώσσες. Σε αυτό το µάθηµα. ιαδικαστικά του Μαθήµατος. Σύνοψη Προηγούµενου Κανονικές Γλώσσες () ιαδικαστικά του Μαθήµατος. Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Εισαγωγή: Υπολογισιµότητα και Πολυπλοκότητα. Βασικές

Διαβάστε περισσότερα

Διάλεξη 12: Διάχυση Μηνυμάτων. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 12: Διάχυση Μηνυμάτων. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 12: Διάχυση Μηνυμάτων ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Ορισμός Προσομοίωσης Τι θα δούμε σήμερα Προσομοίωση Υπηρεσίας Διάχυσης Μηνυμάτων Ιδιότητες Διάταξης Μηνυμάτων ΕΠΛ432: Κατανεµηµένοι Αλγόριθµοι

Διαβάστε περισσότερα

Θεωρητικά Θέµατα. Ι. Θεωρία Οµάδων. x R y ή x R y ή x y(r) [x] R = { y X y R x } X. Μέρος Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις

Θεωρητικά Θέµατα. Ι. Θεωρία Οµάδων. x R y ή x R y ή x y(r) [x] R = { y X y R x } X. Μέρος Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις 202 Μέρος 4. Θεωρητικά Θέµατα Ι. Θεωρία Οµάδων 1. Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις 1.1. Σχέσεις ισοδυναµίας. Εστω X ένα µη-κενό σύνολο. Ορισµός 1.1. Μια σχέση ισοδυναµίας επί του X είναι ένα

Διαβάστε περισσότερα

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα. 4 Συνεκτικά σύνολα Έστω, Ι διάστηµα και f : Ι συνεχής, τότε η f έχει την ιδιότητα της ενδιαµέσου τιµής, δηλαδή, η f παίρνει κάθε τιµή µεταξύ δύο οποιονδήποτε διαφορετικών τιµών της, συνεπώς το f ( Ι )

Διαβάστε περισσότερα

f (x) = l R, τότε f (x 0 ) = l. = lim (0) = lim f(x) = f(x) f(0) = xf (ξ x ). = l. Εστω ε > 0. Αφού lim f (x) = l R, υπάρχει δ > 0

f (x) = l R, τότε f (x 0 ) = l. = lim (0) = lim f(x) = f(x) f(0) = xf (ξ x ). = l. Εστω ε > 0. Αφού lim f (x) = l R, υπάρχει δ > 0 Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 5: Παράγωγος Α Οµάδα. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε πλήρως την απάντησή σας). (α) Αν η f είναι παραγωγίσιµη

Διαβάστε περισσότερα

Consensus and related problems

Consensus and related problems Consensus and related s Τι θα δούµε ΟΜΑ Α: Ιωάννα Ζέλιου Α.Μ.: 55 Μελισσόβας Σπύρος Α.Μ.: 21 Παπαδόπουλος Φίλιππος Α.Μ.: 60 Consensus Byzantine generals Interactive consistency Agreement Problems Imposibility

Διαβάστε περισσότερα

1 Ορισµός ακολουθίας πραγµατικών αριθµών

1 Ορισµός ακολουθίας πραγµατικών αριθµών ΜΑΣ 02. Απειροστικός Λογισµός Ι Ορισµός ακολουθίας πραγµατικών αριθµών Ορισµός.. Ονοµάζουµε ακολουθία πραγµατικών αριθµών κάθε απεικόνιση του συνόλου N των ϕυσικών αριθµών, στο σύνολο R των πραγµατικών

Διαβάστε περισσότερα

Η τροχιά του δυναµικού συστήµατος µε αρχική συνθήκη X γράφεται

Η τροχιά του δυναµικού συστήµατος µε αρχική συνθήκη X γράφεται Απόδειξη Θεωρήµατος Poincare-Bendixson Το δυναµικό σύστηµα είναι στο επίπεδο, προσδιορίζεται από το διάνυσµατικό πεδίο ταχυτήτων v(x), και οι τροχιές ικανοποιούν την δυνα- µική: ẋ = v(x). Η τροχιά του

Διαβάστε περισσότερα

Γραµµική Αλγεβρα Ι. Ενότητα: Γραµµικές απεικονίσεις. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

Γραµµική Αλγεβρα Ι. Ενότητα: Γραµµικές απεικονίσεις. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών Ενότητα: Γραµµικές απεικονίσεις Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος.

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές»

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Το σύνολο των πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας) α)

Διαβάστε περισσότερα

Παράδειγµα: Προσοµοίωση µιας ουράς FIFO Οι λειτουργίες που υποστηρίζονται από µια ουρά FIFO είναι: [enq(q,x), ack(q)] [deq(q), return(q,x)] όπου x είν

Παράδειγµα: Προσοµοίωση µιας ουράς FIFO Οι λειτουργίες που υποστηρίζονται από µια ουρά FIFO είναι: [enq(q,x), ack(q)] [deq(q), return(q,x)] όπου x είν Wait-free προσοµοιώσεις αυθαίρετων αντικειµένων Έχουµε δει ότι το πρόβληµα της οµοφωνίας δεν µπορεί να επιλυθεί µε χρήση µόνο read/write καταχωρητών. Πολλοί µοντέρνοι επεξεργαστές παρέχουν επιπρόσθετα

Διαβάστε περισσότερα

q={(1+2)/2}=1 A(1,2)= MERGE( 4, 6 ) = 4 6 q=[(3+4)/2]=3 A(1,4)= MERGE( 4 6, 5 8 ) = q=[(5+6)/2]=5 A(5,6)= MERGE( 2, 9 ) = 2 9

q={(1+2)/2}=1 A(1,2)= MERGE( 4, 6 ) = 4 6 q=[(3+4)/2]=3 A(1,4)= MERGE( 4 6, 5 8 ) = q=[(5+6)/2]=5 A(5,6)= MERGE( 2, 9 ) = 2 9 R 0 0 Ερώτηση 1 Να εκτελεστούν όλα τα βήµατα του παρακάτω αλγορίθµου στον µονοδιάστατο πίνακα: "!$ Στην κάθε κλήση της procedure εισάγεται ο %&') Ο συµϐολισµός υπονοεί τον υποπίνακα από την ϑέση % έως

Διαβάστε περισσότερα

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή KΕΦΑΛΑΙΟ ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ιατεταγµένα σώµατα-αξίωµα πληρότητας Ένα σύνολο Σ καλείται διατεταγµένο σώµα όταν στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

1 Το ϑεώρηµα του Rademacher

1 Το ϑεώρηµα του Rademacher Το ϑεώρηµα του Rademacher Νικόλαος Μουρδουκούτας Περίληψη Σε αυτήν την εργασία ϑα αποδείξουµε το ϑεώρηµα του Rademacher, σύµφωνα µε το οποίο κάθε Lipschiz συνάρτηση f : R m είναι διαφορίσιµη σχεδόν παντού.

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα: Θεωρία και Προγραμματισμός. Ενότητα # 3: Καθολικά κατηγορήματα Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Κατανεμημένα Συστήματα: Θεωρία και Προγραμματισμός. Ενότητα # 3: Καθολικά κατηγορήματα Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Κατανεμημένα Συστήματα: Θεωρία και Προγραμματισμός Ενότητα # 3: Καθολικά κατηγορήματα Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια

Διαβάστε περισσότερα

ΙΑΧΕΙΡΙΣΗ ΟΣΟΛΗΨΙΩΝ Να θυµηθούµε:

ΙΑΧΕΙΡΙΣΗ ΟΣΟΛΗΨΙΩΝ Να θυµηθούµε: ΙΑΧΕΙΡΙΣΗ ΟΣΟΛΗΨΙΩΝ Να θυµηθούµε: Μια βάση δεδοµένων είναι σε συνεπή κατάσταση (consistent state) εάν όλοι οι περιορισµοί ακεραιότητας που έχουν δηλωθεί για αυτήν πληρούνται. Οι αλλαγές στην κατάσταση

Διαβάστε περισσότερα

Κεφάλαιο 1. Θεωρία Ζήτησης

Κεφάλαιο 1. Θεωρία Ζήτησης Κεφάλαιο 1 Θεωρία Ζήτησης Στο κεφάλαιο αυτό υποθέτουµε ότι καταναλωτής εισέρχεται στην αγορά µε πλούτο w > 0 και επιθυµεί να τον ανταλλάξει µε διάνυσµα αγαθών x που να µεγιστοποιεί τις προτιµήσεις του.

Διαβάστε περισσότερα

Τη φυσική (MAC) διεύθυνση που δίνει ο κατασκευαστής του δικτυακού υλικού στις συσκευές του (π.χ. στις κάρτες δικτύου). Η περιοχή διευθύνσεων που

Τη φυσική (MAC) διεύθυνση που δίνει ο κατασκευαστής του δικτυακού υλικού στις συσκευές του (π.χ. στις κάρτες δικτύου). Η περιοχή διευθύνσεων που 7.7 Πρωτόκολλο ARP 1 ύο είδη διευθύνσεων: MAC - IP Τη φυσική (MAC) διεύθυνση που δίνει ο κατασκευαστής του δικτυακού υλικού στις συσκευές του (π.χ. στις κάρτες δικτύου). Η περιοχή διευθύνσεων που µπορεί

Διαβάστε περισσότερα

Εντοπισμός αδιεξόδου. Κατανεμημένα Συστήματα 1

Εντοπισμός αδιεξόδου. Κατανεμημένα Συστήματα 1 Εντοπισμός αδιεξόδου Κατανεμημένα Συστήματα 1 lalis@inf.uth.gr Αδιέξοδο σε κατανεμημένο σύστημα Αδιέξοδο: «κυκλική» και ατέρμονη αναμονή μεταξύ δύο ή περισσοτέρων διεργασιών Το πρόβλημα υφίσταται ήδη σε

Διαβάστε περισσότερα

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα. 4 Συνεκτικά σύνολα Έστω, Ι R διάστηµα και f : Ι R συνεχής, τότε η f έχει την ιδιότητα της ενδιαµέσου τιµής, δηλαδή, η f παίρνει κάθε τιµή µεταξύ δύο οποιονδήποτε διαφορετικών τιµών της, συνεπώς το f (

Διαβάστε περισσότερα

Ασύγχρονο Σύστηµα ιαµοιραζόµενης Μνήµης Το σύστηµα περιέχει n διεργασίες p 0,, p n-1 και m καταχωρητές R 0,, R m-1. Κάθε διεργασία µοντελοποιείται ως

Ασύγχρονο Σύστηµα ιαµοιραζόµενης Μνήµης Το σύστηµα περιέχει n διεργασίες p 0,, p n-1 και m καταχωρητές R 0,, R m-1. Κάθε διεργασία µοντελοποιείται ως Αµοιβαίος Αϖοκλεισµός Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 1 Ασύγχρονο Σύστηµα ιαµοιραζόµενης Μνήµης Το σύστηµα περιέχει n διεργασίες p 0,, p n-1 και m καταχωρητές R 0,, R m-1. Κάθε διεργασία µοντελοποιείται

Διαβάστε περισσότερα

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Οργάνωση Υπολογιστών

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Οργάνωση Υπολογιστών Οργάνωση Υπολογιστών Υπολογιστικό Σύστημα Λειτουργικό Σύστημα Αποτελεί τη διασύνδεση μεταξύ του υλικού ενός υπολογιστή και του χρήστη (προγραμμάτων ή ανθρώπων). Είναι ένα πρόγραμμα (ή ένα σύνολο προγραμμάτων)

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Βοηθος Ασκησεων: Χ. Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://www.math.uoi.gr/ abeligia/linearalgebrai/lai.html

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Ασύγχρονα Κατανεμημένα Συστήματα Κατανεμημένα Συστήματα Ι 6η Διάλεξη 24 Νοεμβρίου 2016 Παναγιώτα Παναγοπούλου Κατανεμημένα Συστήματα Ι 6η Διάλεξη 1 Ασύγχρονα Κατανεμημένα Συστήματα Περίληψη 1 Ασύγχρονα

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Κατανεμημένα Συστήματα Ι Παναγιώτα Παναγοπούλου 11η Διάλεξη 12 Ιανουαρίου 2017 1 Ανεξάρτητο σύνολο Δοθέντος ενός μη κατευθυνόμενου γραφήματος G = (V, E), ένα ανεξάρτητο σύνολο (independent set) είναι ένα

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 202 Μέρος 4. Θεωρητικά

Διαβάστε περισσότερα

11 Το ολοκλήρωµα Riemann

11 Το ολοκλήρωµα Riemann Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Συνεκτικότητα Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε

Διαβάστε περισσότερα