Κεφ. 7 Παραγωγός. Ζ Πξνζθνξά ηεο Δπηρείξεζεο ζε ηειείωο αληαγωληζηηθή αγνξά Μ. ΨΥΛΛΑΚΖ
|
|
- Ονήσιμος Παπάζογλου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Κεφ. 7 Παραγωγός Ζ Πξνζθνξά ηεο Δπηρείξεζεο ζε ηειείωο αληαγωληζηηθή αγνξά 1
2 Η προσυορά της επιτείρησης Πώο απνθαζίδεη κηα επηρείξεζε πόζν πξνϊόλ λα πξνζθέξεη; Aπηή ε απόθαζε εμαξηάηαη από ηελ ηερλνινγία ην πεξηβάιινλ ηεο αγνξάο ηνπο ζηόρνπο ηεο επηρείξεζεο ηε ζπκπεξηθνξά ηωλ αληαγωληζηώλ ηεο 2
3 Περιβάλλον αγοράς Υπάξρνπλ πνιιέο επηρεηξήζεηο ζηελ αγνξά ή κόλν ιίγεο; Οη απνθάζεηο ηωλ άιιωλ επηρεηξήζεωλ επεξεάδνπλ ηελ απόδνζε ηεο δηθήο καο επηρείξεζεο; To εκπόξην γίλεηαη αλώλπκα ζε κηα αγνξά ή γίλεηαη κε μερωξηζηνύο αγνξαζηέο πνπ πξνκεζεύνληαη ην πξνϊόλ από κεζάδνληεο; 3
4 Είδη αγοράς Μνλνπώιην: Υπάξρεη κόλν έλαο πωιεηήο πνπ θαζνξίδεη ηελ πξνζθεξόκελε πνζόηεηα θαη ηελ ηηκή πνπ εθθαζαξίδεη ηελ αγνξά. Οιηγνπώιην: Λίγεο επηρεηξήζεηο, πνπ νη απνθάζεηο θάζε κηαο από απηέο επεξεάδνπλ ηηο απνδόζεηο ηωλ άιιωλ. 4
5 Είδη αγοράς Κπξίαξρε επηρείξεζε: Πνιιέο επηρεηξήζεηο, αιιά κηα πνιύ πην κεγάιε από ηηο άιιεο. Οη απνθάζεηο ηεο κεγάιεο επηρείξεζεο επεξεάδνπλ ηηο απνδόζεηο ηωλ κηθξώλ επηρεηξήζεωλ. Οη απνθάζεηο νπνηαζδήπνηε από ηηο κηθξέο επηρεηξήζεηο δελ κπνξνύλ λα επεξεάζνπλ αηζζεηά ηηο απνδόζεηο θακίαο από ηηο άιιεο επηρεηξήζεηο. 5
6 Είδη αγοράς Μνλνπωιηαθόο Αληαγωληζκόο: Πνιιέο επηρεηξήζεηο ε θάζε κία από ηηο νπνίεο παξάγεη έλα ειαθξώο δηαθνξνπνηεκέλν πξνϊόλ. Τν επίπεδν πξνϊόληνο θάζε επηρείξεζεο είλαη κηθξό ζρεηηθά κε ην ζπλνιηθώο παξαγόκελν. Ακηγήο Αληαγωληζκόο: Πνιιέο επηρεηξήζεηο, πνπ όιεο παξάγνπλ ην ίδην πξνϊόλ. Τν επίπεδν πξνϊόληνο ηεο θάζε επηρείξεζεο είλαη κηθξό ζρεηηθά κε ην ζπλνιηθώο παξαγόκελν. 6
7 Αμιγής ανταγωνισμός Μηα επηρείξεζε ζε κηα ακηγώο αληαγωληζηηθή αγνξά γλωξίδεη όηη δελ επεξεάδεη ηελ ηηκή ηνπ πξνϊόληνο ηεο. Ζ επηρείξεζε είλαη απνδέθηεο ηεο ηηκήο αγνξάο. Ζ επηρείξεζε είλαη ειεύζεξε λα κεηαβάιιεη ηε δηθή ηεο ηηκή. 7
8 Αμιγής ανταγωνισμός Αλ ε επηρείξεζε νξίζεη ηελ ηηκή ηεο πάλω από ηελ ηηκή ηεο αγνξάο ηόηε ε δεηνύκελε πνζόηεηα ηνπ πξνϊόληνο ηεο επηρείξεζεο απηήο ζα είλαη κεδέλ. Αλ ε επηρείξεζε νξίζεη ηελ ηηκή ηεο θάηω από ηελ ηηκή ηεο αγνξάο ηόηε ε δεηνύκελε πνζόηεηα απ απηή ηελ επηρείξεζε ζα ηζνύηαη κε ηελ δεηνύκελε πνζόηεηα νιόθιεξεο ηεο αγνξάο. 8
9 Αμιγής ανταγωνισμός Σπλεπώο πνηα είλαη ε θακπύιε δήηεζεο πνπ αληηκεηωπίδεη ε θάζε κία επηρείξεζε; 9
10 $/κνλάδα πξνϊόληνο Αμιγής ανταγωνισμός Πξνζθνξά αγνξάο p' p e p'' Σηε ηηκή p', ε δεηνύκελε πνζόηεηα από ηελ επηρείξεζε είλαη κεδέλ. Εήηεζε αγνξάο Σηε ηηκή p'' ε επηρείξεζε αληηκεηωπίδεη ηε δήηεζε νιόθιεξεο ηεο αγνξάο. 10 y
11 Αμιγής ανταγωνισμός Σπλεπώο ε θακπύιε δήηεζεο πνπ αληηκεηωπίδεη ε θάζε επηρείξεζε είλαη... 11
12 $/κνλάδα πξνϊόληνο Αμιγής ανταγωνισμός p' p e p'' Πξνζθνξά αγνξάο Σηε ηηκή p', ε δεηνύκελε πνζόηεηα από ηελ επηρείξεζε είλαη κεδέλ. Εήηεζε αγνξάο Σηε ηηκή p'' ε επηρείξεζε αληηκεηωπίδεη ηε δήηεζε νιόθιεξεο ηεο αγνξάο. y 12
13 $/κνλάδα πξνϊόληνο Αμιγής ανταγωνισμός p' p e p'' Εήηεζε αγνξάο y 13
14 Μικρό μέγεθος Τη ζεκαίλεη όηαλ ιέκε όηη κηα επηρείξεζε έρεη «κηθξό κέγεζνο» ζε ζρέζε κε ηνλ θιάδν; 14
15 Μικρό μέγεθος $/κνλάδα πξνϊόληνο p e MC ηεο επηρείξεζεο Κακπύιε δήηεζεο ηεο επηρείξεζεο y Ζ ηερλνινγία ηεο θάζε επηρείξεζεο ηεο επηηξέπεη λα πξνκεζεύεη ηελ αγνξά κόλν κε έλα κηθξό κέξνο ηεο ζπλνιηθήο πνζόηεηαο πνπ δεηείηαη ζηε ηηκή ηεο αγνξάο. 15
16 Η βρατστρόνια απόυαση προσυοράς της επιτείρησης Κάζε επηρείξεζε πξνζπαζεί λα κεγηζηνπνηήζεη ηα θέξδε ηεο θαη ζηελ βξαρπρξόληα πεξίνδν. Δξ: Πώο επηιέγεη θάζε επηρείξεζε ην επίπεδν ηνπ πξνϊόληνο ηεο; Aπ: Λύλνληαο ηελ max ( y) py c ( y). s y 0 s 16
17 Η βρατστρόνια απόυαση προσυοράς της d s( y) dy επιτείρησης Γηα ηε πεξίπηωζε όπνπ y s * > 0, ε ζπλζήθε κεγηζηνπνίεζεο δεύηεξεο ηάμεο είλαη Γειαδή, p MC ( y ). p MC ( y) 0. s Άξα ζ έλα κέγηζην θέξδνο κε y s * > 0, ε ηηκή ηεο αγνξάο p είλαη ίζε κε ην νξηαθό θόζηνο παξαγωγήο ζην y = y s *. * s s 17
18 Η βρατστρόνια απόυαση προσυοράς της d Γηα ηε πεξίπηωζε όπνπ y s * > 0, ε ζπλζήθε κεγηζηνπνίεζεο δεύηεξεο ηάμεο είλαη 2 ( y) dy s 2 Γειαδή, ( ) d dy p MC y dmc y s( ) s dy dmcs( ys ) dy επιτείρησης * 0. Άξα ζε έλα κέγηζην θέξδνο κε y s * > 0, ε θακπύιε MC ηεο επηρείξεζεο πξέπεη λα έρεη ζεηηθή θιίζε
19 Η βρατστρόνια απόυαση προσυοράς της $/κνλάδα πξνϊόληνο επιτείρησης Γηα y = y s *, p = MC θαη ην MC έρεη ζεηηθή θιίζε. Τν y = y s * κεγηζηνπνηεί ηα θέξδε. p e MC s (y) y' y s * y Γηα y = y', p = MC θαη ην MC έρεη αξλεηηθή θιίζε. Τν y = y' ειαρηζηνπνηεί ηα θέξδε. 19
20 Η βρατστρόνια απόυαση προσυοράς της $/κνλάδα πξνϊόληνο επιτείρησης Γηα y = y s *, p = MC θαη ην MC έρεη ζεηηθή θιίζε. Τν y = y s * κεγηζηνπνηεί ηα θέξδε. p e MC s (y) Άξα έλα επίπεδν πξνζθνξάο πνπ κεγηζηνπνηεί ηα θέξδε κπνξεί λα ππάξμεη κόλν ζην αλεξρόκελν ηκήκα ηεο θακπύιεο MC ηεο επηρείξεζεο. y' y s * y 20
21 Η βρατστρόνια απόυαση προσυοράς της επιτείρησης Αιιά θάζε ζεκείν πάλω ζην αλεξρόκελν ηκήκα ηεο θακπύιεο ηνπ νξηαθνύ θόζηνπο ηεο επηρείξεζεο δελ αληηπξνζωπεύεη έλα κέγηζην θέξδνο. 21
22 Η βρατστρόνια απόυαση προσυοράς της Αιιά θάζε ζεκείν πάλω ζην αλεξρόκελν ηκήκα ηεο θακπύιεο ηνπ νξηαθνύ θόζηνπο ηεο επηρείξεζεο δελ αληηπξνζωπεύεη έλα κέγηζην θέξδνο. Ζ ζπλάξηεζε θέξδνπο ηεο επηρείξεζεο είλαη s ( y) py c s ( y) py F c v ( y). Αλ ε επηρείξεζε επηιέμεη y = 0 ηόηε ην θέξδνο ηεο ζα είλαη s επιτείρησης ( y) 0 F c ( 0) F. v 22
23 Η βρατστρόνια απόυαση προσυοράς της επιτείρησης Έηζη ε επηρείξεζε ζα επηιέμεη έλα επίπεδν πξνϊόληνο y > 0 κόλν αλ s ( y) py F c v ( y) F. Γει, κόλν αλ py c ( y) 0 Ηζνδύλακα, κόλν αλ v p c v ( y ) y AVC s ( y). 23
24 Η βρατστρόνια απόυαση προσυοράς της επιτείρησης $/κνλάδα πξνϊόληνο p AVCs (y) y s * > 0. MC s (y) AC s (y) AVC s (y) Ζ βξαρπρξόληα θακπύιε πξνζθνξάο ηεο επηρείξεζεο y p AVC s (y) y s * = 0. 24
25 Η βρατστρόνια απόυαση προσυοράς της $/κνλάδα πξνϊόληνο επιτείρησης Σεκείν θιεηζίκαηνο MC s (y) AC s (y) AVC s (y) Ζ βξαρπρξόληα θακπύιε πξνζθνξάο ηεο επηρείξεζεο y 25
26 Η βρατστρόνια απόυαση προσυοράς της επιτείρησης Τν θιείζηκν κηαο επηρείξεζεο δελ είλαη ην ίδην κε ηελ έμνδό ηεο από ηνλ θιάδν. Τν θιείζηκν ζεκαίλεη όηη ε επηρείξεζε δελ παξάγεη θαζόινπ πξνϊόλ (αιιά βξίζθεηαη αθόκα ζηνλ θιάδν θαη πιεξώλεη ην ζηαζεξό ηεο θόζηνο). Έμνδνο ζεκαίλεη λα θύγεη από ηνλ θιάδν πξάγκα ην νπνίν ε επηρείξεζε κπνξεί λα θάλεη κόλν ζηε καθξνρξόληα πεξίνδν. 26
27 Η μακροτρόνια απόυαση προσυοράς της επιτείρησης Ζ καθξνρξόληα πεξίνδνο είλαη ε θαηάζηαζε ζηελ νπνία κηα επηρείξεζε κπνξεί λα επηιέμεη αλάκεζα ζε όιεο ηηο βξαρπρξόληεο θαηαζηάζεηο. Πώο ζπγθξίλνληαη νη απνθάζεηο ηεο επηρείξεζεο γηα ηελ καθξνρξόληα πξνζθνξά κε απηέο γηα ηελ βξαρπρξόληα πξνζθνξά; 27
28 Η μακροτρόνια απόυαση προσυοράς της επιτείρησης H καθξνρξόληα ζπλάξηεζε θέξδνπο κηαο αληαγωληζηηθήο επηρείξεζεο είλαη ( y) py c( y). Τν καθξνρξόλην θόζηνο c(y) ηεο παξαγωγήο y κνλάδωλ πξνϊόληνο απνηειείηαη κόλν από κεηαβιεηά θόζηε θαζώο όιεο νη εηζξνέο είλαη κεηαβιεηέο καθξνρξόληα. 28
29 Η μακροτρόνια απόυαση προσυοράς της επιτείρησης Ζ απόθαζε ηεο επηρείξεζεο γηα ηε καθξνρξόληα πξνζθνξά είλαη max ( y) py c( y). y 0 Ζ 1 εο θαη 2 εο ηάμεο ζπλζήθεο κεγηζηνπνίεζεο είλαη, γηα y* > 0, p MC( y) and dmc( y) 0. dy 29
30 Η μακροτρόνια απόυαση προσυοράς της επιτείρησης Δπηπιένλ, ην κέγεζνο ηωλ νηθνλνκηθώλ θεξδώλ ηεο επηρείξεζεο δελ πξέπεη λα είλαη αξλεηηθό επεηδή ηόηε ε επηρείξεζε ζα θύγεη από ηνλ θιάδν. Έηζη, ( y) py c( y) 0 ( ) p c y AC( y). y 30
31 Η μακροτρόνια απόυαση προσυοράς της $/κνλάδα πξνϊόληνο p > AC(y) επιτείρησης MC(y) AC(y) y 31
32 Η μακροτρόνια απόυαση προσυοράς της $/κνλάδα πξνϊόληνο επιτείρησης Ζ καθξνρξόληα θακπύιε πξνζθνξάο ηεο επηρείξεζεο MC(y) AC(y) y 32
33 Η μακροτρόνια απόυαση προσυοράς της επιτείρησης Πώο ζρεηίδεηαη ε καθξνρξόληα θακπύιε πξνζθνξάο κε όιεο ηηο βξαρπρξόληεο θακπύιεο πξνζθνξάο; 33
34 Οι μακροτρόνιες & βρατστρόνιες απουάσεις προσυοράς της επιτείρησης $/κνλάδα πξνϊόληνο AC s (y) MC(y) p' MC s (y) AC(y) y s * y* Τν y s * κεγηζηνπνηεί ηα θέξδε ζε απηή ηε βξαρπρξόληα πεξίνδν. y 34
35 Οι μακροτρόνιες & βρατστρόνιες απουάσεις προσυοράς της επιτείρησης $/κνλάδα πξνϊόληνο AC s (y) MC(y) p' s MC s (y) AC(y) y s * y* Τν y s * κεγηζηνπνηεί ηα θέξδε ζε απηή ηε βξαρπρξόληα πεξίνδν. y 35
36 Οι μακροτρόνιες & βρατστρόνιες απουάσεις προσυοράς της επιτείρησης $/κνλάδα πξνϊόληνο AC s (y) MC(y) p' s MC s (y) AC(y) y s * y* Ζ επηρείξεζε κπνξεί λα απμήζεη ηα θέξδε απμάλνληαο ην x 2 θαη παξάγνληαο y* κνλάδεο πξνϊόληνο. y 36
37 Οι μακροτρόνιες & βρατστρόνιες απουάσεις προσυοράς της επιτείρησης $/κνλάδα πξνϊόληνο AC s (y) MC(y) MC s (y) AC(y) p'' y y s * Τν y s * ειαρηζηνπνηεί ηηο δεκίεο ζηελ βξαρπρξόληα πεξίνδν. 37
38 Οι μακροτρόνιες & βρατστρόνιες απουάσεις προσυοράς της επιτείρησης $/κνλάδα πξνϊόληνο AC s (y) MC(y) MC s (y) AC(y) p'' Εεκία y s * Τν y s * ειαρηζηνπνηεί ηηο δεκίεο ζηελ βξαρπρξόληα πεξίνδν. y 38
39 Οι μακροτρόνιες & βρατστρόνιες απουάσεις προσυοράς της επιτείρησης $/κνλάδα πξνϊόληνο AC s (y) MC(y) MC s (y) AC(y) p'' Εεκία y y s * Απηή ε δεκία κπνξεί λα εμαιεηθζεί ζηε καθξνρξόληα πεξίνδν αλ ε επηρείξεζε θύγεη από ηνλ θιάδν. 39
40 Οι μακροτρόνιες & βρατστρόνιες απουάσεις προσυοράς της επιτείρησης $/κνλάδα πξνϊόληνο MC(y) p' AC(y) y s * Τν y s * κεγηζηνπνηεί ηα θέξδε ζηε βξαρπρξόληα πεξίνδν. y 40
41 Οι μακροτρόνιες & βρατστρόνιες απουάσεις προσυοράς της επιτείρησης $/κνλάδα πξνϊόληνο MC(y) p' s AC(y) y s * Τν y s * κεγηζηνπνηεί ηα θέξδε ζηε βξαρπρξόληα πεξίνδν. y 41
42 Οι μακροτρόνιες & βρατστρόνιες απουάσεις προσυοράς της επιτείρησης $/κνλάδα πξνϊόληνο MC(y) p' AC(y) y* y s * y Τν y s * κεγηζηνπνηεί ηα θέξδε ζηε βξαρπρξόληα πεξίνδν. Τν y* κεγηζηνπνηεί ηα θέξδε ζηε καθξνρξόληα πεξίνδν. 42
43 Οι μακροτρόνιες & βρατστρόνιες απουάσεις προσυοράς της επιτείρησης $/κνλάδα πξνϊόληνο MC(y) p' AC(y) y* y s * y Τν y s * κεγηζηνπνηεί ηα θέξδε ζηε βξαρπρξόληα πεξίνδν. Τν y* κεγηζηνπνηεί ηα θέξδε ζηε καθξνρξόληα πεξίνδν. 43
44 Οι μακροτρόνιες & βρατστρόνιες απουάσεις προσυοράς της επιτείρησης $/κνλάδα πξνϊόληνο MC(y) p' s AC(y) y* y s * y Ζ επηρείξεζε κπνξεί λα απμήζεη ηα θέξδε ηεο κεηώλνληαο ην x 2 θαη παξάγνληαο y* κνλάδεο πξνϊόληνο. 44
45 Οι μακροτρόνιες & βρατστρόνιες απουάσεις $/κνλάδα πξνϊόληνο προσυοράς της επιτείρησης Μαθξνρξόληα θακπύιε πξνζθνξάο MC(y) AC(y) y Βξαρπρξόληεο θακπύιεο πξνζθνξάο 45
46 Το πλεόνασμα τοσ παραγωγού Τν πιεόλαζκα ηνπ παξαγωγνύ γηα ηελ επηρείξεζε είλαη ε ζπζζώξεπζε, κνλάδα πξνο επηπιένλ κνλάδα πξνϊόληνο, ηωλ πξόζζεηωλ εζόδωλ κείνλ ηα πξόζζεηα θόζηε παξαγωγήο. Πώο ζπλδέεηαη ην πιεόλαζκα ηνπ παξαγωγνύ κε ην θέξδνο; 46
47 Το πλεόνασμα τοσ παραγωγού $/κνλάδα πξνϊόληνο MC s (y) p PS AC s (y) AVC s (y) y*(p) y 47
48 Το πλεόνασμα τοσ παραγωγού Έηζη ην πιεόλαζκα ηνπ παξαγωγνύ γηα ηελ επηρείξεζε είλαη y*( p) PS( p) p MC ( z) d( z) py* ( p) MC ( z) d( z) 0 py* ( p) c y* ( p). s y*( p) Γειαδή, PS = Έζνδα Μεηαβιεηό θόζηνο. v 0 s 48
49 Το πλεόνασμα τοσ παραγωγού $/κνλάδα πξνϊόληνο MC s (y) p PS AC s (y) AVC s (y) y*(p) y 49
50 Το πλεόνασμα τοσ παραγωγού $/κνλάδα πξνϊόληνο p MC s (y) AC s (y) AVC s (y) y*(p) c ( y* ( p)) MC ( z) d( z) v y*( p) 0 s y 50
51 Το πλεόνασμα τοσ παραγωγού $/κνλάδα πξνϊόληνο MC s (y) p Έζνδα = py*(p) c v (y*(p)) AC s (y) AVC s (y) y*(p) y 51
52 Το πλεόνασμα τοσ παραγωγού $/κνλάδα πξνϊόληνο MC s (y) p PS AC s (y) AVC s (y) y*(p) y 52
53 Το πλεόνασμα τοσ παραγωγού PS = Έζνδα Μεηαβιεηό Κόζηνο. Κέξδνο = Έζνδα - Σπλνιηθό Κόζηνο = Έζνδα - Σηαζεξό Κόζηνο - Μεηαβιεηό Κόζηνο. Άξα, PS = Κέξδνο + Σηαζεξό Κόζηνο. Μόλν αλ ην ζηαζεξό θόζηνο είλαη κεδέλ, ε καθξνρξόληα πεξίνδνο, ην PS θαη ην θέξδνο είλαη ίζα. 53
Παπαγωγόρ Καμπύλερ Κόζηοςρ
Παπαγωγόρ Καμπύλερ Κόζηοςρ 1 Δίδη καμπσλών κόζηοσς Μηα θακπύιε ζπλνιηθνύ θόζηνπο είλαη ε γξαθηθή απεηθόληζε ηεο ζπλάξηεζεο ηνπ ζπλνιηθνύ θόζηνπο ηεο επηρείξεζεο. Μηα θακπύιε κεηαβιεηνύ θόζηνπο είλαη ε
Κεθάλαιο 7. Πξνζθνξά ηνπ θιάδνπ Μ. ΨΥΛΛΑΚΗ
Κεθάλαιο 7 Πξνζθνξά ηνπ θιάδνπ 1 Προζθορά ανηαγωνιζηικού κλάδοσ Πώο πξέπεη λα ζπλδπαζηνύλ νη απνθάζεηο πξνζθνξάο ησλ πνιιώλ επηκέξνπο επηρεηξήζεσλ ελόο αληαγσληζηηθνύ θιάδνπ γηα λα βξνύκε ηελ θακπύιε πξνζθνξάο
Κεθάιαην 20. Ελαχιστοποίηση του κόστους
Κεθάιαην 0 Ελαχιστοποίηση του κόστους Ειαρηζηνπνίεζε ηνπ θόζηνπο Μηα επηρείξεζε ειαρηζηνπνηεί ην θόζηνο ηεο αλ παξάγεη νπνηνδήπνηε δεδνκέλν επίπεδν πξντόληνο y 0 ζην κηθξόηεξν δπλαηό ζπλνιηθό θόζηνο. Τν
Κευάλαιο 8 Μονοπωλιακή Συμπεριφορά- Πολλαπλή Τιμολόγηση
Κευάλαιο 8 Μονοπωλιακή Συμπεριφορά- Πολλαπλή Τιμολόγηση Πώς πρέπει να τιμολογεί ένα μονοπώλιο; Μέρξη ζηηγκήο ην κνλνπώιην έρεη ζεσξεζεί ζαλ κηα επηρείξεζε ε νπνία πσιεί ην πξντόλ ηεο ζε θάζε πειάηε ζηελ
Ο Νόκνο ηεο Φ/Α ηζρύεη κόλν ζηε καθξνρξόληα πεξίνδν παξαγωγήο θαη εμεγεί ηελ πνξεία
Αρχές Οικονομικθς Θεωρίας Καιηγητθς, Παναγιώτης Φουτσιτζθς, Οικονομολόγος. Κευάλαιο: Παραγωγή Κόστος Παραγωγής Προτάσεις Σωστού / Λάθοσς 1 Καζώο κεηαβάιιεηαη ε παξαγωγή ην κέζν ζηαζεξό θόζηνο κεηαβάιιεηαη.
ΓΗΑΓΩΛΗΠΚΑ ΠΡΝ ΚΑΘΖΚΑ ΔΞΗΙΝΓΖΠ ΑΟΣΔΠ ΝΗΘΝΛΝΚΗΘΖΠ ΘΔΩΟΗΑΠ
ΓΗΑΓΩΛΗΠΚΑ ΠΡΝ ΚΑΘΖΚΑ ΔΞΗΙΝΓΖΠ ΑΟΣΔΠ ΝΗΘΝΛΝΚΗΘΖΠ ΘΔΩΟΗΑΠ ΝΚΑΓΑ Α ΔΡΩΣΖΔΗ ΩΣΟΤ- ΙΑΘΟΤ 1. Γηα έλα αγαζό όηαλ ε ζηαζεξά γ είλαη ίζε κε ην κεδέλ ηόηε ε θακπύιε πξνζθνξάο δηέξρεηαη από ηελ αξρή ηωλ αμόλωλ.
Κεθάλαιο 10 Ολιγοπώλιο
Κεθάλαιο 10 Ολιγοπώλιο 1 Ολιγοπώλιο Έλα κνλνπώιην είλαη κηα αγνξά πνπ απνηειείηαη από κηα θαη κόλν επηρείξεζε. Έλα δπνπώιην είλαη κηα αγνξά πνπ απνηειείηαη από δπν επηρεηξήζεηο. Έλα νιηγνπώιην είλαη κηα
Μονοψϊνιο. Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ.
Μονοψϊνιο Ολιγοψώνιο Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ. Οπιακή αξία Δπηπξόζζεηα νθέιε από ηελ ρξήζε/θαηαλάισζε κηαο επηπξόζζεηε
ΔΕΟ 13. Ποσοτικές Μέθοδοι. θαη λα ππνινγίζεηε ην θόζηνο γηα 10000 παξαγόκελα πξντόληα. Να ζρεδηαζηεί γηα εύξνο πξντόλησλ έσο 30000.
ΔΕΟ 13 Ποσοτικές Μέθοδοι Σσνάρηηζη Κόζηοσς C(), μέζο κόζηος C()/. Παράδειγμα 1 Μηα εηαηξεία δαπαλά γηα θάζε πξντόλ Α πνπ παξάγεη 0.0 λ.κ. Τα πάγηα έμνδα ηεο εηαηξείαο είλαη 800 λ.κ. Ζεηείηαη 1) Να πεξηγξάςεηε
Q Η ζσνάρηηζη μέζοσ κόζηοσς μας δίνει ηο κόζηος ανά μονάδα παραγωγής. Q Η ζσνάρηηζη μέζοσ κόζηοσς μας δίνει ηο ζηαθερό κόζηος ανά μονάδα παραγωγής
ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΣΟΜΟ Α Mάθημα 5: To παραγωγής σναρηήζεις κόζηοσς Η ζπλάξηεζε ζπλνιηθνύ θόζηνπο C FC VC Όπνπ FC= ην ζηαζεξό θόζηνο (ην θόζηνο γηα ηνλ ζηαζεξό παξαγσγηθό ζπληειεζηή) θαη VC= ην κεηαβιεηό
ΑΠΑΝΣΖΔΗ ΣΟ ΜΑΘΖΜΑ ΑΡΥΔ ΟΗΚΟΝΟΜΗΚΖ ΘΔΩΡΗΑ (15/6/2018)
www.romvos.edu.gr ΑΠΑΝΣΖΔΗ ΣΟ ΜΑΘΖΜΑ ΑΡΥΔ ΟΗΚΟΝΟΜΗΚΖ ΘΔΩΡΗΑ (15/6/2018) ΘΔΜΑ Α Α1. α. ωζηό β. Λάζνο γ. Λάζνο δ. ωζηό ε. ωζηό Α2. γ Α3. β ΘΔΜΑ Β Β1. Μεηαβοιή κόλο ζηε δεηούκελε ποζόηεηα Ζ δεηνύκελε πνζόηεηα
ΑΡΥΔ ΟΙΚΟΝΟΜΙΚΗ ΘΔΩΡΙΑ ΛΤΔΙ ΓΙΑΓΩΝΙΜΑΣΟ ΚΔΦΑΛΑΙΟΤ 2
ΑΥΔ ΟΙΚΟΝΟΜΙΚΗ ΘΔΩΙΑ ΛΤΔΙ ΙΑΩΝΙΜΑΣΟ ΚΔΦΑΛΑΙΟΤ 2 1: Λάζος (είλαη ηζνζθειήο ππεξβνιή) Α2: Λάζος (ην ζεηηθό πξόζεκν ζεκαίλεη όηη ε Πνζνζηηαία Μεηαβνιή Δηζνδήκαηνο θαη ε Πνζνζηηαία Μεηαβνιή Πνζόηεηαο ήηαλ
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ ΣΔΣΑΡΣΖ 25 ΜΑΨΟΤ 2016 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΑΡΥΔ ΟΗΚΟΝΟΜΗΚΖ ΘΔΧΡΗΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ - ΔΠΗΛΟΓΖ
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ ΣΔΣΑΡΣΖ 25 ΜΑΨΟΤ 2016 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΑΡΥΔ ΟΗΚΟΝΟΜΗΚΖ ΘΔΧΡΗΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ - ΔΠΗΛΟΓΖ (Δλδεηθηηθέο Απαληήζεηο) ΘΔΜΑ Α Α1. α. Σωζηό β. Λάζνο
iii. iv. γηα ηελ νπνία ηζρύνπλ: f (1) 2 θαη
ΔΠΑΝΑΛΗΠΣΙΚΑ ΘΔΜΑΣΑ ΣΟ ΓΙΑΦΟΡΙΚΟ ΛΟΓΙΜΟ Μάρτιος 0 ΘΔΜΑ Να ππνινγίζεηε ηα όξηα: i ii lim 0 0 lim iii iv lim e 0 lim e 0 ΘΔΜΑ Γίλεηαη ε άξηηα ζπλάξηεζε '( ) ( ) γηα θάζε 0 * : R R γηα ηελ νπνία ηζρύνπλ:
ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ. Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη Εήηημα 1 ο :
ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ Ον/μο:.. Γ Λσκείοσ Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη. 11-1-11 Εήηημα 1 ο : Α. Γηα ηελ ζπλάξηεζε f, λα βξείηε ην δηάζηεκα ζην νπνίν είλαη παξαγσγίζηκε θαζώο θαη
Διαηιμήζεις για Αιολικά Πάρκα. Κώδικες 28, 78 και 84
Διαηιμήζεις για Αιολικά Πάρκα Κώδικες 28, 78 και 84 Διαηιμήζεις για Αιολικά Πάρκα Οη Διαηιμήζεις για Αιολικά Πάρκα εθαξκόδνληαη γηα ηελ απνξξνθνύκελε ελέξγεηα από Αηνιηθά Πάξθα πνπ είλαη ζπλδεδεκέλα ζην
Άζκηζη ζτέζης κόζηοσς-τρόνοσ (Cost Time trade off) Καηαζκεσαζηική ΑΔ
Άζκηζη ζτέζης κόζηοσς-τρόνοσ (Cost Time trade off) Καηαζκεσαζηική Δίζηε μησανικόρ διοίκηζηρ μεγάληρ καηαζκεςαζηικήρ εηαιπείαρ και καλείζηε να ςλοποιήζεηε ηο έπγο πος πεπιγπάθεηαι από ηον Πίνακα 1. Κωδ.
f '(x)g(x)h(x) g'(x)f (x)h(x) h'(x) f (x)g(x)
ΓΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 54 Υλη: Παράγωγοι Γ Λσκείοσ Ον/μο:.. 6--4 Θεη-Τετν. ΘΔΜΑ Α.. Αλ f, g, h ηξεηο παξαγωγίζηκεο ζπλαξηήζεηο ζην λα απνδείμεηε όηη : f () g() h() ' f '()g()h() g'()f ()h() h'() f ()g()
ΑΠΑΝΣΖΔΗ ΟΜΑΓΑ ΠΡΩΣΖ. Απόδειξη. Έζησ όηη ε γεληθή κνξθή ηεο ζπλάξηεζεο πξνζθνξάο είλαη: Q S =γ+δρ. Από ηνλ ηύπν ηεο ειαζηηθόηεηαο πξνζθνξάο, έρνπκε:
4 [Α]. ΔΡΩΣΖΔΗ ΩΣΟΤ-ΛΑΘΟΤ [1]. ΩΣΟ [2]. ΛΑΘΟ [3]. ΩΣΟ [4]. ΛΑΘΟ [5]. ΩΣΟ ΑΠΑΝΣΖΔΗ ΟΜΑΓΑ ΠΡΩΣΖ [Β]. ΔΡΩΣΖΔΗ ΠΟΛΛΑΠΛΖ ΔΠΗΛΟΓΖ [1]. α) [2]. γ) Απόδειξη Έζησ όηη ε γεληθή κνξθή ηεο ζπλάξηεζεο πξνζθνξάο είλαη:
ΔΝΓΔΙΚΣΙΚΔ ΛΤΔΙ ΣΑ ΜΑΘΗΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ 2017
α: κολάδα β: κολάδες Σειίδα από 8 ΔΝΓΔΙΚΣΙΚΔ ΛΤΔΙ ΣΑ ΜΑΘΗΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ 7 ΘΔΜΑ Α Α Έζηω, κε Θα δείμνπκε όηη f ( ) f ( ) Πξάγκαηη, ζην δηάζηεκα [, ] ε f ηθαλνπνηεί ηηο πξνϋπνζέζεηο ηνπ ΘΜΤ Επνκέλωο,
(Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α. Α1. Βιέπε απόδεημε Σει. 262, ζρνιηθνύ βηβιίνπ. Α2. Βιέπε νξηζκό Σει. 141, ζρνιηθνύ βηβιίνπ
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ (ΟΜΑΓΑ Β ) ΣΔΣΑΡΣΖ 18 ΜΑΪΟΤ 16 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (ΝΔΟ ΤΣΖΜΑ) ΚΑΣΔΤΘΤΝΖ (ΠΑΛΑΗΟ ΤΣΖΜΑ) (Ενδεικηικές Απανηήζεις) ΘΔΜΑ
ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 27 ΜΑΪΟΥ 2013
ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 7 ΜΑΪΟΥ 13 ΘΔΜΑ Α : (Α1) Σρνιηθό βηβιίν ζειίδα 33-335 (Α) Σρνιηθό βηβιίν ζειίδα 6 (Α3) Σρνιηθό βηβιίν ζειίδα (Α) α) Λάζνο β) Σωζηό γ) Σωζηό
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη: Εσθύγραμμη Κίνηζη
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Είμαζηε ηυχεροί που είμαζηε δάζκαλοι Ον/μο:.. A Λσκείοσ Ύλη: Εσθύγραμμη Κίνηζη 8-11-2015 Θέμα 1 ο : 1. Η εμίζωζε θίλεζεο ελόο θηλεηνύ πνπ θηλείηαη επζύγξακκα είλαη ε x = 5t. Πνηα
Φςζική Πποζαναηολιζμού Γ Λςκείος. Αζκήζειρ Ταλανηώζειρ 1 ο Φςλλάδιο
Φςζική Πποζαναηολιζμού Γ Λςκείος Αζκήζειρ Ταλανηώζειρ 1 ο Φςλλάδιο Επιμέλεια: Αγκανάκηρ Α. Παναγιώηηρ Επωηήζειρ Σωζηό- Λάθορ Να χαπακηηπίζεηε ηιρ παπακάηω πποηάζειρ ωρ ζωζηέρ ή λάθορ: 1. Η ηαιάλησζε είλαη
ΟΠΤΙΚΗ Α. ΑΝΑΚΛΑΣΖ - ΓΗΑΘΛΑΣΖ
ΟΠΤΙΚΗ Α. ΑΝΑΚΛΑΣΖ - ΓΗΑΘΛΑΣΖ. Μία αθηίλα θωηόο πξνζπίπηεη κε κία γωλία ζ ζηε επάλω επηθάλεηα ελόο θύβνπ από πνιπεζηέξα ν νπνίνο έρεη δείθηε δηάζιαζεο ε =,49 (ζρήκα ). Βξείηε πνηα ζα είλαη ε κέγηζηε γωλία
H ΜΑΓΕΙΑ ΤΩΝ ΑΡΙΘΜΩΝ
H ΜΑΓΕΙΑ ΤΩΝ ΑΡΙΘΜΩΝ Φξεζηκόηεηα καζεκαηηθώλ Αξρή θαηακέηξεζεο Όζα έδσζαλ νη Έιιελεο... Τξίγσλνη αξηζκνί Τεηξάγσλνη αξηζκνί Δπηκήθεηο αξηζκνί Πξώηνη αξηζκνί Αξηζκνί κε μερσξηζηέο ηδηόηεηεο Γίδπκνη πξώηνη
ΘΔΜΑ 1 ο Μονάδες 5,10,10
ΟΝΟΜΑΣΔΠΩΝΤΜΟ ΗΜΔΡΟΜΗΝΙΑ ΘΔΜΑ 1 ο Μονάδες 5,1,1 ΓΙΑΓΩΝΙΜΑ 1 ου ΜΔΡΟΤ ΣΗ ΑΝΑΛΤΗ Α Γώζηε ηνλ νξηζκό ηεο αληίζηξνθεο ζπλάξηεζεο Β Γείμηε όηη αλ κηα ζπλάξηεζε είλαη αληηζηξέςηκε ηόηε νη γξαθηθέο παξαζηάζεηο
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γευηέρα 11 Ηουνίου 2018 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις)
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γευηέρα Ηουνίου 08 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α Α. Απόδεημε ζεωξήκαηνο ζει. 99 ζρνιηθνύ βηβιίνπ. Α. α.
α) ηε κεηαηόπηζε x όηαλ ην ζώκα έρεη κέγηζην ξπζκό κεηαβνιήο ζέζεο δ) ην κέγηζην ξπζκό κεηαβνιήο ηεο ηαρύηεηαο
Έξγν ελέξγεηα 3 (Λύζε) Σώκα κάδαο m = 4Kg εξεκεί ζηε βάζε θεθιηκέλνπ επηπέδνπ γσλίαο θιίζεο ζ κε εκζ = 0,6 θαη ζπλζ = 0,8. Τν ζώκα αξρίδεη λα δέρεηαη νξηδόληηα δύλακε θαη μεθηλά λα αλεβαίλεη ζην θεθιηκέλν
ΑΠΑΝΤΗΣΔΙΣ ΓΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ II ΔΠΑΛ
ΑΠΑΝΤΗΣΔΙΣ ΓΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ II ΔΠΑΛ ΘΔΜΑ Α Α1. α. Σ β. Σ γ. Λ δ. Λ ε. Λ ζη. Σ Α2. Γ Α3. 1. γ 2. ε 3. δ 4. α Β1. ΘΔΜΑ Β Οη ηειηθνί ππνινγηζηέο παίξλνπλ απνθάζεηο δξνκνιόγεζεο κόλν γηα ηα δηθά ηνπο απηνδύλακα
ΥΡΟΝΣΙΣΗΡΙΟ ΜΕΗ ΕΚΠΑΙΔΕΤΗ Ο Μ Η Ρ Ο Σ
ΠΑΝΔΛΛΑΓΙΚΔ ΔΞΔΣΑΔΙ Γ ΣΑΞΗ ΗΜΔΡΗΙΟΤ ΓΔΝΙΚΟΤ ΛΤΚΔΙΟΤ ΚΑΙ ΔΠΑΛ (ΟΜΑΓΑ Β ) ΣΔΣΑΡΣΗ 25 ΜΑΪΟΤ 2016 ΑΡΥΔ ΟΙΚΟΝΟΜΙΚΗ ΘΔΩΡΙΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΔΠΙΛΟΓΗ ΠΡΟΣΕΙΝΟΜΕΝΕ ΑΠΑΝΣΗΕΙ ΟΜΑΔΑ ΠΡΩΤΗ Α.1 α. Σωςτό β. Λάκοσ γ. Σωςτό
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ..
ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου έλαξμεο 09.30 ιήμεο 09.45 Σην παξαθάησ ζρήκα θαίλεηαη ηκήκα ελόο πνιενδνκηθνύ ζρεδίνπ κηαο πόιεο. Οη ζθηαζκέλεο
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ. Οξηδόληηα θαη θαηαθόξπθε κεηαηόπηζε παξαβνιήο
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Οξηδόληηα θαη θαηαθόξπθε κεηαηόπηζε παξαβνιήο 1 ε Δξαζηεξηόηεηα Αλνίμηε ην αξρείν «Μεηαηόπηζε παξαβνιήο.ggb». Με ηε καύξε γξακκή παξηζηάλεηαη ε γξαθηθή παξάζηαζε ηεο f(x)=αx 2 πνπ ζα ηελ
Αιγόξηζκνη Γνκή επηινγήο. Πνιιαπιή Δπηινγή Δκθωιεπκέλεο Δπηινγέο. Δηζαγωγή ζηηο Αξρέο ηεο Δπηζηήκεο ηωλ Η/Υ. introcsprinciples.wordpress.
Αιγόξηζκνη 2.2.7.3 Γνκή επηινγήο Πνιιαπιή Δπηινγή Δκθωιεπκέλεο Δπηινγέο Δηζαγωγή ζηηο Αξρέο ηεο Δπηζηήκεο ηωλ Η/Υ 1 Πνιιαπιή Δληνιή Δπηινγήο Αν ζπλζήθε_1 ηόηε εληνιέο_1 αλλιώς_αν ζπλζήθε_2 ηόηε εληνιέο_2...
Αζκήζεις ζτ.βιβλίοσ ζελίδας 13 14
.1.10 ζκήζεις ζτ.βιβλίοσ ζελίδας 13 14 Ερωηήζεις Καηανόηζης 1. ύν δηαθνξεηηθέο επζείεο κπνξεί λα έρνπλ θαλέλα θνηλό ζεκείν Έλα θνηλό ζεκείν i ύν θνηλά ζεκεία iλ) Άπεηξα θνηλά ζεκεία ηηηνινγήζηε ηελ απάληεζε
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙ ΜΟ
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙ ΜΟ Α ΛΤΚΔΙΟΤ Ζμεπομηνία: 18/12/10 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤ ΕΙ 1. Δίλεηαη ην πνιπώλπκν Αλ θαη., λα βξείηε ην ηειεπηαίν ςεθίν ηνπ αξηζκνύ έρνπκε:
ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ 15/03/2015 ΟΜΑΔΑ Α
ΦΡΟΝΤΙΣΤΗΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ 15/03/2015 ΟΜΑΔΑ Α Για τις παρακάτω προτάσεις από Α.1. μέχρι και Α.5. να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς, και
Α. Εηζαγσγή ηεο έλλνηαο ηεο ηξηγσλνκεηξηθήο εμίζσζεο κε αξρηθό παξάδεηγκα ηελ εκx = 2
ΣΡΙΓΩΝΟΜΔΣΡΙΚΔ EΞΙΩΔΙ Πνηα παξαδείγκαηα εμηζώζεσλ ή θαη πξνβιεκάησλ πηζηεύεηαη όηη είλαη θαηάιιεια γηα ηελ επίιπζε ηνπο θαηά ηελ δηάξθεηα ηεο δηδαθηηθήο δηαδηθαζίαο κέζα ζηελ ηάμε; 1 ε ΓΙΓΑΚΣΙΚΗ ΩΡΑ Α.
ΚΕΦ. 2.3 ΑΠΟΛΤΣΗ ΣΘΜΗ ΠΡΑΓΜΑΣΘΚΟΤ ΑΡΘΘΜΟΤ
ΚΕΦ..3 ΑΠΟΛΤΣΗ ΣΘΜΗ ΠΡΑΓΜΑΣΘΚΟΤ ΑΡΘΘΜΟΤ Οπιζμόρ απόλςηηρ ηιμήρ: Σηνλ άμνλα ησλ πξαγκαηηθώλ αξηζκώλ ζεσξνύκε έλαλ αξηζκό α πνπ ζπκβνιίδεηαη κε ην ζεκείν Α. Η απόζηαζε ηνπ ζεκείνπ Α από ηελ αξρή Ο, δειαδή
Απαντήσεις θέματος 2. Παξαθάησ αθνινπζεί αλαιπηηθή επίιπζε ησλ εξσηεκάησλ.
Απαντήσεις θέματος 2 Απηά πνπ έπξεπε λα γξάςεηε (δελ ρξεηαδόηαλ δηθαηνιόγεζε εθηόο από ην Γ) Α return a*b; Β 0:acegf2, 1: acegf23, 2: acegf234, 3:acegf2345, 4:acegf23456, 5:acegf234567, 6:acegf2345678,
ΚΔΦ. 2.4 ΡΗΕΔ ΠΡΑΓΜΑΣΗΚΩΝ ΑΡΗΘΜΩΝ
ΚΔΦ.. ΡΗΕΔ ΠΡΑΓΜΑΣΗΚΩΝ ΑΡΗΘΜΩΝ Οξηζκόο ηεηξαγσληθήο ξίδαο: Αλ 0 ηόηε νλνκάδνπκε ηεηξαγσληθή ξίδα ηνπ ηελ κε αξλεηηθή ιύζε ηεο εμίζσζεο:. Γειαδή ηεηξαγσληθή ξίδα ηνπ 0 ιέγεηαη ν αξηζκόο 0 πνπ όηαλ πςσζεί
ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 1. Να ιπζνύλ ηα ζπζηήκαηα. 1 0,3x 0,1y x 3 3x 4y 2 4x 2y ( x 1) 6( y 1) (i) (ii)
. Να ιπζνύλ ηα ζπζηήκαηα.,, 6 4 4 4 5( ) 6( ). Να ιπζνύλ ηα ζπζηήκαηα.,,,6 7. Να ιπζνύλ ηα ζπζηήκαηα. 5 ( )( ) ( ) 4. Να ιπζνύλ ηα ζπζηήκαηα. 5 4 6 7 4. 5. Να ιπζνύλ ηα ζπζηήκαηα. 59 ( )( ) ()( 5) 7 6.
Επωηήζειρ Σωζηού Λάθοςρ ηων πανελλαδικών εξεηάζεων Σςναπηήζειρ
Επωηήζειρ Σωζηού Λάθοςρ ηων πνελλδικών εξεηάζεων 2-27 Σςνπηήζειρ Η γξθηθή πξάζηζε ηεο ζπλάξηεζεο f είλη ζπκκεηξηθή, σο πξνο ηνλ άμνλ, ηεο γξθηθήο πξάζηζεο ηεο f 2 Αλ f, g είλη δύν ζπλξηήζεηο κε πεδί νξηζκνύ
Δσζμενές διαηαρατές και Ονομαζηικό-πραγμαηικό επιηόκιο
Δσζμενές διαηαρατές και Ονομαζηικό-πραγμαηικό επιηόκιο Copyright 2009 Pearson Education, Inc. Publishing as Prentice Hall Macroeconomics, 5/e Olivier Blanchard 1 of 43 IS-LM: Μηχανισμός προσαρμογής μετά
Μηα ζπλάξηεζε κε πεδίν νξηζκνύ ην Α, ζα ιέκε όηη παξνπζηάδεη ηοπικό μέγιζηο ζην, αλ ππάξρεη δ>0, ηέηνην ώζηε:
1 ΟΡΙΜΟΙ MONOTONIA AKΡOTATA Μηα ζπλάξηεζε κε πεδίν νξηζκνύ ην Α, ζα ιέκε όηη παξνπζηάδεη ηοπικό μέγιζηο ζην, αλ ππάξρεη δ>0, ηέηνην ώζηε: Σν ιέγεηαη ζέζε ή ζεκείν ηνπ ηνπηθνύ κεγίζηνπ θαη ην ( ηνπηθό κέγηζην.
ΕΞΙΣΩΣΕΙΣ. Α. Πρωτοβάθμιεσ Εξιςώςεισ. Β. Διερεφνηςη Εξιςώςεων. 1x είναι αδφνατθ. x 1 x 1. Άλγεβρα Α Λυκείου
ΕΞΙΣΩΣΕΙΣ Α. Πρωτοβάθμιεσ Εξιςώςεισ. 1. Να λυκεί θ εξίςωςθ (x - 4) (x +5) x -5 5(x +1) - - = - - x 4 6. Να λυκεί θ εξίςωςθ x (x+1)+x(x+1)+x+1=0. Να λυκεί θ εξίςωςθ x(x -4)-x +x =0 4. Να λυκεί θ εξίςωςθ
Απνηειέζκαηα Εξσηεκαηνινγίνπ 2o ηεηξάκελν 2011-12
Απνηειέζκαηα Εξσηεκαηνινγίνπ 2o ηεηξάκελν 11-12 Project 6: Ταμίδη κε ηε Μεραλή ηνπ Φξόλνπ Υπεύζπλνη Καζεγεηέο: Ε. Μπηιαλάθε Φ. Αλησλάηνο Δρώηηζη 3: Πνηα από ηα παξαθάησ ΜΜΕ ηεξαξρείηε από πιεπξάο ζεκαζίαο;
3 ΑΠΙΔ ΑΘΖΔΗ ΘΟΚΟΙΟΓΗΑ ΠΟΤ ΑΛΣΗΚΔΣΩΠΗΕΟΛΣΑΗ ΚΔ ΦΤΗΘΖ ΘΑΗ ΚΑΘΖΚΑΣΗΘΑ ΙΤΘΔΗΟΤ
3 ΑΠΙΔ ΑΘΖΔΗ ΘΟΚΟΙΟΓΗΑ ΠΟΤ ΑΛΣΗΚΔΣΩΠΗΕΟΛΣΑΗ ΚΔ ΦΤΗΘΖ ΘΑΗ ΚΑΘΖΚΑΣΗΘΑ ΙΤΘΔΗΟΤ ΘΔΩΡΖΣΗΘΟ ΤΠΟΒΑΘΡΟ: Γηα ηελ ιύζε ηωλ αζθζεωλ πνπ αθνινπζνύλ ζα ρξεηαζζνύκε: 1. Σελ (δηάζεκε) εμίζωζε ηνπ ΔΗΛΣΔΗΛ: E c. Σνλ λόκν
Άμεσοι Αλγόριθμοι: Προσπέλαση Λίστας (list access)
Έρνπκε απνζεθεύζεη κηα ζπιινγή αξρείσλ ζε κηα ζπλδεδεκέλε ιίζηα, όπνπ θάζε αξρείν έρεη κηα εηηθέηα ηαπηνπνίεζεο. Μηα εθαξκνγή παξάγεη κηα αθνινπζία από αηηήκαηα πξόζβαζεο ζηα αξρεία ηεο ιίζηαο. Γηα λα
ΕΞΙΣΩΣΕΙΣ. (iv) (ii) (ii) (ii) 5. Γηα ηηο δηάθνξεο ηηκέο ηνπ ι λα ιπζνύλ νη εμηζώζεηο : x 6 3 9x
Να ιπζνύλ νη εμηζώζεηο : ( ) 4 ( ) 7 ( )( ) (ii) 5 7 9 4 (iv) 5 6 4 9 6 0 9 6 8 Να ιπζνύλ νη εμηζώζεηο : 7 5 8 (ii) 4 6 8 5 8 ( 6) 4 4 5 (iv) 7 5 4 7 0 7 ( ) 4 8 4 5 8 Να ιπζνύλ νη εμηζώζεηο : ( ) 0 5
Ενδεικτικά Θέματα Στατιστικής ΙΙ
Ενδεικτικά Θέματα Στατιστικής ΙΙ Θέματα. Έζησ όηη ζε δείγκα 35 θαηνηθηώλ πνπ ελνηθηάδνληαη ζε θνηηεηέο ζηελ Κνδάλε βξέζεθε ην κέζν κεληαίν κίζζσκα ζηα 5 επξώ, ελώ ζην Ζξάθιεην ην κέζν κεληαίν κίζζσκα ζε
Δξγαζηεξηαθή άζθεζε 03. Σηεξενγξαθηθή πξνβνιή ζην δίθηπν Wulf
Δξγαζηεξηαθή άζθεζε 03 Σηεξενγξαθηθή πξνβνιή ζην δίθηπν Wulf Ζιίαο Χαηδεζενδσξίδεο Οθηώβξηνο / Ννέκβξηνο 2004 Τη είλαη ην δίθηπν Wulf Δπίπεδν ζην νπνίν κπνξνύκε λα αλαπαξαζηήζνπκε ηξηζδηάζηαηα ζρήκαηα,
Γ ΣΑΞΖ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΩΝ ΚΑΗ ΟΗΚΟΝΟΜΗΚΩΝ ΠΟΤΓΩΝ ΤΝΑΡΣΖΔΗ ΟΡΗΑ ΤΝΔΥΔΗΑ (έως Θ.Bolzano) ΘΔΜΑ Α
Γ ΣΑΞΖ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΩΝ ΚΑΗ ΟΗΚΟΝΟΜΗΚΩΝ ΠΟΤΓΩΝ ΤΝΑΡΣΖΔΗ ΟΡΗΑ ΤΝΔΥΔΗΑ (έως Θ.Bolzano). Να δηαηππώζεηε ην Θ.Bolzano. 5 ΘΔΜΑ Α μονάδες A. Να απνδείμεηε όηη γηα θάζε πνιπωλπκηθή
Αρχές Οικονομικής Θεωρίας
Αρχές Οικονομικής Θεωρίας Ομάδα Α: Ερωτήσεις Σωστού- Λάθους Α.1. Σπκθέξεη ηνπο παξαγσγνύο ε αύμεζε ηεο πξνζθνξάο ελόο αγαζνύ, όηαλ ε θακπύιε δήηεζεο είλαη ηεο κνξθήο Q D = 600 Α.2. Σηε βξαρπρξόληα πεξίνδν,
ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. ΜΕΤΑΣΦΗΜΑΤΙΣΜΟΣ Laplace
ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΣΦΗΜΑΤΙΣΜΟΣ Laplac Δηεπξύλεη ηε θιάζε ηωλ ζεκάηωλ γηα ηα νπνία κπνξεί λα επηηεπρζεί ε κεηάβαζε από ην πεδίν ηνπ ρξόλνπ ζην πεδίν ηεο ζπρλόηεηαο. Παξέρεη ηε
Επαναληπτική Άσκηση - Δέντρα
Η NovelGadgets Α.Ε. είλαη κηα πνιπεζληθή εηαηξεία πνπ δξαζηεξηνπνηείηαη ζηνλ ρώξν ηεο πιεξνθνξηθήο θαη θαηαζθεπάδεη θαηλνηνκηθέο εθαξκνγέο (gadgets) γηα ηνπο πειάηεο ηεο. Πξόζθαηα, δεκηνύξγεζε έλα λέν
ΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ
ΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ Εδώ ζα ππνινγίζνπκε ην κεηαζρεκαηηζκό Fourier κεξηθώλ αθόκα ζεκάησλ, πξνζπαζώληαο λα μεθηλήζνπκε από ην κεηαζρεκαηηζκό Fourier γλσζηώλ ζεκάησλ
Σύνθεζη ηαλανηώζεων. Έζησ έλα ζώκα πνπ εθηειεί ηαπηόρξνλα δύν αξκνληθέο ηαιαληώζεηο ηεο ίδηαο ζπρλόηεηαο πνπ πεξηγξάθνληαη από ηηο παξαθάησ εμηζώζεηο:
Σύνθεζη ηαλανηώζεων Α. Σύλζεζε δύν α.α.η ηεο ίδιας ζστνόηηηας Έζησ έλα ζώκα πνπ εθηειεί ηαπηόρξνλα δύν αξκνληθέο ηαιαληώζεηο ηεο ίδηαο ζπρλόηεηαο πνπ πεξηγξάθνληαη από ηηο παξαθάησ εμηζώζεηο: Η απνκάθξπλζε
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΠΟΥΔΕΣ ΣΤΙΣ ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙ - ΦΥΕ 0 7 Ινπλίνπ 009 Απαντήσειρ στιρ ασκήσειρ τηρ τελικήρ εξέτασηρ στιρ Σςνήθειρ Διαυοπικέρ Εξισώσειρ Αγαπηηέ θοιηηηή/ηπια,
ΠΟΛΤΜΕΡΙΜΟ - ΠΕΣΡΟΥΗΜΙΚΑ
ΠΟΛΤΜΕΡΙΜΟ - ΠΕΣΡΟΥΗΜΙΚΑ ΠΑΡΑΔΕΙΓΜΑΣΑ Ο πολσμεριζμός Πολσμεριζμός είναι η τημική ανηίδραζη καηά ηην οποία πολλά μόρια ίδιων ή διαθορεηικών οργανικών ενώζεων, ποσ ονομάζονηαι μονομερή, ενώνονηαι και ζτημαηίζοσν
ΘΔΚΑ ΡΖΠ ΑΛΑΓΛΩΟΗΠΖΠ
ΘΔΚΑ ΡΖΠ ΑΛΑΓΛΩΟΗΠΖΠ 1.Απηόο πνπ ζα αλαγλσξηζηεί απνπζηάδεη γηα πνιύ θαηξό. 2.Δπηζηξέθεη κε πιαζηή ηαπηόηεηα ή κεηακνξθσκέλνο. 3.Απνκνλώλνληαη ηα δύν πξόζσπα 4.Άξζε κεηακόξθσζεο 5.Απνθάιπςε 6.Ακθηβνιίεο-απνδεηθηηθά
EL Eνωμένη στην πολυμορυία EL A8-0046/319. Τροπολογία
8.3.2016 A8-0046/319 319 Άρθρο 34 παράγραθος 1 ζηοιχείο δ (δ) 14 έηε γηα θηεληαηξηθά θάξκαθα πνπ πξννξίδνληαη γηα άιια είδε δώωλ από απηά πνπ αλαθέξνληαη ζηελ παξάγξαθν 1 ζηνηρεία α) θαη γ). (δ) 10 έηε
x x x x tan(2 x) x 2 2x x 1
ΘΕΡΙΝΟ ΣΜΗΜΑ ΜΑΘΗΜΑΣΙΚΑ Ι ΕΠΑΝΑΛΗΠΣΙΚΕ ΑΚΗΕΙ ΜΕΡΟ Ι 1. Να γίλνπλ νη γξαθηθέο παξαζηάζεηο ησλ παξαθάησ ζπλαξηήζεσλ. t ( i) e ( ii) ln( ) ( iii). Να βξεζεί ην Π.Ο., ν ηύπνο ηεο αλίζηξνθεο θαη ην Π.Τ. ησλ
Πολυεπίπεδα/Διασυμδεδεμέμα Δίκτυα
Πολυεπίπεδα/Διασυμδεδεμέμα Δίκτυα Κοιμωμικά δίκτυα (multiplex network) Έρεηε ινγαξηαζκό ζην Facebook? Έρεηε ινγαξηαζκό ζην LinkedIn? Έρεηε ινγαξηαζκό ζην Twitter? Αεροπορικές γραμμές της Ευρώπης(multiplex
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ..
ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου έλαξμεο 09.30 ιήμεο 09.45 Σην παξαθάησ ζρήκα θαίλεηαη ηκήκα ελόο πνιενδνκηθνύ ζρεδίνπ κηαο πόιεο. Οη ζθηαζκέλεο
ΜΕΛΕΣΗ E.O.K. ΜΕ ΑΙΘΗΣΗΡΑ ΘΕΗ
ΜΕΛΕΣΗ E.O.K. ΜΕ ΑΙΘΗΣΗΡΑ ΘΕΗ ΦΤΛΛΟ ΕΡΓΑΙΑ (Θεοδώρα Γιώηη, Νικόλας Καραηάζιος- Τπεύθσνη εκ/κος Λ. Παπαηζίμπα) ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΤΜΗΜΑ:.., ΗΜΕΡΟΜΗΝΙΑ:.// Σε ακαμίδην πνπ κπνξεί λα θηλείηαη ρσξίο ηξηβέο πάλσ
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γεσηέρα 10 Ηοσνίοσ 2019 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις)
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γεσηέρα Ηοσνίοσ 9 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α Α.α) Οξηζκόο ζρνιηθνύ βηβιίνπ ζει 5. Έζησ Α έλα ππνζύλνιν ηνπ.
Master Class 3. Ο Ν.Ζανταρίδης προτείνει θέματα Μαθηματικών Γ Λσκειοσ ΘΕΜΑ 1.
ΘΕΜΑ. Γηα ηελ ζπλάξηεζε f : IR IR ηζρύεη + f() f(- ) = γηα θάζε IR. Να δείμεηε όηη f() =, ΙR. Να βξείηε ηελ εθαπηόκελε (ε) ηεο C f πνπ δηέξρεηαη από ην ζεκείν (-,-) 3. Να βξείηε ην εκβαδόλ Δ(α) ηνπ ρωξίνπ
ΚΟΗΝΧΝΗΚΟ ΦΡΟΝΣΗΣΖΡΗΟ ΓΖΜΟΤ ΑΓΗΟΤ ΓΖΜΖΣΡΗΟΤ (Κ.Φ.Α.Γ.)
ΚΟΗΝΧΝΗΚΟ ΦΡΟΝΣΗΣΖΡΗΟ ΓΖΜΟΤ ΑΓΗΟΤ ΓΖΜΖΣΡΗΟΤ (Κ.Φ.Α.Γ.) ΔΞΔΣΑΣΗΚΖ ΠΔΡΗΟΓΟ ΓΔΚΔΜΒΡΗΟΤ 2016 ΗΑΝΟΤΑΡΗΟΤ 2017 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΑΡΥΔ ΟΗΚΟΝΟΜΗΚΖ ΘΔΧΡΗΑ Τρίτη 3 Ιανουαρίου 2017 ΘΔΜΑ Α Θ Δ Μ Α Σ Α ΟΜΑΓΑ ΠΡΧΣΖ
ΔΠΙΣΡΟΠΗ ΓΙΑΓΩΝΙΜΩΝ 74 ος ΠΑΝΔΛΛΗΝΙΟ ΜΑΘΗΣΙΚΟ ΓΙΑΓΩΝΙΜΟ ΣΑ ΜΑΘΗΜΑΣΙΚΑ Ο ΘΑΛΗ 19 Οκηωβρίοσ Δνδεικηικές λύζεις
ΔΛΛΗΝΙΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ Παλεπηζηεκίνπ (Διεπζεξίνπ Βεληδέινπ) 34 06 79 ΑΘΖΝΑ Τει. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Δleftheriou
Δπηιέγνληαο ην «Πξνεπηινγή» θάζε θνξά πνπ ζα ζπλδέεζηε ζηελ εθαξκνγή ζα βξίζθεζηε ζηε λέα ρξήζε.
ΑΝΟΙΓΜΑ ΝΔΑ ΥΡΗΗ 1. Γεκηνπξγείηε ηε λέα ρξήζε από ηελ επηινγή «Παξάκεηξνη/Παξάκεηξνη Δηαηξίαο/Γηαρείξηζε Δηαηξηώλ». Πιεθηξνινγείηε ηνλ θσδηθό ηεο εηαηξίαο ζαο θαη παηάηε Enter. Σηελ έλδεημε «Υξήζεηο» παηάηε
ΓΗΜΟΙΑ ΟΙΚΟΝΟΜΙΚΗ ΣΟΜΟ Γ
1 ΓΗΜΟΙΑ ΟΙΚΟΝΟΜΙΚΗ ΣΟΜΟ Γ Μάθημα 19: Φόροι ΦΟΡΟΛΟΓΙΚΑ ΤΣΗΜΑΣΑ: Προοδεσηικό, Αναλογικά και ανηίζηροθα προοδεσηικό θορολογικό ζύζηημα Μέζος και οριακός θορολογικός ζσνηελεζηής Ο κέζνο θνξνινγηθόο ζπληειεζηήο
ΦΥΣΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ. G. Mitsou
ΦΥΣΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ηαηηθή ηωλ ξεπζηώλ (Τδξνζηαηηθή) Ση είλαη ηα ξεπζηά - Γεληθά Ππθλόηεηα Πίεζε Μεηαβνιή ηεο πίεζεο ζπλαξηήζεη ηνπ βάζνπο Αξρή ηνπ Pascal Τδξνζηαηηθή πίεζε Αηκνζθαηξηθή πίεζε Απόιπηε &
x-1 x (x-1) x 5x 2. Να απινπνηεζνύλ ηα θιάζκαηα, έηζη ώζηε λα κελ ππάξρνπλ ξηδηθά ζηνπο 22, 55, 15, 42, 93, 10 5, 12
ΑΚΖΔΗ ΤΜΝΑΗΟΤ - ΚΤΚΛΟ ΠΡΩΣΟ - - ηα πνηεο ηηκέο ηνπ ηα παξαθάησ θιάζκαηα δελ νξίδνληαη ; (Τπόδεημε : έλα θιάζκα νξίδεηαη αλ ν παξνλνκαζηήο είλαη δηάθνξνο ηνπ κεδελόο) - (-) - (-) - Να απινπνηεζνύλ ηα θιάζκαηα
1. Η απιή αξκνληθή ηαιάλησζε πνπ εθηειεί έλα κηθξό ζώκα κάδαο m = 1 kg έρεη πιάηνο Α = 20 cm θαη
ΛΤΜΔΝΔ ΑΚΖΔΗ ΣΖΝ ΔΤΡΔΖ ΑΡΥΗΚΖ ΦΑΖ 1. Η αιή αξκνληθή ηαιάλησζε ν εθηειεί έλα κηθξό ζώκα κάδαο m = 1 kg έρεη ιάηνο Α = cm θαη ζρλόηεηα f = 5 Hz. Τε ρξνληθή ζηηγκή = ην κηθξό ζώκα δηέξρεηαη αό ηε ζέζε ανκάθξλζεο
Αζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training. Dipl.Biol.cand.med. Stylianos Kalaitzis
Αζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training Dipl.Biol.cand.med. Stylianos Kalaitzis Stylianos Kalaitzis Μνλνϋβξηδηζκνο 1 Γπν γνλείο, εηεξόδπγνη γηα ηνλ αιθηζκό θάλνπλ παηδηά. Πνία ε πηζαλόηεηα
Η/Υ A ΤΑΞΕΩΣ ΑΕ 2010-2011. Συστήματα Αρίθμησης. Υποπλοίαρχος Ν. Πετράκος ΠΝ
Συστήματα Αρίθμησης Υποπλοίαρχος Ν. Πετράκος ΠΝ 1 Ειζαγωγή Τν bit είλαη ε πην βαζηθή κνλάδα κέηξεζεο. Είλαη κία θαηάζηαζε on ή off ζε έλα ςεθηαθό θύθισκα. Άιιεο θνξέο είλαη κία θαηάζηαζε high ή low voltage
Απάληεζε: Λάθορ (2 ο κεθάλαιο)
ΘΔΜΑ Α ΑΡΧΕ ΟΙΙΚΟΝΟΜΙΙΚΗ ΘΕΩΡΙΙΑ ΑΠΑΝΣΗΕΙΙ ΠΑΝΕΛΛΗΝΙΙΩΝ 204 ΟΜΑΓΑ ΠΡΩΤΗ Α. Να ταρακηηρίζεηε ηις προηάζεις ποσ ακολοσθούν ως Σωζηές ή Λανθαζμένες α. Όηαλ ην νξηαθό πξντόλ κεηώλεηαη, αξρίδεη ζπγρξόλσο λα
Εςθςή ζςζηήμαηα επισειπήζεων και αξιολόγηζη
Εςθςή ζςζηήμαηα επισειπήζεων και αξιολόγηζη Μάθημα 11 Τμήμα Μάπκεηινγκ και Διοίκηζηρ Λειηοςπγιών Τα δηαγξάκκαηα θαηάζηαζεο (state diagrams) ρξεζηκνπνηνύληαη γηα λα βνεζήζνπλ ηνλ πξνγξακκαηηζηή λα θαηαιάβεη
ΣΟ ΤΣΖΜΑ ΔΛΑΣΖΡΗΟ - ΩΜΑ
ΣΟ ΤΣΖΜΑ ΔΛΑΣΖΡΗΟ - ΩΜΑ Σε όια ηα πξνβιήκαηα πνπ ζα αληηκεηωπίζνπκε, ην ειαηήξην ζα είλαη αβαξέο θαη ζα ηθαλνπνηεί ην λόκν ηνπ Hooke (ηδαληθό ειαηήξην), δειαδή ε δύλακε πνπ αζθεί έλα ηδαληθό ειαηήξην έρεη
ΜΗΧΑΝΟΛΟΓΙΚΟ ΣΧΔΓΙΟ ΙΙ
1 Σ. Δ. Ι. ΓΤ Σ Ι Κ Η Μ Α Κ Δ Γ Ο Ν Ι Α ΥΟΛΗ ΣΔΥΝΟΛΟΓΙΚΩΝ ΔΦΑΡΜΟΓΩΝ Σ Μ Η Μ Α Μ Η Υ Α Ν ΟΛΟ Γ Ι Α Δξγαζηήξην Μεραλνπξγηθώλ Καηεξγαζηώλ & CAD ΜΗΧΑΝΟΛΟΓΙΚΟ ΣΧΔΓΙΟ ΙΙ ΜΑΘΗΜΑ 2: Πνηόηεηα Δπηθάλεηαο Γξ. Βαξύηεο
ΛΙΜΝΗ ΤΣΑΝΤ. Σρήκα 1. Σρήκα 2
ΛΙΜΝΗ ΤΣΑΝΤ Τν Σρήκα 1 δείρλεη ηελ αιιαγή ηεο ζηάζκεο ηεο Λίκλεο Τζαλη, ζηε Σαράξα ηεο Βόξεηαο Αθξηθήο. Η Λίκλε Τζαλη εμαθαλίζηεθε ηειείσο γύξσ ζην 20.000 π.χ., θαηά ηε δηάξθεηα ηεο ηειεπηαίαο επνρήο ησλ
B-Δέλδξα. Τα B-δέλδξα ρξεζηκνπνηνύληαη γηα ηε αλαπαξάζηαζε πνιύ κεγάισλ ιεμηθώλ πνπ είλαη απνζεθεπκέλα ζην δίζθν.
B-Δέλδξα Τα B-δέλδξα ρξεζηκνπνηνύληαη γηα ηε αλαπαξάζηαζε πνιύ κεγάισλ ιεμηθώλ πνπ είλαη απνζεθεπκέλα ζην δίζθν. Δέλδξα AVL n = 2 30 = 10 9 (πεξίπνπ). 30
(γ) Να βξεζεί ε ρξνλνεμαξηώκελε πηζαλόηεηα κέηξεζεο ηεο ζεηηθήο ηδηνηηκήο ηνπ ηειεζηή W.
ΚΒΑΝΤΙΚΗ ΦΥΣΙΚΗ Ι Τειηθή Εμέηαζε: 5 Σεπηέκβξε 6 (Δηδάζθσλ: ΑΦ Τεξδήο) ΘΕΜΑ Θεσξνύκε θβαληηθό ζύζηεκα πνπ πεξηγξάθεηαη από Φακηιηνληαλή Η, ε νπνία ζε κνξθή πίλαθα ρξεζηκνπνηώληαο ηηο ηδηνζπλαξηήζεηο, θαη
ΥΛΙΚΑ ΠΑΡΟΝ ΚΑΙ ΜΕΛΛΟΝ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ ΣΜΗΜΑ ΕΠΙΣΗΜΗ ΚΑΙ ΣΕΧΝΟΛΟΓΙΑ ΤΛΙΚΩΝ
ΥΛΙΚΑ ΠΑΡΟΝ ΚΑΙ ΜΕΛΛΟΝ Ι ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ ΣΜΗΜΑ ΕΠΙΣΗΜΗ ΚΑΙ ΣΕΧΝΟΛΟΓΙΑ ΤΛΙΚΩΝ Άδειεσ Χρήςησ -Το παρόν εκπαιδευτικό υλικό υπόκειται ςτην άδεια χρήςησ Creative Commons και ειδικότερα Αναφορά - Μη εμπορική
Constructors and Destructors in C++
Constructors and Destructors in C++ Σύνθεζη Πνιύ ζπρλά ζηε C++ κία θιάζε κπνξεί λα πεξηέρεη ζαλ κέιεδεδνκέλα αληηθείκελα άιισλ θιάζεσλ. Πνηα είλαη ε ζεηξά κε ηελ νπνία δεκηνπξγνύληαη θαη θαηαζηξέθνληαη
x x 15 7 x 22. ΘΔΜΑ Α 3x 2 9x 4 3 3x 18x x 5 y 9x 4 Α1. i. . Η ιύζε είλαη y y x 3y y x 3 2x 6y y x x y 6 x 2y 1 y 6
ΑΠΑΝΣΗΔΙ ΜΑΘΗΜΑ ΑΛΓΔΒΡΑ Β ΛΤΚΔΙΟΤ ΗΜ/ΝΙΑ 4 ΟΚΣΩΒΡΙΟΤ 08 ΓΙΑΡΚΔΙΑ ΩΡΔ ΘΔΜΑ Α Α i 9 4 8 8 5 5 9 4 9 4 9 4 9 4 9 4 4 Η ύζε είλαη,, 6 6 6 5 7 0 5 Γηα 5 ε εμίζωζε 7 Η ύζε είλαη,, 5 γίλεηαη : 5 7 5 7 i 4 4 4
7. ΚΑΤΑΧΩΡΗΤΕΣ ΕΡΩΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ. 3. Έλαο θαηαρσξεηήο SISO ησλ 4 bits έρεη: α) Μία είζνδν, β) Δύν εηζόδνπο, γ) Σέζζεξεηο εηζόδνπο.
7. ΚΑΤΑΧΩΡΗΤΕΣ ΕΡΩΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ 1. Ση είλαη έλαο θαηαρσξεηήο; O θαηαρσξεηήο είλαη κηα νκάδα από flip-flop πνπ κπνξεί λα απνζεθεύζεη πξνζσξηλά ςεθηαθή πιεξνθνξία. Μπνξεί λα δηαηεξήζεη ηα δεδνκέλα ηνπ
ΓΔΧΜΔΣΡΙΑ ΓΙΑ ΟΛΤΜΠΙΑΓΔ
ΒΑΓΓΔΛΗ ΦΤΥΑ 2009 ελίδα 2 από 9 ΔΤΘΔΙΔ SIMSON 1 ΒΑΙΚΔ ΠΡΟΣΑΔΙ 1.1 ΔΤΘΔΙΑ SIMSON Γίλεηαη ηξίγσλν AB θαη ηπρόλ ζεκείν ηνπ πεξηγεγξακκέλνπ θύθινπ ηνπ. Αλ 1, 1 θαη 1 είλαη νη πξνβνιέο ηνπ ζηηο επζείεο πνπ
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου ΠΡΟΒΛΗΜΑ Σε έλα ηνπξλνπά βόιετ δήισζαλ ζπκκεηνρή νκάδεο Γπκλαζίσλ ηεο Κύπξνπ.
ΜΑΘΗΜΑΤΙΚΑ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ Β ΛΥΚΔΙΟΥ ΤΔΣΤ(1) ΣΤΑ ΓΙΑΝΥΣΜΑΤΑ
ΜΑΘΗΜΑΤΙΚΑ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ Β ΛΥΚΔΙΟΥ ΤΔΣΤ() ΣΤΑ ΓΙΑΝΥΣΜΑΤΑ ΘΔΜΑ : Αλ ηζρύεη 3 3, λα δείμεηε όηη ηα ζεκεία Μ, Ν ηαπηίδνληαη. ΘΔΜΑ : Α Β Μ Γ Σην παξαπάλσ ζρήκα είλαη 3. α) Γείμηε όηη
TOOLBOOK (μάθημα 2) Δεκηνπξγία βηβιίνπ θαη ζειίδσλ ΠΡΟΑΡΜΟΓΗ: ΒΑΛΚΑΝΙΩΣΗ ΔΗΜ. ΕΚΠΑΙΔΕΤΣΙΚΟ ΠΕ19 1 TOOLBOOK ΜΑΘΗΜΑ 2
TOOLBOOK (μάθημα 2) Δεκηνπξγία βηβιίνπ θαη ζειίδσλ ΕΚΠΑΙΔΕΤΣΙΚΟ ΠΕ19 1 Δημιουργία σελίδων και βιβλίων Έλα θαηλνύξην βηβιίν πεξηέρεη κία άδεηα ζειίδα κε έλα άδεην background. Δελ κπνξνύκε λα μερσξίζνπκε
Σήκαηα Β Α Γ Γ Δ Λ Η Σ Ο Ι Κ Ο Ν Ο Μ Ο Υ Γ Ι Α Λ Δ Ξ Η - ( 2 ) ΕΙΣΑΓΨΓΗ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΨΝΙΕΣ
Σήκαηα 1 Β Α Γ Γ Δ Λ Η Σ Ο Ι Κ Ο Ν Ο Μ Ο Υ Γ Ι Α Λ Δ Ξ Η - ( 2 ) Σήκαηα Οξηζκόο ζήκαηνο Ταμηλόκεζε ζεκάησλ Σεηξέο Fourier Μεηαζρεκαηηζκόο Fourier Σπλέιημε Σπζρέηηζε θαη Φαζκαηηθή Ππθλόηεηα 2 Οξηζκόο Σήκαηνο
Δξγαιεία Καηαζθεπέο 1 Σάμε Δ Δ.Κ.Φ.Δ. ΥΑΝΗΩΝ ΠΡΩΣΟΒΑΘΜΗΑ ΔΚΠΑΗΓΔΤΖ. ΔΝΟΣΖΣΑ 2 ε : ΤΛΗΚΑ ΩΜΑΣΑ ΔΡΓΑΛΔΗΑ ΚΑΣΑΚΔΤΔ. Καηαζθεπή 1: Ογθνκεηξηθό δνρείν
Δξγαιεία Καηαζθεπέο 1 Δ.Κ.Φ.Δ. ΥΑΝΗΩΝ ΠΡΩΣΟΒΑΘΜΗΑ ΔΚΠΑΗΓΔΤΖ ΔΝΟΣΖΣΑ 2 ε : ΤΛΗΚΑ ΩΜΑΣΑ ΔΡΓΑΛΔΗΑ ΚΑΣΑΚΔΤΔ Καηαζθεπή 1: Ογθνκεηξηθό δνρείν Καηαζθεπάδνπκε έλα νγθνκεηξηθό δνρείν από πιαζηηθό κπνπθάιη λεξνύ
6 η Εργαζηηριακή Άζκηζη Επαλήθεσζη Λειηοσργίας Βαζικών Φλιπ-Φλοπ
6 η Εργαζηηριακή Άζκηζη Επαλήθεσζη Λειηοσργίας Βαζικών Φλιπ-Φλοπ Σηα πιαίζηα ηεο έθηεο εξγαζηεξηαθήο άζθεζεο ζα ρξεζηκνπνηεζεί απνθιεηζηηθά ην πεξηβάιινλ αλάπηπμεο νινθιεξσκέλσλ θπθισκάησλ IDL-800 Digital
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙΜΟ Α ΛΤΚΔΙΟΤ. Ημεπομηνία: 10/12/11 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΔΙΝΟΜΔΝΔ ΛΤΔΙ
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙΜΟ Α ΛΤΚΔΙΟΤ Ημεπομηνία: 10/12/11 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΔΙΝΟΜΔΝΔ ΛΤΔΙ Πρόβλημα 1: α) Να δείμεηε όηη αλ ζεηηθνί πξαγκαηηθνί αξηζκνί ηζρύεη: β) Αλ είλαη
ΔΦΑΡΜΟΜΔΝΑ ΜΑΘΗΜΑΣΙΚΑ ΣΗ ΧΗΜΔΙΑ Ι ΘΔΜΑΣΑ Α επηέκβξηνο 2009. 1. Να ππνινγηζηνύλ νη κεξηθέο παξάγσγνη πξώηεο ηάμεο ηεο ζπλάξηεζεο f(x,y) =
ΘΔΜΑΣΑ Α επηέκβξηνο 9. Να ππνινγηζηνύλ νη κεξηθέο παξάγσγνη πξώηεο ηάμεο ηεο ζπλάξηεζεο f(,y) = y.. Να ππνινγηζηνύλ ηα νινθιεξώκαηα: a) ln b) a) 3cos b) e sin 4. Να ππνινγηζηεί ην νινθιήξσκα: S ( y) 3
Δξγαιεία Καηαζθεπέο 1 Σάμε Σ Δ.Κ.Φ.Δ. ΥΑΝΙΧΝ ΠΡΧΣΟΒΑΘΜΙΑ ΔΚΠΑΙΓΔΤΗ. ΔΝΟΣΗΣΑ 11 ε : ΦΧ ΔΡΓΑΛΔΙΑ ΚΑΣΑΚΔΤΔ. Καηαζθεπή 1: Φαθόο κε ζσιήλα.
Δξγαιεία Καηαζθεπέο 1 Δ.Κ.Φ.Δ. ΥΑΝΙΧΝ ΠΡΧΣΟΒΑΘΜΙΑ ΔΚΠΑΙΓΔΤΗ ΔΝΟΣΗΣΑ 11 ε : ΦΧ ΔΡΓΑΛΔΙΑ ΚΑΣΑΚΔΤΔ Καηαζθεπή 1: Φαθόο κε ζσιήλα Γηαθξάγκαηα Δξγαιεία Καηαζθεπέο 2 Η θαηαζθεπή πεξηγξάθεηαη ζηελ αληίζηνηρε ελόηεηα
Ηλεκηπονικά Απσεία και Διεπαθέρ
MENU ΑΝΑΦΟΡΕΣ Ηλεκηπονικά Απσεία και Διεπαθέρ Σε απηό ην ζεκείν ηεο εθαξκνγήο δεκηνπξγνύκε ηα δηάθνξα Ηιεθηξνληθά Αξρεία έηζη ώζηε λα ηα ππνβάινπκε ζηνπο δηάθνξνπο θνξείο. Γηα λα επηιέμνπκε έλα είδνο αξρείνπ
ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 08/09/2014
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 204-205 ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 08/09/204 A ΟΜΑΓΑ Οδηγία: Να γράυεηε ζηο ηεηράδιο ζας ηον αριθμό κάθε μιας από ηις παρακάηφ ερφηήζεις Α.-Α.8 και