ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΑ ΜΕΙΟΝΟΤΙΚΑ ΣΧΟΛΕΙΑ ΠΑΡΑΣΧΙΔΗΣ ΚΥΡΙΑΖΗΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ 3ΗΣ ΠΕΡΙΦΕΡΕΙΑΣ Ν. ΞΑΝΘΗΣ
|
|
- Αιγιδιος Βασιλειάδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΑ ΜΕΙΟΝΟΤΙΚΑ ΣΧΟΛΕΙΑ ΠΑΡΑΣΧΙΔΗΣ ΚΥΡΙΑΖΗΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ 3ΗΣ ΠΕΡΙΦΕΡΕΙΑΣ Ν. ΞΑΝΘΗΣ
2 ΤΙ ΠΕΡΙΛΑΜΒΑΝΕΙ ΤΟ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ
3 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ Μοτίβα Προβλήματα με μία ή πολλές λύσεις Προβλήματα με την πρόσθεση και αφαίρεση ως αντίστροφες πράξεις Προβλήματα με τον πολλαπλασιασμό και τη διαίρεση ως αντίστροφες πράξεις Προβλήματα - Παιχνίδια
4 ΜΟΤΙΒΑ (PATTERNS) Τα Μαθηματικά ως επιστήμη των μοτίβων Μοτίβο ή πρότυπο στα μαθηματικά είναι ο τρόπος με τον οποίο επαναλαμβάνεται ένα γεωμετρικό σχήμα ή ένα αριθμητικό φαινόμενο
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 2 28
25 ΤΡΙΓΩΝΟΙ ΑΡΙΘΜΟΙ
26 4 9 6
27 25 36
28 ΣΧΕΣΗ ΤΡΙΓΩΝΩΝ ΚΑΙ ΤΕΤΡΑΓΩΝΩΝ ΑΡΙΘΜΩΝ
29 ΑΡΙΘΜΟΙ ΑΘΛΗΤΕΣ ΔΥΝΑΜΕΙΣ ΤΟΥ
30 Μπορείς να βρεις ποιοι είναι οι επόμενοι αριθμοί; ΑΡΙΘΜΟΙ ΦΙΜΠΟΝΑΤΣΙ Κάθε νέος αριθμός προκύπτει από το άθροισμα των δύο προηγούμενων. 89
31 ΤΟ ΤΡΙΓΩΝΟ ΤΟΥ PASCAL
32
33
34 ΤΡΙΓΩΝΟΙ ΑΡΙΘΜΟΙ ΑΘΡΟΙΣΜΑΤΑ ΤΡΙΓΩΝΩΝ ΑΡΙΘΜΩΝ
35
36 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ
37 ΠΙΝΑΚΑΣ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ *0=00, 00-0=90, 90:2=45, 45+0=
38 *8=64, 64-8=56, 56:2=28, 28+8=
39 *7=49, 49-7=42, 42:2=2, 2+7=28
40 ΠΡΟΒΛΗΜΑΤΑ
41 ΟΡΙΣΜΟΣ ΠΡΟΒΛΗΜΑΤΟΣ Πρόβλημα θεωρείται μία αρχική κατάσταση, στην οποία το άτομο επιδιώκει ένα στόχο, επιχειρώντας να ξεπεράσει τα αντιληπτά εμπόδια, τα οποία παρεμβάλλονται μεταξύ της αρχικής κατάστασης και του επιδιωκόμενου στόχου. Διάκριση των προβλημάτων σε προβλήματα που επιδέχονται μόνο μία λύση και σε προβλήματα με πολλές σωστές λύσεις.
42 ΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΜΙΑ ΜΙΚΡΗ ΑΝΑΚΑΛΥΨΗ Η πρόκληση της περιέργειας και η ενεργοποίηση των ερευνητικών και εφευρετικών μας ικανοτήτων μπορούν να οδηγήσουν στη λύση και κατά συνέπεια στην απόλαυση και το θρίαμβο της ανακάλυψης
43 ΣΤΑΔΙΑ ΕΠΙΛΥΣΗΣ ΕΝΟΣ ΠΡΟΒΛΗΜΑΤΟΣ Κατανόηση του προβλήματος Επινόηση ενός σχεδίου Εκτέλεση του σχεδίου Ανασκόπηση της λύσης
44 ΑΝΑΠΑΡΑΣΤΑΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ είδη αναπαράστασης σύμφωνα με τον Bruner Πραξιακή: Χρήση αντικειμένων για τη λύση του προβλήματος Εικονιστική: Χρήση εικόνων για τη λύση Συμβολική: Χρήση αριθμών και αφηρημένων συμβόλων
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59 Οι μαθητές εργάζονται ατομικά ή ομαδοσυνεργατικά, ανακοινώνουν στην τάξη τις λύσεις που βρήκαν, γράφονται όλες στον πίνακα και ακολουθεί διάλογος πάνω στις στρατηγικές που ανέπτυξαν για να βρουν τις λύσεις.
60 ΕΝΑΛΛΑΚΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ Τρεις ποδηλάτες, ο Αργύρης, ο Βασίλης και ο Γιώργος, τερμάτισαν στις τρεις πρώτες θέσεις. Μπορείτε να βρείτε όλους τους δυνατούς συνδυασμούς με τους οποίους τερμάτισαν οι ποδηλάτες; Τρία αυτοκίνητα της Formula, μία Ferrari, μία Mercedes και μία Honda τερμάτισαν πρώτες. Μπορείτε να βρείτε όλες τις δυνατές σειρές με τις οποίες τερμάτισαν οι οδηγοί των παραπάνω αυτοκινήτων; Αντί να συζητήσουμε τις στρατηγικές, όπως προτείνει το βιβλίο, αφήνουμε τους μαθητές να εργαστούν μόνοι τους, να παρουσιάσουν τις λύσεις τους, να εξηγήσουν τον τρόπο σκέψης τους και μετά συζητάμε για την καλύτερη στρατηγική με την οποία βρίσκουμε όλες τις λύσεις
61 ΜΕΤΑΦΟΡΑ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΣΕ ΜΙΑ ΠΡΑΓΜΑΤΙΚΗ ΚΑΤΑΣΤΑΣΗ ΚΑΙ ΜΕ ΜΙΚΡΟΤΕΡΟΥΣ ΑΡΙΘΜΟΥΣ, ΟΠΩΣ ΠΡΟΤΕΙΝΕΙ ΚΑΙ ΤΟ Β. Δ. Η Δήμητρα και η Φωτεινή πούλησαν για τη θεατρική παράσταση του σχολείου τους 4 εισιτήρια. Η Δήμητρα πούλησε 2 εισιτήρια περισσότερα. Πόσα εισιτήρια πούλησε το κάθε κορίτσι; (Επιτρέπεται η εικονική αναπαράσταση του προβλήματος) Ο Φώτης και ο Παύλος έχουν 7 καρτέλες με ομάδες ποδοσφαίρου. Ο Παύλος έχει 3 καρτέλες περισσότερες. Πόσες καρτέλες έχει το κάθε αγόρι; (Επιτρέπεται η εικονική ή πραξιακή αναπαράσταση του προβλήματος)
62
63 ΜΕΤΑΦΟΡΑ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΣΕ ΜΙΑ ΠΡΑΓΜΑΤΙΚΗ ΚΑΤΑΣΤΑΣΗ ΚΑΙ ΜΕ ΜΙΚΡΟΤΕΡΟΥΣ ΑΡΙΘΜΟΥΣ, ΟΠΩΣ ΠΡΟΤΕΙΝΕΙ ΚΑΙ ΤΟ Β. Δ. Η Δήμητρα και η Φωτεινή πούλησαν για τη θεατρική παράσταση του σχολείου τους 4 εισιτήρια. Η Δήμητρα πούλησε 2 εισιτήρια περισσότερα. Πόσα εισιτήρια πούλησε το κάθε κορίτσι; (Επιτρέπεται η εικονική αναπαράσταση του προβλήματος) Ο Φώτης και ο Παύλος έχουν 7 καρτέλες με ομάδες ποδοσφαίρου. Ο Παύλος έχει 3 καρτέλες περισσότερες. Πόσες καρτέλες έχει το κάθε αγόρι; (Επιτρέπεται η εικονική ή πραξιακή αναπαράσταση του προβλήματος)
64 χειραψία 3 χειραψίες 6 χειραψίες
65 ΠΡΟΒΛΗΜΑ Τρεις φίλοι οργάνωσαν ένα πικ νικ στην εξοχή. Ο πρώτος έφερε 5 μερίδες φαγητού και ο δεύτερος 3 μερίδες. Ο τρίτος δεν έφερε φαγητό, αλλά για τη συμμετοχή του πλήρωσε 8 Ευρώ. Έδωσε 5 Ευρώ στον πρώτο και 3 Ευρώ στο δεύτερο. Ο πρώτος διαφώνησε με αυτόν τον τρόπο μοιράσματος των χρημάτων και υποστήριξε ότι αυτός έπρεπε να πάρει 7 Ευρώ και ο δεύτερος Ευρώ. Συμφωνείτε ή διαφωνείτε με τον τρόπο μοιράσματος που πρότεινε ο πρώτος φίλος; Μπορείτε να δικαιολογήσετε την άποψή σας;
ΝΕΑ ΦΙΛΟΣΟΦΙΑ ΚΑΙ ΝΕΕΣ ΑΝΤΙΛΗΨΕΙΣ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ. Παρασχίδης Κυριαζής Σχολικός Σύμβουλος 3 ης Περιφέρειας ν. Ξάνθης
ΝΕΑ ΦΙΛΟΣΟΦΙΑ ΚΑΙ ΝΕΕΣ ΑΝΤΙΛΗΨΕΙΣ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Παρασχίδης Κυριαζής Σχολικός Σύμβουλος 3 ης Περιφέρειας ν. Ξάνθης ΠΑΛΙΕΣ ΚΑΙ ΝΕΕΣ ΑΝΤΙΛΗΨΕΙΣ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΛΙΕΣ ΑΝΤΙΛΗΨΕΙΣ
Πορεία παρουσίασης 1. Θεωρητικό πλαίσιο - Άξονες περιεχοµένων 2. Επιλογή κεφαλαίου 3. Προσδιορισµός κυρίαρχου στόχου 4. Υλοποίηση δραστηριότητας ανακά
Θεωρητικό πλαίσιο Μαθηµατικά Β Γιώργος Αλβανόπουλος Σχολικός 1 Πορεία παρουσίασης 1. Θεωρητικό πλαίσιο - Άξονες περιεχοµένων 2. Επιλογή κεφαλαίου 3. Προσδιορισµός κυρίαρχου στόχου 4. Υλοποίηση δραστηριότητας
Μαθηματικά A Δημοτικού. Πέτρος Κλιάπης Σεπτέμβρης 2007
Μαθηματικά A Δημοτικού Πέτρος Κλιάπης Σεπτέμβρης 2007 Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση ΌΧΙ απομνημόνευση Αξιοποίηση
τα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Περιεχόμενα. Προλογικό Σημείωμα 9
Περιεχόμενα Προλογικό Σημείωμα 9 1 ο ΚΕΦΑΛΑΙΟ 1.1. Εισαγωγή 14 1.2 Τα βασικά δεδομένα των Μαθηματικών και οι γνωστικές απαιτήσεις της κατανόησης, απομνημόνευσης και λειτουργικής χρήσης τους 17 1.2.1. Η
ΑΣΚΗΣΕΙΣ ΠΡΟΕΤΟΙΜΑΣΙΑΣ ΓΙΑ ΤΟ ΔΙΑΓΩΝΙΣΜΟ. «Παιχνίδι και Μαθηματικά» 1. Να συμπληρώσεις στα κουτάκια τους αριθμούς που λείπουν:
ΑΣΚΗΣΕΙΣ ΜΕ ΠΡΑΞΕΙΣ ΑΣΚΗΣΕΙΣ ΠΡΟΕΤΟΙΜΑΣΙΑΣ ΓΙΑ ΤΟ ΔΙΑΓΩΝΙΣΜΟ «Παιχνίδι και Μαθηματικά» 1. Να συμπληρώσεις στα κουτάκια τους αριθμούς που λείπουν: : 11+ 15= 24 : 17+ 11= 16 : 11 13= 17 : 11 14= 26 i 7+
Προτεινόμενη δομή σχεδίου μαθήματος για τα Μαθηματικά
Καργιωτάκης Γιώργος, Μπελίτσου Νατάσσα Προτεινόμενη δομή σχεδίου μαθήματος για τα Μαθηματικά στις τάξεις Β, Δ και Ε (μιας διδακτικής ώρας). ΣΤΟΧΟΣ ΒΗΜΑΤΑ ΥΛΙΚΟ- ΧΡΟΝΟΣ ΕΝΕΡΓΕΙΕΣ Αρχική αξιολόγηση επιπέδου
ΔΙΔΑΣΚΑΛΙΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗΣ ΣΤΑ ΜΕΙΟΝΟΤΙΚΑ ΣΧΟΛΕΙΑ
ΔΙΔΑΣΚΑΛΙΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗΣ ΣΤΑ ΜΕΙΟΝΟΤΙΚΑ ΣΧΟΛΕΙΑ ΠΑΡΑΣΧΙΔΗΣ ΚΥΡΙΑΖΗΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ 3 ΗΣ ΠΕΡΙΦΕΡΕΙΑΣ ΞΑΝΘΗΣ url: : http://2grpe.xan.sch.gr ΔΙΑΘΕΜΑΤΙΚΟ ΕΝΙΑΙΟ ΠΛΑΣΙΟ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΩΝ
ΤΕΧΝΙΚΕΣ ΔΙΑΦΟΡΟΠΟΙΗΣΗΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ
Σέργιος Σεργίου Λάμπρος Στεφάνου ΤΕΧΝΙΚΕΣ ΔΙΑΦΟΡΟΠΟΙΗΣΗΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ 16 ο Συνέδριο Ε.Ο.Κ. 8-19 Οκτωβρίου 2016 Αξιοποίηση των Δεικτών Επάρκειας Ομαδική Εργασία Διαφοροποιημένη διδασκαλία
Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ
ΚΕΦΑΛΑΙΟ Ο ΚΛΑΣΜΑΤΑ Α.. Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΥΓΚΡΙΣΗ ΚΛΑΣΜΑΤΟΣ ΜΕ ΤΟ Αν ο αριθμητής ενός κλάσματος είναι μεγαλύτερος από τον παρανομαστή, τότε το κλάσμα είναι μεγαλύτερο από το. Αν ο αριθμητής
Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το
Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το 5/2 1 Παράδειγμα 2: Γράψε ένα κλάσμα που χρησιμοποιεί
Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Α+Β Δημοτικού
Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων 2016-2017 Τάξεις Α+Β Δημοτικού Περιεχόμενα Στόχοι Πηγή Υλικού 1.1 Αριθμοί 1-1000 Γραφή, Ανάγνωση, Απαγγελία, Απαρίθμηση, Σύγκριση, Συμπλήρωση (κατά αύξουσα
Προγράμματα παρέμβασης στα Μαθηματικά, Μαρία Θ. Παπαδοπούλου, PhD, Σχολική Σύμβουλος 6ης Περιφέρειας Π.Ε. ν. Λάρισας
ΠΡΟΓΡΑΜΜΑ ΠΑΡΕΜΒΑΣΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ-Α Φ.Α. ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ: ΣΧΟΛΕΙΟ: ΗΜΕΡΟΜΗΝΙΑ ΓΕΝΝΗΣΗΣ:... ΤΑΞΗ: ΗΜΕΡΟΜΗΝΙΑ ΑΞΙΟΛΟΓΗΣΗΣ: ΗΜΕΡΟΜΗΝΙΑ ΕΝΑΡΞΗΣ ΠΑΡΕΜΒΑΣΗΣ: ΔΙΑΡΚΕΙΑ: ΑΝΑΛΥΣΗ ΕΡΓΟΥ Κατανοεί βασικές χωρικές
ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ
Ποια κλάσματα λέγονται ισοδύναμα; Με ποιους τρόπους μπορούμε να φτιάξουμε ισοδύναμα κλάματα; Ποια διαδικασία ονομάζουμε απλοποίηση ενός κλάσματος; Πότε ένα κλάσμα λέγεται ανάγωγο; Ποια κλάσματα λέγονται
Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ
1 Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΕΝΟΤΗΤΑ 1 ΑΡΙΘΜΟΙ ΚΑΙ ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 2 ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΑΣ -Αριθμοί μέχρι το 20. -Αξία θέσης ψηφίου - Έννοια δεκάδας και μονάδας. -Πρόσθεση
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ-Β ΦΑΣΗ ΘΕΜΑ ΔΙΔΑΣΚΑΛΙΑΣ: ΣΤΡΑΤΗΓΙΚΕΣ ΔΙΑΧΕΙΡΙΣΗΣ ΑΡΙΘΜΩΝ-19 ο ΚΕΦΑΛΑΙΟ ΣΧΟΛΕΙΟ: 2 ο ΠΕΙΡΑΜΑΤΙΚΟ ΦΛΩΡΙΝΑΣ
Προτεινόμενη δομή σχεδίου μαθήματος για τα Μαθηματικά
Καργιωτάκης Γιώργος, Μπελίτσου Νατάσσα Προτεινόμενη δομή σχεδίου μαθήματος για τα Μαθηματικά στις τάξεις Β, Δ και Ε (μιας διδακτικής ώρας). ΣΤΟΧΟΣ ΒΗΜΑΤΑ ΥΛΙΚΟ- ΧΡΟΝΟΣ ΕΝΕΡΓΕΙΕΣ Αρχική αξιολόγηση επιπέδου
ΤΑΞΗ: Γ. Προτείνεται να αξιοποιηθούν διδακτικά τα παρακάτω «ψηφιακά δομήματα» από τα εμπλουτισμένα σχ. εγχειρίδια. Προτείνεται να μην
ΤΑΞΗ: Γ ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΛΙΚΟ: Βιβλίο μαθητή, Μαθηματικά Γ Δημοτικού, 2015, ένα τεύχος Τετράδιο εργασιών, Μαθηματικά Γ Δημοτικού, 2015, α τεύχος Τετράδιο εργασιών, Μαθηματικά Γ Δημοτικού, 2015, β τεύχος Τετράδιο
Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης
Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 3 ο, Τμήμα Α Ο πυρήνας των μαθηματικών είναι οι τρόποι με τους οποίους μπορούμε να συλλογιζόμαστε στα μαθηματικά. Τρόποι απόδειξης Επαγωγικός συλλογισμός (inductive)
Γιάννης Παπαθανασίου Δημήτρης Παπαθανασίου MΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ. ΝΕΑ ΕΚΔΟΣΗ Σύμφωνα με το νέο σχολικό βιβλίο
Γιάννης Παπαθανασίου Δημήτρης Παπαθανασίου MΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΝΕΑ ΕΚΔΟΣΗ Σύμφωνα με το νέο σχολικό βιβλίο Περιεχόμενα Προλογικό σημείωμα... 9 Ενότητα 1 Κεφάλαιο 1 Υπενθύμιση Α μέρος... 13 Κεφάλαιο
ΕΝΟΤΗΤΑ 4 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ ΑΦΑΙΡΕΣΗ ΜΕ ΧΑΛΑΣΜΑ ΔΕΚΑΔΑΣ
ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ ΑΦΑΙΡΕΣΗ ΜΕ ΧΑΛΑΣΜΑ ΔΕΚΑΔΑΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και εκτίμηση Αρ2.11 Αναπαριστούν καταστάσεις πρόσθεσης, αφαίρεσης, πολλαπλασιασμού, τέλειας και ατελούς διαίρεσης,
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ
ΚΕΦΑΛΑΙΟ 2 Ο : ΚΛΑΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Όταν ένα μέγεθος ή ένα σύνολο χωριστεί σε ν ίσα μέρη, το κάθε ένα από αυτά ονομάζεται.. και συμβολίζεται : 2. Κάθε τμήμα του μεγέθους ή του συνόλου αντικειμένων,
Πράξεις με μεικτές αριθμητικές παραστάσεις
ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ Kεφάλαιο 8ο 1η θεματική ενότητα ΒΙΒΛΙΟ ΜΑΘΗΤΗ Πράξεις με μεικτές αριθμητικές παραστάσεις Αριθμοί και πράξεις Μαθαίνω τη γλώσσα των αριθμών Κεφάλαιο 8ο Πράξεις με μεικτές αριθμητικές
ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ
ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε
THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ
Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 0-0 ΜΑΘΗΜΑΤΙΚΑ (Αυτό το γραπτό αποτελείται από 0 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής). THE G
Αγαπητοί γονείς, Αντιγόνη Λυκοτραφίτη
Αγαπητοί γονείς, Το βιβλίο αυτό είναι γραμμένο σύμφωνα με την ύλη του σχολικού βιβλίου «Μαθηματικά Γ Δημοτικού». Είναι δομημένο σε αντίστοιχα κεφάλαια και λειτουργεί παράλληλα αλλά και συμπληρωματικά με
5.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ
5.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ 5.4.1. Αποτελέσματα από το πρόγραμμα εξ αποστάσεως επιμόρφωσης δασκάλων και πειραματικής εφαρμογής των νοερών
ΜΑΘΗΣΗΣ Αλεξάνδρα Κούκιου
Η ΜΕΤΑΤΡΟΠΉ ΜΙΑΣ ΑΣΚΗΣΗΣ ΜΑΘΗΣΗΣ Αλεξάνδρα Κούκιου ΤΟΥ ΣΧΟΛΙΚΟΥ ΒΙΒΛΊΟΥ ΣΕ ΕΡΓΑΛΕΙΟ ΔΙΕΡΕΥΝΗΤΙΚΉΣ Στο σχολικό βιβλίο της Β τάξης γυμνασίου υπάρχει η διπλανή άσκηση. Στόχος της άσκησης είναι να εφαρμόζουν
Η προβληματική κατάσταση Χρήστος Πανούτσος
Η προβληματική κατάσταση Χρήστος Πανούτσος Η Τζούλι και η μαμά της έχουν βγει για να αγοράσουν ένα τζιν για το σχολείο. Παρατηρούν έναν πάγκο με την εξής ταμπέλα πάνω: 40% έκπτωση των τιμών στις ετικέτες
ΘΕΩΡΊΕς ΜΆΘΗΣΗς ΚΑΙ ΜΑΘΗΜΑΤΙΚΆ
ΘΕΩΡΊΕς ΜΆΘΗΣΗς ΚΑΙ ΜΑΘΗΜΑΤΙΚΆ ΔΟΜΕΣ Δομή Ομάδας Σύνολο Α και μια πράξη η πράξη είναι κλειστή ισχύει η προσεταιριστική ιδότητα υπάρχει ουδέτερο στοιχείο υπάρχει αντίστροφο στοιχείο ισχύει η αντιμεταθετική
ΠΡΟΒΛΗΜΑΤΑ ΠΟΥ ΛΥΝΟΝΤΑΙ ΜΕ ΕΞΙΣΩΣΕΙΣ
ΠΡΟΒΛΗΜΑΤΑ ΠΟΥ ΛΥΝΟΝΤΑΙ ΜΕ ΕΞΙΣΩΣΕΙΣ 1. Η συνδρομή για την συμμετοχή στον όμιλο κολύμβησης είναι 15 τον μήνα και 5 για κάθε φορά που χρησιμοποιούμε την πισίνα. Αν τον προηγούμενο μήνα πληρώσαμε 75, πόσες
Θεωρία και ασκήσεις στα κλάσματα
Θεωρία Θεωρία και ασκήσεις στα κλάσματα. Πως λέγονται οι όροι ενός κλάσματος. Ο αριθμός που βρίσκεται πάνω από την γραμμή του κλάσματος λέγεται αριθμητής ενώ ο αριθμός που βρίσκεται κάτω από αυτήν λέγεται
ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ
ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΜΕΤΡΗΣΗ Εκτίμηση και μέτρηση Μ1.1 Συγκρίνουν και σειροθετούν αντικείμενα με βάση το ύψος, το μήκος,
Ποιος είναι ο 66ος όρος στην ακολουθία γραμμάτων ΑΒΒΓΓΓΔΔΔΔΕΕΕΕΕ, όπου Α, Β, Γ, Δ, Ε είναι γράμματα του ελληνικού αλφαβήτου;
Πρόβλημα 214 Τα θρανία στην τάξη του Γιάννη είναι τοποθετημένα σε γραμμές και στήλες. Το θρανίο του Γιάννη είναι στην τρίτη γραμμή από την αρχή και στην τέταρτη από το τέλος. Είναι επίσης στην τρίτη στήλη
Δάσκαλοι και μαθητές Παίζουμε και μαθαίνουμε!
Δάσκαλοι και μαθητές Παίζουμε και μαθαίνουμε! Συντελεστές: Γιάννης Π. Κρόκος - Μαθηματικός Βασίλης Τσιλιβής Μαθηματικός Φιλίππια Γαλιατσάτου - Δασκάλα Πολιτικός Μηχανικός «Η επίλυση των προβλημάτων & των
THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ
Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2015-2016 ΜΑΘΗΜΑΤΙΚΑ (Αυτό το γραπτό αποτελείται από 20 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής).
13 ος ΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΜΑΘΗΤΕΣ ΣΤ ΔΗΜΟΤΙΚΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΧΑΝΙΩΝ ΚΡΟΚΙΔΑ 7100 ΧΑΝΙΑ Τηλ: 697 69954 ΦΑΞ: 810 9611 http://www.mathchan.gr HELLENIC MATHEMATICAL SOCIETY CHANIA BRANCH KROKIDA 7100 CHANIA Tel : 697 69954 FAX:
Β τάξη. Από τα Δεδομένα στην Πληροφορία.
Από τα Δεδομένα στην Πληροφορία. Κωστής: Χρύσα: Κωστής: Χρύσα, πόσα χρήματα είπε ο κύριος Πέτρος ότι θα κοστίσει συνολικά η εκδρομή; 200 είναι το κόστος ενοικίασης του λεωφορείου. Νομίζω, όμως, ότι πρέπει
ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ...
ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ορισμός : Μία ακολουθία ονομάζεται αριθμητική πρόοδος, όταν ο κάθε όρος της, δημιουργείται από τον προηγούμενο με πρόσθεση του ίδιου πάντοτε αριθμού. Ο σταθερός αριθμός που προστίθεται
A ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ
1 A ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ 2 ΕΝΟΤΗΤΑ 1 ΚΑΝΩ ΟΜΑΔΕΣ, ΜΟΤΙΒΑ, ΑΝΤΙΣΤΟΙΧΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΑΣ -Ομαδοποίηση αντικειμένων με διαφορετικούς τρόπους. -Εντοπισμός ομοιοτήτων και
THE G C SCHOOL OF CAREERS ΜΑΘΗΜΑΤΙΚΟ ΣΧΟΛΕΙΟ
THE G C SCHOOL OF CAREERS ΜΑΘΗΜΑΤΙΚΟ ΣΧΟΛΕΙΟ ΔΟΚΙΜΙΟ ΜΑΘΗΜΑΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΧΡΟΝΟΣ: 1 ΩΡΑ 3 ΛΕΠΤΑ Το δοκίμιο αυτό αποτελείται από δύο μέρη. Το πρώτο μέρος αποτελείται από 15 ερωτήσεις πολλαπλής επιλογής.
ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ. Πώς λύνουμε ένα πρόβλημα
ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ Πώς λύουμε έα πρόβλημα Διαβάζουμε προσεκτικά το πρόβλημα, έτσι ώστε α διακρίουμε: Τι προσπαθούμε α βρούμε; Τι γωρίζουμε; Προτείουμε στρατηγικές με τις οποίες ομίζουμε
O μετασχηματισμός μιας «διαθεματικής» δραστηριότητας σε μαθηματική. Δέσποινα Πόταρη Πανεπιστήμιο Πατρών
O μετασχηματισμός μιας «διαθεματικής» δραστηριότητας σε μαθηματική Δέσποινα Πόταρη Πανεπιστήμιο Πατρών Η έννοια της δραστηριότητας Δραστηριότητα είναι κάθε ανθρώπινη δράση που έχει ένα κίνητρο και ένα
THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ
Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2016-2017 ΜΑΘΗΜΑΤΙΚΑ Αυτό το γραπτό αποτελείται από 18 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής.
Χαρακτηριστικά άτυπης αξιολόγησης
Προσαρμογή Διδακτικών Στόχων σε μαθητές με Μαθησιακές Δυσκολίες Νιάκα Ευγενία Ειδική παιδαγωγός, Σχολική Σύμβουλος Τι λάβαμε υπόψη; Το ατομικό ιστορικό των μαθητών Την αξιολόγηση της διεπιστημονικής ομάδας
κάθε σχήματος. 1. Σκιάζω τα 3 4
Πανεπιστημίου (Ελευθερίου Βενιζέλου) 06 79 ΑΘΗΝΑ Τηλ. 665-6778 - Fax: 605 ος Μαθητικός Διαγωνισμός Για μαθητές της Ε Τάξης Δημοτικού Ονοματεπώνυμο:. Δημοτικό Σχολείο. Τάξη/Τμήμα. Σκιάζω τα κάθε σχήματος..
Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Ε+ΣΤ Δημοτικού
Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων 2016-2017 Τάξεις Ε+ΣΤ Δημοτικού Περιεχόμενα Στόχοι Πηγή Υλικού 3.1 Αριθμοί Οι μαθητές πρέπει: Σχολικά βιβλία Ε και ΣΤ Φυσικοί, Δεκαδικοί, μετρήσεις Να μπορούν
Επαναληπτικές ασκήσεις για τα Χριστούγεννα.
Μαθηματικά B Γυμνασίου Επαναληπτικές ασκήσεις για τα Χριστούγεννα. Μέρος Α Άλγεβρα. 1. Να γίνουν οι πράξεις: α. Α=(-3)(-4)+3[(-3).4+(-6) ] β. Β=--8.3+7[7(-3)+(-)(-1)] 8 γ. Γ= 3 ( ) ( 8) 3 9 3 δ. Δ=(-3+9-)(3-9)+(9-0)(4:+).
ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ
ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ 10 Η ενότητα 7 περιλαμβάνει την ανάλυση και τη σύνθεση των αριθμών μέχρι το 10, στρατηγικές πρόσθεσης/αφαίρεσης και επίλυση προβλημάτων πρόσθεσης και αφαίρεσης. ΔΕΙΚΤΕΣ
Α Γυμνασίου, Μέρο Α, Άλγεβρα, Κεφάλαιο 7, Θετικοί και Αρνητικοί Αριθμοί, Α.7.8. Δυνάμει ρητών αριθμών με εκθέτη φυσικό, Α.7.9. Δυνάμει ρητών αριθμών
Α Γυμνασίου, Μέρο Α, Άλγεβρα, Κεφάλαιο, Θετικοί και Αρνητικοί Αριθμοί, Α..8. Δυνάμει ρητών αριθμών με εκθέτη φυσικό, Α..9. Δυνάμει ρητών αριθμών με εκθέτη ακέραιο Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου
Εισαγωγή στην Έννοια του Αλγορίθμου και στον Προγραμματισμό. Η έννοια του προβλήματος
Εισαγωγή στην Έννοια του Αλγορίθμου και στον Προγραμματισμό Η έννοια του προβλήματος Τι είναι πρόβλημα; ΠΡΟΒΛΗΜΑΤΑ ΟΡΙΣΜΟΣ ΠΡΟΒΛΗΜΑΤΟΣ Πρόβλημα είναι κάθε κατάσταση που μας απασχολεί και χρήζει αντιμετώπισης,
ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ : ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ ΤΑΞΗ: Γ ΓΥΜΝΑΣΙΟΥ. ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΧΡΟΝΟΣ : 6 διδακτικές ώρες
ΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ : ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ ΤΑΞΗ: Γ ΓΥΜΝΑΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΧΡΟΝΟΣ : 6 διδακτικές ώρες ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ : 1 Η Διδακτική ώρα : Εισαγωγή
Νοέμβρης Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it.
Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού Νοέμβρης 2012 Χρύσω Αθανασίου (Σύμβουλος Μαθηματικών ) Ελένη Δεληγιάννη (Συγγραφική Ομάδα) Άντρη Μάρκου (Σύμβουλος Μαθηματικών) Ελένη Μιχαηλίδου (Σύμβουλος Μαθηματικών)
5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά»
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106 79
THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ
Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2014-2015 ΜΑΘΗΜΑΤΙΚΑ (Αυτό το γραπτό αποτελείται από 20 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής).
Math. Mathematics Μαθηματικά. Φυσικές Επιστήμες. Εφαρμοσμένη Μηχανική
Math Science, Technology, Engineering Φυσικές Επιστήμες Τεχνολογία Εφαρμοσμένη Μηχανική Mathematics Μαθηματικά STEM EDUCATION Κατεχάκη 52, 115 25 Αθήνα Τηλ. 210 6777285 e-mail: info@stem.edu.gr www.stem.edu.gr
ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ
ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΜΣ «ΑΝΑΛΥΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΚΑΙ ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ» Παραδείγματα Variation Μεταπτυχιακός Φοιτητής:
Από τι αποτελούνται; 4 όροι. Θεωρία. Κλάσμα ονομάζω τον αριθμό που φανερώνει. Κλάσματα ομώνυμα και ετερώνυμα. Μαθηματικά. Όνομα:
Μαθηματικά Κεφάλαιο Όνομα: Ημερομηνία: / / Θεωρία Κλάσμα ονομάζω τον αριθμό που φανερώνει ένα μέρος ενός συνόλου. Παράδειγμα Τα κλάσματα τα χρησιμοποιούμε για να δηλώσουμε το μέρος ενός πράγματος, δηλαδή
ΕΝΟΤΗΤΑ 2 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ
ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.9 Αναγνωρίζουν και ονομάζουν τους όρους: άθροισμα, διαφορά, γινόμενο, πηλίκο, αφαιρέτης, αφαιρετέος, προσθετέος, διαιρέτης,
Μαθηματικά της Φύσης και της Ζωής
Μαθηματικά της Φύσης και της Ζωής Τάξη: Ε Η ομάδα χορού 1. Σε μια ομάδα παραδοσιακών χορών συμμετέχουν 39 αγόρια και 23 κορίτσια. Κάθε εβδομάδα προστίθενται στην ομάδα 6 νέα αγόρια και 8 νέα κορίτσια.
ΑΤΥΠΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ
ΑΤΥΠΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ 1. Ταξινόμηση αντικειμένων ως προς τα χαρακτηριστικά τους Βάλε μαζί σε έναν κύκλο τα λουλούδια με το ίδιο χρώμα και το ίδιο όνομα. Κοίταξε προσεκτικά την εικόνα και απάντησε: Πόσα
Γνωριμία και παιχνίδι με το δυαδικό σύστημα
Γνωριμία και παιχνίδι με το δυαδικό σύστημα Δότσος Παύλος, Σπανουδάκη Αργυρώ dotsos_1@hotmail.com, argspan25@yahoo.gr Καθηγητής Πληροφορικής Μέσης Εκπαίδευσης, Καθηγήτρια Πληροφορικής Μέσης Εκπαίδευσης
ΑΤΥΠΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ
ΑΤΥΠΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ 1. Ταξινόμηση αντικειμένων ως προς τα χαρακτηριστικά τους Βάλε μαζί σε έναν κύκλο τα λουλούδια με το ίδιο χρώμα και το ίδιο όνομα. Κοίταξε προσεκτικά την εικόνα και απάντησε: Πόσα
Στ Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1
Ενδεικτική Οργάνωση Ενοτήτων Στ Τάξη Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1 15 Αρ3.1 Απαγγέλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών Επανάληψη μέχρι το 1 000
ΕΝΟΤΗΤΑ 9 ΠΡΟΣΘΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 3 ΚΑΙ 4
ΠΡΟΣΘΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 3 ΚΑΙ 4 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ1.7 Αναπαριστούν εναδικά κλάσματα ( ) ενός συνόλου ή μιας επιφάνειας, χρησιμοποιώντας αντικείμενα, εικόνες
Öýëëá åñãáóßáò ãéá ôá ÌáèçìáôéêÜ
ΕΥΑΓΓΕΛIΑ ΔΕΣYΠΡΗ Öýëëá åñãáóßáò ãéá ôá ÌáèçìáôéêÜ A Äçìïôéêïý ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ Τα εκπαιδευτικά μου βιβλία / Δημοτικό / Μαθηματικά Ευαγγελία Δεσύπρη Φύλλα εργασίας για τα Μαθηματικά Ά Δημοτικού Υπεύθυνη
ΤΑΞΗ Β. Προτείνεται να μην αξιοποιηθούν διδακτικά από το Βιβλίο Μαθητή τα παρακάτω:
ΤΑΞΗ Β ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΛΙΚΟ: Βιβλίο μαθητή, Μαθηματικά Β Δημοτικού, 2015, α τεύχος Βιβλίο μαθητή, Μαθηματικά Β Δημοτικού, 2015, α τεύχος Τετράδιο εργασιών, Μαθηματικά Β Δημοτικού, 2015, α τεύχος Τετράδιο
ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012. Χρόνος: 1 ώρα και 30 λεπτά
ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε
άλγεβρα και αλγεβρική σκέψη μαρία καλδρυμίδου
άλγεβρα και αλγεβρική σκέψη μαρία καλδρυμίδου άλγεβρα από την επίλυση εξισώσεων στη μελέτη των μεταβολών, των σχέσεων, των κανονικοτήτων και δομών, σε ένα περιβάλλον αναλυτικού συμβολικού συλλογισμού με
3. α) Να λύσετε την εξίσωση x 2 = 3. β) Να σχηματίσετε εξίσωση δευτέρου βαθμού με ρίζες, τις ρίζες της εξίσωσης του α) ερωτήματος.
. Δίνεται η εξίσωση λ + 4(λ ) = 0, με παράμετρο λ R α) Να βρείτε τη διακρίνουσα της εξίσωσης. β) Να αποδείξετε ότι η παραπάνω εξίσωση έχει ρίζες πραγματικές για κάθε λ R. γ) Αν, είναι οι ρίζες της παραπάνω
Κεφάλαιο 1 ο. Εξισώσεις-Ανισώσεις.
Μαθηματικά B Γυμνασίου Κεφάλαιο 1 ο. Εξισώσεις-Ανισώσεις. Μέρος Α.- Θεωρία. 1. Τι λέμε αλγεβρική και τι αριθμητική παράσταση; 2. Τι λέμε αναγωγή ομοίων όρων; 3. Τι λέμε εξίσωση α βαθμού; 4. Τι λέμε πρώτο
ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ
ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α. Β ΦΑΣΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α. Β ΦΑΣΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΟΜΗΝΙΑ ΔΙΔΑΣΚΑΛΙΑΣ: 13/1/2009 ΣΧΟΛΕΙΟ: 2ο Πειραματικό Δημοτικό Σχολείο
Δραστηριότητες LINC. Σχετικά με τη δραστηριότητα >>ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ
Δραστηριότητες LINC >>ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Σχετικά με τη δραστηριότητα Η δραστηριότητα αυτή, αφορά μαθητές ηλικίας από 6 εώς 10 ετών και έχει ως στόχο να βοηθήσει τους μαθητές στην επίλυση προβλημάτων λογικής
Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών
2 Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Προσθετέοι 18+17=35 α Προσθετέοι + β = γ Άθοι ρ σμα Άθοι ρ σμα 13 + 17 = 17 + 13 Πρόσθεση φυσικών αριθμών Πρόσθεση είναι η πράξη με την οποία από
Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη
Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Γ Γυμνασίου» των Δημητρίου Αργυράκη, Παναγιώτη Βουργάνα, Κωνσταντίνου Μεντή, Σταματούλας Τσικοπούλου, Μιχαήλ Χρυσοβέργη, έκδοση
ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»
ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,
Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Δ Τάξης
Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Δ Τάξης Κωνσταντίνος Χρίστου Ρίτα Παναούρα Δήμητρα Πίττα-Πανταζή Μάριος Πιττάλης Οκτώβριος 2014 Συγγραφική ομάδα: Συντονιστές: Επιστημονικός Συνεργάτης:
Οι Μιγαδικοί Αριθμοί
Οι Μιγαδικοί Αριθμοί Οι μιγαδικοί αριθμοί αρχικά βοήθησαν στην επίλυση δευτεροβάθμιων εξισώσεων των οποίων η διακρίνουσα είναι αρνητική Το γενικότερο πρόβλημα βέβαια είναι ότι δεν υπάρχει πραγματικός αριθμός
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ i ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΠΤΥΧΙΟΥΧΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ (ΕΚΠΑ)
Κυκλοφοριακή Αγωγή. «Κυκλοφορώ με ασφάλεια!» Πρότυπο Πειραματικό Δημοτικό Φλώρινας - Γ Τάξη. Σχολικό έτος 2014-15
Κυκλοφοριακή Αγωγή «Κυκλοφορώ με ασφάλεια!» Πρότυπο Πειραματικό Δημοτικό Φλώρινας - Γ Τάξη Σκοπός του προγράμματος είναι: Σχολικό έτος 2014-15 α) Ο εμπλουτισμός της γνώσης και η κατανόηση των βασικών κανόνων
THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ
Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΜΑΘΗΜΑΤΙΚΑ (Αυτό το γραπτό αποτελείται από 21 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής).
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ : ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Σχ.έτος:
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ : ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Σχ.έτος: 2018-2019 Α ΜΕΡΟΣ : ΑΡΙΘΜΗΤΙΚΗ - ΑΛΓΕΒΡΑ 1. Δίνονται οι παραστάσεις 2 2 2 A = 3 4 + 2 10 (2 10 ) :5 και Β = 2 6 + : 3 2 5 1 1 3 2 α) Να κάνεις τις
Στην Ε τάξη μάθαμε...
7 Στην Ε τάξη μάθαμε... Αριθμοί και Πράξεις (1) Παραδείγματα 1. Να εκτελέσετε τις πράξεις νοερά. (α) 42 + 36 (β) 15 + 17 (γ) 199 + 199 (δ) 403-299 (ε) 342-143 Λύση: (α) 42 + 36 = 40 + 2 + 30 + 6 = 40 +
Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I.
Γεωμετρία Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I. Εισαγωγή Η διδασκαλία της Γεωμετρίας στην Α Λυκείου εστιάζει στο πέρασμα από τον εμπειρικό στο θεωρητικό τρόπο σκέψης, με ιδιαίτερη έμφαση στη μαθηματική απόδειξη. Οι
ΓΥΜΝΑΣΙΟ ΑΡΑΔΙΠΠΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ Ονοματεπώνυμο:...Τμήμα:..
ΓΥΜΝΑΣΙΟ ΑΡΑΔΙΠΠΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2014-2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015 ΜΑΘΗΜΑ: Μαθηματικά ΤΑΞΗ: Α ΗΜΕΡΟΜΗΝΙΑ: 10/06/2015 ΧΡΟΝΟΣ: 2 Ώρες Βαθμός:. Ολογρ.:. Υπογραφή: Ονοματεπώνυμο:...Τμήμα:..
τα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Πανεπιστήμιο Δυτικής Μακεδονίας. Παιδαγωγικό Τμήμα Νηπιαγωγών. σύμβολα αριθμών. επ. Κωνσταντίνος Π. Χρήστου. Πανεπιστήμιο Δυτικής Μακεδονίας
Παιδαγωγικό Τμήμα Νηπιαγωγών σύμβολα αριθμών επ. Κωνσταντίνος Π. Χρήστου 1 αναπαραστάσεις των αριθμών Εμπράγματες Υλικά αντικείμενα ($$$) Εικονικές (***) Λεκτικές (τρία) Συμβολικές, (3, τρία) Διαφορετικές
Εισαγωγή στην ανάπτυξη της έννοιας του αριθμού στην προσχολική ηλικία
Παιδαγωγικό Τµήµα Νηπιαγωγών Εισαγωγή στην ανάπτυξη της έννοιας του αριθμού στην προσχολική ηλικία Ενότητα 1: Εισαγωγή Κωνσταντίνος Π. Χρήστου Παιδαγωγικό Τμήμα Νηπιαγωγών ένα απλό πρόβλημα Η οικογένεια
Χώρος Στάθμευσης. Διάρκεια: 4 (μαθήματα) x 45 λεπτά. Ηλικία: χρονών. Κατευθυντήριες γραμμές, στήριξη από ΤΠΕ κ.λπ.
Χώρος Στάθμευσης Θέμα: Οι μαθητές καλούνται να διερευνήσουν μέσα από διάφορες διεπιστημονικές δραστηριότητες τα μαθηματικά και επιστημονικά θέματα που μπορεί να εμπλέκονται στο σχεδιασμό ενός χώρου στάθμευσης
Μαθηματικά για Διδασκαλία III
Μαθηματικά για Διδασκαλία III Μαριάννα Τζεκάκη Απαραίτητα στον εκπαιδευτικό Μαθηματικό περιεχόμενο γνώση Ζητήματα των στόχων της διδασκαλίας των μαθηματικών μάθησης και του σχετικού μαθηματικού περιεχομένου
Διδακτική οργάνωση και διαχείριση του μαθηματικού περιεχομένου και της διαπραγμάτευσης των δραστηριοτήτων στην τάξη
Διδακτική οργάνωση και διαχείριση του μαθηματικού περιεχομένου και της διαπραγμάτευσης των δραστηριοτήτων στην τάξη Φαινόμενα Εμπειρίες φαινομένων Οργάνωση φαινομένων Νοούμενα (πρώτες μαθηματικές έννοιες
Εκπαιδευτικό Σενάριο: Αναλογίες. Βασίλης Παπαγεωργίου
Εκπαιδευτικό Σενάριο: Αναλογίες Ιανουάριος 2011 1. Τίτλος Αναλογίες 2. Ταυτότητα Συγγραφέας: Γνωστική περιοχή των μαθηματικών: Άλγεβρα, Γεωμετρία Θέμα: Αναλογίες Συντεταγμένες στο επίπεδο 3. Σκεπτικό 2
6 Φεβρουαρίου 2016, Λεμεσός
6 Φεβρουαρίου 2016, Λεμεσός Τα ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ περιγράφει: τα Μαθηματικά που αναμένουμε να κατανοήσουν οι μαθητές μέχρι το τέλος της σχολικής τους εκπαίδευσης, από το Νηπιαγωγείο μέχρι
Αξιοποίηση της επαγωγικής συλλογιστικής στο πλαίσιο της διερευνητικής και ανακαλυπτικής μάθησης
Επιμορφωτικό Εργαστήριο Διδακτικής των Μαθηματικών Του Δημήτρη Ντρίζου Σχολικού Συμβούλου Μαθηματικών Τρικάλων και Καρδίτσας Αξιοποίηση της επαγωγικής συλλογιστικής στο πλαίσιο της διερευνητικής και ανακαλυπτικής
των σχολικών μαθηματικών
Μια σύγχρονη διδακτική θεώρηση των σχολικών μαθηματικών «Οι περισσότερες σημαντικές έννοιες και διαδικασίες των μαθηματικών διδάσκονται καλύτερα μέσω της επίλυσης προβλημάτων (ΕΠ)» Παραδοσιακή προσέγγιση:
Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ
Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΩΡΙΑ. Να γραφεί ο τύπος της Ευκλείδειας διαίρεσης. Πότε ένας αριθμός διαιρείται με το, πότε με το, το, και πότε με το 9. ( Δώστε παράδειγμα) Ποιοι αριθμοί καλούνται πρώτοι
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 4 ο ΘΕΜΑ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 4 ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ ο : ΠΙΘΑΝΟΤΗΤΕΣ. Σε μια ομάδα που αποτελείται από 7 άνδρες και 3 γυναίκες, 4 από τους άνδρες και από τις γυναίκες παίζουν σκάκι. Επιλέγουμε τυχαία ένα από τα άτομα αυτά.
Φεβρουάριος 2013. Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 21/2/2013 Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ
Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού Φεβρουάριος 2013 2 Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΕΝΟΤΗΤΑ 7 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ 3 ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΑΣ
Γεωμετρία, Αριθμοί και Μέτρηση
1. Εισαγωγή Γεωμετρία, Αριθμοί και Μέτρηση Μαθαίνω Γεωμετρία και Μετρώ Παίζω με τους αριθμούς Βρίσκω τα πολλαπλάσια Το εκπαιδευτικό λογισμικό «Γεωμετρία, Αριθμοί και Μέτρηση» δίνει τη δυνατότητα στα παιδιά