τα βιβλία των επιτυχιών
|
|
- Γοργοφόνη Δαγκλής
- 5 χρόνια πριν
- Προβολές:
Transcript
1 Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από τη διαρκή τους αξιοποίηση στις τάξεις μας διασφαλίζουμε τον εμπλουτισμό τους, τη συνεχή τους βελτίωση και την επιστημονική τους αρτιότητα, καθιστώντας τα βιβλία των Εκδόσεών μας εγγύηση για την επιτυχία των μαθητών. τα βιβλία των επιτυχιών
2 Κώστας Λεμάνης Μαρία Λαφαζάνογλου Μαθηματικά Β Γυμνασίου
3 Σ αυτούς που μας εμπνέουν, στους μαθητές και τις μαθήτριές μας ΠΡΟΛΟΓΟΣ Το βιβλίο αυτό έχεις ως κύριο στόχο να βοηθήσει τους μαθητές να κατανοήσουν την ύλη και να εμπεδώσουν τις έννοιες των Μαθηματικών. Επίσης, φιλοδοξεί να αποτελέσει ένα χρήσιμο βοήθημα για τον συνάδελφο καθηγητή στην επεξεργασία και στη μετάδοση της διδακτέας ύλης. Το βιβλίο ακολουθεί τη δομή του σχολικού εγχειριδίου και αποτελείται από εννέα κεφάλαια καλύπτοντας έτσι μεθοδικά την ύλη της Άλγεβρας (κεφ. 1-5) και της Γεωμετρίας (κεφ. 6-9). Το κάθε κεφάλαιο έχει χωριστεί σε επιμέρους ενότητες, οι οποίες περιλαμβάνουν την αντίστοιχη θεωρία σε σύντομες υποενότητες, με σαφείς και λιτούς ορισμούς, ευκρινή σχήματα και σημειώσεις, όπου απαιτείται επικέντρωση της προσοχής του μαθητή, και πλήθος από παραδείγματα και εφαρμογές κλιμακωτής δυσκολίας με τις λύσεις τους. Στο τέλος κάθε ενότητας υπάρχουν: Ερωτήσεις κατανόησης της ύλης που έχει προηγηθεί. Ασκήσεις διαβαθμισμένης δυσκολίας που στοχεύουν στη βελτίωση του επιπέδου αντίληψης και δεξιότητας στη λύση προβλημάτων.
4 Στο τέλος κάθε κεφαλαίου υπάρχουν: Ασκήσεις επανάληψης, όπου ανακεφαλαιώνουν ό,τι έχει ήδη κατακτηθεί. Math test, τα οποία έχουν τη δομή των θεμάτων των απολυτήριων εξετάσεων και δίνουν τη δυνατότητα στον μαθητή να ελέγξει τις γνώσεις του. Επιπλέον, στο τέλος του βιβλίου έχουν ενσωματωθεί: Επανάληψη σε όλη την ύλη και θέματα προαγωγικών εξετάσεων. Χρήσιμοι πίνακες: α. των τριγωνομετρικών αριθμών, β. των βασικών σχημάτων με τους τύπους των περιµέτρων-µηκών (L), των εμβαδών (Ε) και των όγκων (V) τους. Οι απαντήσεις των ερωτήσεων κατανόησης και οι λύσεις των ασκήσεων του βιβλίου αυτού, καθώς και του σχολικού βιβλίου. Ευχαριστούμε θερμά τη Μαλβίνα, τη Χαρά και τον Απόστολο για την πολύτιμη βοήθειά τους στην ολοκλήρωση αυτού του βιβλίου. Οι συγγραφείς
5 Περιεχόμενα AΛΓΕΒΡΑ 1.1 Ρητοί αριθμοί Πράξεις ρητών αριθμών Δυνάμεις ρητών αριθμών με εκθέτη φυσικό αριθμό Δυνάμεις ρητών αριθμών με εκθέτη ακέραιο αριθμό Τυποποιημένη μορφή μικρών και μεγάλων αριθμών ου ΚΕΦΑΛΑΙΟΥ Math test Η έννοια της μεταβλήτης αλγεβρικές παράστασεις Εξισώσεις α βαθμού Επίλυση τύπων Επίλυση προβλημάτων με τη χρήση εξισώσεων Ανισώσεις α βαθμού ου ΚΕΦΑΛΑΙΟΥ Math test Τετραγωνική ρίζα θετικού αριθμού Άρρητοι αριθμοί Πραγματικοί αριθμοί Προβλήματα με άρρητους αριθμούς ου ΚΕΦΑΛΑΙΟΥ Math test Η έννοια της συνάρτησης Καρτεσιανές συντεταγμένες- Γραφική παράσταση συνάρτησης Η συνάρτηση y = αx Η συνάρτηση y = αx + β Η συνάρτηση y = α x Η υπερβολή ου ΚΕΦΑΛΑΙΟΥ Math test Βασικές έννοιες της στατιστικής: Πληθυσμός Δείγμα Γραφικές παραστάσεις Κατανομή συχνοτήτων και σχετικών συχνοτήτων Ομαδοποίηση παρατηρήσεων Μέση τιμή - Διάμεσος ου ΚΕΦΑΛΑΙΟΥ... 5 Math test... 55
6 ΓΕΩΜΕΤΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑ 6.1 Εμβαδόν επίπεδης επιφάνειας Μονάδες μετρησης επιφανειών Εμβαδά επίπεδων σχημάτων Πυθαγόρειο Θεώρημα ου ΚΕΦΑΛΑΙΟΥ Math test Εφαπτομένη οξείας γωνίας Ημίτονο και συνημίτονο οξείας γωνίας Μεταβολές ημιτόνου, συνημιτόνου και εφαπτομένης Oι τριγωνομετρικοί αριθμοί των γωνιών 30, 45 και ου ΚΕΦΑΛΑΙΟΥ Math test Εγγεγραμμένες γωνίες Κανονικά πολύγωνα Μήκος κύκλου Μήκος τόξου Εμβαδόν κυκλικού δίσκου Εμβαδόν κυκλικού τομέα ου ΚΕΦΑΛΑΙΟΥ Math test Ευθείες και επίπεδα στον χώρο Στοιχεία και εμβαδόν πρίσματος και κυλίνδρου Ογκος πρίσματος και κυλίνδρου Η πυραμίδα και τα στοιχεία της Ο κώνος και τα στοιχεία του Η σφαίρα και τα στοιχεία της ου ΚΕΦΑΛΑΙΟΥ Math test ΕΠΑΝΑΛΗΨΗ ΣΕ ΟΛΗ ΤΗΝ ΥΛΗ Ασκήσεις Θέματα προαγωγικών εξετάσεων Πίνακες τριγωνομετρικών αριθμών Πίνακας γεωμετρικών σχημάτων με τους τύπους των περιμέτρων (L) και των εμβαδών τους (Ε) Πίνακας των βασικών στερεών με τους τύπους των εμβαδών (Ε) και των όγκων τους (V) ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ ΤΟΥ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ
7
8 Οι ρητοί αριθμοί
9 Κεφάλαιο Οι ρητοί αριθμοί Α. Θετικοί και αρνητικοί αριθμοί 1.1 ρητοί αριθμοί Σύμφωνα με τον Παγκόσμιο Μετεωρολογικό Οργανισμό, η πιο υψηλή θερμοκρασία που έχει καταγραφεί στον πλανήτη είναι 56,7 βαθμοί Κελσίου (καλοκαίρι 1913, Κοιλάδα του Θανάτου, στην Καλιφόρνια) και η χαμηλότερη είναι 89, βαθμοί Κελσίου (1 Ιουλίου 1983, Λίμνη Βοστόκ στην Ανταρκτική). Παρατηρούμε ότι για τη χαμηλή θερμοκρασία χρησιμοποιήσαμε το σύμβολο. ΠΡΟΣΗΜΟ Πρόσημα λέγονται τα σύμβολα «+» (συν) και (πλην). ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ Θετικοί λέγονται οι αριθμοί που έχουν μπροστά τους το πρόσημο «+» ή δεν έχουν πρόσημο. Αρνητικοί λέγονται οι αριθμοί που έχουν μπροστά τους το πρόσημο. Το μηδέν δεν έχει πρόσημο, δηλαδή δεν είναι ούτε θετικός ούτε αρνητικός αριθμός. ΟΜΟΣΗΜΟΙ ΕΤΕΡΟΣΗΜΟΙ ΑΡΙΘΜΟΙ Ομόσημοι λέγονται οι αριθμοί που έχουν το ίδιο πρόσημο. Ετερόσημοι λέγονται οι αριθμοί που έχουν διαφορετικό πρόσημο. Παραδείγματα 1. Να βρείτε ποιοι από τους αριθμούς 5, 4 6 5, 7, 0, +8, 3, 7, 4, είναι α. θετικοί και β. αρνητικοί. α. Θετικοί είναι οι αριθμοί 5 4, +8, 3, 7. β. Αρνητικοί είναι οι αριθμοί 5, 6 7, 4,.. Να βρείτε ποιοι από τους αριθμούς 1, 4, 6, 9, 11, 7 είναι: α. Ομόσημοι του 5 β. Ομόσημοι του 7 γ. Ετερόσημοι του δ. Ετερόσημοι του 3 13
10 Μαθηματικά Β Γυμνασίου α. Ομόσημοι του 5 είναι οι αριθμοί 4, +6, 7. β. Ομόσημοι του 7 είναι οι αριθμοί 1, 9, 11. γ. Ετερόσημοι του είναι οι αριθμοί 1, 9, 11. δ. Ετερόσημοι του 3 είναι οι αριθμοί 4, +6, 7. Β. Φυσικοί, ακέραιοι και ρητοί αριθμοί ΟΡΙΣΜΟΙ Φυσικοί αριθμοί είναι οι: 0, 1,, 3, 4, 5, 6, 7,... Ακέραιοι αριθμοί είναι οι φυσικοί αριθμοί με τους αντίστοιχους αρνητικούς αριθμούς:..., 3,, 1, 0, 1,, 3, 4,... Ρητοί αριθμοί λέγονται οι αριθμοί που μπορούν να γραφούν στη μορφή μ ν όπου μ, ν είναι ακέραιοι και ν 0. Οι φυσικοί, τα κλάσματα και οι δεκαδικοί (εκτός από εκείνους που έχουν άπειρα δεκαδικά ψηφία και δεν είναι περιοδικοί) με τους αντίστοιχους αρνητικούς αριθμούς είναι ρητοί. Παράσταση των ρητών αριθμών σε σημεία μιας ευθείας: Αν θεωρήσουμε αριστερά από την αρχή Ο του ημιάξονα Ox των αριθμών, τον αντικείμενό του ημιάξονα Ox, μπορούμε να παραστήσουμε τους αρνητικούς αριθμούς σε συμμετρικά σημεία, ως προς Ο, των αντίστοιχων σημείων που παριστάνουν τους θετικούς αριθμούς. Με τον ίδιο τρόπο μπορούμε να βρούμε σημεία που να παριστάνουν κλασματικούς ή δεκαδικούς αριθμούς. x 3 Αρνητικοί 1 0 1,5 Ο 3 1 Θετικοί 3 Τετμημένη σημείου Η θέση ενός σημείου πάνω σε μια ευθεία ορίζεται με έναν αριθμό που ονομάζεται τετμημένη του σημείου. Παράδειγμα Να βρείτε ποιοι από τους αριθμούς 6 5, 3,14, 1, 0,, 0,3, 10 είναι: 11 α. φυσικοί β. ακέραιοι γ. ρητοί α. Φυσικοί είναι οι αριθμοί 1, 0. β. Ακέραιοι είναι οι αριθμοί 1, 0, 10. γ. Ρητοί είναι όλοι οι αριθμοί που δίνονται. x 14
11 Κεφάλαιο 1 Οι ρητοί αριθμοί Γ. Η απόλυτη τιμή των ρητών αριθμών ΟΡΙΣΜΟΣ Η απόλυτη τιμή ενός ρητού αριθμού εκφράζει την απόσταση του σημείου με τετμημένη α από την αρχή Ο του άξονα και συμβολίζεται με α. Η απόλυτη τιμή ενός ρητού αριθμού α δεν είναι ποτέ αρνητικός αριθμός, δηλαδή α 0. Παράδειγμα 3 Α Ο Β x x Το σημείο Α, με τετμημένη, απέχει μονάδες από την αρχή Ο, δηλαδή =. Το σημείο Β, με τετμημένη 3, απέχει 3 μονάδες από την αρχή Ο, δηλαδή 3 = 3. Δ. Ο αντίθετος ενός ρητού αριθμού ΟΡΙΣΜΟΣ Αντίθετοι ονομάζονται δύο αριθμοί που είναι ετερόσημοι και έχουν ίδια απόλυτη τιμή. Ο αντίθετος του αριθμού α είναι ο α. Η απόλυτη τιμή ενός θετικού αριθμού είναι ο ίδιος ο αριθμός. Η απόλυτη τιμή ενός αρνητικού αριθμού είναι ο αντίθετός του. Η απόλυτη τιμή του μηδενός είναι 0. Παραδείγματα 1. Να βρείτε τους αντίθετους των αριθμών: α. +5 β. 1 γ. 3 7 δ. 4,7 α. Ο αντίθετος του +5 είναι ο (+5) = 5. β. Ο αντίθετος του 1 είναι ο ( 1) = 1. γ. Ο αντίθετος του είναι ο 7. δ. Ο αντίθετος του 4,7 είναι ο ( 4,7) = 4,7.. Να βρείτε τις παρακάτω απόλυτες τιμές: α. +7 β. 9 γ. 13 δ. 0 15
12 Μαθηματικά Β Γυμνασίου α. +7 = 7 β. 9 = ( 9) = 9 γ. 13 = 13 δ. 0 = 0 3. Να υπολογίσετε την τιμή των παρακάτω αριθμών: α. +6 β. 5 γ. 5 α. +6 = 6, άρα +6 = 6 β. 5 = 5, άρα 5 = 5 γ. 5 = 5, άρα 5 = 5 4. Να βρείτε τους αριθμούς που έχουν απόλυτη τιμή 4. Γνωρίζουμε ότι οι αντίθετοι αριθμοί έχουν ίδια απόλυτη τιμή, δηλαδή 4 = 4 = 4. Άρα οι ζητούμενοι αριθμοί είναι ο 4 και ο 4. Ε. Σύγκριση ρητών αριθμών Γενικά Ο μεγαλύτερος από δύο ρητούς αριθμούς είναι εκείνος που βρίσκεται δεξιότερα από τον άλλο πάνω στον άξονα. x x Κάθε θετικός αριθμός είναι μεγαλύτερος από κάθε αρνητικό. Με το μηδέν Ένας θετικός αριθμός είναι μεγαλύτερος από το μηδέν, δηλαδή, αν α θετικός, τότε α > 0. Ένας αρνητικός αριθμός είναι μικρότερος από το μηδέν, δηλαδή, αν α αρνητικός, τότε α < 0. Μεταξύ δύο θετικών αριθμών Ο μεγαλύτερος από δύο θετικούς αριθμούς είναι εκείνος που έχει τη μεγαλύτερη απόλυτη τιμή. Μεταξύ δύο αρνητικών αριθμών Ο μεγαλύτερος από δύο αρνητικούς αριθμούς είναι εκείνος που έχει τη μικρότερη απόλυτη τιμή. Παραδείγματα 1. Να συγκρίνετε τους παρακάτω αριθμούς: α. +5 και 7 β. 3 και 0 γ. 9 και 0 δ. +1 και 1 ε. και 4 16
13 Κεφάλαιο 1 Οι ρητοί αριθμοί α. +5 > 7, γιατί ο +5 είναι θετικός και ο 7 αρνητικός. β. 3 > 0, γιατί ο 3 είναι θετικός. γ. 9 < 0, γιατί ο 9 είναι αρνητικός. δ. +1 < 1, γιατί οι +1 και 1 είναι θετικοί με +1 = 1, 1 = 1 και 1 < 1. ε. > 4, γιατί οι και 4 είναι αρνητικοί με =, 4 = 4 και < 4.. Να γράψεις τους αριθμούς 10, 15, +, 3, 0, 10, 16 σε: α. αύξουσα σειρά (δηλαδή από τον μικρότερο στον μεγαλύτερο), β. φθίνουσα σειρά (δηλαδή από τον μεγαλύτερο στον μικρότερο). α. 16 < 10 < 3 < 0 < + < 10 < 15 β. 15 > 10 > + > 0 > 3 > 10 > Να συμπληρώσεις με το κατάλληλο σύμβολο <, >, = τα κενά: α (+6) β γ (+8) δ ( 10) ε στ ζ η θ.... ι α. (+6) = 6 και +4 > 6, άρα +4 > (+6) β. 6 = 6 και 3 < 6, άρα 3 < 6 γ. (+8) = 8 και 8 = 8, άρα 8 = (+8) δ. ( 10) = 10 και 10 < 10, άρα 10 < ( 10) ε. 0 = 0 = 0, άρα 0 = 0 στ. +11 = 11 και 13 > 11, άρα 13 > +11 ζ. 1 = 1 και 1 > 1, άρα 1 > 1 η. 14 = 14 και 3 < 14, άρα 3 < 14 θ. =, = και >, άρα > ι. 6 = 6 και 6 < 0, άρα 6 < 0 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ 1. Να χαρακτηρίσετε ως Σωστή (Σ) ή Λανθασμένη (Λ) καθεμία από τις παρακάτω προτάσεις: α. Ομόσημοι λέγονται οι αριθμοί που έχουν θετικό πρόσημο. β. Κάθε ακέραιος αριθμός είναι ρητός. γ. Οι ρητοί αριθμοί χωρίζονται σε αρνητικούς και σε θετικούς αριθμούς. δ. Οι ακέραιοι αριθμοί είναι ρητοί. ε. Τετμημένη ενός σημείου ονομάζουμε τον αριθμό που καθορίζει τη θέση του πάνω στην ευθεία των ρητών αριθμών. 17
14 Μαθηματικά Β Γυμνασίου στ. Τη σχέση < x 3 την επαληθεύουν πέντε ακέραιοι αριθμοί. ζ. Τη σχέση 0 x την επαληθεύουν τρεις ρητοί αριθμοί. η. Η απόλυτη τιμή κάθε αριθμού είναι θετικός αριθμός. θ. Από τη σχέση α = β συμπεραίνουμε ότι α = β. ι. Αντίθετοι λέγονται δύο αριθμοί που έχουν αντίθετες απόλυτες τιμές. ια. Από τη σχέση α < β συμπεραίνουμε ότι α < β. ιβ. Ο αντίθετος του αριθμού α συμβολίζεται με α και είναι αρνητικός αριθμός.. α. Να αντιστοιχίσετε σε καθένα από τα σημεία Α, Β, Γ, Δ, Ε, Ζ, Η, Θ και Ι του άξονα (Στήλη Α), έναν από τους αριθμούς του πίνακα (Στήλη Β): Στήλη Α Δ Ε Α Ζ Ο Β Ι Γ Η Θ x Στήλη Β α. β. γ. δ. ε. στ. ζ. η. θ. 3 3, , ,8 3,6 Α. Β. Γ. Δ. Ε. Ζ. Η. Θ. Ι. β. Από τα παραπάνω σημεία να προσδιορίσετε τα ζεύγη που είναι συμμετρικά ως προς την αρχή του άξονα. 3. Να συμπληρώσετε τα παρακάτω κενά, έτσι ώστε να προκύψουν αληθείς προτάσεις: α. Απόλυτη τιμή ενός αριθμού ονομάζουμε την... του σημείου, που καθορίζει ο αριθμός πάνω στον άξονα, από την... του άξονα. β. Αντίθετους ονομάζουμε δύο αριθμούς που είναι... και έχουν την... απόλυτη τιμή. x γ. Δύο αριθμοί που είναι... ή... έχουν την ίδια απόλυτη τιμή. δ. Όταν για τους αριθμούς α και β ισχύει η σχέση α < β < 0, τότε για τις απόλυτες τιμές των α και β ισχύει η σχέση α... β. ε. Αν ο θ είναι ένας θετικός αριθμός, τότε από την ισότητα x = θ προκύπτει ότι x =... ή x = Να συμπληρώσετε τον πίνακα: α 1 1,75 0,01 α,55 1,75 0,101 α 1,75 α 1,75 5. Να συμπληρώσετε τα παρακάτω κενά, έτσι ώστε να προκύψουν αληθείς προτάσεις: α. Ο αντίθετος του αριθμού 1 11 είναι ο αριθμός... και η απόλυτη τιμή του είναι ο αριθμός.... β. Ο αντίθετος του αριθμού 1 11 είναι ο αριθμός... και η απόλυτη τιμή του είναι ο αριθμός.... γ. Όταν η απόλυτη τιμή ενός αριθμού α είναι ο αριθμός , τότε ο αριθμός α είναι ο... ή ο.... δ. Από την ισότητα α = 0, προκύπτει ότι α =... ή α = Με τα στοιχεία που είναι σημειωμένα στον παρακάτω άξονα να χαρακτηρίσετε ως Σωστή (Σ) ή Λανθασμένη (Λ) καθεμία από τις προτάσεις που ακολουθούν: x Γ Κ Β Θ Α Ο Δ Λ Ε Μ Ζ Η α. Τα σημεία Λ και Κ έχουν ετερόσημες τετμημένες. β. Τα σημεία Λ και Θ έχουν αντίθετες τετμημένες. x 18
15 Κεφάλαιο 1 Οι ρητοί αριθμοί γ. Τα σημεία Β και Γ έχουν ομόσημες τετμημένες. δ. Οι αριθμοί που αντιστοιχούν στα σημεία Α και Δ είναι αντίθετοι. ε. Οι αριθμοί που αντιστοιχούν στα σημεία Κ και Μ έχουν την ίδια απόλυτη τιμή. στ. Ο αριθμός που αντιστοιχεί στο Β είναι μεγαλύτερος από αυτόν που αντιστοιχεί στο Γ. ζ. Ο αριθμός που αντιστοιχεί στο Κ είναι μεγαλύτερος από αυτόν που αντιστοιχεί στο Θ. η. Ο αριθμός που αντιστοιχεί στο Δ είναι μεγαλύτερος από αυτόν που αντιστοιχεί στο Α. θ. Το άθροισμα των αριθμών που αντιστοιχούν στα σημεία Β και Δ είναι αρνητικός αριθμός. ι. Το άθροισμα των αριθμών που αντιστοιχούν στα σημεία Κ και Θ είναι αρνητικός αριθμός. ια. Το άθροισμα των αριθμών που αντιστοιχούν στα σημεία Β, Α και Ζ είναι αρνητικός αριθμός. ιβ. Το άθροισμα των αριθμών που αντιστοιχούν στα σημεία Γ, Β και Η είναι αρνητικός αριθμός. ΑΣΚΗΣΕΙΣ 7. Στο σχήμα που ακολουθεί έχουμε τέσσερις ευθείες, πάνω στις οποίες έχουμε αντιστοιχίσει ρητούς αριθμούς. Σε ποιες από αυτές, η αντιστοίχιση μας οδηγεί στη δημιουργία άξονα; α. β. γ. δ α. Να σημειώσετε στον άξονα x Ox τα σημεία Α, Β, Γ, Δ, Ε, Ζ, Η, Θ και Ι, με τετμημένες: 5, , 3,5, 0,6, 5, 5, 4, 1,8 και Ο x x β. Αν συμβολίσουμε με το γράμμα d, γενικά, την απόσταση ενός οποιουδήποτε από τα παραπάνω σημεία, από την αρχή Ο του άξονα και με το γράμμα x, γενικά, έναν από τους παραπάνω αριθμούς, τότε να συμπληρώσετε τον παρακάτω πίνακα: x 5 9 3,5 0, ,8 5 d 8 5 x x 7 4 x Σε καθεμία από τις παρακάτω περιπτώσεις να βρείτε τους αριθμούς που έχουν απόλυτη τιμή: α. 1 β γ. 13,5 δ. 0 ε. 5,05 19
16 Μαθηματικά Β Γυμνασίου 10. Στον άξονα του σχήματος να επιλέξετε μονάδα και να σημειώσετε τα σημεία με τετμημένες 30, 35, 4, 6, 8, 8, 40 και 35. x Ο 11. Να συγκρίνετε τους δύο αριθμούς και τις απόλυτες τιμές τους, σε καθεμία από τις παρακάτω περιπτώσεις: α. 1,5 και β. 8 και 1 γ και 9 δ. 4 και 5 ε και 3 1. α. Σε καθεμία από τις παρακάτω περιπτώσεις να βρείτε όλες τις τιμές που μπορεί να πάρει ο ακέραιος αριθμός x. i. 1 < x 5 ii. 7 < x < 3 iii. 4 x 1 iv. 0,75 x 0,999 v. 017 x 019 β. Υπάρχουν ακέραιοι αριθμοί για τους οποίους ισχύουν και η σχέση ii. και η σχέση iii.; γ. Υπάρχουν ακέραιοι αριθμοί για τους οποίους ισχύουν και η σχέση iii. και η σχέση iv.; x 13. Να βρείτε για ποιους ρητούς αριθμούς ισχύει καθεμία από τις παρακάτω σχέσεις: α. x x = 0 β. x + x = 0 γ. x 0 δ. x > 0 ε. x = x 14. α. Να συμπληρώσετε τον παρακάτω πίνακα: Αριθμός 1 5 Αντίθετος του 4 3 αριθμού Απόλυτη τιμή 1 του αριθμού Απόλυτη τιμή 3,5 του αντίθετου β. Ποια σχέση έχουν οι απόλυτες τιμές δύο αντίθετων αριθμών; 15. Να υπολογίσετε την τιμή καθεμίας από τις παρακάτω παραστάσεις: Α = πλήθος όρων: 100 Β = πλήθος όρων: 50 Γ = πλήθος όρων: 51 Δ = πλήθος όρων: 999 πλήθος όρων:
MAΘΗΜΑΤΙΚΑ. κριτήρια αξιολόγησης B ΓΥΜΝΑΣΙΟΥ. Πέτρος Μάρκος
B ΓΥΜΝΑΣΙΟΥ Πέτρος Μάρκος κριτήρια αξιολόγησης MAΘΗΜΑΤΙΚΑ Διαγωνίσματα σε κάθε μάθημα και επαναληπτικά σε κάθε κεφάλαιο Διαγωνίσματα σε όλη την ύλη για τις τελικές εξετάσεις Αναλυτικές απαντήσεις σε όλα
Διαβάστε περισσότεραΑ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη
Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΣΥΝΤΕΛΕΣΤΕΣ Συγγραφική Ομάδα Βλάμος Παναγιώτης Δρούτσας Παναγιώτης Πρέσβης Γεώργιος Ρεκούμης Κωνσταντίνος Φιλολογική Επιμέλεια Βελάγκου Ευγενία Σκίτσα Βρανάς Θεοδόσης Υπεύθυνος Παιδαγωγικού
Διαβάστε περισσότεραΜαθηματικά Α Τάξης Γυμνασίου
Μαθηματικά Α Τάξης Γυμνασίου Διδακτικό Έτος 2018-2019 Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου. Κεφ. 1 ο :
Διαβάστε περισσότεραμαθηματικά β γυμνασίου
μαθηματικά β γυμνασίου Κάθε αντίτυπο φέρει την υπογραφή ενός εκ των συγγραφέων Σειρά: Γυμνάσιο, Θετικές Επιστήμες Μαθηματικά Β Γυμνασίου, Βασίλης Διολίτσης Ιωάννα Κοσκινά Νικολέττα Μπάκου Θεώρηση Κειμένου:
Διαβάστε περισσότεραΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8
ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότεραΠρόλογος. Κ. Τζιρώνης Θ. Τζουβάρας Μαθηματικοί
Πρόλογος Το βιβλίο αυτό περιέχει όλη την ύλη των Μαθηματικών της Β Γυμνασίου, χωρισμένη σε ενότητες, όπως ακριβώς στο σχολικό βιβλίο. Κάθε ενότητα περιλαμβάνει: Τη θεωρία Λυμένες ασκήσεις Χρήσιμες παρατηρήσεις
Διαβάστε περισσότεραΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα
ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ 1 ο δείγμα Α. Θεωρία Α) Πότε ένα πολύγωνο λέγεται κανονικό; Β) Να δώσετε τον ορισμό της εγγεγραμμένης γωνίας σε κύκλο (Ο, ρ). (Να γίνει σχήμα) Γ) Ποια
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ
ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό σας. ΚΕΦΑΛΑΙΟ 1 1. Να συμπληρώσετε
Διαβάστε περισσότεραΜέρος Α' - Κεφάλαιο 7ο - Θετικοί και Αρνητικοί Αριθμοί Α.7.1. Θετικοί και Αρνητικοί Αριθμοί (Ρητοί αριθμοί) - H ευθεία των ρητών - Τετμημένη σημείου
Μαθηματικά Α Γυμνασίου Μέρος Α - Κεφάλαιο 7, Α. 7.1 Μέρος Α' - Κεφάλαιο 7ο - Θετικοί και Αρνητικοί Αριθμοί Α.7.1. Θετικοί και Αρνητικοί Αριθμοί (Ρητοί αριθμοί) - H ευθεία των ρητών - Τετμημένη σημείου
Διαβάστε περισσότεραΠρόλογος. Κ. Τζιρώνης Θ. Τζουβάρας Μαθηματικοί
Πρόλογος Το βιβλίο αυτό περιέχει όλη την ύλη των Μαθηματικών της Β Γυμνασίου, χωρισμένη σε ενότητες, όπως ακριβώς στο σχολικό βιβλίο. Κάθε ενότητα περιλαμβάνει: Τη θεωρία Λυμένες ασκήσεις Χρήσιμες παρατηρήσεις
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ
1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..
Διαβάστε περισσότεραΚεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί
ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΙΚΩΝ ΕΝΝΟΙΙΩΝ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Α ΤΑΞΗΣ Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί Α. 7. 1 1. Τι είναι τα πρόσημα και πως χαρακτηρίζονται οι αριθμοί από αυτά; Τα σύμβολα
Διαβάστε περισσότεραΙωάννης Σ. Μιχέλης Μαθηματικός
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται αριθμητική και τι αλγεβρική παράσταση; Μία παράσταση, που περιέχει πράξεις με αριθμούς ονομάζεται αριθμητική παράσταση. Μία παράσταση, που περιέχει πράξεις
Διαβάστε περισσότεραΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ 0 ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ α α (ii)
ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ 1-13 1 Ποιοι αριθμοί ονομάζονται ομόσημοι και ποιοι ετερόσημοι; 1 Δίνονται οι αριθμοί: 1,,.1,,, 9, + 3, 3 3.1 Ποιοι από αυτούς είναι θετικοί και ποιοι αρνητικοί;.
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ
ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών
Διαβάστε περισσότεραΑ ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους
Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;
Διαβάστε περισσότεραΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.
ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα
Διαβάστε περισσότεραΜαθηματικά Β Γυμνασίου
ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ Μαθηματικά Β Γυμνασίου Κριτήρια Αξιολόγησης Θέση υπογραφής δικαιούχου δικαιωμάτων πνευματικής ιδιοκτησίας, εφόσον η υπογραφή προβλέπεται από τη σύμβαση. «Το παρόν έργο πνευματικής ιδιοκτησίας
Διαβάστε περισσότερα1 ΘΕΩΡΙΑΣ...με απάντηση
1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.
Διαβάστε περισσότεραΚεφάλαιο 1 o Εξισώσεις - Ανισώσεις
2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση
Διαβάστε περισσότεραEλευθέριος Πρωτοπαπάς ΜΑΘΗΜΑΤΙΚΑ. Β Γυμνασίου
Eλευθέριος Πρωτοπαπάς ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Θέση υπογραφής δικαιούχου δικαιωμάτων πνευματικής ιδιοκτησίας, εφόσον η υπογραφή προβλέπεται από τη σύμβαση. Το παρόν έργο πνευματικής ιδιοκτησίας προστατεύεται
Διαβάστε περισσότεραΒασικές Γνώσεις Μαθηματικών Α - Β Λυκείου
Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε
Διαβάστε περισσότεραΜαθηματικά Β Γυμνασίου
Μαθηματικά Β Γυμνασίου Περιεχόμενα KEΦΑΛΑΙΟ 1 ΕΞΙΣΩΣΕΙΣ... 3 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ... 3 1.2 ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ... 3 1.3 ΕΠΙΛΥΣΗ ΤΥΠΩΝ... 4 1.4 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΜΕ ΤΗΝ ΧΡΗΣΗ
Διαβάστε περισσότεραΦύλλα Αξιολόγησης Β ΓΥΜΝΑΣΙΟΥ
Φύλλα Αξιολόγησης Β ΓΥΜΝΑΣΙΟΥ Χρήστος Π. Μουρατίδης 2014 2015 Πρότυπο Πειραματικό Γυμνάσιο Αγίων Αναργύρων Τάξη Β 2 ΦΥΛΛΟ ΑΞΙΟΛΟΓΗΣΗΣ A ΕΝΟΤΗΤΑ : Πράξεις Ρητών αριθμών 1. Να χαρακτηρίσετε τις παρακάτω
Διαβάστε περισσότεραΒ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη
Β Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 2012. ΜΕΡΟΣ Α Κεφ. 7
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ
2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 7 Ο ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 1. Όταν μπροστα" (αριστερα") απο" ε"ναν αριθμο" γραφει" το συ"μβολο + το"τε ο αριθμο"ς
Διαβάστε περισσότεραΑλγεβρικές Παραστάσεις
Αλγεβρικές Παραστάσεις 1.1 Πράξεις με πραγματικούς αριθμούς (Επαναλήψεις-συμπληρώσεις) 1 1.1 Πράξεις με πραγματικούς αριθμούς (Επαναλήψεις-συμπληρώσεις) Α Οι πραγματικοί αριθμοί και οι πράξεις τους Πραγματικοί
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ
ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ Α.1. 1) Ποιοι φυσικοί αριθμοί λέγονται άρτιοι και ποιοι περιττοί; ( σ. 11 ) 2) Από τι καθορίζεται η αξία ενός ψηφίου σ έναν φυσικό αριθμό; ( σ. 11 ) 3) Τι
Διαβάστε περισσότεραΜαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία
Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου
Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται
Διαβάστε περισσότεραΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ
ΝΙΚΟΣ ΤΑΣΟΣ Αλγ ε β ρ α Β Λυ κ ε ί ο υ Γενικής Παιδειασ Α Τό μ ο ς 3η Εκ δ ο σ η Πρόλογος Το βιβλίο αυτό έχει σκοπό και στόχο αφενός μεν να βοηθήσει τους μαθητές της Β Λυκείου να κατανοήσουν καλύτερα την
Διαβάστε περισσότεραΒ Τάξη Γυμνασίου. Ι. Διδακτέα ύλη
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ.
Διαβάστε περισσότεραΤΑΞΗ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ
ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΜΑΙΟΥ ΙΟΥΝΙΟΥ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ο - Οι φυσικοί αριθµοί 1.1. Φυσικοί αριθµοί - ιάταξη Φυσικών - Στρογγυλοποίηση 1.2. Πρόσθεση, αφαίρεση και πολλαπλασιασµός
Διαβάστε περισσότερα1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο
1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο α) Αν χ 1, χ ρίζες της εξίσωσης αχ +βχ+γ=0, 0 να δείξετε ότι S 1 και P 1 Μον. 10 β) Έστω η συνάρτηση
Διαβάστε περισσότεραΘΕΩΡΙΑ ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: ΘΕΜΑ 1 ο. A. Τι ονομάζουμε τετραγωνική ρίζα θετικού αριθμού α ;
ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: B ΘΕΩΡΙΑ ΘΕΜΑ 1 ο A. Τι ονομάζουμε τετραγωνική ρίζα θετικού αριθμού α ; B. Να αντιγράψετε και να συμπληρώσετε τις παρακάτω σχέσεις: i. Αν α 0,
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΠΕΡΙΦ. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΜΕ ΕΔΡΑ
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1
Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες
Διαβάστε περισσότεραΝα υπολογίζουμε τους τριγωνομετρικούς αριθμούς οξείας γωνίας. Τη γωνία σε κανονική θέση και τους τριγωνομετρικούς αριθμούς γωνίας σε κανονική θέση.
Ενότητα 4 Τριγωνομετρία Στην ενότητα αυτή θα μάθουμε: Να υπολογίζουμε τους τριγωνομετρικούς αριθμούς οξείας γωνίας. Τη γωνία σε κανονική θέση και τους τριγωνομετρικούς αριθμούς γωνίας σε κανονική θέση.
Διαβάστε περισσότεραΒ Γυμνασίου. Θέματα Εξετάσεων
υμνασίου Θέματα Εξετάσεων υμνασίου Θέματα Εξετάσεων υμνασίου Θέματα Εξετάσεων Θέμα 1. α. Ποια ποσά λέγονται ανάλογα και ποια σχέση τα συνδέει; β. Τι γνωρίζετε για τη γραφική παράσταση της συνάρτησης y=αx
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ
ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ 2015-16 ΕΞΕΤΑΣΤΕΑ ΥΛΗ Α ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΥΧΟΣ Α ΕΝΟΤΗΤΑ 1: ΣΥΝΟΛΑ (Σελ. 25 42) Η Έννοια του Συνόλου Σχέσεις Συνόλων Πράξεις Συνόλων ΕΝΟΤΗΤΑ 2: ΑΡΙΘΜΟΙ (Σελ. 46 83)
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β
ΥΜΝΑΣΙΟ - 010 48 Α. Τι λέγεται τετραγωνική ρίζα ενός θετικού αριθμού α και πώς συμβολίζεται αυτή; Β. Ποιος αριθμός ονομάζεται άρρητος;. Πώς ορίζονται οι πραγματικοί αριθμοί; Α. Τι λέγεται ημίτονο μιας
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας:
Διαβάστε περισσότεραΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. 1. Να γράψετε τον τύπο της Ευκλείδειας διαίρεσης. Πώς ονομάζεται κάθε σύμβολο του τύπου;
ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Να γράψετε τον τύπο της Ευκλείδειας διαίρεσης. Πώς ονομάζεται κάθε σύμβολο του τύπου; 2. Τι ξέρετε για το υπόλοιπο που προκύπτει από μια Ευκλείδεια διαίρεση; 3. Τι ονομάζουμε τέλεια
Διαβάστε περισσότεραΜαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.
Διαβάστε περισσότεραΜαθηματικά A Γυμνασίου
Μαθηματικά A Γυμνασίου ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ Μέρος Α - Άλγεβρα 1. Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; (σελ. 15) 2. Πως ορίζεται η πράξη της αφαίρεσης στους φυσικούς και πότε αυτή μπορεί να
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή
Διαβάστε περισσότεραΜέτρηση του όγκου και του εμβαδού ορθών πρισμάτων Κανονική Πυραμίδα 1 Βάσης) (Απόστημα) 2 1 ό Βάσης) (Ύψος) 3
Βασικά σύνολα αριθμών -Σύνολο φυσικών: Ν = {0,., } ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ -Σύνολο ακεραίων: Ζ= { -.-.0.,, } Συμβολίζουμε με ν=κ και τους άρτιους και τους περιττούς αντίστοιχα. * -Σύνολο ρητών: Q =, Z &
Διαβάστε περισσότεραΟδηγίες & Ενδεικτικά θέματα προαγωγικών & απολυτηρίων εξετάσεων Γυμνασίου Σελίδα 1
ΟΔΗΓIEΣ ΓΙΑ ΤΙΣ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΥΜΝΑΣΙΟΥ Α. ΘΕΩΡΙΑ Οι μαθητές υποχρεούνται σε διαπραγμάτευση ενός απλού από δύο τιθέμενα θέματα θεωρίας της διδαγμένης ύλης. Ένα θέμα από την Άλγεβρα και
Διαβάστε περισσότεραΕρωτήσεις επί των ρητών αριθµών
Σελ. 1 Ερωτήσεις επί των ρητών αριθµών 1. Ποια είναι τα πρόσηµα των ακεραίων αριθµών; Ζ={... -3,-2,-1,0,+1,+2,+3,... } 2. Ποιοι αριθµοί λέγονται θετικοί και ποιοι αρνητικοί; Γράψε από έναν. 3. Στον άξονα
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότεραΤράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Σχολικό έτος: 014-015 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων από το Ι.Ε.Π. Γ ε ν ι κ ή Ε π ι μ έ λ ε ι
Διαβάστε περισσότεραΝα επιλύουμε και να διερευνούμε την εξίσωση αx + β = 0, βάση τη γραφική παράσταση της ευθείας y = ax + β.
Ενότητα 1 Εξισώσεις Ανισώσεις α βαθμού Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε την εξίσωση αx + β = 0, με βάση τη γραφική παράσταση της ευθείας y = ax + β. Να επιλύουμε την ανίσωση
Διαβάστε περισσότεραΘέματα ενδοσχολικών εξετάσεων Άλγεβρας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων
Διαβάστε περισσότεραΜ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ
Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής ΕΝΟΤΗΤΑ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν
Διαβάστε περισσότεραΘέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ
Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος 013-014, Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότεραΚάθε αριθμός που δεν είναι ρητός, ονομάζεται άρρητος αριθμός.
ΜΕΡΟΣ Α. ΑΡΡΗΤΟΙ ΑΡΙΘΜΟΙ-ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 69. ΑΡΡΗΤΟΙ ΑΡΙΘΜΟΙ-ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΑΡΡΗΤΟΙ ΑΡΙΘΜΟΙ Κάθε αριθμός που δεν είναι ρητός, ονομάζεται άρρητος αριθμός. Για παράδειγμα ο αριθμός που στην προηγούμενη
Διαβάστε περισσότεραΟρισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0.
ΜΕΡΟΣ Α. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ,α 0 337. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ ME α 0 Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής = α + β + γ με α 0. Η συνάρτηση = α +β+γ με α > 0 Η γραφική παράσταση της συνάρτησης
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x. Να λυθούν οι εξισώσεις: α) 3x x 3 3 5x x β) 4 3 x x x 0
Διαβάστε περισσότεραΠ.χ. Ιδιότητα Πρόσθεση Πολλαπλασιασμός. Αντιμεταθετική α + β = β + α αβ = βα. Προσεταιριστική α + (β + γ) = (α + β) + γ α(βγ) = (αβ)γ
Η θεωρία της Γ Γυμνασίου 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) Α Οι πραγματικοί αριθμοί και οι πράξεις τους Πραγματικοί αριθμοί είναι όλοι οι αριθμοί που γνωρίσαμε στις προηγούμενες
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότεραΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ
ΜΕΡΟΣ Α ο ΚΕΦΑΛΑΙΟ. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών. Ονομάζεται αλγεβρική παράσταση μια παράσταση
Διαβάστε περισσότερα1ο Κεφάλαιο: Συστήματα
ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.
Διαβάστε περισσότεραΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ
ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Β ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων των προαγωγικών εξετάσεων
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου. Μεθοδική Επανάληψη
Μαθηματικά Γ Γυμνασίου Μεθοδική Επανάληψη Στέλιος Μιχαήλογλου www.askisopolis.gr Η επανάληψη των Μαθηματικών βήμα - βήμα Άλγεβρα Κεφάλαιο 1ο: Αλγεβρικές παραστάσεις 1.1. Πράξεις με πραγματικούς αριθμούς
Διαβάστε περισσότεραΝα γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ρητοί και ποιοι άρρητοι;
Φυσικοί, Ακέραιοι, Ρητοί, Άρρητοι, Πραγματικοί, Απόλυτη Τιμή, Ομόσημοι, Ετερόσημοι, Αντίθετοι, Αντίστροφοι. Να γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ακέραιοι;
Διαβάστε περισσότεραÊåöÜëáéï 8 ï. -Áöáßñåóç ñçôþí áñéèìþí
ÊåöÜëáéï 8 ï Ïé ñçôïß áñéèìïß âéâëéïììüèçìá 24: -Ïé èåôéêïß êáé ïé áñíçôéêïß áñéèìïß -ÐáñÜóôáóç ôùí ñçôþí ìå óçìåßá ìéáò åõèåßáò -ÓõíôåôáãìÝíåò óçìåßïõ -Áðüëõôç ôéìþ ñçôïý áñéèìïý -áíôßèåôïé áñéèìïß -Óýãêñéóç
Διαβάστε περισσότεραΕ Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Α Σ.
Μ Ν Σ Υ Κ Σ Ε Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Σ. 1. Να γράψετε τους τύπους του εμβαδού των : (α) τετραγώνου (β) ορθογωνίου παραλληλογράμμου (γ) παραλληλογράμμου (δ) τριγώνου (ε) ορθογωνίου τριγώνου (στ) τραπεζίου.
Διαβάστε περισσότεραΑπό το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46
ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................
Διαβάστε περισσότεραδίου ορισμού, μέσου του τύπου εξαρτημένης μεταβλητής του πεδίου τιμών που λέγεται εικόνα της f για x α f α.
3.1 Η έννοια της συνάρτησης Ορισμοί Συνάρτηση f από ένα συνόλου Α σε ένα σύνολο Β είναι μια αντιστοιχία των στοιχείων του Α στα στοιχεία του Β, κατά την οποία κάθε στοιχείο του Α αντιστοιχεί σε ένα μόνο
Διαβάστε περισσότεραΓ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη
Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Γ Γυμνασίου» των Δημητρίου Αργυράκη, Παναγιώτη Βουργάνα, Κωνσταντίνου Μεντή, Σταματούλας Τσικοπούλου, Μιχαήλ Χρυσοβέργη, έκδοση
Διαβάστε περισσότεραΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ' ΓΥΜΝΑΣΙΟΥ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ ΘΕΩΡΙΑ :
ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ' ΓΥΜΝΑΣΙΟΥ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Θέμα 1 ον ΘΕΩΡΙΑ : α) Τι καλείται αριθμητική παράσταση και τι καλείται αλγεβρική παράσταση ; β) Να συμπληρώσετε
Διαβάστε περισσότεραMAΘΗΜΑΤΙΚΑ. κριτήρια αξιολόγησης. Κωνσταντίνος Ηλιόπουλος A ΓΥΜΝΑΣΙΟΥ
A ΓΥΜΝΑΣΙΟΥ Κωνσταντίνος Ηλιόπουλος κριτήρια αξιολόγησης MAΘΗΜΑΤΙΚΑ Διαγωνίσματα σε κάθε μάθημα και επαναληπτικά σε κάθε κεφάλαιο Διαγωνίσματα σε όλη την ύλη για τις τελικές εξετάσεις Αναλυτικές απαντήσεις
Διαβάστε περισσότεραΙωάννης Σ. Μιχέλης Μαθηματικός
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; Το άθροισμα ενός φυσικού αριθμού με το 0 ισούται με τον ίδιο αριθμό. α+0=α Αντιμεταθετική ιδιότητα. Με βάση την οποία
Διαβάστε περισσότεραςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός
01 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΙΑ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παραπάνω φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια κυρίως στους
Διαβάστε περισσότεραΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ
ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά
Διαβάστε περισσότερα2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Β' Γενικού Λυκείου. Γενικής Παιδείας. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ
ΘΕΜΑ A ΑΛΓΕΒΡΑ Β' Γενικού Λυκείου Γενικής Παιδείας Σάββατο 1 Απριλίου 018 ιάρκεια Εξέτασης: ώρες ΘΕΜΑΤΑ Α1. Στο επόμενο σχήμα βλέπετε τον τριγωνομετρικό κύκλο, τους άξονες ημιτόνων, συνημιτόνων, εφαπτομένων,
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων
Γεώργιος Α. Κόλλιας - μαθηματικός Περιέχονται 50 συνδυαστικές ασκήσεις επανάληψης και θέματα εξετάσεων. Δεν συμπεριλαμβάνεται το κεφάλαιο των πιθανοτήτων, της γεωμετρικής προόδου, της μονοτονίας συνάρτησης,
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότεραΠεριεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14
Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου
ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη
Διαβάστε περισσότεραΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ
ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Β ΓΥΜΝΑΣΙΟΥ Μαθηματικό Περιηγητή 56 ΟΔΗΓΙΕΣ ΓΙΑ ΤΟΥΣ ΜΑΘΗΤΕΣ 1. Τα θέματα και στι 3 τάξει του Γυμνασίου χωρίζονται σε δύο κατηγορίε. Στα θέματα τη θεωρία
Διαβάστε περισσότεραΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ
5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ
Ποιους αριθµούς ονοµάζουµε οµόσηµους και ποιους ετερόσηµους; Ποιους αριθµούς ονοµάζουµε ακέραιους; Ποιους αριθµούς ονοµάζουµε ρητούς; Τι ονοµάζουµε απόλυτη τιµή ενός ρητού αριθµού; Τι παριστάνει η απόλυτη
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Α
ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ Ερώτηση θεωρίας 1 ΘΕΜΑ Α Τι ονομάζουμε πραγματική συνάρτηση
Διαβάστε περισσότερα12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο
ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΑΡΧΙΑ ΠΕΛΛΑΣ ΣΧΟΛΙΚΟ ΕΤΟΣ : ΔΙΕΥΘΥΝΣΗ Δ/ΒΜΙΑΣ ΕΚΠ/ΣΗΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ ΓΥΜΝΑΣΙΟ ΕΞΑΠΛΑΤΑΝΟΥ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΑΡΧΙΑ ΠΕΛΛΑΣ ΣΧΟΛΙΚΟ ΕΤΟΣ : 2008-2009 ΔΙΕΥΘΥΝΣΗ Δ/ΒΜΙΑΣ ΕΚΠ/ΣΗΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ ΓΥΜΝΑΣΙΟ ΕΞΑΠΛΑΤΑΝΟΥ Ονοματεπώνυμο μαθητή/τριας Εξεταζόμενο Μάθημα : ΜΑΘΗΜΑΤΙΚΑ Τάξη : Β
Διαβάστε περισσότεραΓυμνάσιο Μαθηματικά Τάξη B. ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΕΡΟΣ 1ο
113 1 ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΕΡΟΣ 1ο Θέματα εξετάσεων ΤΑΞΗ Β! περιόδου Μαΐου-Ιουνίου στα Μαθηματικά Τάξη B! 114 a. Να διατυπώσετε τον ορισμό της δύναμης α ν με βάση το ρητό α και εκθέτη το φυσικό αριθμό ν >
Διαβάστε περισσότερααριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;
Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε
Διαβάστε περισσότερα11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης;
10. Τι ονομάζουμε Ευκλείδεια διαίρεση και τέλεια διαίρεση; Όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε υπάρχουν δύο άλλοι φυσικοί αριθμοί π και υ, έτσι ώστε να ισχύει: Δ = δ π + υ. Ο αριθμός Δ λέγεται
Διαβάστε περισσότερα