Τριγωνομετρικός κύκλος Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜAΤΙΚΟΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Τριγωνομετρικός κύκλος Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜAΤΙΚΟΣ"

Transcript

1 Τριγωνομετρικός κύκλος Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜAΤΙΚΟΣ

2 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΚΥΚΛΟΣ Β ημφ, εφφ σφφ Μ Δ συνφ Α Σελίδα 1

3 N Β, 90 ο Α, ο H O 1ο 3ο E Σ Δ, 180 ο 360 ο Ν, 70 ο 4ο 1 ο Τεταρτημόριο : { Όλα θετικά. ο Τεταρτημόριο : { Ημφ θετικό. 3 ο Τεταρτημόριο : { Εφφ,σφφ θετικές. 4 ο Τεταρτημόριο : { Συνφ θετική. Σελίδα

4 ΣΗΜΑΝΤΙΚΗ ΠΑΡΑΤΗΡΗΣΗ: Από τον τριγωνομετρικό κύκλο παρατηρούμε ότι τα ημφ,συνφ είναι αριθμοί που κυμαίνονται από το -1 έως το 1.Ενώ οι εφφ,σφφ μπορούν να πάρουν όποιες τιμές θέλουμε. Δηλ.: Αν παρατηρήσουμε προσεχτικά τον τριγωνομετρικό κύκλο μπορούμε να βρούμε εκείνους τους τριγωνομετρικούς αριθμούς που αντιστοιχούν στα 4 σημεία του ορίζοντα. Αν το τόξο καταλήξει στο Βορρά ή στο Νότο παρατηρούμε ότι όταν ενώσουμε αυτά τα δύο σημεία με το Ο και προεκτείνουμε δεν θα ακουμπήσουμε τον άξονα των εφαπτομένων, γι αυτό και δεν ορίζεται η εφ και η εφ. Ομοίως για τον ίδιο λόγο δεν ορίζεται η σφ και η σφ. ημ συν εφ 0 Χ 0 Χ 0 σφ Χ 0 Χ 0 Χ Σελίδα 3

5 ΑΚΤΙΝΙΟ (rad) ΟΡΙΣΜΟΣ: Ένα ακτίνιο ονομάζεται η επίκεντρη γωνία ενός κύκλου που το αντίστοιχο τόξο της έχει μήκος ίσο με μία ακτίνα. Α Β ΣΗΜΕΙΩΣΗ: Το μήκος του κύκλου=l=π.ρ Η πλήρης γωνία είναι π rad Δηλ. ΣΧΕΣΗ ΑΚΤΙΝΙΟΥ ΚΑΙ ΜΟΙΡΑΣ Είναι γνωστό ότι τα π ακτίνια αντιστοιχούν στις 180 ο.άρα: α ακτίνια π ακτίνια Σελίδα 4

6 Τριγωνομετρικοί αριθμοί βασικών γωνιών 0 rad ημ 0 1 συν 1 0 εφ 0 1 Χ σφ Χ 1 0 Σελίδα 5

7 ΑΝΑΓΩΓΗ ΣΤΟ 1 ο ΤΕΤΑΡΤΗΜΟΡΙΟ ΠΑΡΑΠΛΗΡΩΜΑΤΙΚΑ ΤΟΞΑ :φ, π-φ ( ο τεταρτημόριο) π/ π-φ ημ(π-φ)= + ημφ συν(π-φ)= - συνφ ή συνφ= συν(π-φ) εφ(π-φ)= - εφφ σφ(π-φ)= - σφφ π Αφού καταλήγω στο ο τεταρτημόριο, μόνο το ημω είναι θετικό γι αυτό και βάζουμε +, ενώ στους άλλους τριγωνομετρικούς αριθμούς βάζουμε αφού είναι αρνητικοί. π.χ ημ150 ο =ημ(180 ο -30 ο )=ημ30 ο =1/ συν10 ο =συν(180 ο -60 ο )=-συν60 ο = / ΑΝΤΙΘΕΤΑ ΤΟΞΑ : φ,-φ (4 ο τεταρτημόριο) συν>0 0 ημ(-φ)= - ημφ ή -ημφ= ημ(-φ) 3π/ συν(-φ)= + συνφ εφ(-φ)= - εφφ ή -εφφ= εφ(-φ) σφ(-φ)= - σφφ ή -σφφ= σφ(-φ) π.χ εφ(-45 ο )= - εφ45 ο = - 1 σφ(-60 ο )= - σφ60 ο = /3 -φ Αφού καταλήγω στο 4 ο τεταρτημόριο, μόνο το συνω είναι θετικό γι αυτό και βάζουμε +, ενώ στους άλλους τριγωνομετρικούς αριθμούς βάζουμε αφού είναι αρνητικοί. Σελίδα 6

8 ΤΟΞΑ ΜΕ ΔΤΑΦΟΡΑ π : φ, π+φ (3 ο τεταρτημόριο) εφ, σφ >0 π π+φ ημ(π+φ)= - ημφ 3π/ συν(π+φ)= - συνφ εφ(π+φ)= + εφφ σφ(π+φ)= + σφφ π.χ ημ5 ο =ημ(180 ο +45 ο )= - ημ45 ο = / σφ40 ο =σφ(180 ο +60 ο )= σφ60 ο = Αφού καταλήγω στο 3 ο τεταρτημόριο, μόνο η εφφ άρα και η σφφ είναι θετικές γι αυτό και βάζουμε +, ενώ στους άλλους τριγωνομετρικούς αριθμούς βάζουμε αφού είναι αρνητικοί. ΤΟΞΑ ΜΕ ΔΙΑΦΟΡΑ π : φ, π+φ (1 ο τεταρ) ημ,συν,εφ,σφ >0 π/ π+φ ημ(π+φ)= + ημφ συν(π+φ)= + συνφ εφ(π+φ)= + εφφ σφ(π+φ)= + σφφ 0 π Αφού καταλήγω στο 1 ο τεταρτημόριο, όλοι τριγωνομετρικοί αριθμοί είναι θετικοί γι αυτό και βάζουμε σε όλους +. Δηλαδή στους τριγωνομετρικούς αριθμούς η μία ολόκληρη περιστροφή δεν επηρεάζει το αποτέλεσμα,ομοίως και οι δύο περιστροφές κ.ο.κ οι κ περιστροφές. Άρα: ημ(κπ+φ)=ημφ συν(κπ+φ)=συνφ εφ(κπ+φ)=εφφ σφ(κπ+φ)=σφφ Π.χ. ημ390 ο =ημ(360 ο +30 ο )=ημ30 ο =1/ Σελίδα 7

9 ΤΟΞΑ ΜΕ ΑΘΡΟΙΣΜΑ π : φ,π-φ (4 ο τεταρ) συν >0 0 π ημ(π-φ)= - ημφ συν(π-φ)= + συνφ εφ(π-φ)= - εφφ σφ(π-φ)= - σφφ Π.χ. ημ300 ο =ημ(360 ο -60 ο )=-ημ60 ο =- 3π/ π-φ Αφού καταλήγω στο 4 ο τεταρτημόριο, μόνο το συνω είναι θετικό γι αυτό και βάζουμε +, ενώ στους άλλους τριγωνομετρικούς αριθμούς βάζουμε αφού είναι αρνητικοί. συν315 ο =ημ(360 ο -45 ο )=συν45 ο =. ΠΑΡΑΠΛΗΡΩΜΑΤΙΚΑ ΤΟΞΑ: φ, π/-φ (1 0 τετ.) ημ,συν,εφ,σφ >0 π/ π/-φ 0 ΠΡΟΣΟΧΗ : ΑΛΛΑΖΕΙ Ο ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΑΡΙΘΜΟΣ ημ(π/-φ)= συνφ ή συνφ=ημ(π/-φ) Αφού καταλήγω στο 1 ο τεταρτημόριο, όλοι τριγωνομετρικοί αριθμοί είναι θετικοί γι αυτό και βάζουμε σε όλους +. ΠΡΟΣΟΧΗ: Όταν έχουμε π/ αλλάζει ο τριγωνομετρικός αριθμός συν(π/-φ)= ημφ ή ημφ=συν(π/-φ) εφ(π/-φ)= σφφ ή σφφ=εφ(π/-φ) σφ(π/-φ)= εφφ ή εφφ=σφ(π/-φ) Σελίδα 8

10 ΤΟΞΑ ΜΕ ΔΙΑΦΟΡΑ π : φ,π/+φ ( 0 τετ.) ημ >0 π/ π/+φ ΠΡΟΣΟΧΗ : ΑΛΛΑΖΕΙ Ο ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΑΡΙΘΜΟΣ π Αφού καταλήγω στο ο τεταρτημόριο μόνο το ημω είναι θετικό γι αυτό και βάζουμε +, ενώ στους άλλους τριγωνομετρικούς αριθμούς βάζουμε αφού είναι αρνητικοί. ημ(π/+φ)= + συνφ συν(π/+φ)= - ημφ εφ(π/+φ)= - σφφ σφ(π/+φ)= - εφφ ΠΡΟΣΟΧΗ: Όταν έχουμε π/ αλλάζει ο τριγωνομετρικός αριθμός ΤΟΞΑ ΜΕ ΔΙΑΦΟΡΑ 3π/ : φ, 3π/+φ (4 0 τετ.) συν >0 π/ 0 3π/+φ ΠΡΟΣΟΧΗ : 3π/ ΑΛΛΑΖΕΙ Ο ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΑΡΙΘΜΟΣ ημ(3π/+φ)= - συνφ συν(3π/+φ)= + ημφ εφ(3π/+φ)= - σφφ σφ(3π/+φ)= - εφφ Αφού καταλήγω στο 4 ο τεταρτημόριο μόνο το συνφ είναι θετικό γι αυτό και βάζουμε +, ενώ στους άλλους τριγωνομετρικούς αριθμούς βάζουμε αφού είναι αρνητικοί. ΠΡΟΣΟΧΗ: Όταν έχουμε 3 π/ αλλάζει ο τριγωνομετρικός αριθμός. Σελίδα 9

11 ΤΟΞΑ ΜΕ ΑΘΡΟΙΣΜΑ 3π/ : φ,3π/-φ (3 0 τετ.) εφ, σφ >0 ΠΡΟΣΟΧΗ : 3π/-φ π 3π/ ΑΛΛΑΖΕΙ Ο ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΑΡΙΘΜΟΣ ημ(3π/-φ)= - συνφ συν(3π/-φ)= - ημφ εφ(3π/-φ)= + σφφ σφ(3π/-φ)= + εφφ Αφού καταλήγω στο 3 ο τεταρτημόριο μόνο η εφφ είναι θετική άρα και η σφφ, γι αυτό και βάζουμε +, ενώ στους άλλους τριγωνομετρικούς αριθμούς βάζουμε αφού είναι αρνητικοί. ΠΡΟΣΟΧΗ: Όταν έχουμε π/ αλλάζει ο τριγωνομετρικός αριθμός. ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ i. { ii. { iii. Σελίδα 10

12 ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ 1 η Να βρεθεί το πρόσημο των παρακάτω τριγωνομετρικών αριθμών:,,,, ΛΥΣΗ Θυμήσου το Ο.Η.Ε.Σ. στον τριγωνομετρικό κύκλο.,, κ.ο. κ. ΑΣΚΗΣΗ η Αν να βρεθεί το πρόσημο των τριγωνομετρικών αριθμών της γωνίας φ. ΑΣΚΗΣΗ 3 η Αν να δειχθεί ότι: i. εφφ ημφ +σφφ-συνφ ii. εφφ+ημφ. ΑΣΚΗΣΗ 4 η Αν να δειχθεί ότι: i. εφφ+ημφ-συνφ+σφφ ii. Σελίδα 11

13 ΑΣΚΗΣΗ 5 η Ποιος είναι ο τύπος που συνδέει τις μοίρες με τα ακτίνια; ΑΠΑΝΤΗΣΗ Ο τύπος που συνδέει τις μοίρες με τα ακτίνια είναι : ΑΣΚΗΣΗ 6 η Να μετατρέψεις τις παρακάτω μοίρες σε ακτίνια: ΛΥΣΗ κ.ο.κ. ΑΣΚΗΣΗ 7 η Να μετατρέψεις τα παρακάτω ακτίνια σε μοίρες: ΛΥΣΗ, κ.ο. κ. Σελίδα 1

14 ΑΣΚΗΣΗ 8 η Nα φτιάξεις τον τριγωνομετρικό κύκλο και να αναφέρεις σε κάθε τεταρτημόριο το πρόσημο των τριγωνομετρικών αριθμών. ΑΣΚΗΣΗ 9 η Να αναχθούν οι παρακάτω τριγωνομετρικοί στο 1 ο τεταρτημόριο: ( ) ( ) ( ) ( ) ( ), ( ) ( ) ( ), ( ) ( ) ( ) ( ), ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), ( ) ( ) ( ) ( ), ( ) ( ) ( ) ( ), ( ) ( ) ( ) ( ), ( ) ( ) ( ) ( ). ΑΣΚΗΣΗ 10 η Να υπολογισθούν οι παρακάτω τριγωνομετρικοί αριθμοί: i. ημ150 ο = ii. συν10 ο = iii. εφ135 ο = iv. σφ10 ο = v. εφ40 ο = vi. ημ5 ο = vii. ημ(-30 ο )= viii. συν(-45 ο )= ix. εφ(-60 ο )= (Υπ. Τις παραπάνω μοίρες να τις γράψεις ως άθροισμα ή διαφορά με τις 180 ο, π.χ. 150 ο =180 ο -30 ο και 10 ο =180 ο +30 ο ) Σελίδα 13

15 ΑΣΚΗΣΗ 11 η Να υπολογισθούν οι παρακάτω τριγωνομετρικοί αριθμοί: i. ημπ/3= ( - ) ( ) ii. συν3π/4= iii. εφ5π/6= iv. σφ4π/3= v. εφ5π/4= vi. ημ7π/6= Θυμήσου ότι ημ(π-φ)= ημφ αφού το π-φ σε οδηγεί στο ο τεταρ. όπου το ημ vii. ημ(-5π/4)= -ημ5π/4= -ημ( + )= -ημ( + )= viii. ix. - (-ημπ/4)= ημπ/4= συν(-3π/4)= εφ(-5π/6)= Θυμήσου ότι ημ(-φ)=- ημφ αφού το -φ σε οδηγεί στο 4 ο τεταρ. όπου το ημ αλλά και το ημ(π+φ)=-ημφ αφού το π+φ σε οδηγεί στο 3 ο τετ. όπου ημ (Υπ. Τα παραπάνω ακτίνια να τα γράψεις ως άθροισμα ή διαφορά με το π, π.χ. = - = και = + = ) 9 ΑΣΚΗΣΗ 1 η Να υπολογισθούν οι τιμές των παραστάσεων: i. Α= ii. Β= i. Α= ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) αν φ= αν φ= ΛΥΣΗ αν φ= ( ), ( ) ( ) -ημφ, ( ) Θυμήσου ότι συν( αφού το τεταρ. όπου το συν -φ)=-ημφ -φ σε οδηγεί στο 3 ο ΠΡΟΣΟΧΗ: όποτε έχω Αλλάζει ο τριγωνομετρικός αριθμ. ( ), ( ) ΑΡΑ: Α= ( ) ( ) ( ) ii. Ομοίως. Σελίδα 14

16 ΑΣΚΗΣΗ 13 η Δίνεται ότι 90 ο <φ<180 ο και ημφ=.να υπολογιστούν οι υπόλοιποι τριγωνομετρικοί αριθμοί. ΛΥΣΗ 90 ο <φ<180 ο { ( ) Είναι γνωστό ότι σφφ =, δηλ. το αντίστροφο της εφφ. ΑΣΚΗΣΗ 14 η Δίνεται ότι 180 ο <φ<70 ο και συνφ= οι υπόλοιποι τριγωνομετρικοί αριθμοί. ΑΣΚΗΣΗ 15 η Δίνεται ότι 70 ο <φ<360 ο και ημφ= οι υπόλοιποι τριγωνομετρικοί αριθμοί..να υπολογιστούν.να υπολογιστούν ΑΣΚΗΣΗ 16 η Δίνεται ότι 0 ο <φ<90 ο και συνφ=.να υπολογιστούν οι υπόλοιποι τριγωνομετρικοί αριθμοί. Σελίδα 15

17 ΑΣΚΗΣΗ 17 η Δίνεται ότι 90 ο <φ<180 ο και εφφ=.να υπολογιστούν οι υπόλοιποι τριγωνομετρικοί αριθμοί. 90 ο <φ<180 ο { ΛΥΣΗ Πάντα ξεκινάμε με την σχέση και διαιρούμε με το συνφ για να εμφανισθεί η εφφ που είναι γνωστή. ( ) ( ) Είναι γνωστό ότι σφφ =, δηλ. το αντίστροφο της εφφ. ΑΣΚΗΣΗ 18 η Δίνεται ότι 180 ο <φ<70 ο και σφφ=.να υπολογιστούν οι υπόλοιποι τριγωνομετρικοί αριθμοί. Σελίδα 16

18 ΑΣΚΗΣΗ 19 η ταυτότητες: Να αποδειχθούν οι παρακάτω τριγωνομετρικές i. ( ) ( ) ii. iii. iv. ( ) ( ) Πάντα ξεκινάμε από το πιο σύνθετο μέλος ΛΥΣΗ i. 1 ο μέλος=( ) ( ) = ημα.συνα ημα.συνα= 5.( + )=5.1=5= ο μέλος ii. 1 ο μέλος= ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) = ο μέλος. ΑΣΚΗΣΗ 19 η ταυτότητες: Να αποδειχθούν οι παρακάτω τριγωνομετρικές i. ii. 1 ημ θ - 1 εφ θ 1 1 συνα - συνα 1 + ημα = εφα Σελίδα 17

19 ΟΡΙΣΜΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΩΝ ΑΡΙΘΜΩΝ Α) Ερωτήσεις Σωστού (Σ) - Λάθους (Λ) i. H γωνία με μέτρο 3π έχει την ίδια τελική πλευρά με την γωνία - π. ii. Η γωνία με μέτρο 60 ο έχει την ίδια τελική πλευρά με την γωνία - 40 ο iii. Αν ω < 0 τότε ημω < 0. iv. Το ημ750 ο είναι θετικός αριθμός. v. Για οποιαδήποτε γωνία ω ισχύει ημω> 1. Β) Ερωτήσεις πολλαπλής επιλογής i. Το μέτρο της γωνίας θ = 40 ο σε rad είναι: Α. π 5 Β. 3π 4 Γ. ii. Το μέτρο της γωνίας θ = π 9 7π 1 Δ. π 1 Ε. 3 σε μοίρες είναι: Α. 100 Β. 105 ο Γ. 50 ο Δ. 00 ο Ε. 300 ο iii. Αν ημx = λ λ - λ ο λ παίρνει τιμές: Α. λ 1 Β. λ > 1 Γ. λ = 1 Δ. λ < -1 iv. Αν συν x = λ λ IR ο λ παίρνει τιμές: λ + 1 Α. -1 λ 1 Β. λ > Γ. λ 0 Δ. λ < -1 v. Η μεγίστη τιμή της παράστασης Κ = 3συνθ + ημθ είναι: Α. 4 Β. -4 Γ. 3 Δ. 0 Ε Σελίδα 18

20 Γ) ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ 1 η Να βρεθούν πάνω στο τριγωνομετρικό κύκλο: Τα σημεία που ορίζονται από την τελική πλευρά της γωνίας i) π 3 + Κπ, ii) - π 4 + Kπ π, iii) 3 + Κπ 6 Κ Ζ. ΑΣΚΗΣΗ η Για κάθε γωνία θ να βρείτε τις τιμές που παίρνουν οι παραστάσεις: Α = 3 - ημθ, Β = ημθ - 5συνθ, Γ = ημ θ + 3συνθ Δ = 3 συν θ - 4. ΑΣΚΗΣΗ3 η Nα βρείτε το πρόσημο των παρακάτω τριγωνομετρικών αριθμών: i) ημ550 ο, ii) συν80 ο, iii) εφ(-1000 ο ), iv) συν(-300 ο ). ΑΣΚΗΣΗ 4 η Αν π < θ < παραστάσεων: 3π Α= εφθ - ημθ - συνθ, Β = να βρείτε το πρόσημο των ημθ - εφθ συνθ - σφθ. ΑΣΚΗΣΗ 5 η Να βρείτε το πρόσημο των παραστάσεων: Α = - συν100 εφ780, Β = ημ4000 εφ00 συν5000 Δ ΑΣΚΗΣΗ 6 η Δίνεται τρίγωνο ΑΒΓ με Γ = 30 ο. Φέρουμε το ύψος ΑΔ, αν ΒΔ = 1cm, ΔΓ = 3cm να βρεις την περίμετρο του ΑΒΓ. Δ ΑΒΓ ΑΣΚΗΣΗ 7 η Δίνεται τρίγωνο με B = 8 ο, Γ = 50 ο. Φέρουμε το ύψος ΑΔ, αν ΔΓ = 8cm να βρείτε την πλευρά ΑΒ. Σελίδα 19

21 ΑΣΚΗΣΗ 8 η Σε ένα κύκλο με κέντρο Ο και ακτίνα R να εγγράψετε ένα ισοσκελές τρίγωνο ΑΒΓ (ΑΒ = ΑΓ). Εστω Μ το μέσο της ΒΓ. Να δείξετε ότι: i) ΒΓ = RημΑ, ii) ΑΜ = R (1 + συνα). ΑΣΚΗΣΗ 9 η Ενας ζωγράφος παρατηρεί άγαλμα ύψους 4,70m και βρίσκεται σε απόσταση 8m από αυτό. Αν το ύψος του ζωγράφου είναι 1,70m να βρείτε το μέτρο της γωνίας ω υπό την οποία ο ζωγράφος βλέπει το άγαλμα. ΑΣΚΗΣΗ 10 η Να υπολογίσετε τις τιμές των παραστάσεων: π - εφπ Α = 3ημ - 4(συνπ - 5ημπ) + ημ 3π. Σελίδα 0

22 ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ Α) Ερωτήσεις Σωστού (Σ) - Λάθους (Λ) i. Αν ημω = 0 τότε συνω = 0. ii. Αν ημω = 1 τότε συνω = 0. iii. Αν ημω = 0 τότε συνω = 1 ή συνω = -1. iv. Αν εφω = v. Αν εφω = vi. Αν ημω = 5 4 τότε σφω = α α τότε συνω = 1 + α. 1 τότε συνω = 3. vii. Αν ημω < 0 και συνω < 0 τότε εφω < 0. viii. Για κάθε γωνία ω ισχύει συν ω = ix. Για κάθε γωνία ω ισχύει συν ω = 1 1+ εφ 1 1+ σφ ω. ω. Σελίδα 1

23 Β) Ερωτήσεις πολλαπλής επιλογής i. Αν x = συνθ και y = 3ημθ τότε ισχύει: y Α. x + 9 = 1, y Β. x - 9 = 1, y Γ. x + 3 = 1, Δ. x - y = 3. ii.αν x = 3ημθ και y = 4συνθ τότε ισχύει: x y x y Α. - = 1, Β. + = 1, Γ. 9x y = 1, Δ. x - y = 1. iii. H παράσταση Α = ημ 3 x συνx + συν 3 xημx είναι ίση με: Α. ημx, Β. συνx, Γ. ημxσυνx, Δ. εφx iv. H παράσταση Α = σφx συνxημx είναι ίση με: Α. ημx Β. ημ x Γ. συνx Δ. συν x v. Αν ημx = ο < x < 70 ο τότε συνx είναι ίσο με: Α. 4 5, Β. 5 4, Γ , Δ vi. Αν 0 < x < π και ημx + συνx = ημ 3 x + συν 3 x είναι: Α. 8 8 Β. Γ Δ Ε η τιμή της παράστασης π vii. Αν 0 < x < ημx + συνx είναι: και ημxσυνx = 5 8 η τιμή της παράστασης Α. 1, Β. 3, Γ., Δ. 3 8,Ε Σελίδα

24 Γ) ΑΣΚΗΣΕΙΣ 4 ΑΣΚΗΣΗ 1 η Αν σφx - και 3 παράσταση A = 1 + ημxσυνx 1 + ημx 3π < x < π να υπολογίσετε την π ΑΣΚΗΣΗ η Αν 9εφ x = 4 και < x < π να υπολογίσετε την εφx παράσταση A = 1 - ημx + εφx 1 + ημx.. ΑΣΚΗΣΗ 3 η Να αποδειχθούν οι παρακάτω ισότητες: α) συν 4 x - ημ 4 x = συν x - ημ x = συν x - 1 = 1 - ημ x β) (ημx + συνx) = 1 + ημx συνx. γ) ημ 4 x + συν 4 x = 1 - ημ xσυν x δ) ημ 6 x + συν 6 x = 1-3ημ xσυν x. ΑΣΚΗΣΗ 4 η Να αποδειχθούν οι παρακάτω ισότητες: α) εφα + σφβ εφβ + σφα = εφα εφβ β) (1 + εφ α) (1 - συν α) = εφ α γ) (ημα + εφα) (συνα + σφα) = (1 + ημα) (1 + συνα) Σελίδα 3

25 ΑΣΚΗΣΗ 5 η Να δείξετε ότι: Τριγωνομετρικός κύκλος α) 1 ημ θ - 1 εφ θ 1 β) εφ θ - ημ θ = εφ θ ημ θ γ) σφθ 1 + σφθ + εφθ 1 + εφθ 1 δ) εφ θ εφ θ + σφ θ εφ θ ε) 1 + ημθ - συνθ 1 + ημθ + συνθ ημθ + συνθ 1 + ημθ - συνθ ημθ. ΑΣΚΗΣΗ 6 η Αν 0 < x < π να δείξετε ότι: α) 1 + ημx ημx 1 + ημx ημx = 1 + συνx ημx β) 1 + ημx 1 - ημx ημx 1 + ημx = εφx. ΑΣΚΗΣΗ 7 η Να δείξετε ότι: 4 α) ημ x + 4συν x = - ημ x β) ημ x + 4συν x + συν x + 4ημ x = Σελίδα 4

26 ΑΣΚΗΣΗ 8 η Εστω f(x) = 3 (ημ 4 x +συν 4 x) - (ημ 6 x + συν 6 x) με x R. Nα δείξετε ότι η f(x) είναι σταθερή. ΑΣΚΗΣΗ 9 η Αν είναι x = ημθ - συνθ το x ως συνάρτηση του y. και y = εφθ + σφθ να βρείτε ΑΣΚΗΣΗ 10 η Αν ημx + συνx = α του α οι παραστάσεις: να υπολογιστούν ως συνάρτηση Α. ημx συνx, Β. ημ 4 x + συν 4 x, Γ. ημ 3 x + συν 3 x, Δ. ημ 6 x + συν 6 x. ΑΣΚΗΣΗ 11 η Δίνεται η συνάρτηση : f(x) = (ασυνx - βημx) +(αημx+ βσυνx) f(x) είναι σταθερή. με x ΙR. Να δείξετε ότι η ΑΣΚΗΣΗ 1 η Αν για τη γωνία θ ισχύει 4ημθ + 3συνθ = 5 i) Να δείξετε ότι εφθ = 4 3 ii) Να δείξετε ότι εφθ 1 + σφθ + εφθ 1 + εφθ = 4 3 ΑΣΚΗΣΗ 13 η Να βρεθούν οι τιμές του κ ώστε να ισχύει ημω = κ - κ + και συνω = κ κ +. ΑΣΚΗΣΗ 14 η Για κάθε γωνία x να αποδείξετε ότι: 1 α) ημx συνx, β) ημx + συνx 1, γ) ημ 4 x + συν 4 x π, δ) ημ x - 3ημx + 3 > 0 στ) ημx + συνx>1 με 0<x <. Σελίδα 5

27 ΑΣΚΗΣΗ 15 η Δίνεται η εξίσωση x - x - εφ θ = 0, συνθ 0. i) Να δείξετε ότι η εξίσωση έχει ρίζες πραγματικές και άνισες, οι οποίες να βρεθούν. ii) Αν x 1, x οι ρίζες της εξίσωσης να υπολογίσετε την τιμή της A = παράστασης x - x 1 1. iii) Αν f(x) = x x - 1 να δείξετε ότι f(x 1 ) f(x ) = - εφ θ ημ θ. ΑΣΚΗΣΗ 16 η Δίνεται η εξίσωση x - x ημθ - συν θ = 0. i) Να λύσετε την εξίσωση. ii) Αν x 1, x οι ρίζες της εξίσωσης να αποδείξετε ότι : x 1 + x 4. iii) Να υπολογίσετε την παράσταση 1 x + 1 x 1 ΑΣΚΗΣΗ 17 η Δίνεται η εξίσωση x - (λ + 1)x + λ = 0 βρείτε το λ ώστε η εξίσωση να έχει ρίζες: α) ρ 1 = ημθ, ρ = συνθ β) ρ 1 = εφθ, ρ = σφθ. ΑΣΚΗΣΗ 18 η Αν είναι ημx + συνx = α με 0 < x < Α = ημx + συνx + ημ 3 x + συν 3 x + ημ 4 x + συν 4 x τότε: i) Να βρείτε τι τιμές παίρνει ο α.. π και ii) Να βρείτε την παράσταση Α ως συνάρτηση του α. iii) Να βρείτε την τιμή της παράστασης Α για x = λ ΙR. Να π 4. Σελίδα 6

28 ΑΝΑΓΩΓΗ ΣΤΟ 1ο ΤΕΤΑΡΤΗΜΟΡΙΟ Α) Ερωτήσεις Σωστού (Σ) - Λάθους (Λ) i. Αν Α, Β, Γ γωνίες τριγώνου ισχύουν: α. ημ(α + Β) = - ημγ β. συν A + B Γ = ημ γ. συν (Α + Β) = - συνγ A δ. εφ + B Γ = - σφ ε. εφ(β + Γ) = εφα στ. σφ(β + Γ) = - σφα ii. ισχύει ημ600 ο = -συν30 ο iii. ισχύει ημ(180 ο + ω) = ημω iv. ισχύει συν(360 ο - ω) = συνω v. ισχύει εφ(90 ο + ω) = - σφω vi. ισχύει σφ(70 ο + ω) = - σφω vii. ισχύει ημ(90 ο - ω) = - συνω viii. ισχύει συν(70 ο + ω) = ημω ix. ισχύει σφ(70 ο - ω) = εφω x. ισχύει ημ 50 ο + ημ 40 ο = 1 xi. ισχύει ημ 70 ο + ημ 0 ο = 1 xii. ισχύει συν 80 ο + συν 170 ο = 1 Σελίδα 7

29 Β) Ερωτήσεις πολλαπλής επιλογής i. Το συν(180 + ω) είναι ίσο με: Α. συνω Β. - συνω Γ. ημω Δ. - ημω ii.η εφ(90 + ω) είναι ίση με: Α. - εφω Β. σφω Γ.- σφω Δ. εφω iii. Η σφ(360 + ω) είναι ίση με: Α. - εφω Β. εφω Γ. - σφω Δ. σφω 3π iv.το ημ + ω είναι ίσο με: Α. - συνω Β. συνω Γ. ημω Δ. - ημω 3π v.το συν - ω είναι ίσο με: Α. - ημω Β. ημω Γ. συνω Δ. - συνω 15π vi.το συν + ω είναι ίσο με: Α. ημω Β. συνω Γ. - ημω Δ. - συνω 19π vii.h εφ - ω είναι ίση με: Α. - σφω Β. σφω Γ. εφω Δ. - εφω 1π viii.το ημ + ω είναι ίσο με: Α. -ημω Β. ημω Γ. - συνω Δ. συνω Σελίδα 8

30 ix. Αν Α, Β, Γ γωνίες τριγώνου τότε: α) Το ημ(β + Γ) είναι ίσο με: Α. - συνα Β. συνα Γ. - ημα Δ. ημα β) Το συν A + B είναι ίσο με: Α. ημ Γ Β. - ημ Γ Γ. συν Γ Δ. - συν Γ B γ) Η εφ + Γ είναι ίση με: Α. εφ A Β. - σφ A Γ. - εφ A Δ. σφ A δ) Η σφ Γ + Α είναι ίση με: Α. σφ B Β. - εφ B Γ. εφ B Δ. - σφ B. x. H παράσταση συν ω + συν π - ω είναι ίση με: Α. συν ω Β.0 Γ.1 Δ. Ε. ημ ω xi. π H παράσταση συν 4 + x π - ημ 4 - x είναι ίση με: Α. ημx Β.συνx Γ.- Δ.0 Ε. Σελίδα 9

31 xii. Τριγωνομετρικός κύκλος π ημ(π + θ) ημ + θ H παράσταση συν (π - θ) συν(π + θ) είναι ίση με: Α. 1 Β. -1 Γ. σφθ Δ.- σφθ Ε. εφθ xiii. H παράσταση: π συνx +συν + x + συν(π + x) + συν 3π + x είναι ίση με: Α. 0 Β. 1 Γ. -1 Δ. ημx Ε. συνx Σελίδα 30

32 ΑΣΚΗΣΗ 1 η 187π 6 Τριγωνομετρικός κύκλος Γ) ΑΣΚΗΣΕΙΣ Να βρεθούν οι τριγωνομετρικοί αριθμοί των γωνιών:, 04π 4, 105π 3. ΑΣΚΗΣΗ η Να βρεθούν οι τριγωνομετρικοί αριθμοί των γωνιών: ο, 50 ο, ο. ΑΣΚΗΣΗ 3 η ι. ημ 71π 4 ΑΣΚΗΣΗ 4 η A = Να υπολογίσετε τα:, ιι) συν - 5π 3, Να απλοποιήσετε τις παραστάσεις: 3π συν (π + x) συν - x συν(π - x) ημ(π - x), ιιι) εφ 41π 6 B = Γ = ΑΣΚΗΣΗ 5 η ημ x - 3π 3 συν π- x εφ x - π συν x - 3π 3 3 π ημ - x ημ (- x) συν(- x) συν(π - x). Να υπολογιστούν οι τιμές των παραστάσεων: Α = ημ - 14π 3 + σφ - 9π 4 3π - εφ Β = 6συν - 3π 6 8π + σφ 4 - εφ 16π Σελίδα 31

33 ΑΣΚΗΣΗ 6 η π Αν ημ 4 + x π + ημ 4 - x = κ να αποδείξετε ότι: π συν 4 - x συν π 4 + x κ - 1 =. π ΑΣΚΗΣΗ 7 η Αν εφ 4 - α π + εφ 4 + α = 3 να βρείτε τις τιμές των παραστάσεων: π i) εφ 4 - α εφ π 4 + α ii) εφ ΑΣΚΗΣΗ 8 η παραστάσεις: i) συν π 4 - α + εφ π Αν ημ 4 + α + ημ π 4 + α +συν π 4 - α π 4 + α. π 4 - α 3 = να υπολογίσετε τις ii) ΑΣΚΗΣΗ 9 η π συν 4 + α συν π 4 - α. Να δείξετε ότι οι παραστάσεις: Α = συν(x + 40 ο ) + συν(x ο ) + συν(x +0 ο ) + συν(x +310 ο ) π B = συν + x συν(π - x) [εφ (π +x) + εφ 3π - x ]. 7π Γ = ημ - x ημ(π - x) + ημ(3π +x) ημ 3π + x είναι ανεξάρτητες του x. Σελίδα 3

34 ΑΣΚΗΣΗ 10 η Τριγωνομετρικός κύκλος π Αν εφ 3 - x + εφ την τιμή της παράστασης Α = εφ π 6 + x = 4 να υπολογίσετε π 3 - x + εφ π 6 + x. ΑΣΚΗΣΗ 11 η Να βρεθούν οι τιμές του ημ κπ 3 όταν κ ακέραιος. ΑΣΚΗΣΗ 1 η Να αποδειχθεί ότι: i) 0 < εφ (π +x) εφx - σφ(π -x) < 1 ii) 0 < σφ (π +x) σφ (5π +x) + εφ(x - π) < 1 ΑΣΚΗΣΗ 13 η Σε ένα τετράπλευρο ΑΒΓΔ οι γωνίες του είναι ανάλογες των αριθμών, 3, 4 και 15 αντίστοιχα. i) Να βρείτε τα μέτρα των γωνιών Α, Β, Γ, Δ. ii) Να δείξετε ότι: α. 3εφΑ - εφ(-β) - εφγ + εφ(-α) = 0 β. ημα + συν (-Β) - συν(-γ) - ημ (-Δ) = 0 Σελίδα 33

35 ΑΣΚΗΣΗ 14 η Δίνεται ότι ημ π 1 = 6-4. i) Να υπολογίσετε τους συν π π 1, εφ 1 ii) Να υπολογίσετε τους ημ 5π 5π 1, συν 1 iii) iv) Να υπολογίσετε το ημ Να υπολογίσετε το ημ 11π 1 13π 1 v) Μπορείτε να υπολογίσετε το ημ 7π 1. Σελίδα 34

36 ΔΙΑΓΩΝΙΣΜΑ (1 ώρας ) ΑΣΚΗΣΗ 1 η Α. Να βρείτε το συνημίτονο των γωνιών: i) 300 ο ii) -40 ο iii) 10 ο (15 μονάδες) Β. Αν συν π 5 = να βρείτε το συν 4π 5. ΑΣΚΗΣΗ η (10 μονάδες) π Α. Δίνεται ότι ημ 4 - x + ημ π 4 + x = κ. π i) Δείξτε ότι ημ 4 - x = συν π ii) Δείξτε ότι συν 4 - x συν π 4 + x. π 4 + x κ - 1 =. (8 μονάδες) (7 μονάδες) π Β. Αν ημ 1 = 6-4 υπολόγισε το συν 13π 1. (10 μονάδες) Σελίδα 35

37 ΑΣΚΗΣΗ 3 η Α. Να απλοποιήσετε την παράσταση: A = εφ 3π - θ συν π + θ ημ π - θ σφθ ημ(π + θ) ημ(15π + θ) (10 μονάδες) Β. Να δείξετε ότι η παράσταση: 7π Α = ημ - x ημ (π - x) + ημ(3π +x) ημ είναι ανεξάρτητη του x. 3π + x (15 μονάδες) ΑΣΚΗΣΗ 4 η π Α. Η παράσταση ημ - x + συν(π +x) + συν x - π είναι ίση με: Α. 0 Β. 1 Γ. ημx Δ. συνx Ε. -1. (10 μονάδες) Β. Να αποδείξετε ότι 0 < εφ (π +x) εφx - σφ(π -x) < 1 (15 μονάδες) Σελίδα 36

Τριγωνομετρία ΓΙΩΡΓΟΣ ΚΑΡΙΠΙΔΗΣ 2 ΑΝΘΟΥΛΑ ΣΟΦΙΑΝΟΠΟΥΛΟΥ

Τριγωνομετρία ΓΙΩΡΓΟΣ ΚΑΡΙΠΙΔΗΣ 2 ΑΝΘΟΥΛΑ ΣΟΦΙΑΝΟΠΟΥΛΟΥ ΕΥΚΛΕΙΔΗΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ ΤΟ ΒΑΣΙΚΟ ΘΕΩΡΗΜΑ: ημ χ+συν χ= ημ χ=-συν χ συν χ=- ημ χ εφχ + σφ χ = εφχ ημχ συνχ = σφχ = ημ χ εφχσφχ σφχ = = συνχ ημχ + εφ χ = συν χ Γωνία χ Τριγωνομετρικοί Αριθμοί

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΙΣΑΓΩΓΗ ΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ. ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΗΣ 2ου ΒΑΘΜΟΥ ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΙΣΑΓΩΓΗ ΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ. ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΗΣ 2ου ΒΑΘΜΟΥ ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΙΣΑΓΩΓΗ ΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΗΣ ου ΒΑΘΜΟΥ α + β + γ 0, α 0 β 4 αγ Αν >0, τότε η εξίσωση έχει δύο πραγµατικές ρίζες: 1, β ± α Αν 0, τότε η εξίσωση έχει µια ρίζα διπλή: β

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΨΗ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο ΕΠΑΝΑΛΗΨΗ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Το ακτίνιο ως μονάδα μέτρησης γωνιών: Το ακτίνιο (ή rad) είναι η γωνία που, όταν γίνει επίκεντρη κύκλου (Ο, ρ), βαίνει σε τόξο που έχει μήκος ίσο με την ακτίνα

Διαβάστε περισσότερα

Ταυτότητες. α 2 β 2 = (α β)(α + β) "διαφορά τετραγώνων" α 3 β 3 = (α β)(α 2 + αβ + β 2 ) "διαφορά κύβων"

Ταυτότητες. α 2 β 2 = (α β)(α + β) διαφορά τετραγώνων α 3 β 3 = (α β)(α 2 + αβ + β 2 ) διαφορά κύβων Ταυτότητες (α β) α αβ β " αναπτύγματα τετραγώνων " (α β) αβ β (α β) α α β αβ β " αναπτύγματα κύβων " (α β) α α β αβ β " παραγοντοποίηση τριωνύμου " (α β) αβ ( α)( β) (α β) αβ ( α)( β) α β = (α β)(α + β)

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ 1 ο δείγμα Α. Θεωρία Α) Πότε ένα πολύγωνο λέγεται κανονικό; Β) Να δώσετε τον ορισμό της εγγεγραμμένης γωνίας σε κύκλο (Ο, ρ). (Να γίνει σχήμα) Γ) Ποια

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο 1 ο ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α1.1 Ισότητα τριγώνων Στο διπλανό σχήμα το τρίγωνο ΑΒΓ είναι ισοσκελές με ΑΒ=ΑΓ. Προεκτείνουμε τη βάση ΒΓ κατά ίσα τμήματα

Διαβάστε περισσότερα

ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ ΣΠΑΡΤΗ 2008

ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ ΣΠΑΡΤΗ 2008 ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ ΣΠΑΡΤΗ 008 Κάθε γνήσιο αντίτυπο έχει την ιδιόχειρη υπογραφή του συγγραφέα Γενική επιμέλεια : Στράτης Αντωνέας Copyright : Στράτης Αντωνέας e-mail: stranton@otenet.gr Τηλέφωνα επικοινωνίας

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο ΚΕΦΑΛΑΙΟ Ι. Να αντιστοιχίσετε καθένα από τα συστήματα: (Σ 1 ): { (Σ 2 ): { (Σ 3 ): { (Σ 4 ): { με εκείνη από τις απαντήσεις Α, Β, Γ που νομίζετε ότι είναι η σωστή.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις : ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν

Διαβάστε περισσότερα

0 0 30 π/6 45 π/4 60 π/3 90 π/2

0 0 30 π/6 45 π/4 60 π/3 90 π/2 Βασικός Πίνακας Μοίρες (Degrees) Ακτίνια (Radians) ΓΩΝΙΕΣ 0 0 30 π/6 45 π/4 60 π/3 90 π/2 Έστω ότι θέλω να μετατρέψω μοίρες σε ακτίνια : Έχω μία γωνία σε φ μοίρες. Για να την κάνω σε ακτίνια, πολλαπλασιάζω

Διαβάστε περισσότερα

1. Τριγωνομετρικοί αριθμοί οξείας γωνίας

1. Τριγωνομετρικοί αριθμοί οξείας γωνίας v.5 «Αυτό το ρόβλημα, τούτ η μεγάλη συμφορά για να λυθεί χρειάζεται, δίχως αμφιβολία, όως κοιτάζω α τη δική σου την λευρά, να δεις κι εσύ α τη δική μου τη γωνία».. Τριγωνομετρικοί αριθμοί οξείας γωνίας

Διαβάστε περισσότερα

Ελευθέριος Πρωτοπαπάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΛΙΓΟ ΠΡΙΝ ΤΙΣ ΕΞΕΤΑΣΕΙΣ (ΘΕΜΑΤΑ ΤΕΛΕΥΤΑΙΑΣ ΕΠΑΝΑΛΗΨΗΣ)

Ελευθέριος Πρωτοπαπάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΛΙΓΟ ΠΡΙΝ ΤΙΣ ΕΞΕΤΑΣΕΙΣ (ΘΕΜΑΤΑ ΤΕΛΕΥΤΑΙΑΣ ΕΠΑΝΑΛΗΨΗΣ) Ελευθέρις Πρωταάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΛΙΓΟ ΠΡΙΝ ΤΙΣ ΕΞΕΤΑΣΕΙΣ (ΘΕΜΑΤΑ ΤΕΛΕΥΤΑΙΑΣ ΕΠΑΝΑΛΗΨΗΣ) Να βρείτε την τιµή των αραστάσεων: o o συν 90 + ηµ 0 -σφ75 α) A =, ηµ o o 0 + συν 80

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Β' Γυμν. - Επαναληπτικές Ασκήσεις 1 Άσκηση 1 Απλοποίησε τις αλγεβρικές παραστάσεις (α) 2y 2z 8ω 8ω 2y 2z (β) 1x 2y 3z 3 3 z 2z z 2 x y Επαναληπτικές Ασκήσεις Άλγεβρα - Γεωμετρία Άσκηση 2 Υπολόγισε την

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Οι ασκήσεις του φυλλαδίου δεν είναι ανά κεφάλαιο, αλλά τυχαία με σκοπό την τελική επανάληψη, και είναι θέματα εξετάσεων από διάφορα σχολεία του νομού Σερρών Σέρρες

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εμβαδά επιπέδων σχημάτων

Κεφάλαιο 1 o Εμβαδά επιπέδων σχημάτων 9 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Β -- ΓΕΩΜΕΤΡΙΙΑ Κεφάλαιο 1 o Εμβαδά επιπέδων σχημάτων Β. 1. 1 44. Τι ονομάζεται εμβαδόν μιας επίπεδης επιφάνειας και από τι εξαρτάται; Ονομάζεται εμβαδόν

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο. ΣΥΛΛΟΓΟΣ «Η ΕΛΛΗΝΙΚΗ ΠΑΙΔΕΙΑ» ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Δίνονται τα πολυώνυμα (3x ) (5 x)(3x ) και 5x 9 i). Να κάνετε τις πράξεις στο πολυώνυμο. ii). Να βρείτε την τιμή του

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ

ΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ ΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ 1. Τι ονομάζουμε εριοδική συνάρτηση Μια συνάρτηση ƒ με εδίο ορισμού το Α λέγεται εριοδική όταν υάρχει ραγματικός αριθμός Τ, Τ > 0 τέτοιος ώστε για κάθε χ Α να ισχύει α) χ+τ Α, χ -

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε γραφικά

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ ΚΑΙ ΛΥΣΕΙΣ ΟΛΩΝ ΤΩΝ ΘΕΜΑΤΩΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ ΘΕΜΑΤΑ 16968, 1765, 17656, 17663, 17664, 17681, 1769, 17699, 17704, 1775, 17736, 17739, 17741 ΘΕΜΑΤΑ 4 17837, 17838,

Διαβάστε περισσότερα

2.4 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ 30 Ο 45 Ο 60 Ο

2.4 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ 30 Ο 45 Ο 60 Ο .4 ΤΡΙΩΝΟΜΕΤΡΙΚΟΙ ΡΙΘΜΟΙ 0 Ο 45 Ο 60 Ο ΘΕΩΡΙ. Τριγωνοµετρικοί αριθµοί 0 ο, 45 ο, 60 ο : ηµίτονο συνηµίτονο εφαπτοµένη 0 ο 45 ο 60 ο ΣΚΗΣΕΙΣ. Στο διπλανό πίνακα, σε κάθε πληροφορία της στήλης, να επιλέξετε

Διαβάστε περισσότερα

Γυμνάσιο Μαθηματικά Τάξη Γ

Γυμνάσιο Μαθηματικά Τάξη Γ 1 Θέματα εξετάσεων περιόδου Μαΐου-Ιουνίου στα Μαθηματικά Τάξη Γ ΘΕΜΑ 1 0 Η εξίσωση αχ + βχ +γ = 0 είναι βαθμού εξίσωση και λύνεται χρησιμοποιώντας τους τύπους Δ =.. χ 1 =. χ =.. Η διακρίνουσα Δ της εξίσωσης

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α Σ Υ Σ Τ Η Μ Α Τ Α

Α Λ Γ Ε Β Ρ Α Σ Υ Σ Τ Η Μ Α Τ Α Σ Υ Λ Λ Ο Γ Η Α Σ Κ Η Σ Ε Ω Ν Β Λ Υ Κ Ε Ι Ο Υ Α Λ Γ Ε Β Ρ Α Σ Υ Σ Τ Η Μ Α Τ Α α 3y β 5 (1) Αν το (Σ) : 3 αy 5β τους α,β έχει λύση την (, y) = (1, ) να βρείτε () Να λυθούν τα συστήματα : y 4 3 y 5 6 5 6

Διαβάστε περισσότερα

ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ

ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ 1 2 ΚΕΦΑΛΑΙΟ 1ο ΓΕΩΜΕΤΡΙΑ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Κύρια και δευτερεύοντα στοιχεία τριγώνου - Είδη τριγώνων 1. Ποια είναι τα κύρια στοιχεία

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ...

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ... ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ορισμός : Μία ακολουθία ονομάζεται αριθμητική πρόοδος, όταν ο κάθε όρος της, δημιουργείται από τον προηγούμενο με πρόσθεση του ίδιου πάντοτε αριθμού. Ο σταθερός αριθμός που προστίθεται

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ i) Να αποδείξετε την ταυτότητα α β γ αββγγα α β βγ γα ii) Να αποδείξετε ότι για όλους τους αβγ,, ισχύει Πότε ισχύει ισότητα; α β γ αβ βγ γα Λέμε ότι μια τριάδα θετικών ακεραίων β,

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,

Διαβάστε περισσότερα

Άλγεβρα Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ. Τόμος 3ος

Άλγεβρα Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ. Τόμος 3ος Άλγεβρα Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Τόμος 3ος Συγγραφική ομάδα: Ανδρεαδάκης Στυλιανός Καθηγητής Πανειστημίου Αθηνών Κατσαργύρης Βασίλειος Καθηγητής μαθηματικών Βαρβακείου Πειραμ. Λυκείου Παασταυρίδης Στάυρος Καθηγητής

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

3.5 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

3.5 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1. ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Ασκσεις σχολικού βιβλίου σελίδας 88-89 A Oµάδας 1.i) Να λύσετε την εξίσωση ηµx = 0 ηµx = 0 ηµx = ηµ0 x = k + 0 x = k + 0, k Z Σηµείωση: Οι λύσεις αυτές διαφορετικά

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Βασικά θεωρήματα Σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο μιας κάθετης πλευράς του είναι ίσο με το γινόμενο της υποτείνουσας επί την προβολή της

Διαβάστε περισσότερα

ΕΜΠΟΡΙΚΗ ΣΧΟΛΗ ΜΙΤΣΗ - ΛΕΜΥΘΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ ΙΟΥΝΙΟΥ 2012

ΕΜΠΟΡΙΚΗ ΣΧΟΛΗ ΜΙΤΣΗ - ΛΕΜΥΘΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ ΙΟΥΝΙΟΥ 2012 ΕΜΠΟΡΙΚΗ ΣΧΟΛΗ ΜΙΤΣΗ - ΛΕΜΥΘΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 0-0 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ ΙΟΥΝΙΟΥ 0 Μάθημα: Μαθηματικά ΤΑΞΗ: A Λυκείου Ημερομηνία: 5 Ιουνίου Διάρκεια: :30 ΟΔΗΓΙΕΣ: Να γράφετε μόνο με μπλε ή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

Επιμέλεια: Σακαρίκος Ευάγγελος 133 Θέματα - 21/1/2015

Επιμέλεια: Σακαρίκος Ευάγγελος 133 Θέματα - 21/1/2015 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα 1 Επιμέλεια: Σακαρίκος Ευάγγελος 133 Θέματα - 1/1/015 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Κεφάλαιο 1 ο : Συστήματα 3 1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

Διαβάστε περισσότερα

1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η απόσταση του σώµατος

1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η απόσταση του σώµατος 1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η αόσταση του σώµατος αό το έδαφος (σε cm), δίνεται αό την συνάρτηση f(t)=1ηµ t +13, όου t ο χρόνος σε ώρες. α) Να βρείτε την ερίοδο της ταλάντωσης.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε

Διαβάστε περισσότερα

( ) x. 1.1 Τριγωνομετρικές Συναρτήσεις. =. Να. 1. Δίνονται οι συναρτήσεις f ( x ) ( x 2

( ) x. 1.1 Τριγωνομετρικές Συναρτήσεις. =. Να. 1. Δίνονται οι συναρτήσεις f ( x ) ( x 2 11 Τριγωνομετρικές Συναρτήσεις 1 Δίνονται οι συναρτήσεις f ( ) ( ημ ) + σφ =, g( ) ημ ημ = και h( ) ημ( ) αποδειχθεί ότι η f είναι άρτια, η g περιττή και η h ούτε άρτια ούτε περιττή Να εξετασθεί αν είναι

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο δείγμα Α1 Αν α> με α 1 τότε για οποιουσδήποτε θ1, θ> να αποδείξετε ότι ισχύει: logα(θ1θ) = logαθ1 + logαθ Α Πότε ένα πολυώνυμο

Διαβάστε περισσότερα

1.3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ. 1. Ορισµός της παραγώγου συνάρτησης

1.3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ. 1. Ορισµός της παραγώγου συνάρτησης . ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ. Ορισµός της παραγώγου συνάρτησης Έστω µια συνάρτηση µε πεδίο ορισµού Α, και Β το σύνολο των Α στα οποία η είναι παραγωγίσιµη. Τότε ορίζεται νέα συνάρτηση µε την οποία κάθε

Διαβάστε περισσότερα

Ερωτήσεις ανάπτυξης. 2. ** Να βρείτε το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεμιά από τις παρακάτω συναρτήσεις: α) f (x) = 2 +

Ερωτήσεις ανάπτυξης. 2. ** Να βρείτε το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεμιά από τις παρακάτω συναρτήσεις: α) f (x) = 2 + Ερωτήσεις ανάπτυξης. ** Έστω η συνάρτηση f () = - 3 +. α) Να βρείτε τις τιμές f (), f (0), f (-3), f () β) Να βρείτε τα σημεία τομής της C f με τους άξονες γ) Να βρείτε τις τιμές f (t), f (t), f ( + h),,

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

Α. ΕΞΙΣΩΣΕΙΣ ΣΥΣΤΗΜΑΤΑ = Γ. β1 = β2

Α. ΕΞΙΣΩΣΕΙΣ ΣΥΣΤΗΜΑΤΑ = Γ. β1 = β2 Α. ΕΞΙΣΩΣΕΙΣ ΣΥΣΤΗΜΑΤΑ ΕΙΔΗ ΕΞΙΣΩΣΗΣ ( ΔΙΕΡΕΥΝΗΣΗ ΕΞΙΣΩΣΗΣ): i. αχ=β µε α 0 έχει µία λύση ii. 0χ=β µε β 0 αδύατη εξίσωση ( καµία λύση ) iii. 0χ=0 αόριστη εξίσωση ( άπειρες λύσεις ) ΕΙΔΗ ΣΥΣΤΗΜΑΤΟΣ (ΔΙΕΡΕΥΝΗΣΗ

Διαβάστε περισσότερα

ΕΝΙΑΙΟ ΛΥΚΕΙΟ ΚΥΚΚΟΥ Α ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ : 2009 2010 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2010

ΕΝΙΑΙΟ ΛΥΚΕΙΟ ΚΥΚΚΟΥ Α ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ : 2009 2010 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2010 ΕΝΙΑΙΟ ΛΥΚΕΙΟ ΚΥΚΚΟΥ Α ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ : 009 00 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 00 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ :8 Μαϊου 00 ΧΡΟΝΟΣ: :30 ώρες ΤΑΞΗ : A Ενιαίου Λυκείου ΠΕΡΙΟΔΟΣ-ΩΡΑ: 7.45-0.5

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Μαθηματικά Γενικής Παιδείας Γ.Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΣΚΗΣΕΙΣ ) Να βρείτε το πεδίο ορισμού των συναρτήσεων: ( ) 6+ 9, g ( ), h ( ) 5 +, k

Διαβάστε περισσότερα

Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις

Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις γιατί συχνά, οι ιδέες επαναλαµβάνονται ΕΠΙΜΕΛΕΙΑ: ΠΑΠΠΑΣ ΑΘΑΝΑΣΙΟΣ Ο ΓΕΝ ΛΥΚΕΙΟ ΥΜΗΤΤΟΥ Σελίδα από 8 Επιµέλεια: Παππάς Αθανάσιος/o ΓΕΛ ΥΜΗΤΤΟΥ 00

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ - ΜΑΘ. ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΑΛΓΕΒΡΑ - ΜΑΘ. ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ 0 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑ - ΜΑΘ. ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΕΞΕΤΑΣΕΩΝ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία µμου δεν στοχεύει απλά στο κυνήγι

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( )

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( ) ΑΣΚΗΣΗ ίνονται οι µιγαδικοί αριθµοί z + 0i για τους οποίους ισχύει: z 4 =. z i. Να δείξετε ότι z =. ii. Αν επιπλέον ισχύει Re( z) Im( z) iii. = να υπολογίσετε τους παραπάνω µιγαδικούς αριθµούς. Για τους

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:...

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΒΑΘΜΟΣ ΗΜΕΡΟΜΗΝΙΑ: 5/06/2015 ΤΑΞΗ: A Αριθμητικά... ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... Ολογράφως:...

Διαβάστε περισσότερα

Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 η Να αποδείξετε ότι στις ομόλογες πλευρές δύο ίσων τριγώνων αντιστοιχούν ίσες διάμεσοι. Α Α ΑΠΟΔΕΙΞΗ Β Γ Β Γ Θα δείξουμε ότι ΑΜ=Α

Διαβάστε περισσότερα

1,y 1) είναι η C : xx yy 0.

1,y 1) είναι η C : xx yy 0. ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.

Διαβάστε περισσότερα

2. Να κατασκευάσετε µια γωνία α τέτοια ώστε: εφ (90 - α) = 7. 3. Να κατασκευάσετε ένα τρίγωνο ΑΒΓ µε ύψος ΑΗ έτσι ώστε: 1 και εφγ = 3

2. Να κατασκευάσετε µια γωνία α τέτοια ώστε: εφ (90 - α) = 7. 3. Να κατασκευάσετε ένα τρίγωνο ΑΒΓ µε ύψος ΑΗ έτσι ώστε: 1 και εφγ = 3 Προβλήµατα 1. Να κατασκευάσετε µια γωνία xαy, γνωρίζοντας ότι: 3 α) εφ xay = 5 β) συν xay = 0,8 γ) ηµ xay = 0,4 2. Να κατασκευάσετε µια γωνία α τέτοια ώστε: εφ (90 - α) = 7 4. 3. Να κατασκευάσετε ένα τρίγωνο

Διαβάστε περισσότερα

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.

Διαβάστε περισσότερα

ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ. (α + β) 2 = α 2 + 2αβ + β 2. αx 2 + βx + γ = 0, α 0. x = Γ ΓΥΜΝΑΣΙΟΥ

ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ. (α + β) 2 = α 2 + 2αβ + β 2. αx 2 + βx + γ = 0, α 0. x = Γ ΓΥΜΝΑΣΙΟΥ ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ (α + β) = α + αβ + β α + β + γ = 0, α 0 = β ± β 4αγ α Γ ΓΥΜΝΑΣΙΟΥ Πράξεις με Πραγματικούς αριθμούς. Μονώνυμα - Πράξεις με μονώνυμα Πολυώνυμα - Πρόσθεση και Αφαίρεση πολυωνύμων Πολλαπλασιασμός

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο 1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο α) Αν χ 1, χ ρίζες της εξίσωσης αχ +βχ+γ=0, 0 να δείξετε ότι S 1 και P 1 Μον. 10 β) Έστω η συνάρτηση

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj klzxcvλοπbnαmqwertyuiopasdfghjklz ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο

Διαβάστε περισσότερα

Κεφάλαιο 2ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ

Κεφάλαιο 2ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Κεφάλαιο ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύου «Σωστό - Λάθος». * Αν = α + βi, α, β R και = 0, τότε α = 0 και β = 0. Σ Λ. * Αν = α + βi και αβ 0, τότε = α β i. Σ Λ. * Αν = κ + λi κ, λ R, τότε Re () =

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 4 Μ Α Θ Η Μ Α Τ Ι Κ Α I E Π Α Λ

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 4 Μ Α Θ Η Μ Α Τ Ι Κ Α I E Π Α Λ Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 1 4 Μ Α Θ Η Μ Α Τ Ι Κ Α I E Π Α Λ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς 1o ΘΕΜΑ 1 A1. Δινεται μια συναρτηση f : [α, ]. Να δωσετε τον ορισμο της συνεχειας της f στο διαστημα

Διαβάστε περισσότερα

Να αιτιολογήσετε την απάντησή σας µε τη βοήθεια και του ερωτήµατος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1+α < 1+ α. α+α

Να αιτιολογήσετε την απάντησή σας µε τη βοήθεια και του ερωτήµατος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1+α < 1+ α. α+α ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

Τάξη A Μάθημα: Γεωμετρία

Τάξη A Μάθημα: Γεωμετρία Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.4 ΑΛΛΟΙ ΤΥΠΟΙ ΓΙΑ ΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.4 ΑΛΛΟΙ ΤΥΠΟΙ ΓΙΑ ΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.4 ΑΛΛΟΙ ΤΥΠΟΙ ΓΙΑ ΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ ΘΕΩΡΙΑ 1 Έστω ΑΒΓ ένα τρίγωνο με πλευρές α, β και γ. Συμβολίζουμε με τα την ημιπερίμετρο α + β + γ του ΑΒΓ, δηλαδή: τ =. 2 Το εμβαδόν Ε του

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

1.2 Εξισώσεις 1 ου Βαθμού

1.2 Εξισώσεις 1 ου Βαθμού 1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση

Διαβάστε περισσότερα

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ. ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός. ςεδς

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ. ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός. ςεδς 01 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παρόν φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια στους

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων.

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων. Άσκηση Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων Μέρος ο i. Δίνεται η γνησίως μονότονη συνάρτηση f : A IR. Να αποδείξετε

Διαβάστε περισσότερα

2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ.

2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ. Θαλής Β' Λυκείου 1995-1996 1. Έστω κύκλος ακτίνας 1, στον οποίο ορίζουμε ένα συγκεκριμένο σημείο Α 0. Στη συνέχεια ορίζουμε τα σημεία Α ν ως εξής: Το μήκος του τόξου Α 0 Α ν (όπου αυτό μπορεί να είναι

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΛΥΣΗ ΤΗΣ ΕΞΙΣΩΣΗΣ α + β + γ = 0 α 0 Η ΕΝΝΟΙΑ ΤΗΣ ΙΑΚΡΙΝΟΥΣΑΣ 1. Να λυθούν οι παρακάτω εξισώσεις ως προς ή y: α) - 4 = 0 β) 3 = 4 γ) + - 15 = 0 δ) 5-18 -

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ. Να σηµειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισµούς:. Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α = β, τότε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.4 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΜΗΚΟΥΣ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.5 ΜΗΚΟΣ ΤΟΞΟΥ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.4 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΜΗΚΟΥΣ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.5 ΜΗΚΟΣ ΤΟΞΟΥ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.4 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΜΗΚΟΥΣ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.5 ΜΗΚΟΣ ΤΟΞΟΥ ΘΕΩΡΙΑ 1 (Μήκος κύκλου) Το μήκος του κύκλου (Ο, R) συμβολίζεται με L. Ο Ιπποκράτης ο Χίος απέδειξε ότι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο Α) Συµπληρώστε τα κενά στις παρακάτω προτάσεις: 1) Ο κύκλος µε κέντρο Κ(α, β) και ακτίνα ρ > έχει εξίσωση... ) Η εξίσωση του κύκλου µε κέντρο στην αρχή

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Επαναληπτικές SOS-ΑΣΚΗΣΕΙΣ

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Επαναληπτικές SOS-ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Επαναληπτικές SOS-ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ. Νδο ηµ α Α) = εφα +συνα Β) π συνα εφ α = +ηµ α Γ) ηµ α= ηµ α συνα+ συν α ηµα ) συν α+ηµ α εφα= + εφα εφα Ε) ( + συνα) εφα=ηµ α Ζ) =εφα εφα+σφα. Νδο

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ

ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ Δ.Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ Τελευταία ενημέρωση: 21 Φεβρουαρίου 2015 w w w. c o m m o n m a t h s. w e e b l y. c o m A. Αρχικά θα ασχοληθούμε με τα τριώνυμα 2 ου βαθμού. Η γενική μορφή τους

Διαβάστε περισσότερα

Βασικές γνώσεις Μαθηµατικών Α και Β Λυκείου που πρέπει να ξέρουµε για να ξεκινήσουµε τις σπουδές µας στο ΕΑΠ. Επιµέλεια Όµηρος Κορακιανίτης

Βασικές γνώσεις Μαθηµατικών Α και Β Λυκείου που πρέπει να ξέρουµε για να ξεκινήσουµε τις σπουδές µας στο ΕΑΠ. Επιµέλεια Όµηρος Κορακιανίτης Βασικές γνώσεις Μαθηµατικών Α και Β Λυκείου που πρέπει να ξέρουµε για να ξεκινήσουµε τις σπουδές µας στο ΕΑΠ Επιµέλεια Όµηρος Κορακιανίτης Άλγερα και πράξεις: (ή το µυστικό της επιτυχίας) - Όταν ένα γινόµενο

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΙΚΟ ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ

ΔΕΙΓΜΑΤΙΚΟ ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΔΕΙΓΜΑΤΙΚΟ ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΟΔΗΓΙΕΣ: α) Δεν επιτρέπεται η χρήση υπολογιστικής μηχανής. β) Δεν επιτρέπεται η χρήση διορθωτικού. γ) Να γράφετε μόνο με μπλε μελάνι. (Για τα σχήματα μπορείτε να χρησιμοποιήσετε

Διαβάστε περισσότερα

β) Αν κάποιος αριθµός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι 1 1 1 9 < α

β) Αν κάποιος αριθµός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι 1 1 1 9 < α ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1

Διαβάστε περισσότερα

2 ΕΥΘΕΙΑ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

2 ΕΥΘΕΙΑ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΕΥΘΕΙΑ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ 1. Να βρείτε τον συντελεστή διεύθυνσης μιας ευθείας ε, που σχηματίζει με τον άξονα x x γωνία: π 3 α) ω = β) ω = γ) ω = π 3. Να βρείτε τη γωνία ω που σχηματίζει με

Διαβάστε περισσότερα

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις Γεωμετρία Β Λυκείου Κεφάλαιο 9 Γεωμετρία Βˊ Λυκείου Κεφάλαιο 9 ο Μετρικές Σχέσεις ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Μετρικές σχέσεις ονομάζουμε τις σχέσεις μεταξύ των μέτρων των στοιχείων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ ΑΝΑΛΟΓΙΕΣ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ Βασικά θεωρήματα Αν τρεις τουλάχιστον παράλληλες ευθείες τέμνουν δύο άλλες ευθείες, ορίζουν σε αυτές τμήματα ανάλογα. (αντίστροφο Θεωρήματος Θαλή) Θεωρούμε δύο ευθείες δ και

Διαβάστε περισσότερα

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε

Διαβάστε περισσότερα

ΤΟ ΓΕΝΙΚΟ ΝΟΜΙΚΟ ΠΛΑΙΣΙΟ ΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΟ ΓΥΜΝΑΣΙΟ

ΤΟ ΓΕΝΙΚΟ ΝΟΜΙΚΟ ΠΛΑΙΣΙΟ ΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΟ ΓΥΜΝΑΣΙΟ ΤΟ ΓΕΝΙΚΟ ΝΟΜΙΚΟ ΠΛΑΙΣΙΟ ΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΟ ΓΥΜΝΑΣΙΟ ΓΥΜΝΑΣΙΟ Π.Δ 409 του 1994 Για τις προαγωγικές εξετάσεις Μαΐου Ιουνίου ισχύει το Π.Δ. 508/77 και η Εγκύκλιος ΥΠΕΠΘ Γ2/2764/6-5-96) (ΕΙΔΙΚΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ)

Διαβάστε περισσότερα

Επαναληπτικές ασκήσεις Β κοινού κορμού 2011-2012. 1. Να βρείτε το χ ώστε οι αριθμοί χ+14, 2χ+2, -4 να είναι διαδοχικοί όροι Α.Π.

Επαναληπτικές ασκήσεις Β κοινού κορμού 2011-2012. 1. Να βρείτε το χ ώστε οι αριθμοί χ+14, 2χ+2, -4 να είναι διαδοχικοί όροι Α.Π. Επαναληπτικές ασκήσεις Β κοινού κορμού 2011-2012 Πρόοδοι 1. Να βρείτε το χ ώστε οι αριθμοί χ+14, 2χ+2, -4 να είναι διαδοχικοί όροι Α.Π. 2. Να σχηματίσετε την Α.Π. που έχει α 8 =30 και α 12 =46 3. Σε Α.Π.

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

(Μονάδες 15) (Μονάδες 12)

(Μονάδες 15) (Μονάδες 12) ΑΛΓΕΒΡΑ Β Λυκε ί ου τ ράε ζ αθε μάτ ων( 1ηέ κδοση) θέ μαδε ύτ ε ροκαιτ έ τ αρτ ο Κόμβ οςατ σι οούλου01415 δης Ει μέ λε ι α:εμμανουήλκ.σκαλί Αντ ώνηςκ.αοστ όλου Άσκηση 1 α) Να κατασκευάσετε ένα γραμμικό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Σχολικό έτος: 014-015 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων από το Ι.Ε.Π. Γ ε ν ι κ ή Ε π ι μ έ λ ε ι

Διαβάστε περισσότερα

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» ΕΩΜΕΤΡΙΑ Β ΥΚΕΙΟΥ Κεφάλαιο 9ο: ΜΕΤΡΙΚΕ ΧΕΕΙ Ερωτήσεις του τύπου «ωστό-άθος» Να χαρακτηρίσετε με (σωστό) ή (λάθος) τις παρακάτω προτάσεις. 1. * Αν σε τρίγωνο ΑΒ ισχύει ΑΒ = Α + Β, τότε το τρίγωνο είναι:

Διαβάστε περισσότερα

1. ** Να βρεθεί το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεµιά από τις παρακάτω συναρτήσεις: , x [0, 2π] εφx -1

1. ** Να βρεθεί το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεµιά από τις παρακάτω συναρτήσεις: , x [0, 2π] εφx -1 Ερωτήσεις ανάπτυξης. ** Να βρεθεί το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεµιά από τις παρακάτω συναρτήσεις: α) f () = ( -) 4 - + β) f () = - - + 3 4 - - γ) f () = δ) f () = - + - - 5-3

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΙΕΑΣ, ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΙΕΑΣ, ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦ 1 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΙΕΑΣ, ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦ. Δ/ΝΣΗ Α/ΘΜΙΑΣ & Β/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΝΟΤΙΟΥ ΑΙΓΑΙΟΥ Δ/ΝΣΗ Β/ΘΜΙΑΣ ΕΚΠΑ/ΣΗΣ ΔΩΔ/ΣΟΥ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ: ΜΑΙΟΥ-ΙΟΥΝΙΟΥ

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα