μαγνητικό πεδίο τυχαίας κατεύθυνσης

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "μαγνητικό πεδίο τυχαίας κατεύθυνσης"

Transcript

1 Σπιν 1 μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο τυχαίας κατεύθυνσης 1) Ηλεκτρόνιο βρίσκεται μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο B B ˆ ˆ ˆ 0xex B0 yey B0 zez, όπου B0 x, B0 y, B 0z πραγματικές σταθερές. Το ηλεκτρόνιο είναι αναγκασμένο να κινείται σε μια πολύ μικρή περιοχή του χώρου, με αμελητέες διαστάσεις, έτσι ώστε ο μοναδικός βαθμός ελευθερίας του είναι το σπιν του. Τη χρονική στιγμή t 0, η κατάσταση του σπιν του ηλεκτρονίου αναπαρίσταται, στη βάση των κοινών ιδιοκαταστάσεων των τελεστών Ŝ και ˆz, δηλαδή στη βάση z;, z;, από τον σπίνορα 0. ) Υπολογίστε τον σπίνορα t που περιγράφει ακριβέστερα, που αναπαριστά την κατάσταση του σπιν του ηλεκτρονίου τη χρονική στιγμή 0 0. t. Με άλλα λόγια, υπολογίστε τη χρονική εξέλιξη του σπίνορα ) Υπολογίστε τον σπίνορα t αν, τη χρονική στιγμή t 0, η κατάσταση του σπιν του ηλεκτρονίου είναι η ιδιοκατάσταση του τελεστή ˆz με ιδιοτιμή, δηλαδή η κατάσταση z;. Αν, επιπρόσθετα, το ομογενές μαγνητικό πεδίο βρίσκεται στο επίπεδο xy, υπολογίστε την πιθανότητα μιας πλήρους αντιστροφής του σπιν στον άξονα z τη χρονική στιγμή t 0. Λύση ) Θα χρησιμοποιήσουμε σφαιρικές συντεταγμένες για να γράψουμε τις συνιστώσες του μαγνητικού πεδίου, καθώς αυτό θα μας διευκολύνει, όπως θα διαπιστώσουμε παρακάτω. Σε σφαιρικές συντεταγμένες, οι συνιστώσες του μαγνητικού πεδίου γράφονται B0 x B scos (1) B0 y B ss () B0 z B cos (3) όπου 0,, 0, η πολική και η αζιμουθιακή γωνία, αντίστοιχα. Τότε το μαγνητικό πεδίο B γράφεται B B s coseˆ s seˆ coseˆ (4) x y z Όμως το διάνυσμα s coseˆ s s eˆ cos eˆ είναι το μοναδιαίο διάνυσμα x y z στην κατεύθυνση που ορίζουν οι γωνίες και. Αν συμβολίσουμε το μοναδιαίο αυτό διάνυσμα με ˆ, θα έχουμε ˆ s coseˆ s seˆ cos eˆ (5) x y z Με τη βοήθεια της (5), η (4) γράφεται

2 B B ˆ (6) Επειδή το ηλεκτρόνιο είναι πρακτικά σε ηρεμία, το σπιν του είναι ο μοναδικός βαθμός ελευθερίας του. Έτσι, η μαγνητική (διπολική) ροπή του ηλεκτρονίου οφείλεται μόνο στο σπιν του, δηλαδή ˆ ˆ (7) όπου είναι ο γυρομαγνητικός λόγος του σπιν του ηλεκτρονίου. Η μαγνητική δυναμική ενέργεια του ηλεκτρονίου μέσα στο μαγνητικό πεδίο είναι ˆ ˆ ˆ U ˆ B B ˆ B ˆ B ˆ ˆ όπου ˆ ˆ είναι ο τελεστής του σπιν στον άξονα που ορίζει το διάνυσμα ˆ, είναι δηλαδή η προβολή του σπιν στον άξονα που ορίζει το διάνυσμα ˆ. Έτσι, λοιπόν, Uˆ B ˆ (8) Επειδή το ηλεκτρόνιο πρακτικά ακινητεί, η (8) είναι και η Χαμιλτονιανή του, δηλαδή Hˆ B ˆ (9) Από την (9) βλέπουμε ότι η ποσότητα ˆ, ως τελεστής στροφορμής, έχει διαστάσεις B έχει διαστάσεις 1. Πράγματι, ο τελεστής t, δηλαδή διαστάσεις ενέργειας επί χρόνο. Για να έχει το γινόμενο Bˆ διαστάσεις ενέργειας όπως πρέπει αφού ισούται με τη Χαμιλτονιανή θα πρέπει η ποσότητα Έτσι, η ποσότητα B να έχει διαστάσεις 1 t. B έχει διαστάσεις κυκλικής συχνότητας,. Η ποσότητα Bt είναι αδιάστατη και μπορούμε να τη θεωρήσουμε ως μια (χρονοεξαρτώμενη) φάση. Στη βάση z;, z;, οι τελεστές ˆ, ˆ x y, και ˆz αναπαριστώνται, αντίστοιχα, από τους πίνακες x 0 1, 1 0 y 0, 0 z Στην ίδια βάση, ο τελεστής ˆ αναπαρίσταται από τον πίνακα cos s exp (10) s exp cos Για την απόδειξη της (10), δείτε το Παράρτημα στο τέλος της άσκησης. Στη βάση z;, z;, η Χαμιλτονιανή (9) αναπαρίσταται από τον πίνακα

3 H B (11) Με τη βοήθεια της (10), η (11) γράφεται B cos s exp H (1) s exp cos Ο πίνακας (1), όπως και ο πίνακας (10), είναι ερμιτιανός, αλλά δεν είναι διαγώνιος. Όπως αποδεικνύουμε στο Παράρτημα, οι ιδιοτιμές του πίνακα είναι, και αυτές είναι οι ιδιοτιμές και του αντίστοιχου τελεστή ˆ., η προβολή του σπιν σε έναν τυχαίο άξονα είναι ή, όπως συμβαίνει και στους κύριους άξονες x,y,z. B Από τη σχέση (11) συμπεραίνουμε ότι οι ιδιοτιμές του H είναι, και αυτές είναι οι ιδιοτιμές και του αντίστοιχου τελεστή Ĥ, δηλαδή της Χαμιλτονιανής. Επομένως, οι δυνατές τιμές της ενέργειας του σπιν του ηλεκτρονίου μέσα στο B ομογενές μαγνητικό πεδίο τυχαίας διεύθυνσης είναι. Τη χρονική στιγμή t 0, η κατάσταση του σπιν του ηλεκτρονίου, στη βάση z;, z;, αναπαρίσταται από τον σπίνορα t όπου at bt a b (13) 1 Μάς δίνεται ότι ο αρχικός σπίνορας είναι χρονική εξέλιξη του σπίνορα 0 και μάς ζητείται να υπολογίσουμε τη 0 αν η Χαμιλτονιανή αναπαρίσταται από τον πίνακα (1). Η χρονική εξέλιξη μιας κβαντικής κατάστασης καθορίζεται, όπως ξέρουμε, από την εξίσωση του chrodger, η οποία για τον σπίνορα t γράφεται t H t t (14) Αν αντικαταστήσουμε τις (1) και (13) στη (14), καταλήγουμε σε ένα συζευγμένο ομογενές σύστημα δύο γραμμικών διαφορικών εξισώσεων πρώτης τάξης, το οποίο δεν μπορούμε να αποσυζεύξουμε παραγωγίζοντας άλλη μια φορά, όπως κάναμε στην προηγούμενη άσκηση. Για να λύσουμε το σύστημα, πρέπει να διαγωνοποιήσουμε τον H πίνακα του συστήματος, ο οποίος, όπως βλέπουμε από τη (14), είναι ο πίνακας, Ht και στη συνέχεια να υπολογίσουμε τον εκθετικό πίνακα exp, που δεν είναι

4 Ht ˆ άλλος από την αναπαράσταση του τελεστή της χρονικής εξέλιξης exp για την περίπτωση χρονοανεξάρτητης Χαμιλτονιανής, όπως είναι η Χαμιλτονιανή του συστήματός μας. Ο ζητούμενος σπίνορας t U t 0 όπου U t (15) Ht exp (16) t τότε γράφεται ο τελεστής (πίνακας) της χρονικής εξέλιξης του συστήματος. Με τη βοήθεια της (11), η (16) γράφεται U t exp (17) Για να υπολογίσουμε τον πίνακα (17), θα διαγωνοποιήσουμε πρώτα τον πίνακα. Οι ιδιοτιμές του είναι τα είναι cos (με ιδιοτιμή ) s exp s (με ιδιοτιμή cos exp και τα αντίστοιχα, κανονικοποιημένα ιδιοδιανύσματα ) Για τον υπολογισμό των προηγούμενων ιδιοδιανυσμάτων, ανατρέξτε στο Παράρτημα στο τέλος της άσκησης. Ο πίνακας που διαγωνοποιεί τον είναι ο πίνακας cos s P s exp cos exp Ο αντίστροφος του P είναι ο πίνακας P 1 (18) cos exp s 1 (19) P s exp cos

5 όπου P είναι η ορίζουσα του P, δηλαδή cos s P cos exp s exp s exp cos exp cos s exp exp P exp (0) 1 a b Θυμίζουμε ότι για έναν x πίνακα B με μη μηδενική ορίζουσα, c d 1 ad cb 0, υπάρχει ο αντίστροφος πίνακας B, ο οποίος είναι 1 1 d b B ad cb c a 1 1 Μπορούμε εύκολα, κάνοντας τις πράξεις, να διαπιστώσουμε ότι BB B B I. Με τη βοήθεια της (0), η (19) γράφεται P 1 cos exp s cos s exp 1 exp s exp cos s cos exp P 1 cos s exp (1) s cos exp Αφού ο P διαγωνοποιεί τον, ισχύει ότι 1 PP () όπου είναι ο διαγωνοποιημένος πίνακας, με στοιχεία τις ιδιοτιμές του, με τη σειρά που τοποθετήσαμε τα αντίστοιχα ιδιοδιανύσματα ως στήλες του πίνακα P. Επομένως z

6 (3) z Οπότε, η () γράφεται 1 PzP (4) Με τη βοήθεια της (4) παίρνουμε P P P P P P z z z I Έστω ότι Τότε P P z 1 P P P P P P z z z I Επομένως 1 Pz P (5) * για κάθε Ο τελεστής χρονικής εξέλιξης (17) γράφεται U t Όμως exp t t πίνακας αριθμός (μεταβλητή) Επομένως 0! 1 U t Pz P!!! P P z 0! 1

7 1 U t P z P (6) 0! Επειδή ο z είναι διαγώνιος, ο z z Έστω ότι z Τότε z υπολογίζεται εύκολα. Πράγματι z (7) 0 1 z για κάθε Για 0 *, η (7) ισχύει ταυτοτικά I I. Με τη βοήθεια της (7), η (6) γράφεται

8 ! 0 1 U t P P !! 0 1 0! P P P P exp 0 0! 0 exp 0! P P P P 1 exp 0 0 exp U t P P (8) Όμως 1 exp 0 0 exp P P exp 0 cos s cos s exp s exp cos exp s cos exp 0 exp

9 exp cos exp s exp cos s s exp cos exp exp s exp cos exp Όμως cos exp s exp cos s cos cos s s cos s 1 cos cos s cos cos cos s s cos s cos exp s exp cos s cos Επίσης είναι (30)

10 s cos exp exp exp s cos exp s s exp s s cos exp exp exp s exp s (31) Από την (31) παίρνουμε s cos exp exp exp s exp s (3) Επίσης είναι s exp cos exp cos s cos s cos s cos s 1 cos cos s cos s cos s cos cos s s exp cos exp cos s cos Με τη βοήθεια των (30) (33), ο πίνακας (9) γράφεται (33)

11 U t cos s cos s exp s (34) s exp s cos s cos Ο πίνακας (34) είναι ο πίνακας της χρονικής εξέλιξης του συστήματός μας, δηλαδή ενός ακίνητου ηλεκτρονίου ουσιαστικά ενός σπιν 1 που βρίσκεται μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο τυχαίας κατεύθυνσης, που 0, και από την αζιμουθιακή γωνία καθορίζεται από την πολική γωνία 0, ή, ισοδύναμα, από το διάνυσμα ˆ s coseˆ s seˆ cos eˆ. Ο συζυγής πίνακας U t U είναι ο x y z cos s cos s exp s (35) s exp s cos s cos Από τις (34) και (35) μπορούμε να δείξουμε, κάνοντας τις σχετικές πράξεις, ότι ο πίνακας U είναι μοναδιακός, δηλαδή UU U U I Προτρέπουμε τον αναγνώστη να κάνει τις σχετικές πράξεις. Έχοντας υπολογίσει τον πίνακα U t από τη σχέση (34), υπολογίζουμε τη χρονική εξέλιξη του σπίνορα 0 από τη σχέση (15), t U t 0. ) Μάς δίνεται ότι, τη χρονική στιγμή t 0, η κατάσταση του σπιν του ηλεκτρονίου είναι η κατάσταση ; z. Στη βάση z;, z; 0 αναπαρίσταται από τον σπίνορα. Επομένως (36) 1, η κατάσταση z; Η χρονική εξέλιξη του σπίνορα (36) δίνεται από τη σχέση (15) με τη βοήθεια του πίνακα (34).

12 t U t 0 cos s cos s exp s 0 1 s exp s cos s cos Bt sexp s cos s cos t Bt sexp s (37) cos s cos Βλέπουμε ότι για t 0, η (37) μάς δίνει τον αρχικό σπίνορα Επίσης από την (37) παίρνουμε t t 0, όπως πρέπει. 1 Bt sexp s s exp s cos s cos cos s cos s exp s s exp s cos s cos cos s cos s s cos s cos s s cos cos s cos 1 1

13 t t 1 Ο σπίνορας (37) είναι κανονικοποιημένος. Αυτό είναι αναμενόμενο, αφού ο αρχικός 0 σπίνορας είναι κανονικοποιημένος και ο πίνακας χρονικής εξέλιξης (34) είναι 1 μοναδιακός, επομένως διατηρεί το μέτρο. Το ότι ο πίνακας της χρονικής εξέλιξης είναι μοναδιακός είναι απόρροια του γεγονότος ότι ο πίνακας της Χαμιλτονιανής, δηλαδή ο πίνακας (1), είναι ερμιτιανός. Αν, επιπρόσθετα, το μαγνητικό πεδίο B βρίσκεται στο επίπεδο xy, τότε B 0 0, B0 z 0 B cos 0 Για, ο σπίνορας (37) γράφεται t Bt exp s (38) Bt cos 0 Παρατηρήστε ότι για t 0, ο σπίνορας (38) μάς δίνει τον αρχικό σπίνορα, ως 1 οφείλει. Αν, μια χρονική στιγμή t 0, το σπιν αντιστραφεί στον άξονα z, δηλαδή αν η κατάσταση του σπιν του ηλεκτρονίου είναι η κατάσταση z;, τότε έχουμε πλήρη αντιστροφή του σπιν στον άξονα z. 1 Στη βάση z;, z;, η κατάσταση z; αναπαρίσταται από τον σπίνορα. 0 Το πλάτος της πιθανότητας, τη χρονική στιγμή t 0, η κατάσταση του σπιν του ηλεκτρονίου να είναι η κατάσταση z;, δηλαδή να συμβεί πλήρης αντιστροφή του σπιν στον άξονα z, είναι Bt exp s Bt 1 0 exp s Bt cos Η αντίστοιχη πιθανότητα είναι

14 Pz-flp exp s s P Αν z-flp s Bt (39) s t 1, B Όταν t P 1 z-flp 1, το οποίο σημαίνει ότι το σπιν στον άξονα z B είναι πλήρως αντεστραμμένο. Παράρτημα - Η προβολή του σπιν σε έναν τυχαίο άξονα Ορίζουμε την προβολή του σπιν σε έναν τυχαίο άξονα που ορίζεται από το μοναδιαίο διάνυσμα (5), ως το εσωτερικό γινόμενο του τελεστή του σπιν με το μονάδιαιο διάνυσμα, δηλαδή ˆ όπου ˆ ˆ (1) ˆ s coseˆ s seˆ cos eˆ () και ˆ ˆ eˆ ˆ eˆ ˆ eˆ (3) x x y x z x x y z Με τη βοήθεια των () και (3), η (1) γράφεται ˆ ˆ s cos ˆ s s ˆ cos (4) x y z Στη βάση z;, z;, οι τελεστές ˆ, ˆ, ˆ x y z αναπαρίστανται από τους πίνακες x, y, z Επομένως, στη βάση z;, z;, ο τελεστής ˆ αναπαρίσταται από τον πίνακα

15 s cos s s cos cos s cos s s s cos s s cos cos s cos s s cos s cos cos s exp s exp cos cos s exp (5) s exp cos Όπως βλέπουμε από την (5), ο πίνακας είναι ερμιτιανός, ως οφείλει, αφού παριστάνει παρατηρήσιμο μέγεθος (την προβολή του σπιν σε έναν τυχαίο άξονα). Ας βρούμε τώρα τις ιδιοτιμές και τα ιδιοδιανύσματα του πίνακα. Η εξίσωση ιδιοτιμών του πίνακα γράφεται cos s exp x x s exp cos y y cos s exp x x s exp cos y y cos s exp x 0 (6) y s exp cos x 0 x Πρέπει, διαφορετικά το διάνυσμα είναι γραμμικά εξαρτημένο και y 0 y επομένως δεν μπορεί να είναι ιδιοδιάνυσμα. Έτσι, η ορίζουσα του ομογενούς συστήματος (6) πρέπει να είναι μηδέν, δηλαδή cos s exp s exp cos 0 cos cos s 0 cos cos s 0 cos cos s 0 s cos 1 cos s

16 , οι ιδιοτιμές του πίνακα, επομένως και του αντίστοιχου τελεστή ˆ είναι. Αυτό σημαίνει ότι η προβολή του σπιν σε έναν τυχαίο άξονα μπορεί να έχει δύο τιμές, και, όπως στους άξονες x,y,z. Ας βρούμε τώρα τα ιδιοδιανύσματα. Για, το σύστημα (6) γράφεται cos 1 s exp x cos 1 x s exp y 0 0 s exp cos 1 y s exp x cos 1 y cos 1 x s exp y 0 (7) s exp x cos 1 y 0 Η ορίζουσα του ομογενούς συστήματος (7) είναι μηδέν, οπότε οι δύο εξισώσεις είναι γραμμικά εξαρτημένες. Η πρώτη εξίσωση μάς δίνει 1 cos x y y x (8) s cos 1 s exp 0 exp Για να γράψουμε την (8) έχουμε σιωπηλά θεωρήσει ότι s 0, δηλαδή 0,. Θυμίζουμε ότι 0, τις περιπτώσεις όπου 0 ή.. Ωστόσο, τα ιδιοδιανύσματα που θα βρούμε καλύπτουν και Αν χρησιμοποιήσουμε τις γνωστές τριγωνομετρικές ταυτότητες cos 1 s και s s cos η (8) γράφεται s s y exp x y exp x (9) s cos cos Επομένως, το ιδιοδιάνυσμα του πίνακα με ιδιοτιμή είναι το x s exp x cos Από τη συνθήκη κανονικοποίησης θα πάρουμε

17 s cos 1 s s 1 1 x exp x 1 x x cos cos cos 0, x cos x cos Επιλέγουμε, λαμβάνοντας υπόψη τη συμμετρία φάσης των κβαντικών καταστάσεων, x cos Έτσι, το κανονικοποιημένο ιδιοδιάνυσμα του πίνακα με ιδιοτιμή είναι το cos cos s exp cos s exp cos Το προηγούμενο κανονικοποιημένο ιδιοδιάνυσμα αναπαριστά, στη βάση z;, z;, την ιδιοκατάσταση του τελεστή ˆ με ιδιοτιμή (σπιν-πάνω στον άξονα ). cos ; (10) s exp Με τον ίδιο τρόπο βρίσκουμε ότι το κανονικοποιημένο ιδιοδιάνυσμα του πίνακα με ιδιοτιμή s cos exp (σπιν-κάτω στον άξονα ) είναι το s ; (11) cos exp

18 Σπύρος Κωνσταντογιάννης Φυσικός, M.c.

μαγνητικό πεδίο παράλληλο στον άξονα x

μαγνητικό πεδίο παράλληλο στον άξονα x Σπιν μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο παράλληλο στον άξονα ) Ηλεκτρόνιο βρίσκεται μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο με κατεύθυνση στα θετικά του άξονα, δηλαδή e,

Διαβάστε περισσότερα

(ταλαντούμενο) μαγνητικό πεδίο τυχαίας κατεύθυνσης Επίλυση με αλλαγή βάσης

(ταλαντούμενο) μαγνητικό πεδίο τυχαίας κατεύθυνσης Επίλυση με αλλαγή βάσης Σπιν 1 μέσα σε χρονικά μεταβαλλόμενο (ταλαντούμενο) μαγνητικό πεδίο τυχαίας κατεύθυνσης Επίλυση με αλλαγή βάσης Έστω ηλεκτρόνιο μέσα σε μαγνητικό πεδίο cos B B t, όπου B, και si cose si sie cos e είναι

Διαβάστε περισσότερα

Παραμαγνητικός συντονισμός

Παραμαγνητικός συντονισμός Παραμαγνητικός συντονισμός B B teˆ teˆ B eˆ, όπου Έστω ηλεκτρόνιο σε μαγνητικό πεδίο cos sin x y z B, B. Θεωρούμε ότι η σταθερή συνιστώσα του μαγνητικού πεδίου, Be, ˆz είναι ισχυρότερη από τη χρονοεξαρτώμενη

Διαβάστε περισσότερα

Σπιν 1 2. Γενικά. Ŝ και S ˆz γράφονται. ιδιοκαταστάσεις αποτελούν ορθοκανονική βάση στον χώρο των καταστάσεων του σπιν 1 2.

Σπιν 1 2. Γενικά. Ŝ και S ˆz γράφονται. ιδιοκαταστάσεις αποτελούν ορθοκανονική βάση στον χώρο των καταστάσεων του σπιν 1 2. Σπιν Γενικά Θα χρησιμοποιήσουμε τις γενικές σχέσεις που αποδείξαμε στην ανάρτηση «Εύρεση των ιδιοτιμών της στροφορμής», που, όπως είδαμε, ισχύουν για κάθε γενική στροφορμή ˆ J με συνιστώσες Jˆ, Jˆ, J ˆ,

Διαβάστε περισσότερα

Σπιν 1/2. Γενικά. 2 Υπενθυμίζουμε ότι τα έξι κουάρκ και τα έξι λεπτόνια του Καθιερωμένου Προτύπου,

Σπιν 1/2. Γενικά. 2 Υπενθυμίζουμε ότι τα έξι κουάρκ και τα έξι λεπτόνια του Καθιερωμένου Προτύπου, Σπιν / Γενικά Θα χρησιμοποιήσουμε τις γενικές σχέσεις που αποδείξαμε στην ανάρτηση «Εύρεση των ιδιοτιμών της στροφορμής», που, όπως είδαμε, ισχύουν για κάθε γενική r στροφορμή Jˆ με συνιστώσες Jˆ x, Jˆ

Διαβάστε περισσότερα

Λυμένες ασκήσεις στροφορμής

Λυμένες ασκήσεις στροφορμής Λυμένες ασκήσεις στροφορμής Θα υπολογίσουμε τη δράση των τελεστών κλίμακας J ± σε μια τυχαία ιδιοκατάσταση j, m των τελεστών J και Jˆ. Λύση Δείξαμε ότι η κατάσταση Jˆ± j, m είναι επίσης ιδιοκατάσταση των

Διαβάστε περισσότερα

1. Μετάπτωση Larmor (γενικά)

1. Μετάπτωση Larmor (γενικά) . Μετάπτωση Larmor (γενικά) Τι είναι η μετάπτωση; Μετάπτωση είναι η αλλαγή της διεύθυνσης του άξονα περιστροφής ενός περιστρεφόμενου αντικειμένου. Αν ο άξονας περιστροφής ενός αντικειμένου περιστρέφεται

Διαβάστε περισσότερα

Δύο διακρίσιμα σωμάτια με σπιν s 1

Δύο διακρίσιμα σωμάτια με σπιν s 1 Δύο διακρίσιμα σωμάτια με σπιν και Σύνδεση της βάσης των ιδιοκαταστάσεων του τετραγώνου και της z συνιστώσας του ολικού σπιν με τη βάση που αποτελείται από τα τανυστικά γινόμενα των καταστάσεων των δύο

Διαβάστε περισσότερα

Σύστημα δύο αλληλεπιδρώντων σπιν μέσα σε ομογενές μαγνητικό πεδίο (άσκηση)

Σύστημα δύο αλληλεπιδρώντων σπιν μέσα σε ομογενές μαγνητικό πεδίο (άσκηση) Σύστημα δύο αλληλεπιδρώντων σπιν μέσα σε ομογενές μαγνητικό πεδίο (άσκηση) Δύο σωμάτια με σπιν s και s αντίστοιχα και με τον ίδιο γυρομαγνητικό λόγο τοποθετούνται μέσα σε ομογενές χρονοανεξάρτητο μαγνητικό

Διαβάστε περισσότερα

Δηλαδή. Η Χαμιλτονιανή του περιστροφέα μέσα στο μαγνητικό πεδίο είναι

Δηλαδή. Η Χαμιλτονιανή του περιστροφέα μέσα στο μαγνητικό πεδίο είναι Κβαντικός περιστροφέας που J J J H y z τοποθετείται y z περιγράφεται μέσα σε από τη ομογενές, Χαμιλτονιανή χρονοανεξάρτητο μαγνητικό πεδίο με κατεύθυνση στα θετικά του άξονα z, δηλαδή B B ez, με B >. Αν

Διαβάστε περισσότερα

ΦΟΡΤΙΣΜΕΝΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΑ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΤΕΛΕΣΤΕΣ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ, ΒΑΣΙΚΗ ΚΑΤΑΣΤΑΣΗ, ΕΛΑΧΙΣΤΗ ΕΝΕΡΓΕΙΑ ΣΥΖΗΤΗΣΗ

ΦΟΡΤΙΣΜΕΝΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΑ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΤΕΛΕΣΤΕΣ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ, ΒΑΣΙΚΗ ΚΑΤΑΣΤΑΣΗ, ΕΛΑΧΙΣΤΗ ΕΝΕΡΓΕΙΑ ΣΥΖΗΤΗΣΗ ΦΟΡΤΙΣΜΕΝΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΑ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΤΕΛΕΣΤΕΣ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ, ΒΑΣΙΚΗ ΚΑΤΑΣΤΑΣΗ, ΕΛΑΧΙΣΤΗ ΕΝΕΡΓΕΙΑ ΣΥΖΗΤΗΣΗ Ξεκινώντας από τους τελεστές δημιουργίας και καταστροφής

Διαβάστε περισσότερα

Δείξτε ότι οι ιδιοκαταστάσεις της ενέργειας του ελεύθερου κβαντικού 2

Δείξτε ότι οι ιδιοκαταστάσεις της ενέργειας του ελεύθερου κβαντικού 2 Δείξτε ότι οι ιδιοκαταστάσεις της ενέργειας του ελεύθερου κβαντικού Jˆ Jˆ Jˆ περιστροφέα με Χαμιλτονιανή Hˆ = x y z και ολική στροφορμή j = x y z είναι οι ιδιοκαταστάσεις των τριών συνιστωσών της στροφορομής

Διαβάστε περισσότερα

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής. ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου V Άσκηση : Οι θεμελιώδεις σχέσεις μετάθεσης της στροφορμής επιτρέπουν την ύπαρξη ακέραιων και ημιπεριττών ιδιοτιμών Αλλά για την τροχιακή στροφορμή L r p γνωρίζουμε ότι

Διαβάστε περισσότερα

Άσκηση 1. Δείξτε τις σχέσεις μετάθεσης των πινάκων Pauli

Άσκηση 1. Δείξτε τις σχέσεις μετάθεσης των πινάκων Pauli Άσκηση 1 Δείξτε τις σχέσεις μετάθεσης των πινάκων Pauli Άσκηση 2 Βρείτε την δράση των τελεστών του spin S x, S y, S z, στις ιδιοκαταστάσεις του S z +1/2>, =1/2> Η αναπαράσταση των S x, S y, S z, στις ιδιοκαταστάσεις

Διαβάστε περισσότερα

Η άλγεβρα της στροφορμής

Η άλγεβρα της στροφορμής Η άλγεβρα της στροφορμής Στην κλασική μηχανική, η τροχιακή στροφορμή L ενός σωματιδίου είναι L r p (1) όπου r το διάνυσμα θέσης του σωματιδίου και p η ορμή του. Σε καρτεσιανές συντεταγμένες, η (1) γράφεται

Διαβάστε περισσότερα

και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για

και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου IV Άσκηση 1: Σωματίδιο μάζας Μ κινείται στην περιφέρεια κύκλου ακτίνας R. Υπολογίστε τις επιτρεπόμενες τιμές της ενέργειας, τις αντίστοιχες κυματοσυναρτήσεις και τον εκφυλισμό.

Διαβάστε περισσότερα

ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ ΣΕ ΜΙΑ ΤΥΧΑΙΑ ΑΝΑΠΑΡΑΣΤΑΣΗ

ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ ΣΕ ΜΙΑ ΤΥΧΑΙΑ ΑΝΑΠΑΡΑΣΤΑΣΗ ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ ΣΕ ΜΙΑ ΤΥΧΑΙΑ ΑΝΑΠΑΡΑΣΤΑΣΗ Έστω â μια παρατηρήσιμη (διανυσματικός τελεστής) με συνεχές φάσμα ιδιοτιμών. Επίσης, έστω ότι t είναι η κατάσταση του συστήματός μας την τυχαία χρονική στιγμή

Διαβάστε περισσότερα

Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική

Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική Spin Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική Δομή Διάλεξης Το πείραμα Stern-Gerlach: Πειραματική απόδειξη spin Ο δισδιάστατος χώρος καταστάσεων spin του ηλεκτρονίου: οι πίνακες Pauli Χρονική εξέλιξη

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟ ΔΥΝΑΜΙΚΟ ΓΕΝΙΚΑ. Έστω σωμάτιο, στις τρεις διαστάσεις, που βρίσκεται υπό την επίδραση μιγαδικού δυναμικού της μορφής

ΜΙΓΑΔΙΚΟ ΔΥΝΑΜΙΚΟ ΓΕΝΙΚΑ. Έστω σωμάτιο, στις τρεις διαστάσεις, που βρίσκεται υπό την επίδραση μιγαδικού δυναμικού της μορφής ΜΙΓΑΔΙΚΟ ΔΥΝΑΜΙΚΟ ΓΕΝΙΚΑ Έστω σωμάτιο, στις τρεις διαστάσεις, που βρίσκεται υπό την επίδραση μιγαδικού δυναμικού της μορφής Re Im V r V r i V r, όπου οι συναρτήσεις Re,Im V r V r είναι πραγματικές συναρτήσεις

Διαβάστε περισσότερα

ˆ ˆ. (τελεστής καταστροφής) (τελεστής δημιουργίας) Το δυναμικό του συστήματός μας (αρμονικός ταλαντωτής μέσα σε ομογενές ηλεκτρικό πεδίο) είναι

ˆ ˆ. (τελεστής καταστροφής) (τελεστής δημιουργίας) Το δυναμικό του συστήματός μας (αρμονικός ταλαντωτής μέσα σε ομογενές ηλεκτρικό πεδίο) είναι ΜΟΝΟΔΙΑΣΤΑΤΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΕ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΤΕΛΕΣΤΕΣ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ, ΒΑΣΙΚΗ ΚΑΤΑΣΤΑΣΗ, ΕΛΑΧΙΣΤΗ ΕΝΕΡΓΕΙΑ ΣΥΖΗΤΗΣΗ Ξεκινώντας από τους τελεστές δημιουργίας και καταστροφής

Διαβάστε περισσότερα

Αρμονικός ταλαντωτής Ασκήσεις

Αρμονικός ταλαντωτής Ασκήσεις Αρμονικός ταλαντωτής Ασκήσεις 4. Αρμονικός ταλαντωτής, τη χρονική στιγμή t, βρίσκεται στην κατάσταση ˆ i e, όπου η βασική κατάσταση του αρμονικού ταλαντωτή, ο τελεστής της ορμής, και η κλίμακα μήκους του

Διαβάστε περισσότερα

Εύρεση των ιδιοτιμών της στροφορμής

Εύρεση των ιδιοτιμών της στροφορμής Εύρεση των ιδιοτιμών της στροφορμής Χρησιμοποιώντας την άλγεβρα της στροφορμής, θα υπολογίσουμε τις ιδιοτιμές του τετραγώνου της και της -συνιστώσας της. Μπορούμε, ωστόσο, να θέσουμε το πρόβλημα γενικότερα,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου Ι Άσκηση 1: Θεωρήστε δύο ορθοκανονικά διανύσματα ψ 1 και ψ και υποθέστε ότι αποτελούν βάση σε ένα χώρο δύο διαστάσεων. Θεωρήστε επίσης ένα τελαστή T που ορίζεται στο χώρο

Διαβάστε περισσότερα

, που, χωρίς βλάβη της γενικότητας, μπορούμε να θεωρήσουμε χρονική στιγμή μηδέν, δηλαδή

, που, χωρίς βλάβη της γενικότητας, μπορούμε να θεωρήσουμε χρονική στιγμή μηδέν, δηλαδή Η ΚΥΜΑΤΟΣΥΝΑΡΤΗΣΗ ΣΤΗΝ ΑΝΑΠΑΡΑΣΤΑΣΗ ΘΕΣΗΣ ΑΝΑΠΑΡΑΣΤΑΣΗ ΟΡΜΗΣ p. Θα βρούμε πρώτα τη σχέση που συνδέει την p με την x. x ΚΑΙ ΣΤΗΝ Έστω η κατάσταση του συστήματός μας μια χρονική στιγμή t 0, που, χωρίς βλάβη

Διαβάστε περισσότερα

ii) Υπολογίστε τις μέσες τιμές της θέσης και της ορμής του ταλαντωτή όταν t 0.

ii) Υπολογίστε τις μέσες τιμές της θέσης και της ορμής του ταλαντωτή όταν t 0. ΑΣΚΗΣΗ 4 Αρμονικός ταλαντωτής, τη χρονική στιγμή t, βρίσκεται στην κατάσταση ip ˆ x x, όπου η βασική κατάσταση του αρμονικού ταλαντωτή, ˆp x ο τελεστής της ορμής, και η κλίμακα μήκους του αρμονικού ταλαντωτή.

Διαβάστε περισσότερα

Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Εξάρτηση του πυρηνικού δυναμικού από άλλους παράγοντες (πλην της απόστασης) Η συνάρτηση του δυναμικού

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ. Θέμα 2. α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει

ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ. Θέμα 2. α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ Θέμα α) Δείξτε ότι οι διακριτές ιδιοτιμές της ενέργειας σε ένα μονοδιάστατο πρόβλημα δεν είναι εκφυλισμένες β) Με βάση το προηγούμενο ερώτημα να δείξετε ότι μπορούμε να διαλέξουμε τις

Διαβάστε περισσότερα

Â. Θέλουμε να βρούμε τη μέση τιμή

Â. Θέλουμε να βρούμε τη μέση τιμή ΜΕΣΗ ΤΙΜΗ ΕΝΟΣ ΕΡΜΙΤΙΑΝΟΥ ΤΕΛΕΣΤΗ Έστω ο ερμιτιανός τελεστής Â. Θέλουμε να βρούμε τη μέση τιμή Â μια χρονική στιγμή, που αυθαίρετα, αλλά χωρίς βλάβη της γενικότητας, θεωρούμε χρονική στιγμή μηδέν, όπου

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑ II (ΑΠΕΙΡΙΣΜΟΣ ΤΟΥ ΔΥΝΑΜΙΚΟΥ ΣΕ ΠΕΡΙΟΧΗ/ΠΕΡΙΟΧΕΣ), και τις ενεργειακές στάθμες του, 2. E E E, όπου ˆ

ΠΑΡΑΔΕΙΓΜΑ II (ΑΠΕΙΡΙΣΜΟΣ ΤΟΥ ΔΥΝΑΜΙΚΟΥ ΣΕ ΠΕΡΙΟΧΗ/ΠΕΡΙΟΧΕΣ), και τις ενεργειακές στάθμες του, 2. E E E, όπου ˆ ΠΑΡΑΔΕΙΓΜΑ II (ΑΠΕΙΡΙΣΜΟΣ ΤΟΥ ΔΥΝΑΜΙΚΟΥ ΣΕ ΠΕΡΙΟΧΗ/ΠΕΡΙΟΧΕΣ) Στο απειρόβαθο πηγάδι με τοιχώματα στα σημεία x, θα υπολογίσουμε τη διασπορά της ενέργειας,, για τη μικτή κατάσταση με 5 x x x 8 μέσα στο πηγάδι

Διαβάστε περισσότερα

Μετασχηματισμοί Καταστάσεων και Τελεστών

Μετασχηματισμοί Καταστάσεων και Τελεστών Μετασχηματισμοί Καταστάσεων και Τελεστών Δομή Διάλεξης Μετασχηματισμοί Καταστάσεων Τελεστής Μετατόπισης Συνεχείς Μετασχηματισμοί και οι Γεννήτορές τους Τελεστής Στροφής Διακριτοί Μετασχηματισμοί: Parity

Διαβάστε περισσότερα

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Κίνηση σε κεντρικά δυναµικά 1.1.1 Κλασική περιγραφή Η Χαµιλτωνιανή κλασικού συστήµατος που κινείται

Διαβάστε περισσότερα

. Να βρεθεί η Ψ(x,t).

. Να βρεθεί η Ψ(x,t). ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου II Άσκηση 1: Εάν η κυματοσυνάρτηση Ψ(,0) παριστάνει ένα ελεύθερο σωματίδιο, με μάζα m, στη μία διάσταση την χρονική στιγμή t=0: (,0) N ep( ), όπου N 1/ 4. Να βρεθεί η

Διαβάστε περισσότερα

Δομή Διάλεξης. Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης. Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής

Δομή Διάλεξης. Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης. Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής Τροχιακή Στροφορμή Δομή Διάλεξης Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής Ιδιοτιμές και ιδιοκαταστάσεις της L

Διαβάστε περισσότερα

Διάλεξη 2: Κεντρικά Δυναμικά. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για κεντρικά δυναμικά

Διάλεξη 2: Κεντρικά Δυναμικά. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για κεντρικά δυναμικά Διάλεξη : Κεντρικά Δυναμικά Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schöing για κεντρικά δυναμικά Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 03 Κεντρικά δυναμικά Εξάρτηση δυναμικού

Διαβάστε περισσότερα

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Κεφάλαιο 4

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Κεφάλαιο 4 ιαλέξεις Κβαντικής Μηχανικής ΙΙ - Κεφάλαιο 4 Α. Λαχανας 1/ 45 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Κεφάλαιο 4 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων ακαδηµαικό

Διαβάστε περισσότερα

(φορτισμένος αρμονικός 2 ταλαντωτής μέσα σε ομογενές ηλεκτρικό πεδίο) είναι

(φορτισμένος αρμονικός 2 ταλαντωτής μέσα σε ομογενές ηλεκτρικό πεδίο) είναι ΜΟΝΟΔΙΑΣΤΑΤΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΕ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΥΠΟΛΟΓΙΣΜΟΣ ΜΕΣΩΝ ΤΙΜΩΝ ΜΕ ΧΡΗΣΗ ΤΩΝ ΤΕΛΕΣΤΩΝ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ Για μια τυχαία ιδιοκατάσταση της ενέργειας,, υπολογίζουμε

Διαβάστε περισσότερα

Είναι (1) Έστω (2) Τότε η (1) γράφεται (3) Από την (3) βλέπουμε ότι η y ( x; a ) περιγράφει μια συνοχική κατάσταση μάλιστα

Είναι (1) Έστω (2) Τότε η (1) γράφεται (3) Από την (3) βλέπουμε ότι η y ( x; a ) περιγράφει μια συνοχική κατάσταση μάλιστα Είναι i ö ö y ( ; ) ç ep ç - ˆ ep ç ( p ø ø ) ö ø () Έστω () Τότε η () γράφεται i ö ö y ( ; ) ç ep ç ep ç - ( - ˆ p ø ø ) ö ø (3) Από την (3) βλέπουμε ότι η y ( ; ) περιγράφει μια συνοχική κατάσταση μάλιστα

Διαβάστε περισσότερα

+ z, όπου I x, I y, I z είναι οι ροπές αδράνειας

+ z, όπου I x, I y, I z είναι οι ροπές αδράνειας r Έστω κβαντικός περιστροφέας ολικής στροφορμής J, που περιγράφεται από Jx J y J τη Χαμιλτονιανή H = z, όπου I x, I y, I z είναι οι ροπές αδράνειας I x I y I z του περιστροφέα ως προς τους άξονες x,y,z,

Διαβάστε περισσότερα

Η κυματοσυνάρτηση στην αναπαράσταση ορμής Ασκήσεις. Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. 8 Δεκεμβρίου 2017

Η κυματοσυνάρτηση στην αναπαράσταση ορμής Ασκήσεις. Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. 8 Δεκεμβρίου 2017 Η κυματοσυνάρτηση στην αναπαράσταση ορμής Ασκήσεις Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. siroskonstantogiannis@gmail.com 8 Δεκεμβρίου 7 8//7 Coyrigt Σπύρος Κωνσταντογιάννης, 7. Με επιφύλαξη παντός δικαιώματος.

Διαβάστε περισσότερα

Sˆy. Η βάση για την οποία συζητάμε απαρτίζεται από τα ανύσματα = (1) ˆ 2 ± =± ± Άσκηση 20. (βοήθημα θεωρίας)

Sˆy. Η βάση για την οποία συζητάμε απαρτίζεται από τα ανύσματα = (1) ˆ 2 ± =± ± Άσκηση 20. (βοήθημα θεωρίας) Άσκηση 0. (βοήθημα θεωρίας) Έστω + και η βάση που συγκροτούν οι (κοινές) ιδιοκαταστάσεις των τελεστών ˆ S και Sˆz ενός σωματίου με spin 1/. Να βρείτε την αναπαράσταση των τελεστών S ˆx, Sˆ και Sˆz στη

Διαβάστε περισσότερα

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙI Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Α. Καρανίκας και Π. Σφήκας Σημειώσεις IX: Πρόσθεση στροφορμών Υπάρχουν πάμπολα φυσικά συστήματα στα οποία η κίνηση των επί μέρους σωματιδίων ή τα spin

Διαβάστε περισσότερα

3/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 08. ΤΟ ΣΠΙΝ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΟ ΣΠΙΝ

3/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 08. ΤΟ ΣΠΙΝ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΟ ΣΠΙΝ stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΤΟ ΣΠΙΝ ΎΛΗ & ΦΩΣ 08. ΤΟ ΣΠΙΝ Στέλιος Τζωρτζάκης 1 3 4 Εισαγωγή Η ενδογενής στροφορμή ή αλλιώς σπιν αποτελεί ένα θεμελιώδες χαρακτηριστικό των σωματιδίων διότι

Διαβάστε περισσότερα

Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013

Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013 ΘΕΜΑ 1: ( 3 µονάδες ) Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013 Ηλεκτρόνιο κινείται επάνω από µία αδιαπέραστη και αγώγιµη γειωµένη επιφάνεια που

Διαβάστε περισσότερα

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ Στέλιος Τζωρτζάκης 1 3 4 Ο διανυσματικός χώρος των φυσικών καταστάσεων Η έννοια

Διαβάστε περισσότερα

Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 )

Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 ) vs of Io vs of Io D of Ms Scc & gg Couo Ms Scc ική Θεωλης ική Θεωλης ιδάσκων: Λευτέρης Λοιδωρίκης Π 746 dok@cc.uo.g cs.s.uo.g/dok ομηχ ομηχ δ ά τρεις διαστ Εξίσωση Schödg σε D Σε μία διάσταση Σε τρείς

Διαβάστε περισσότερα

Μοναδιαίοι Τελεστές Μοναδιαίοι Μετασχηματισμοί Εικόνες Χρονικής Εξέλιξης

Μοναδιαίοι Τελεστές Μοναδιαίοι Μετασχηματισμοί Εικόνες Χρονικής Εξέλιξης Αθανάσιος Χρ. Τζέμος Τομέας Θεωρητικής Φυσικής Μοναδιαίοι Τελεστές Μοναδιαίοι Μετασχηματισμοί Εικόνες Χρονικής Εξέλιξης Στη Φυσική ενδιαφερόμαστε για την δυναμική εξέλιξη των διαφόρων συστημάτων. Καίριο

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Ι. Λυχναρόπουλος 9/8/6 Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Ι. Λυχναρόπουλος Άσκηση (Μονάδες.5) Να υπολογισθούν τα ακρότατα της συνάρτησης: y y y y 3 (, ) 3 3 3 Πεδίο ορισμού της συνάρτησης είναι το Υπολογίζουμε

Διαβάστε περισσότερα

( x) Half Oscillator. Σωμάτιο βρίσκεται υπό την επίδραση του δυναμικού

( x) Half Oscillator. Σωμάτιο βρίσκεται υπό την επίδραση του δυναμικού Half Oscillator Σωμάτιο βρίσκεται υπό την επίδραση του δυναμικού ì, x ï V x í ïî mw x, x > Το σύστημα αυτό αναφέρεται ως «Half Oscillator». Στα Ελληνικά, θα χρησιμοποιήσουμε τον όρο «μισός αρμονικός ταλαντωτής»,

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 17: Εφαρμογή στην αναπαράσταση τελεστών με μήτρα και εισαγωγή στον συμβολισμό Dirac

Κβαντική Φυσική Ι. Ενότητα 17: Εφαρμογή στην αναπαράσταση τελεστών με μήτρα και εισαγωγή στον συμβολισμό Dirac Κβαντική Φυσική Ι Ενότητα 17: Εφαρμογή στην αναπαράσταση τελεστών με μήτρα και εισαγωγή στον συμβολισμό Dirac Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι

Διαβάστε περισσότερα

Χαρακτηριστική Εξίσωση Πίνακα

Χαρακτηριστική Εξίσωση Πίνακα Έστω ο n nτετραγωνικός πίνακας A της μορφής a L a M O M an L a όπου aij, i n, j n πραγματικές σταθερές Ονομάζουμε χαρακτηριστική εξίσωση του πίνακα A την εξίσωση A λi, όπου I ο n n μοναδιαίος πίνακας και

Διαβάστε περισσότερα

Εξετάσεις 1ης Ιουλίου Για την ϐασική κατάσταση του ατόµου του Υδρογόνου της οποίας η κανονικοποιηµένη στην µονάδα

Εξετάσεις 1ης Ιουλίου Για την ϐασική κατάσταση του ατόµου του Υδρογόνου της οποίας η κανονικοποιηµένη στην µονάδα ΘΕΜΑ 1: Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ Εξετάσεις 1ης Ιουλίου 13 Τµήµα Α. Λαχανά) Α ) Για την πρώτη διεγερµένη κατάσταση του ατόµου του Υδρογόνου µε τροχιακή στροφορµή l = 1 να προσδιορισθουν οι αποστάσεις

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Διδάσκων: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Διδάσκων: Ι. Λυχναρόπουλος /8/5 Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Διδάσκων: Ι. Λυχναρόπουλος Άσκηση (Μονάδες.5) Υπολογίστε το διπλό ολοκλήρωμα / I y dyd συντεταγμένες. Επίσης σχεδιάστε το χωρίο ολοκλήρωσης. Λύση: Το

Διαβάστε περισσότερα

ETY-202. Ο γενικός φορμαλισμός Dirac ETY-202 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC. Στέλιος Τζωρτζάκης 21/11/2013

ETY-202. Ο γενικός φορμαλισμός Dirac ETY-202 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC. Στέλιος Τζωρτζάκης 21/11/2013 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC Στέλιος Τζωρτζάκης Ο γενικός φορμαλισμός Dirac 1 3 4 Εικόνες και αναπαραστάσεις Επίσης μια πολύ χρήσιμη ιδιότητα

Διαβάστε περισσότερα

Το θεώρημα virial1 στην κβαντική μηχανική

Το θεώρημα virial1 στην κβαντική μηχανική Το θεώρημα val στην κβαντική μηχανική Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. sposkonsanoganns@gal.co 7 Φεβρουαρίου 08 Η λέξη val προέρχεται από το λατινικό vs, που σημαίνει «δύναμη», «ενέργεια», «ισχύς»

Διαβάστε περισσότερα

Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών

Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών Βασικά σημεία της κβαντομηχανικής Διδάσκων : Επίκουρη Καθηγήτρια Χριστίνα Λέκκα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κεντρικά Δυναμικά Διδάσκων : Επίκ. Καθ. Μ. Μπενής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κεντρικά Δυναμικά Διδάσκων : Επίκ. Καθ. Μ. Μπενής ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγxρονη Φυσική II Κεντρικά Δυναμικά Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Ceative Coons.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Τροχιακή Στροφορμή (Ορισμοί Τελεστών) Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΠΛΗ ΛΥΣΕΙΣ ΕΡΓ_2 ΣΕΛ. 1/11

ΠΛΗ ΛΥΣΕΙΣ ΕΡΓ_2 ΣΕΛ. 1/11 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: Νοεμβρίου 007 Ημερομηνία παράδοσης της Εργασίας: 4 Δεκεμβρίου 007 Πριν από την λύση κάθε άσκησης καλό

Διαβάστε περισσότερα

ΚΕΦ.6:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ. ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ

ΚΕΦ.6:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ. ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ ΚΕΦ:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ Τετραγωνικές μορφές: Συναρτήσεις με τύπο Q ν α ι j j, j [ ] ν α α ν αν α νν ν Τ Χ ΑΧ Για παράδειγμα εάν v Q α + α + α + α α + α + α + α δηλ a a a a α + α + α

Διαβάστε περισσότερα

8.1 Διαγωνοποίηση πίνακα

8.1 Διαγωνοποίηση πίνακα Κεφάλαιο 8 Κανονικές μορφές από 6 Κεφάλαιο 8 Κ Α Ν Ο Ν Ι Κ Ε Σ Μ Ο Ρ Φ Ε Σ 8. Διαγωνοποίηση πίνακα Ορισμός 8.α Ένας πίνακας M n ( ) oνομάζεται διαγωνοποιήσιμος στο αν υπάρχει αντιστρέψιμος πίνακας P M

Διαβάστε περισσότερα

Χρησιμοποιείστε την πληροφορία αυτή για να δείξετε ότι ο τελεστής που θα μεταφέρει το άνυσμα

Χρησιμοποιείστε την πληροφορία αυτή για να δείξετε ότι ο τελεστής που θα μεταφέρει το άνυσμα Άσκηση. (Βοήθημα θεωρίας) Εάν ένα κλασικό άνυσμα r μετατοπισθεί κατά a, θα προκύψει το άνυσμα r = r + a. a Χρησιμοποιείστε την πληροφορία αυτή για να δείξετε ότι ο τελεστής που θα μεταφέρει το άνυσμα r

Διαβάστε περισσότερα

S ˆz. Απ. : Αυτό που πρέπει να βρούμε είναι οι συντελεστές στο ανάπτυγμα α. 2αβ

S ˆz. Απ. : Αυτό που πρέπει να βρούμε είναι οι συντελεστές στο ανάπτυγμα α. 2αβ Άσκηση 4. Έστω σωμάτιο με spin /. Να προσδιορίσετε την κατάστασή του αν είναι γνωστές οι S ˆ, S ˆ και μόνο το πρόσημο της S ˆ. Απ. : Αυτό που πρέπει να βρούμε είναι οι συντελεστές στο ανάπτυγμα α ψ = α

Διαβάστε περισσότερα

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 1

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 1 Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 1/ 39 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 1 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων Ακαδηµαικό έτος

Διαβάστε περισσότερα

Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ

Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Στο πρώτο μέρος αυτού του κεφαλαίου συνοψίζουμε όσα είναι απαραίτητα για την εύρεση ιδιοτιμών και ιδιοδιανυσμάτων ενός τετραγωνικού πίνακα Στο δεύτερο μέρος αναπτύσσονται

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος 6/6/06 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 0 Δίνεται ο πίνακας A =. Nα υπολογίσετε την βαθμίδα του και να βρείτε τη διάσταση και από μία βάση α) του μηδενοχώρου

Διαβάστε περισσότερα

Δομή Διάλεξης. Εύρεση ακτινικού μέρους εξίσωσης Schrödinger. Εφαρμογή σε σφαιρικό πηγάδι δυναμικού απείρου βάθους. Εφαρμογή σε άτομο υδρογόνου

Δομή Διάλεξης. Εύρεση ακτινικού μέρους εξίσωσης Schrödinger. Εφαρμογή σε σφαιρικό πηγάδι δυναμικού απείρου βάθους. Εφαρμογή σε άτομο υδρογόνου Κεντρικά Δυναμικά Δομή Διάλεξης Εύρεση ακτινικού μέρους εξίσωσης Schrödinger Εφαρμογή σε σφαιρικό πηγάδι δυναμικού απείρου βάθους Εφαρμογή σε άτομο υδρογόνου Ακτινική Συνιστώσα Ορμής Έστω Χαμιλτονιανή

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 16: Αναπαράσταση τελεστών με μήτρες. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 16: Αναπαράσταση τελεστών με μήτρες. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 16: Αναπαράσταση τελεστών με μήτρες Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι να αναπτύξει την μεθοδολογία εύρεσης ιδιοτιμών

Διαβάστε περισσότερα

Ιδιάζουσες τιμές πίνακα. y έχουμε αντίστοιχα τις σχέσεις : Αυτές οι παρατηρήσεις συμβάλλουν στην παραγοντοποίηση ενός πίνακα

Ιδιάζουσες τιμές πίνακα. y έχουμε αντίστοιχα τις σχέσεις : Αυτές οι παρατηρήσεις συμβάλλουν στην παραγοντοποίηση ενός πίνακα Ιδιάζουσες τιμές πίνακα Επειδή οι πίνακες που παρουσιάζονται στις εφαρμογές είναι μη τετραγωνικοί, υπάρχει ανάγκη να βρεθεί μία μέθοδος που να «μελετά» τους μη τετραγωνικούς με «μεθόδους και ποσά» που

Διαβάστε περισσότερα

Γενική Μεταπτυχιακή Εξέταση - ΕΜΠ & ΕΚΕΦΕ-" ηµόκριτος"

Γενική Μεταπτυχιακή Εξέταση - ΕΜΠ & ΕΚΕΦΕ- ηµόκριτος ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ NATIONAL TECHNICAL UNIVERSITY ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & DEPARTMENT OF PHYSICS ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ - ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ZOGRAFOU CAMPUS ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 157 80 ATHENS -

Διαβάστε περισσότερα

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙΙ

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙΙ Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙΙ Χρονικά Ανεξάρτητη Θεωρία Διαταραχών. Τα περισσότερα φυσικά συστήματα που έχομε προσεγγίσει μέχρι τώρα περιγράφονται από μία κύρια Χαμιλτονιανή η οποία

Διαβάστε περισσότερα

Διάλεξη 1: Κβαντομηχανική σε τρεις διαστάσεις

Διάλεξη 1: Κβαντομηχανική σε τρεις διαστάσεις Διάλεξη : Κβαντομηχανική σε τρεις διαστάσεις Βασικές Αρχές της Κβαντομηχανικής H κατάσταση ενός φυσικού συστήματος περιγράφεται από την κυματοσυνάρτησή του και αποτελεί το πλάτος πιθανότητας να βρεθεί

Διαβάστε περισσότερα

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης Η Εξίσωση Euler-Lagrange Σφαίρα σε ράγες: Η συνάρτηση Lagrange Ν. Παναγιωτίδης Έστω σύστημα δυο συγκλινόντων ραγών σε σχήμα Χ που πάνω τους κυλίεται σφαίρα ακτίνας. Θεωρούμε σύστημα συντεταγμένων με οριζόντιους

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009 Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δεκέμβριος 2009 Νόμοι Διατήρησης κβαντικών αριθμών Αρχές Αναλλοίωτου Συμμετρία ή αναλλοίωτο των εξισώσεων που περιγράφουν σύστημα σωματιδίων κάτω

Διαβάστε περισσότερα

Ποια απο τις παρακάτω είναι η σωστή µορφή του πραγµατικού µέρους της κυµατοσυνάρτησης του

Ποια απο τις παρακάτω είναι η σωστή µορφή του πραγµατικού µέρους της κυµατοσυνάρτησης του Τίτλος: Κυµατοσυνάρτηση-Φράγµα δυναµικού Χρόνος: min. Σωµάτιο προσπίπτει απο αριστερά στο παρακάτω φράγµα δυναµικού. Ποια απο τις παρακάτω είναι η σωστή µορφή του πραγµατικού µέρους της κυµατοσυνάρτησης

Διαβάστε περισσότερα

Λύσεις των θεμάτων του Διαγωνίσματος Μηχανικης ΙΙ (29/8/2001) (3), (4), όπου, (5),, (6), (9), όπου,

Λύσεις των θεμάτων του Διαγωνίσματος Μηχανικης ΙΙ (29/8/2001) (3), (4), όπου, (5),, (6), (9), όπου, Λύσεις των θεμάτων του Διαγωνίσματος Μηχανικης ΙΙ (9/8/1) Θέμα 1: (1), (), (3), (4), όπου, (5),, (6), (7), (8), (9), όπου, (1), (11) ενέργεια [ ], όλες οι συνιστώσες της στροφορμής [ ], (1), (13), (κυματ

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 18: Εφαρμογή στον συμβολισμό Dirac. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 18: Εφαρμογή στον συμβολισμό Dirac. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 18: Εφαρμογή στον συμβολισμό Dirac Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παραθέσει μια εφαρμογή για να γίνει πιο κατανοητός

Διαβάστε περισσότερα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παράδειγμα Να βρείτε τις ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα του πίνακα A 4. Επίσης να προσδιοριστούν οι ιδιοχώροι και οι γεωμετρικές πολλαπλότητες των ιδιοτιμών.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Διανύσματα - Διανυσματικές Συναρτήσεις

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Διανύσματα - Διανυσματικές Συναρτήσεις ΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Διανύσματα - Διανυσματικές Συναρτήσεις Επιμέλεια: Ι. Λυχναρόπουλος a) Να βρεθεί η ευθεία που διέρχεται από το σημείο P (5,,3) και είναι παράλληλη προς το διάνυσμα iˆ+ 4ˆj kˆ

Διαβάστε περισσότερα

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα.

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα. Ασκήσεις 0 Ασκήσεις Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα o H -στήλη του P P είναι E αν και μόνο αν η -στήλη του P είναι ιδιοδιάνυσμα του που αντιστοιχεί στην ιδιοτιμή

Διαβάστε περισσότερα

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης Σφαίρα σε ράγες: Η συνάρτηση Lagrange Ν. Παναγιωτίδης Έστω σύστημα δυο συγκλινόντων ραγών σε σχήμα Χ που πάνω τους κυλίεται σφαίρα ακτίνας. Θεωρούμε σύστημα συντεταγμένων με οριζόντιους τους άξονες και.

Διαβάστε περισσότερα

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5 Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 1/ 53 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων Ακαδηµαικό έτος

Διαβάστε περισσότερα

ds ds ds = τ b k t (3)

ds ds ds = τ b k t (3) Γενικά Μαθηματικά ΙΙΙ Πρώτο σετ ασκήσεων, Λύσεις Άσκηση 1 Γνωρίζουμε ότι το εφαπτόμενο διάνυσμα ( t), ορίζεται ως: t = r = d r ds (1) και επιπλέον το διάνυσμα της καμπυλότητας ( k), ορίζεται ως: d t k

Διαβάστε περισσότερα

Δομή Διάλεξης. Ορισμός-Παραδείγματα Τελεστών. Αναμενόμενες τιμές φυσικών μεγεθών με χρήση τελεστών. Ιδιοκαταστάσεις και Ιδιοτιμές τελεστών

Δομή Διάλεξης. Ορισμός-Παραδείγματα Τελεστών. Αναμενόμενες τιμές φυσικών μεγεθών με χρήση τελεστών. Ιδιοκαταστάσεις και Ιδιοτιμές τελεστών Τελεστές Δομή Διάλεξης Ορισμός-Παραδείγματα Τελεστών Αναμενόμενες τιμές φυσικών μεγεθών με χρήση τελεστών Ιδιοκαταστάσεις και Ιδιοτιμές τελεστών Ερμητειανοί τελεστές Στοιχεία πίνακα τελεστών Μεταθέτες

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

1. a. Έστω b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα του A Έστω A και ( x) [ x]

1. a. Έστω b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα του A Έστω A και ( x) [ x] σκήσεις Ασκήσεις Ιδιοτιμές και ιδιοδιανύσματα Βασικά σημεία Ορισμός ιδιοτιμών και ιδιοδιανυσμάτων, υπολογισμός τους Ιδιόχωροι, διάσταση ιδιόχωρου, εύρεση βάσης ιδιόχωρου Σε διακεκριμένες ιδιοτιμές αντιστοιχούν

Διαβάστε περισσότερα

( )U 1 ( θ )U 3 ( ) = U 3. ( ) όπου U j περιγράφει περιστροφή ως προς! e j. Γωνίες Euler. ω i. ω = ϕ ( ) = ei = U ij ej j

( )U 1 ( θ )U 3 ( ) = U 3. ( ) όπου U j περιγράφει περιστροφή ως προς! e j. Γωνίες Euler. ω i. ω = ϕ ( ) = ei = U ij ej j Γωνίες Euler ΦΥΣ 11 - Διαλ.3 1 q Όλοι σχεδόν οι υπολογισµοί που έχουµε κάνει για την κίνηση ενός στερεού στο σύστηµα συντεταγµένων του στερεού σώµατος Ø Για παράδειγµα η γωνιακή ταχύτητα είναι: ω = i ω

Διαβάστε περισσότερα

Charge Conjuga,on. Μπορούμε να περιγράψουμε την κίνηση ενός φορτισμένου σωματιδίου σε. ελεύθερου σωματίδιου ως:

Charge Conjuga,on. Μπορούμε να περιγράψουμε την κίνηση ενός φορτισμένου σωματιδίου σε. ελεύθερου σωματίδιου ως: Charge Conjuga,on Μπορούμε να περιγράψουμε την κίνηση ενός φορτισμένου σωματιδίου σε ηλεκτρομαγνητικό πεδίο αντικαθιστώντας την ορμή και την ενέργια του ελεύθερου σωματίδιου ως: χρησιμοποιώντας τους τελεστές

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

Κβαντική Μηχανική ΙΙ. Ενότητα 1: Γενική διατύπωση της Κβαντικής Μηχανικής Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Μηχανική ΙΙ. Ενότητα 1: Γενική διατύπωση της Κβαντικής Μηχανικής Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Μηχανική ΙΙ Ενότητα 1: Γενική διατύπωση της Κβαντικής Μηχανικής Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 2/ 39 Περιεχόµενα 1ης

Διαβάστε περισσότερα

Από τι αποτελείται το Φως (1873)

Από τι αποτελείται το Φως (1873) Από τι αποτελείται το Φως (1873) Ο James Maxwell έδειξε θεωρητικά ότι το ορατό φως αποτελείται από ηλεκτρομαγνητικά κύματα. Ηλεκτρομαγνητικό κύμα είναι η ταυτόχρονη διάδοση, μέσω της ταχύτητας του φωτός

Διαβάστε περισσότερα

Κίνηση στερεών σωμάτων - περιστροφική

Κίνηση στερεών σωμάτων - περιστροφική Κίνηση στερεών σωμάτων - περιστροφική ΦΥΣ 211 - Διαλ.29 1 q Ενδιαφέρουσα κίνηση: Ø Αρκετά περίπλοκη Ø Δεν καταλήγει σε κίνηση ενός βαθµού ελευθερίας q Τι είναι το στερεό σώµα: Ø Συλλογή υλικών σηµείων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 2008

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 2008 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 8 Ημερομηνία παράδοσης της Εργασίας: Φεβρουαρίου 8 Πριν από την λύση κάθε άσκησης καλό

Διαβάστε περισσότερα

Πρόβλημα 4.9.

Πρόβλημα 4.9. Πρόβλημα 4.9. Να βρεθεί το δυναμικό V() παντού στο χώρο ενός θετικά φορτισμένου φύλλου απείρων διαστάσεων με επιφανειακή πυκνότητα φορτίου σ. Πάρτε τον άξονα κάθετα στο φύλλο και θεωρήστε ότι το φύλλο

Διαβάστε περισσότερα

Ατομική και Μοριακή Φυσική

Ατομική και Μοριακή Φυσική Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Ατομική και Μοριακή Φυσική Σύστημα με δύο ηλεκτρόνια Λιαροκάπης Ευθύμιος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Ασκήσεις6 Διαγωνοποίηση Ερμιτιανών Πινάκων

Ασκήσεις6 Διαγωνοποίηση Ερμιτιανών Πινάκων 7 Βασικά σημεία Ασκήσεις6 Διαγωνοποίηση Ερμιτιανών Πινάκων Το σύνηθες εσωτερικό γινόμενο στο και Ορθοκανονικές βάσεις και η μέθοδος Gram-Schmidt Ορισμός, Ερμιτιανού πίνακα και μοναδιαίου πίνακα Ιδιότητες

Διαβάστε περισσότερα

Κεφάλαιο 7: Μετασχηματισμοί Καταστάσεων και Τελεστών

Κεφάλαιο 7: Μετασχηματισμοί Καταστάσεων και Τελεστών Κεφάλαιο 7: Μετασχηματισμοί Καταστάσεων και Τελεστών Περιεχόμενα Κεφαλαίου Τα θέματα που θα καλύψουμε στο κεφάλαιο αυτό είναι τα εξής (Τραχανάς, 2005 Τραχανάς, 2008 Binney & Skinner, 2013 Fitzpatrick,

Διαβάστε περισσότερα

ETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ

ETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ Θεωρία της στροφορμής Στέλιος Τζωρτζάκης 1 3 4 Υπενθύμιση βασικών εννοιών της στροφορμής κυματοσυνάρτηση

Διαβάστε περισσότερα

= + =. cos ( ) sin ( ) ˆ ˆ ˆ. Άσκηση 4.

= + =. cos ( ) sin ( ) ˆ ˆ ˆ. Άσκηση 4. Άσκηση 4 Θεωρείστε και πάλι το σύστημα της άσκησης Τη χρονική στιγμή το σύστημα βρίσκεται στην κατάσταση a (η οποία δεν είναι ιδιοκατάσταση της amilonian) Ποιά είναι η πιθανότητα, μετά από χρόνο, να βρεθεί

Διαβάστε περισσότερα