Το θεώρημα virial1 στην κβαντική μηχανική

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Το θεώρημα virial1 στην κβαντική μηχανική"

Transcript

1 Το θεώρημα val στην κβαντική μηχανική Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. 7 Φεβρουαρίου 08 Η λέξη val προέρχεται από το λατινικό vs, που σημαίνει «δύναμη», «ενέργεια», «ισχύς» (σθένος). Δεν είναι το όνομα του επιστήμονα που σχετίζεται με τη διατύπωση του θεωρήματος. Επομένως, καλό είναι να γράφεται με μικρό v (val). hp://wodnfo.nfo/un/485/p:4/l:v hps://en.wkpeda.og/wk/val_heoe 7//08

2 Copygh Σπύρος Κωνσταντογιάννης, 08. Με επιφύλαξη παντός δικαιώματος. Επιτρέπεται μόνο η μη εμπορική χρήση περιεχομένου από το παρόν έγγραφο, με την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. 7//08

3 Περιεχόμενα Το θεώρημα val στην κβαντική μηχανική... Περιεχόμενα... 3 Εισαγωγή Το θεώρημα val στη μία διάσταση... 5 Παραδείγματα...3. Το θεώρημα val στις τρεις διαστάσεις Αναφορές //08

4 Εισαγωγή Υπολογίζουμε πρώτα τρεις χρήσιμους μεταθέτες και τους χρησιμοποιούμε για να εξάγουμε, με τη βοήθεια του θεωρήματος του Ehenfes, την έκφραση του β νόμου του Νεύτωνα στην κβαντική μηχανική. Στη συνέχεια, χρησιμοποιούμε πάλι τους προηγούμενους μεταθέτες, και το θεώρημα του Ehenfes, για να αποδείξουμε το θεώρημα val στη μία διάσταση. Εφαρμόζουμε το θεώρημα val στον αρμονικό ταλαντωτή, σε ένα γενικό ελκτικό δυναμικό, στο απλό ελκτικό δυναμικό δέλτα, και στο μονοδιάστατο άτομο του υδρογόνου, όπου δείχνουμε ότι οι δέσμιες ενέργειές του είναι αρνητικές και οι αντίστοιχες κυματοσυναρτήσεις μηδενίζονται στο μηδέν. Στην τελευταία ενότητα, με τρόπο παρόμοιο με αυτόν που χρησιμοποιήσαμε στη μία διάσταση, αποδεικνύουμε το θεώρημα val στις τρεις διαστάσεις. Λέξεις-Κλειδιά: θεώρημα val, θεώρημα Ehenfes, μονοδιάστατο άτομο υδρογόνου, δέσμιες ιδιοκαταστάσεις 4 7//08

5 . Το θεώρημα val στη μία διάσταση Θα υπολογίσουμε πρώτα τους μεταθέτες é p,v ( ) ù, é p, H ù, και é, H ù. Γενικά, οι μεταθέτες δεν εξαρτώνται από την αναπαράσταση, επομένως μπορούμε να τους υπολογίσουμε σε όποια αναπαράσταση μάς βολεύει. Επιλέγουμε τον χώρο των θέσεων (αναπαράσταση θέσης), όπου και p -h d. d. é p,v ( ) ù Έστω y ( ) μια τυχαία κυματοσυνάρτηση στον χώρο των θέσεων. Η δράση του μεταθέτη στην y ( ) μάς δίνει d d é ù éd ù æd ö ê -h d,v ( ) y ( ) -h ê d,v ( ) y ( ) -h çè d (V ( )y ( ) ) - V ( ) d y ( ) ø -h (V ( )y ( ) + V ( )y ( ) - V ( )y ( ) ) -hv ( )y ( ) d é ù ê -h d,v ( ) y ( ) -hv ( )y ( ) Επειδή η κυματοσυνάρτηση y ( ) είναι τυχαία, d é ù ê -h d,v ( ) -hv ( ) Επειδή ο μεταθέτης δεν εξαρτάται από την αναπαράσταση, καταλήγουμε ότι é p,v ( ) ù -hv ( ) () Παρατηρήσεις ) Για V ( ) a, η () γράφεται [ p, a ] -ha Για a, παίρνουμε 5 7//08

6 [ p, ] -h ή [, p ] h, καταλήγουμε δηλαδή στον γνωστό μεταθέτη θέσης ορμής. ) Για V ( ) a, η () γράφεται é p,v ( ) ù 0, και επειδή é ù ê é p ù ê p, T{ ê p, 0, ê Τελεστής ê κινητικής ενέργειας είναι é p, H ù é p, T + V ù é p, T ù + é p, V ù 0 Επομένως é H, p ù 0 Έτσι, αν χρησιμοποιήσουμε το θεώρημα του Ehenfes, η χρονική εξέλιξη της μέσης τιμής της ορμής στο σταθερό δυναμικό V ( ) a είναι, εφόσον ο τελεστής της ορμής δεν εξαρτάται από τον χρόνο, d p 0 p σταθερή Η μέση τιμή της ορμής είναι επομένως χρονικά σταθερή, όπως συμβαίνει και στην κλασική μηχανική για κίνηση σε χωρικά σταθερό δυναμικό. Σημείωση 6 7//08

7 Το θεώρημα του Ehenfes μάς λέει ότι η χρονική εξέλιξη της μέσης τιμής ενός ερμιτιανού τελεστή A δίνεται από τη σχέση d A é ù A H, A + h όπου H είναι η Χαμιλτονιανή του συστήματος. Ο δείκτης στις μέσες τιμές δηλώνει ότι οι μέσες τιμές αφορούν τη χρονική στιγμή. Αν ο τελεστής A δεν εξαρτάται ρητά από τον χρόνο, δηλαδή αν A 0, τότε το θεώρημα του Ehenfes γράφεται d A é ù H, A h. é p, H ù Είναι é p ù é p, H ù é p, T + V ù é p, T ù + é p, V ù ê p, + é p, V ( ) ù é p, V ( ) ù -hv ( ) όπου στην τελευταία ισότητα χρησιμοποιήσαμε την (). Επομένως é p, H ù -hv ( ) () Αν χρησιμοποιήσουμε πάλι το θεώρημα του Ehenfes, και τον μεταθέτη (), η χρονική εξέλιξη της μέσης τιμής της ορμής στο τυχαίο δυναμικό V ( ) είναι, εφόσον ο τελεστής της ορμής δεν εξαρτάται από τον χρόνο, d p é H, p ù - é p, H ù } hv ( ) -V ( ) h d p -V ( ) 7 7//08

8 Αν F ( ) - dv ( ) -V ( ) είναι ο τελεστής της δύναμης, η προηγούμενη σχέση d γράφεται d p F ( ) (3) Καταλήγουμε δηλαδή στον β νόμο του Νεύτωνα, με τη διαφορά ότι στην κβαντική μηχανική ισχύει για τις μέσες τιμές της δύναμης και της ορμής. 3. é, H ù Είναι é ù é, H ù é, T + V ù é, T ù + é, V ( ) ù ê, p é, p ù [, pp ] h h) hp p [, p ] p + p [, p ]) ( hp + p ( h é, H ù p (4) Αν χρησιμοποιήσουμε πάλι το θεώρημα του Ehenfes, και τον μεταθέτη (4), η χρονική εξέλιξη της μέσης τιμής της θέσης στο τυχαίο δυναμικό V ( ) είναι, εφόσον ο τελεστής της θέσης δεν εξαρτάται από τον χρόνο, d é H, ù - é, H ù } h - p h p p ή, επειδή d (5) d p v v, 8 7//08

9 Αν παραγωγίσουμε την (5) ως προς τον χρόνο και αντικαταστήσουμε την (3), παίρνουμε F ( ) d (6) που είναι μια ισοδύναμη έκφραση του β νόμου του Νεύτωνα για τις μέσες τιμές της δύναμης και της θέσης. Θα προχωρήσουμε τώρα στην απόδειξη του θεωρήματος val στη μία διάσταση. Προς τούτο, θα χρησιμοποιήσουμε πάλι το θεώρημα του Ehenfes για να γράψουμε. τη χρονική εξέλιξη της μέσης τιμής του τελεστή p δεν εξαρτάται από τον χρόνο, Επειδή ο τελεστής p d p é H, p ù h (7) Σημείωση ) p p ¹ p. δεν είναι ερμιτιανός, αφού ( p Ο τελεστής p + p είναι ερμιτιανός, όπως μπορούμε εύκολα να Ωστόσο, ο τελεστής p διαπιστώσουμε. + p, θα πάρουμε Αν εφαρμόσουμε το θεώρημα του Ehenfes για τον τελεστή p + p d p é H, p + p ù, h + p δεν εξαρτάται από τον χρόνο. αφού ο τελεστής p Όμως + p d p d p + d p και é H, p + p ù é H, p ù + é H, p ù é H, p ù + é H, p ù Επομένως d p + d p + d p d p ( é H, p ù ) h é H, p ù h é H, p ù + é H, p ù, h h ù + é H, p + é H, p ù h απ όπου βλέπουμε ότι 9 7//08

10 d p é H, p ù h é H, p ù h και d p ù γράφεται Ο μεταθέτης é H, p é H, p ù p é H, ù + é H, p ù - p é, H ù - é p, H ù Αν αντικαταστήσουμε τους μεταθέτες é p, H ù και é, H ù από τις () και (4), αντίστοιχα, παίρνουμε h h é H, p ù - p p - ( -hv ( ) ) - p + hv ( ) h é H, p ù - p + hv ( ) Επειδή ο μεταθέτης év ( ), ù είναι μηδέν, αφού ο τελεστής της θέσης μετατίθεται με τον εαυτό του, παίρνουμε ( ) V ( ) V ù γράφεται Οπότε ο μεταθέτης é H, p h é H, p ù - p + hv ( ) Αν αντικαταστήσουμε στην (7), θα πάρουμε d p h ( ) - p + hv h ( ) p - V d p ( ) p - V (8) Όμως 0 7//08

11 T p p Άρα p T Αν αντικαταστήσουμε στην (8), θα πάρουμε d p ( ) T - V (9) Θα θεωρήσουμε τώρα ότι οι προηγούμενες μέσες τιμές λαμβάνονται σε μια (τυχαία) δέσμια ιδιοκατάσταση της ενέργειας, οπότε d p 0 (0) Απόδειξη Επειδή η κατάσταση ας τη συμβολίσουμε με y είναι δέσμια, το σωμάτιο είναι είναι, κάθε στιγμή, εντοπισμένο στον χώρο και η μέση τιμή του τελεστή p πεπερασμένη. Έτσι, η μέση τιμή του προηγούμενου τελεστή τη χρονική στιγμή γράφεται, στον χώρο των θέσεων (αναπαράσταση θέσης), p d ö æ * * ò- dy (, ) çè -h d ø y (, ) -h-ò dy (, ) ( y (, ) ) -h ò dy * (, ) ( y (, ) ) p - όπου ο τόνος συμβολίζει παραγώγιση ως προς τη θέση. Επομένως d p d -h ò dy * (, ) ( y (, ) ) - () Σημείωση 7//08

12 Η μέση τιμή δεν εξαρτάται από την αναπαράσταση, επομένως μπορούμε να την υπολογίσουμε σε όποια αναπαράσταση μάς βολεύει. Επειδή η κατάσταση y είναι ιδιοκατάσταση της ενέργειας, η χρονική της εξέλιξη y ( ) είναι æ E ö y è h ø y ( ) ep ç - όπου E είναι η ενέργεια της κατάστασης. Η κυματοσυνάρτηση y (, ) που περιγράφει την προηγούμενη κατάσταση στον χώρο των θέσεων μια τυχαία χρονική στιγμή είναι, επομένως, æ E ö y ( ) è h ø y (, ) ep ç - όπου y ( ) είναι η κυματοσυνάρτηση τη χρονική στιγμή μηδέν. Με τη βοήθεια της τελευταίας σχέσης, η ολοκληρωτέα συνάρτηση της σχέσης () γράφεται * æ ö æ ö æ E ö æ E ö y (, ) ( y (, ) ) ç ep ç - y ( ) ç ep ç y ( ) è h ø è h ø è ø è ø æ E ö * æ E ö * ep ç y ( ) ep ç ( y ( ) ) y ( ) ( y ( ) ) è h ø è h ø * y * (, ) ( y (, ) ) y * ( ) ( y ( ) ) Βλέπουμε ότι η ολοκληρωτέα συνάρτηση δεν εξαρτάται από τον χρόνο, επομένως ούτε το ολοκλήρωμα στο δεξιό μέλος της () εξαρτάται από τον χρόνο, άρα d dy * (, ) ( y (, ) ) 0 ò - και τότε η () μάς δίνει τη (0), δηλαδή d p 0 Με τη βοήθεια της (0), η (9) γράφεται 7//08

13 T ( ) V () Η σχέση () είναι το θεώρημα val στη μία διάσταση. Είναι φανερό ότι η σχέση (), δηλαδή το θεώρημα val, ισχύει και για δέσμιες καταστάσεις που δεν είναι ιδιοκαταστάσεις της ενέργειας, αρκεί για τις καταστάσεις αυτές να ισχύει η (0). Παραδείγματα Ι. V ( ) w (αρμονικός ταλαντωτής) Τότε V ( ) w Þ V ( ) w V ( ) V ( ) V ( ) Έτσι, το θεώρημα val γράφεται T V όπου, για απλότητα, παραλείπουμε τον δείκτη του χρόνου και το σύμβολο των τελεστών. ΙΙ. V ( ) k n, k > 0, n,,... Τότε V ( ) nk n - Þ V ( ) nk n nv ( ) V ( ) nv ( ) Έτσι, το θεώρημα val γράφεται T n V Επίσης 3 7//08

14 E T + V n V + V ( n + ) V E ( n + ) V Αν το σύστημα βρίσκεται σε ιδιοκατάσταση της ενέργειας, E E, οπότε E ( n + ) V ΙΙΙ. V ( ) -ld ( ), l > 0 (απλό ελκτικό δυναμικό δέλτα) Για να βρούμε την παράγωγο του δυναμικού, δηλαδή την παράγωγο της συνάρτησης δέλτα, μπορούμε να χρησιμοποιήσουμε τη σχέση d ( ) 0. Αν παραγωγίσουμε και τα δύο μέλη της τελευταίας εξίσωσης, θα πάρουμε ( d ( ) ) 0 Þ d ( ) + d ( ) 0 Þ d ( ) -d ( ) Οπότε V ( ) - l d ( ) ld ( ) -V ( ) V ( ) -V ( ) Έτσι, το θεώρημα val γράφεται T + V 0 Θυμίζουμε ότι το απλό ελκτικό δυναμικό δέλτα έχει μόνο μία δέσμια κατάσταση. IV. Μονοδιάστατο άτομο του υδρογόνου Το δυναμικό σε αυτήν την περίπτωση είναι V ( ) - l, l >0 Για > 0, V ( ) V ( ) l l, οπότε Þ V ( ) l -V ( ) 4 7//08

15 V ( ) -V ( ) Για < 0, V ( ) V ( ) - l l, οπότε Þ V ( ) - l -V ( ) V ( ) -V ( ) Έτσι, σε κάθε περίπτωση, V ( ) -V ( ), ¹ 0 Έτσι, το θεώρημα val γράφεται T + V 0 ή T - V Αν το σύστημα βρίσκεται σε ιδιοκατάσταση της ενέργειας, E E, και E T + V - V V + V Επομένως V E (3). Με τη βοήθεια της (3), δηλαδή με τη βοήθεια του θεωρήματος val, θα δείξουμε ότι οι δέσμιες ενέργειες του μονοδιάστατου ατόμου του υδρογόνου είναι αρνητικές. Απόδειξη Η μέση τιμή του δυναμικού σε μια τυχαία ιδιοκατάσταση y της ενέργειας του συστήματος γράφεται, στον χώρο των θέσεων, 5 7//08

16 V ( ) y ( ) ò d y ( ) V ( ) -l ò d ò dy ( ) V{ * - Βαθμωτή συνάρτηση - y ( ) - V -l ò d y ( ) - (4) H y ( ), ως ιδιοσυνάρτηση, πρέπει να είναι γραμμικά ανεξάρτητη, επομένως δεν μπορεί να είναι ταυτοτικά μηδενική, δηλαδή θα πρέπει να παίρνει και μη μηδενικές τιμές, οπότε θα υπάρχει 0 Î έτσι ώστε y ( 0 ) ¹ 0. Τότε, επειδή η y ( ) είναι συνεχής (ως κυματοσυνάρτηση), θα παίρνει μη μηδενικές τιμές σε μια γειτονιά του 0 και άρα εκεί y ( ) > 0, οπότε ò d - y ( ) > 0, άρα, από τη (4), V < 0, και από τη (3) (θεώρημα val), E < 0, δηλαδή οι δέσμιες ενέργειες του μονοδιάστατου ατόμου του υδρογόνου είναι αρνητικές.. Θα χρησιμοποιήσουμε πάλι την έκφραση του θεωρήματος val, δηλαδή τη σχέση (3), για να δείξουμε ότι η κυματοσυνάρτηση μιας τυχαίας δέσμιας κατάστασης του συστήματος μηδενίζεται στο μηδέν. Απόδειξη Η κυματοσυνάρτηση μιας τυχαίας δέσμιας κατάστασης είναι γραμμικός συνδυασμός κυματοσυναρτήσεων δέσμιων ιδιοκαταστάσεων της ενέργειας, επομένως αρκεί να δείξουμε ότι η κυματοσυνάρτηση y ( ) μιας τυχαίας δέσμιας ιδιοκατάστασης της ενέργειας μηδενίζεται στο μηδέν. Έστω ότι η y ( ) δεν μηδενίζεται στο μηδέν. Τότε, επειδή είναι συνεχής, ως κυματοσυνάρτηση, θα παίρνει μη μηδενικές τιμές σε μια γειτονιά του 0 0, επομένως θα υπάρχει > 0 έτσι ώστε y ( ) ³ και y ( ) ³, στη γειτονιά του 0 0. Έτσι, αν το διάστημα [ -e, e ] ανήκει είναι δηλαδή υποσύνολο της προηγούμενης γειτονιάς, 6 7//08

17 e òe d y ( ) - e e ³ ò d -e { ò d 0 ( ln e - ln 0 ) Άρτια συνάρτηση αφού ln e πεπερασμένο και ln 0 -. Επομένως e ò d y ( ) -e Επειδή η ολοκληρωτέα συνάρτηση ò d y ( ) ³ - e ò d -e y ( ) y ( ) είναι μη αρνητική, Οπότε ò d - y ( ) Τότε, από τη (4), V -, και από τη (3) (θεώρημα val), E -, δηλαδή η ενέργεια της ιδιοκατάστασης είναι -. Αυτό όμως είναι αδύνατο, αφού το μονοδιάστατο άτομο του υδρογόνου έχει πεπερασμένη ελάχιστη ενέργεια (για την απόδειξη, δείτε την αναφορά 4). Επομένως, η y ( ) μηδενίζεται στο μηδέν, και επειδή είναι τυχαία, όλες οι κυματοσυναρτήσεις των δέσμιων ιδιοκαταστάσεων της ενέργειας μηδενίζονται στο μηδέν, και κατ επέκταση, όλες οι κυματοσυναρτήσεις των δέσμιων καταστάσεων όχι απαραίτητα ιδιοκαταστάσεων της ενέργειας του μονοδιάστατου ατόμου του υδρογόνου μηδενίζονται στο μηδέν. Ως συνέπεια του προηγούμενου, η κυματοσυνάρτηση της βασικής κατάστασης του μονοδιάστατου ατόμου του υδρογόνου έχει ένα μηδενικό, στο μηδέν. 7 7//08

18 . Το θεώρημα val στις τρεις διαστάσεις Με το σκεπτικό που χρησιμοποιήσαμε στη μία διάσταση, θα υπολογίσουμε τους () μεταθέτες é p, V ù, é p, H ù, και é, H ù, και στη συνέχεια θα χρησιμοποιήσουμε το θεώρημα του Ehenfes. Στις τρεις διαστάσεις, ισχύουν οι μεταθετικές σχέσεις é j, k ù 0 é p j, p k ù 0 é j, p k ù hd jk όπου j, k,, 3, με τον δείκτη να αναφέρεται στη συντεταγμένη, τον στην y, και τον 3 στη z. Το στο δεξιό μέλος της τελευταίας σχέσης είναι η φανταστική μονάδα. Το σύμβολο d jk είναι το δέλτα του Κρόνεκερ, δηλαδή ì, j k î0, j ¹ k d jk í Όπως στην περίπτωση της μίας διάστασης, επιλέγουμε τον χώρο των θέσεων (αναπαράσταση θέσης) για να υπολογίσουμε τους προηγούμενες μεταθέτες. Ας συμβολίσουμε με e, e, e3 τα μοναδιαία διανύσματα στους καρτεσιανούς άξονες, y, z, αντίστοιχα. () Η δράση του μεταθέτη é p, V ù σε μια τυχαία κυματοσυνάρτηση y ( ) μάς δίνει é ù ê é p,v ùy ( ) ê p j e j,v ( ) y ( ) ( p j e jv ( ) - V ( ) p j e j )y ( ) ê { j είναι δείκτης ê Οάθροισης, με ê τιμές,,3 æ æ ( p jv ( )y ( ) - V ( ) p jy ( ) ) e j h V y V ç ( ) ( ) ( ) çç -h ( ) { ç j j è è p j - h () j º, º y, 3 º z 8 ö ö y ( ) e j ø ø 7//08

19 æ V ( ) V ( ) y ( ) ö -h ç V ( )y ( ) ) - V ( ) e j -h y ( ) e j -h e j y ( ) ( ç j ø j j è j 44 3 ÑV ( ) -hñv ( )y ( ) é p, V ùy ( ) -hñv ( )y ( ) () Επειδή η κυματοσυνάρτηση y ( ) είναι τυχαία, é p, V ù -hñv ( ) () (5) Θα υπολογίσουμε τώρα τον μεταθέτη é p, H ù. Είναι é p ù é p ù é p, H ù é p, T + V ù é p, T ù + é p,v ù ê p, é p, V ù ê p, + h Ñ V ( ) όπου στην τελευταία ισότητα χρησιμοποιήσαμε τη (5). Επομένως é p ù é p, H ù ê p, h Ñ V ( ) (6) Όμως é p ù é p j e j, p k ù é p j, p k ù e j ê p, όπου οι δείκτες j, k είναι δείκτες άθροισης, με τιμές,,3. Επειδή ο μεταθέτης é p j, p k ù είναι μηδέν, ο μεταθέτης é p j, p k ù είναι επίσης μηδέν, é p ù επομένως και ο μεταθέτης ê p, είναι μηδέν, οπότε η (6) γράφεται é p, H ù -hñv ( ) (7) Θα υπολογίσουμε τώρα τον μεταθέτη é, H ù. 9 7//08

20 Είναι é ù ê é, H ù é, T + V ù é, T ù + é,v ù ê j e j, p + é j e j,v ( ) ù ê { j είναι ê Οδείκτης ê άθροισης é ù ê ê é j, p k ù e j j e j, { p k + é j, V ( ) ù e j ê Ο k είναι 0 ê δείκτης άθροισης é, H ù é j, p k ù e j (8) όπου οι δείκτες j, k είναι δείκτες άθροισης, με τιμές,,3. Όμως, είναι é j, p k ù é j, p k p k ù p k é j, p k ù + é j, p k ù p k p k hd jk + hd jk p k hd jk p k hp j é j, p k ù hp j Σημείωση Στον μεταθέτη é j, p k ù, ο δείκτης k επαναλαμβάνεται, αφού p k p k p k, οπότε αθροίζεται, είναι δηλαδή δείκτης άθροισης. Αντίθετα, ο δείκτης j δεν επαναλαμβάνεται, οπότε δεν είναι δείκτης άθροισης. Στο δεξιό μέλος της (8), και οι δύο δείκτες j, k επαναλαμβάνονται, οπότε είναι και οι δύο δείκτες άθροισης. Γενικά, σε μια παράσταση με δείκτες, όταν ένα δείκτης επαναλαμβάνεται, τότε είναι δείκτης άθροισης. Οι δείκτες που αθροίζονται, δεν εμφανίζονται στο τελικό αποτέλεσμα. Έτσι, για παράδειγμα, το αποτέλεσμα του υπολογισμού του μεταθέτη é j, p k ù εξαρτάται μόνο από τον δείκτη j. Έτσι, η (8) γράφεται 0 7//08

21 é, H ù hp j e j h p j e j h p é, H ù h p (9) Εξάλλου, η (7) γράφεται V ( ) V ( ) é p j e j, H ù -h e j Þ é p j, H ù e j -h ej j j Επειδή τα μοναδιαία διανύσματα e j, j,, 3, είναι γραμμικά ανεξάρτητα, από την τελευταία ισότητα παίρνουμε V ( ) é p j, H ù -h (0) j Με τον ίδιο τρόπο, από τη (9) παίρνουμε h é j, H ù p j () Προχωράμε τώρα στον υπολογισμό της χρονικής εξέλιξης της μέσης τιμής του p, που είναι το εσωτερικό γινόμενο του (διανυσματικού) τελεστή της ορμής με τον (διανυσματικό) τελεστή της θέσης. Προσοχή! Για το εσωτερικό γινόμενο δύο διανυσματικών τελεστών ΔΕΝ ισχύει η αντιμεταθετική ιδιότητα, που ισχύει για το εσωτερικό γινόμενο δύο διανυσμάτων. Επειδή ο τελεστής p δεν εξαρτάται από τον χρόνο, η χρονική εξέλιξη της μέσης τιμής του, όπως δίνεται από το θεώρημα του Ehenfes, είναι d p é ù H, p h () Όπως και στην περίπτωση της μίας διάστασης, ο δείκτης στις μέσες τιμές δηλώνει ότι οι μέσες τιμές λαμβάνονται τη χρονική στιγμή. 7//08

22 Ο μεταθέτης é H, p ù γράφεται é ù ê h V ê é H, p ù - é p, H ù p j j, H p j é j, H ù + é p j, H ù j p j p j - h j Χώρος{ ê{ j θέσεων j είναι ê Οδείκτης ê άθροισης όπου στην τελευταία ισότητα χρησιμοποιήσαμε τις (0) και (). Επομένως p é H, p ù p j h p j - h V j h j - hj V h p - h ÑV ( ) h T - ÑV ( ) j j ( é H, p ù h T - ÑV ( ) ( ) (3) Με τη βοήθεια της (3), η () γράφεται d p h T - ÑV ( ) h ( ) - T - ÑV ( ) - T + ÑV ( ) d p - T + ÑV ( ) (4) Στον χώρο των θέσεων, η χρονική εξέλιξη της μέσης τιμής του τελεστή p γράφεται d p d d 3 y * (, ) p y (, ) ò - (5) Αν, όπως στην περίπτωση της μίας διάστασης, θεωρήσουμε ότι η κατάσταση y είναι δέσμια ιδιοκατάσταση ενέργειας E, τότε æ E ö y ( ) è h ø y (, ) ep ç Επομένως 7//08 )

23 æ E ö * æ E ö p ep ç y ( ) { y ( ) h è h ø è ø Δεν εξαρτάται y * (, ) p y (, ) ep ç από τον χρόνο æ E ö æ E ö * * ep ç ep ç y ( ) p y ( ) y ( ) p y ( ) è h ø è h ø y * (, ) p y (, ) y * ( ) p y ( ) Βλέπουμε ότι η ολοκληρωτέα συνάρτηση y * (, ) p y (, ) δεν εξαρτάται από τον χρόνο, επομένως ούτε το ολοκλήρωμα στο δεξιό μέλος της (5) εξαρτάται από τον χρόνο, άρα d d 3 y * (, ) p y (, ) 0 ò - Οπότε, από την (5) παίρνουμε d p 0 (6) Έτσι, η (4) γράφεται T ÑV ( ) (7) Η σχέση (7) είναι το θεώρημα val στις τρεις διαστάσεις. Όπως και στη μία διάσταση, η σχέση (7), δηλαδή το θεώρημα val, ισχύει και για δέσμιες καταστάσεις που δεν είναι ιδιοκαταστάσεις της ενέργειας, αρκεί για τις καταστάσεις αυτές να ισχύει η (6). 3. Αναφορές [] Eugen Mezbache, Quanu Mechancs (Wley, Thd Edon, 998). [] Davd J. Gffhs, Inoducon o Quanu Mechancs (Pence Hall, Inc., 995). [3] S. LeBohec, Quanu echancal appoaches o he val, 30 June 05, hp:// [4] Gulleo Pala and Ulch Raff, The One Densonal Hydogen Ao Revsed, hps://av.og/abs/quan-ph/ //08

Μια γενική έκφραση της κυματοσυνάρτησης στον χώρο των ορμών για μια δέσμια κατάσταση

Μια γενική έκφραση της κυματοσυνάρτησης στον χώρο των ορμών για μια δέσμια κατάσταση Μια γενική έκφραση της κυματοσυνάρτησης στον χώρο των ορμών για μια δέσμια κατάσταση Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. spiroskonstantogiannis@gmail.com Δεκεμβρίου 07 //07 Coprigt Σπύρος Κωνσταντογιάννης,

Διαβάστε περισσότερα

ΦΟΡΤΙΣΜΕΝΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΑ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΤΕΛΕΣΤΕΣ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ, ΒΑΣΙΚΗ ΚΑΤΑΣΤΑΣΗ, ΕΛΑΧΙΣΤΗ ΕΝΕΡΓΕΙΑ ΣΥΖΗΤΗΣΗ

ΦΟΡΤΙΣΜΕΝΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΑ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΤΕΛΕΣΤΕΣ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ, ΒΑΣΙΚΗ ΚΑΤΑΣΤΑΣΗ, ΕΛΑΧΙΣΤΗ ΕΝΕΡΓΕΙΑ ΣΥΖΗΤΗΣΗ ΦΟΡΤΙΣΜΕΝΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΑ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΤΕΛΕΣΤΕΣ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ, ΒΑΣΙΚΗ ΚΑΤΑΣΤΑΣΗ, ΕΛΑΧΙΣΤΗ ΕΝΕΡΓΕΙΑ ΣΥΖΗΤΗΣΗ Ξεκινώντας από τους τελεστές δημιουργίας και καταστροφής

Διαβάστε περισσότερα

Αρμονικός ταλαντωτής Ασκήσεις

Αρμονικός ταλαντωτής Ασκήσεις Αρμονικός ταλαντωτής Ασκήσεις 4. Αρμονικός ταλαντωτής, τη χρονική στιγμή t, βρίσκεται στην κατάσταση ˆ i e, όπου η βασική κατάσταση του αρμονικού ταλαντωτή, ο τελεστής της ορμής, και η κλίμακα μήκους του

Διαβάστε περισσότερα

Η κυματοσυνάρτηση στην αναπαράσταση ορμής Ασκήσεις. Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. 8 Δεκεμβρίου 2017

Η κυματοσυνάρτηση στην αναπαράσταση ορμής Ασκήσεις. Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. 8 Δεκεμβρίου 2017 Η κυματοσυνάρτηση στην αναπαράσταση ορμής Ασκήσεις Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. siroskonstantogiannis@gmail.com 8 Δεκεμβρίου 7 8//7 Coyrigt Σπύρος Κωνσταντογιάννης, 7. Με επιφύλαξη παντός δικαιώματος.

Διαβάστε περισσότερα

(φορτισμένος αρμονικός 2 ταλαντωτής μέσα σε ομογενές ηλεκτρικό πεδίο) είναι

(φορτισμένος αρμονικός 2 ταλαντωτής μέσα σε ομογενές ηλεκτρικό πεδίο) είναι ΜΟΝΟΔΙΑΣΤΑΤΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΕ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΥΠΟΛΟΓΙΣΜΟΣ ΜΕΣΩΝ ΤΙΜΩΝ ΜΕ ΧΡΗΣΗ ΤΩΝ ΤΕΛΕΣΤΩΝ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ Για μια τυχαία ιδιοκατάσταση της ενέργειας,, υπολογίζουμε

Διαβάστε περισσότερα

( x) Half Oscillator. Σωμάτιο βρίσκεται υπό την επίδραση του δυναμικού

( x) Half Oscillator. Σωμάτιο βρίσκεται υπό την επίδραση του δυναμικού Half Oscillator Σωμάτιο βρίσκεται υπό την επίδραση του δυναμικού ì, x ï V x í ïî mw x, x > Το σύστημα αυτό αναφέρεται ως «Half Oscillator». Στα Ελληνικά, θα χρησιμοποιήσουμε τον όρο «μισός αρμονικός ταλαντωτής»,

Διαβάστε περισσότερα

ˆ ˆ. (τελεστής καταστροφής) (τελεστής δημιουργίας) Το δυναμικό του συστήματός μας (αρμονικός ταλαντωτής μέσα σε ομογενές ηλεκτρικό πεδίο) είναι

ˆ ˆ. (τελεστής καταστροφής) (τελεστής δημιουργίας) Το δυναμικό του συστήματός μας (αρμονικός ταλαντωτής μέσα σε ομογενές ηλεκτρικό πεδίο) είναι ΜΟΝΟΔΙΑΣΤΑΤΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΕ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΤΕΛΕΣΤΕΣ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ, ΒΑΣΙΚΗ ΚΑΤΑΣΤΑΣΗ, ΕΛΑΧΙΣΤΗ ΕΝΕΡΓΕΙΑ ΣΥΖΗΤΗΣΗ Ξεκινώντας από τους τελεστές δημιουργίας και καταστροφής

Διαβάστε περισσότερα

Είναι (1) Έστω (2) Τότε η (1) γράφεται (3) Από την (3) βλέπουμε ότι η y ( x; a ) περιγράφει μια συνοχική κατάσταση μάλιστα

Είναι (1) Έστω (2) Τότε η (1) γράφεται (3) Από την (3) βλέπουμε ότι η y ( x; a ) περιγράφει μια συνοχική κατάσταση μάλιστα Είναι i ö ö y ( ; ) ç ep ç - ˆ ep ç ( p ø ø ) ö ø () Έστω () Τότε η () γράφεται i ö ö y ( ; ) ç ep ç ep ç - ( - ˆ p ø ø ) ö ø (3) Από την (3) βλέπουμε ότι η y ( ; ) περιγράφει μια συνοχική κατάσταση μάλιστα

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟ ΔΥΝΑΜΙΚΟ ΓΕΝΙΚΑ. Έστω σωμάτιο, στις τρεις διαστάσεις, που βρίσκεται υπό την επίδραση μιγαδικού δυναμικού της μορφής

ΜΙΓΑΔΙΚΟ ΔΥΝΑΜΙΚΟ ΓΕΝΙΚΑ. Έστω σωμάτιο, στις τρεις διαστάσεις, που βρίσκεται υπό την επίδραση μιγαδικού δυναμικού της μορφής ΜΙΓΑΔΙΚΟ ΔΥΝΑΜΙΚΟ ΓΕΝΙΚΑ Έστω σωμάτιο, στις τρεις διαστάσεις, που βρίσκεται υπό την επίδραση μιγαδικού δυναμικού της μορφής Re Im V r V r i V r, όπου οι συναρτήσεις Re,Im V r V r είναι πραγματικές συναρτήσεις

Διαβάστε περισσότερα

ii) Υπολογίστε τις μέσες τιμές της θέσης και της ορμής του ταλαντωτή όταν t 0.

ii) Υπολογίστε τις μέσες τιμές της θέσης και της ορμής του ταλαντωτή όταν t 0. ΑΣΚΗΣΗ 4 Αρμονικός ταλαντωτής, τη χρονική στιγμή t, βρίσκεται στην κατάσταση ip ˆ x x, όπου η βασική κατάσταση του αρμονικού ταλαντωτή, ˆp x ο τελεστής της ορμής, και η κλίμακα μήκους του αρμονικού ταλαντωτή.

Διαβάστε περισσότερα

Λυμένες ασκήσεις στροφορμής

Λυμένες ασκήσεις στροφορμής Λυμένες ασκήσεις στροφορμής Θα υπολογίσουμε τη δράση των τελεστών κλίμακας J ± σε μια τυχαία ιδιοκατάσταση j, m των τελεστών J και Jˆ. Λύση Δείξαμε ότι η κατάσταση Jˆ± j, m είναι επίσης ιδιοκατάσταση των

Διαβάστε περισσότερα

Â. Θέλουμε να βρούμε τη μέση τιμή

Â. Θέλουμε να βρούμε τη μέση τιμή ΜΕΣΗ ΤΙΜΗ ΕΝΟΣ ΕΡΜΙΤΙΑΝΟΥ ΤΕΛΕΣΤΗ Έστω ο ερμιτιανός τελεστής Â. Θέλουμε να βρούμε τη μέση τιμή Â μια χρονική στιγμή, που αυθαίρετα, αλλά χωρίς βλάβη της γενικότητας, θεωρούμε χρονική στιγμή μηδέν, όπου

Διαβάστε περισσότερα

+ z, όπου I x, I y, I z είναι οι ροπές αδράνειας

+ z, όπου I x, I y, I z είναι οι ροπές αδράνειας r Έστω κβαντικός περιστροφέας ολικής στροφορμής J, που περιγράφεται από Jx J y J τη Χαμιλτονιανή H = z, όπου I x, I y, I z είναι οι ροπές αδράνειας I x I y I z του περιστροφέα ως προς τους άξονες x,y,z,

Διαβάστε περισσότερα

Για να υπολογίσουμε το ολοκλήρωμα στο δεξιό μέλος της (3), κάνουμε την αλλαγή μεταβλητής

Για να υπολογίσουμε το ολοκλήρωμα στο δεξιό μέλος της (3), κάνουμε την αλλαγή μεταβλητής Στην αναπαράσταση θέσης, η τυχαία συνοχική κατάσταση του αρμονικού ταλαντωτή περιγράφεται από μια κυματοσυνάρτηση της μορφής y ( ( Η κυματοσυνάρτηση στην αναπαράσταση ορμής, y% (, είναι ο μετασχηματισμός

Διαβάστε περισσότερα

Ιδιοσυναρτήσεις του αρμονικού ταλαντωτή Πολυώνυμα Hermite

Ιδιοσυναρτήσεις του αρμονικού ταλαντωτή Πολυώνυμα Hermite Ιδιοσυναρτήσεις του αρμονικού ταλαντωτή Πολυώνυμα Hermite i) Δείξτε ότι δύο τυχαίες διαδοχικές ιδιοσυναρτήσεις του αρμονικού ταλαντωτή έχουν αντίθετη ομοτιμία. ii) Δείξτε ότι y n 0 ) ¹ 0, για n = 0,,...

Διαβάστε περισσότερα

Η άλγεβρα της στροφορμής

Η άλγεβρα της στροφορμής Η άλγεβρα της στροφορμής Στην κλασική μηχανική, η τροχιακή στροφορμή L ενός σωματιδίου είναι L r p (1) όπου r το διάνυσμα θέσης του σωματιδίου και p η ορμή του. Σε καρτεσιανές συντεταγμένες, η (1) γράφεται

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑ II (ΑΠΕΙΡΙΣΜΟΣ ΤΟΥ ΔΥΝΑΜΙΚΟΥ ΣΕ ΠΕΡΙΟΧΗ/ΠΕΡΙΟΧΕΣ), και τις ενεργειακές στάθμες του, 2. E E E, όπου ˆ

ΠΑΡΑΔΕΙΓΜΑ II (ΑΠΕΙΡΙΣΜΟΣ ΤΟΥ ΔΥΝΑΜΙΚΟΥ ΣΕ ΠΕΡΙΟΧΗ/ΠΕΡΙΟΧΕΣ), και τις ενεργειακές στάθμες του, 2. E E E, όπου ˆ ΠΑΡΑΔΕΙΓΜΑ II (ΑΠΕΙΡΙΣΜΟΣ ΤΟΥ ΔΥΝΑΜΙΚΟΥ ΣΕ ΠΕΡΙΟΧΗ/ΠΕΡΙΟΧΕΣ) Στο απειρόβαθο πηγάδι με τοιχώματα στα σημεία x, θα υπολογίσουμε τη διασπορά της ενέργειας,, για τη μικτή κατάσταση με 5 x x x 8 μέσα στο πηγάδι

Διαβάστε περισσότερα

ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ ΣΕ ΜΙΑ ΤΥΧΑΙΑ ΑΝΑΠΑΡΑΣΤΑΣΗ

ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ ΣΕ ΜΙΑ ΤΥΧΑΙΑ ΑΝΑΠΑΡΑΣΤΑΣΗ ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ ΣΕ ΜΙΑ ΤΥΧΑΙΑ ΑΝΑΠΑΡΑΣΤΑΣΗ Έστω â μια παρατηρήσιμη (διανυσματικός τελεστής) με συνεχές φάσμα ιδιοτιμών. Επίσης, έστω ότι t είναι η κατάσταση του συστήματός μας την τυχαία χρονική στιγμή

Διαβάστε περισσότερα

Δύο διακρίσιμα σωμάτια με σπιν s 1

Δύο διακρίσιμα σωμάτια με σπιν s 1 Δύο διακρίσιμα σωμάτια με σπιν και Σύνδεση της βάσης των ιδιοκαταστάσεων του τετραγώνου και της z συνιστώσας του ολικού σπιν με τη βάση που αποτελείται από τα τανυστικά γινόμενα των καταστάσεων των δύο

Διαβάστε περισσότερα

μαγνητικό πεδίο παράλληλο στον άξονα x

μαγνητικό πεδίο παράλληλο στον άξονα x Σπιν μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο παράλληλο στον άξονα ) Ηλεκτρόνιο βρίσκεται μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο με κατεύθυνση στα θετικά του άξονα, δηλαδή e,

Διαβάστε περισσότερα

Σπιν 1 2. Γενικά. Ŝ και S ˆz γράφονται. ιδιοκαταστάσεις αποτελούν ορθοκανονική βάση στον χώρο των καταστάσεων του σπιν 1 2.

Σπιν 1 2. Γενικά. Ŝ και S ˆz γράφονται. ιδιοκαταστάσεις αποτελούν ορθοκανονική βάση στον χώρο των καταστάσεων του σπιν 1 2. Σπιν Γενικά Θα χρησιμοποιήσουμε τις γενικές σχέσεις που αποδείξαμε στην ανάρτηση «Εύρεση των ιδιοτιμών της στροφορμής», που, όπως είδαμε, ισχύουν για κάθε γενική στροφορμή ˆ J με συνιστώσες Jˆ, Jˆ, J ˆ,

Διαβάστε περισσότερα

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής. ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου V Άσκηση : Οι θεμελιώδεις σχέσεις μετάθεσης της στροφορμής επιτρέπουν την ύπαρξη ακέραιων και ημιπεριττών ιδιοτιμών Αλλά για την τροχιακή στροφορμή L r p γνωρίζουμε ότι

Διαβάστε περισσότερα

Δείξτε ότι οι ιδιοκαταστάσεις της ενέργειας του ελεύθερου κβαντικού 2

Δείξτε ότι οι ιδιοκαταστάσεις της ενέργειας του ελεύθερου κβαντικού 2 Δείξτε ότι οι ιδιοκαταστάσεις της ενέργειας του ελεύθερου κβαντικού Jˆ Jˆ Jˆ περιστροφέα με Χαμιλτονιανή Hˆ = x y z και ολική στροφορμή j = x y z είναι οι ιδιοκαταστάσεις των τριών συνιστωσών της στροφορομής

Διαβάστε περισσότερα

1. Μετάπτωση Larmor (γενικά)

1. Μετάπτωση Larmor (γενικά) . Μετάπτωση Larmor (γενικά) Τι είναι η μετάπτωση; Μετάπτωση είναι η αλλαγή της διεύθυνσης του άξονα περιστροφής ενός περιστρεφόμενου αντικειμένου. Αν ο άξονας περιστροφής ενός αντικειμένου περιστρέφεται

Διαβάστε περισσότερα

( x) (( ) ( )) ( ) ( ) ψ = 0 (1)

( x) (( ) ( )) ( ) ( ) ψ = 0 (1) ΚΑΤΑΣΤΑΣΕΙΣ ΕΛΑΧΙΣΤΗΣ ΑΒΕΒΑΙΟΤΗΤΑΣ ΘΕΣΗΣ ΟΡΜΗΣ ΣΤΗΝ ΑΝΑΠΑΡΑΣΤΑΣΗ ΘΕΣΗΣ Στην προηγούµενη ανάρτηση, δείξαµε ότι η κατάσταση είναι κατάσταση ελάχιστης αβεβαιότητας των µη µετατιθέµενων ερµιτιανών τελεστών

Διαβάστε περισσότερα

Σπιν 1/2. Γενικά. 2 Υπενθυμίζουμε ότι τα έξι κουάρκ και τα έξι λεπτόνια του Καθιερωμένου Προτύπου,

Σπιν 1/2. Γενικά. 2 Υπενθυμίζουμε ότι τα έξι κουάρκ και τα έξι λεπτόνια του Καθιερωμένου Προτύπου, Σπιν / Γενικά Θα χρησιμοποιήσουμε τις γενικές σχέσεις που αποδείξαμε στην ανάρτηση «Εύρεση των ιδιοτιμών της στροφορμής», που, όπως είδαμε, ισχύουν για κάθε γενική r στροφορμή Jˆ με συνιστώσες Jˆ x, Jˆ

Διαβάστε περισσότερα

και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για

και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου IV Άσκηση 1: Σωματίδιο μάζας Μ κινείται στην περιφέρεια κύκλου ακτίνας R. Υπολογίστε τις επιτρεπόμενες τιμές της ενέργειας, τις αντίστοιχες κυματοσυναρτήσεις και τον εκφυλισμό.

Διαβάστε περισσότερα

Σύστημα δύο αλληλεπιδρώντων σπιν μέσα σε ομογενές μαγνητικό πεδίο (άσκηση)

Σύστημα δύο αλληλεπιδρώντων σπιν μέσα σε ομογενές μαγνητικό πεδίο (άσκηση) Σύστημα δύο αλληλεπιδρώντων σπιν μέσα σε ομογενές μαγνητικό πεδίο (άσκηση) Δύο σωμάτια με σπιν s και s αντίστοιχα και με τον ίδιο γυρομαγνητικό λόγο τοποθετούνται μέσα σε ομογενές χρονοανεξάρτητο μαγνητικό

Διαβάστε περισσότερα

, που, χωρίς βλάβη της γενικότητας, μπορούμε να θεωρήσουμε χρονική στιγμή μηδέν, δηλαδή

, που, χωρίς βλάβη της γενικότητας, μπορούμε να θεωρήσουμε χρονική στιγμή μηδέν, δηλαδή Η ΚΥΜΑΤΟΣΥΝΑΡΤΗΣΗ ΣΤΗΝ ΑΝΑΠΑΡΑΣΤΑΣΗ ΘΕΣΗΣ ΑΝΑΠΑΡΑΣΤΑΣΗ ΟΡΜΗΣ p. Θα βρούμε πρώτα τη σχέση που συνδέει την p με την x. x ΚΑΙ ΣΤΗΝ Έστω η κατάσταση του συστήματός μας μια χρονική στιγμή t 0, που, χωρίς βλάβη

Διαβάστε περισσότερα

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου Ι Άσκηση 1: Θεωρήστε δύο ορθοκανονικά διανύσματα ψ 1 και ψ και υποθέστε ότι αποτελούν βάση σε ένα χώρο δύο διαστάσεων. Θεωρήστε επίσης ένα τελαστή T που ορίζεται στο χώρο

Διαβάστε περισσότερα

ETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ

ETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ Θεωρία της στροφορμής Στέλιος Τζωρτζάκης 1 3 4 Υπενθύμιση βασικών εννοιών της στροφορμής κυματοσυνάρτηση

Διαβάστε περισσότερα

! " # $ % & $ % & $ & # " ' $ ( $ ) * ) * +, -. / # $ $ ( $ " $ $ $ % $ $ ' ƒ " " ' %. " 0 1 2 3 4 5 6 7 8 9 : ; ; < = : ; > : 0? @ 8? 4 A 1 4 B 3 C 8? D C B? E F 4 5 8 3 G @ H I@ A 1 4 D G 8 5 1 @ J C

Διαβάστε περισσότερα

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ Στέλιος Τζωρτζάκης 1 3 4 Ο διανυσματικός χώρος των φυσικών καταστάσεων Η έννοια

Διαβάστε περισσότερα

Εύρεση των ιδιοτιμών της στροφορμής

Εύρεση των ιδιοτιμών της στροφορμής Εύρεση των ιδιοτιμών της στροφορμής Χρησιμοποιώντας την άλγεβρα της στροφορμής, θα υπολογίσουμε τις ιδιοτιμές του τετραγώνου της και της -συνιστώσας της. Μπορούμε, ωστόσο, να θέσουμε το πρόβλημα γενικότερα,

Διαβάστε περισσότερα

Αγγύλες Poisson. Ας θεωρήσουμε κάποια συνάρτηση των κανονικών μεταβλητών. Οι

Αγγύλες Poisson. Ας θεωρήσουμε κάποια συνάρτηση των κανονικών μεταβλητών. Οι Μηχανική ΙΙ Πέτρος Ιωάννου & Θεοχάρης Αποστολάτος 25 Μαϊου 2001 Αγγύλες Poisson Ας θεωρήσουμε κάποια συνάρτηση των κανονικών μεταβλητών Οι θέσεις και οι ορμές εξελίσσονται χρονικά σύμφωνα με τις εξισώσεις

Διαβάστε περισσότερα

21/11/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης

21/11/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ Στέλιος Τζωρτζάκης Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ 1 3 4 Το δυναμικό του αρμονικού ταλαντωτή Η παραβολική προσέγγιση βρίσκει άμεση

Διαβάστε περισσότερα

μαγνητικό πεδίο τυχαίας κατεύθυνσης

μαγνητικό πεδίο τυχαίας κατεύθυνσης Σπιν 1 μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο τυχαίας κατεύθυνσης 1) Ηλεκτρόνιο βρίσκεται μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο B B ˆ ˆ ˆ 0xex B0 yey B0 zez, όπου B0 x, B0

Διαβάστε περισσότερα

. Να βρεθεί η Ψ(x,t).

. Να βρεθεί η Ψ(x,t). ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου II Άσκηση 1: Εάν η κυματοσυνάρτηση Ψ(,0) παριστάνει ένα ελεύθερο σωματίδιο, με μάζα m, στη μία διάσταση την χρονική στιγμή t=0: (,0) N ep( ), όπου N 1/ 4. Να βρεθεί η

Διαβάστε περισσότερα

Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

Z L L L N b d g 5 *  # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1  5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3  # Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / 0 1 2 / + 3 / / 1 2 3 / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " # $ % $ ' $ % ) * % @ + * 1 A B C D E D F 9 O O D H

Διαβάστε περισσότερα

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Κίνηση σε κεντρικά δυναµικά 1.1.1 Κλασική περιγραφή Η Χαµιλτωνιανή κλασικού συστήµατος που κινείται

Διαβάστε περισσότερα

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Μερικές βασικές έννοιες διανυσματικού λογισμού ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ 1. Oρισμοί Διάνυσμα ονομάζεται η μαθηματική οντότητα που έχει διεύθυνση φορά και μέτρο.

Διαβάστε περισσότερα

Εξετάσεις 1ης Ιουλίου Για την ϐασική κατάσταση του ατόµου του Υδρογόνου της οποίας η κανονικοποιηµένη στην µονάδα

Εξετάσεις 1ης Ιουλίου Για την ϐασική κατάσταση του ατόµου του Υδρογόνου της οποίας η κανονικοποιηµένη στην µονάδα ΘΕΜΑ 1: Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ Εξετάσεις 1ης Ιουλίου 13 Τµήµα Α. Λαχανά) Α ) Για την πρώτη διεγερµένη κατάσταση του ατόµου του Υδρογόνου µε τροχιακή στροφορµή l = 1 να προσδιορισθουν οι αποστάσεις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ Εισαγωγή Οι αριθμοί που εκφράζουν το πλήθος των στοιχείων ανά αποτελούν ίσως τους πιο σημαντικούς αριθμούς της Συνδυαστικής και καλούνται διωνυμικοί συντελεστές διότι εμφανίζονται

Διαβάστε περισσότερα

Χρησιμοποιείστε την πληροφορία αυτή για να δείξετε ότι ο τελεστής που θα μεταφέρει το άνυσμα

Χρησιμοποιείστε την πληροφορία αυτή για να δείξετε ότι ο τελεστής που θα μεταφέρει το άνυσμα Άσκηση. (Βοήθημα θεωρίας) Εάν ένα κλασικό άνυσμα r μετατοπισθεί κατά a, θα προκύψει το άνυσμα r = r + a. a Χρησιμοποιείστε την πληροφορία αυτή για να δείξετε ότι ο τελεστής που θα μεταφέρει το άνυσμα r

Διαβάστε περισσότερα

) * +, -. + / - 0 1 2 3 4 5 6 7 8 9 6 : ; < 8 = 8 9 >? @ A 4 5 6 7 8 9 6 ; = B? @ : C B B D 9 E : F 9 C 6 < G 8 B A F A > < C 6 < B H 8 9 I 8 9 E ) * +, -. + / J - 0 1 2 3 J K 3 L M N L O / 1 L 3 O 2,

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 3 13/04/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 3 13/04/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 3 3/04/06 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο Α. Τι ονομάζουμε ρυθμό μεταβολής του y = f( ως προς το στο σημείο 0 ;

Διαβάστε περισσότερα

Αρμονικός Ταλαντωτής

Αρμονικός Ταλαντωτής Αρμονικός Ταλαντωτής Δομή Διάλεξης Η χρησιμότητα του προβλήματος του αρμονικού ταλαντωτή Η Hamiltonian και οι τελεστές δημιουργίας και καταστροφής Το φάσμα ιδιοτιμών της Hamiltonian Οι ιδιοκαταστάσεις

Διαβάστε περισσότερα

Κίνηση σε Μονοδιάστατα Τετραγωνικά Δυναμικά

Κίνηση σε Μονοδιάστατα Τετραγωνικά Δυναμικά Κίνηση σε Μονοδιάστατα Τετραγωνικά Δυναμικά Δομή Διάλεξης Τετραγωνικό Πηγάδι Δυναμικού: Δέσμιες καταστάσεις - ιδιοτιμές Οριακές Περιπτώσεις: δ δυναμικό, άπειρο βάθος Σκέδαση σε μια διάσταση: Σκαλοπάτι

Διαβάστε περισσότερα

Διάλεξη 2: Κεντρικά Δυναμικά. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για κεντρικά δυναμικά

Διάλεξη 2: Κεντρικά Δυναμικά. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για κεντρικά δυναμικά Διάλεξη : Κεντρικά Δυναμικά Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schöing για κεντρικά δυναμικά Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 03 Κεντρικά δυναμικά Εξάρτηση δυναμικού

Διαβάστε περισσότερα

Η Αναπαράσταση της Θέσης (Position Representation)

Η Αναπαράσταση της Θέσης (Position Representation) Η Αναπαράσταση της Θέσης (Position Representation) Δομή Διάλεξης Το παρατηρήσιμο μέγεθος της θεσης και τα αντίστοιχα πλάτη πιθανότητας (συνεχές φάσμα ιδιοτιμών και ιδιοκαταστάσεων) Οι τελεστές της θέσης

Διαβάστε περισσότερα

Δηλαδή. Η Χαμιλτονιανή του περιστροφέα μέσα στο μαγνητικό πεδίο είναι

Δηλαδή. Η Χαμιλτονιανή του περιστροφέα μέσα στο μαγνητικό πεδίο είναι Κβαντικός περιστροφέας που J J J H y z τοποθετείται y z περιγράφεται μέσα σε από τη ομογενές, Χαμιλτονιανή χρονοανεξάρτητο μαγνητικό πεδίο με κατεύθυνση στα θετικά του άξονα z, δηλαδή B B ez, με B >. Αν

Διαβάστε περισσότερα

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014 ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014 Περιεχόμενα 1 Εισαγωγή 2 2 Μεγιστικός τελέστης στην μπάλα 2 2.1 Βασικό θεώρημα........................ 2 2.2 Γενική περίπτωση μπάλας.................. 6 2.2.1 Στο

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

( ) * Λύση (α) Καθώς η Χαµιλτονιανή είναι ερµιτιανός τελεστής έχουµε ότι = = = = 0. (β) Απαιτούµε

( ) * Λύση (α) Καθώς η Χαµιλτονιανή είναι ερµιτιανός τελεστής έχουµε ότι = = = = 0. (β) Απαιτούµε ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 3 Γενάρη ( ιδάσκων: ΑΦ Τερζής) ιάρκεια εξέτασης 3 ώρες ΘΕΜΑ [555555553] Θεωρούµε κβαντικό σύστηµα που περιγράφεται από την Χαµιλτονιανή H 3ε µ iε µε ιδιοσυναρτήσεις κάποιου

Διαβάστε περισσότερα

(ταλαντούμενο) μαγνητικό πεδίο τυχαίας κατεύθυνσης Επίλυση με αλλαγή βάσης

(ταλαντούμενο) μαγνητικό πεδίο τυχαίας κατεύθυνσης Επίλυση με αλλαγή βάσης Σπιν 1 μέσα σε χρονικά μεταβαλλόμενο (ταλαντούμενο) μαγνητικό πεδίο τυχαίας κατεύθυνσης Επίλυση με αλλαγή βάσης Έστω ηλεκτρόνιο μέσα σε μαγνητικό πεδίο cos B B t, όπου B, και si cose si sie cos e είναι

Διαβάστε περισσότερα

ETY-202. Ο γενικός φορμαλισμός Dirac ETY-202 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC. Στέλιος Τζωρτζάκης 21/11/2013

ETY-202. Ο γενικός φορμαλισμός Dirac ETY-202 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC. Στέλιος Τζωρτζάκης 21/11/2013 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC Στέλιος Τζωρτζάκης Ο γενικός φορμαλισμός Dirac 1 3 4 Εικόνες και αναπαραστάσεις Επίσης μια πολύ χρήσιμη ιδιότητα

Διαβάστε περισσότερα

Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 )

Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 ) vs of Io vs of Io D of Ms Scc & gg Couo Ms Scc ική Θεωλης ική Θεωλης ιδάσκων: Λευτέρης Λοιδωρίκης Π 746 dok@cc.uo.g cs.s.uo.g/dok ομηχ ομηχ δ ά τρεις διαστ Εξίσωση Schödg σε D Σε μία διάσταση Σε τρείς

Διαβάστε περισσότερα

ΚΒΑΝΤΙΚΗ ΦΥΣΙΚΗ Ι Τελική (επί πτυχίω) Εξέταση: 17 Ιούνη 2013 ( ιδάσκων: Α.Φ. Τερζής) ΘΕΜΑ 1[ ]

ΚΒΑΝΤΙΚΗ ΦΥΣΙΚΗ Ι Τελική (επί πτυχίω) Εξέταση: 17 Ιούνη 2013 ( ιδάσκων: Α.Φ. Τερζής) ΘΕΜΑ 1[ ] ΚΒΑΝΤΙΚΗ ΦΥΣΙΚΗ Ι Τελική (επί πτυχίω Εξέταση: 17 Ιούνη 13 ( ιδάσκων: ΑΦ Τερζής ΘΕΜΑ 1[1515] Θεωρούµε κβαντικό σύστηµα που περιράφεται από την Χαµιλτονιανή, ε H 4ε 1 1 3i 1 1, µε 1, ιδιοσυναρτήσεις κάποιου

Διαβάστε περισσότερα

Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών

Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών Βασικά σημεία της κβαντομηχανικής Διδάσκων : Επίκουρη Καθηγήτρια Χριστίνα Λέκκα

Διαβάστε περισσότερα

Δομή Διάλεξης. Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης. Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής

Δομή Διάλεξης. Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης. Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής Τροχιακή Στροφορμή Δομή Διάλεξης Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής Ιδιοτιμές και ιδιοκαταστάσεις της L

Διαβάστε περισσότερα

Κατηγορία 1 η. Σταθερή συνάρτηση Δίνεται παραγωγίσιμη συνάρτηση f : 0, f '( x) 0 για κάθε εσωτερικό σημείο x του Δ

Κατηγορία 1 η. Σταθερή συνάρτηση Δίνεται παραγωγίσιμη συνάρτηση f : 0, f '( x) 0 για κάθε εσωτερικό σημείο x του Δ Κατηγορία η Σταθερή συνάρτηση Τρόπος αντιμετώπισης: Για να αποδείξουμε ότι μια συνάρτηση είναι σταθερή σε ένα διάστημα Δ πρέπει: η συνάρτηση να είναι συνεχής στο Δ '( ) 0 για κάθε εσωτερικό σημείο του

Διαβάστε περισσότερα

[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x)

[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x) [] 9 ΣΥΝΑΡΤΗΣΙΑΚΟΙ ΧΩΡΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Η «συνάρτηση» δέλτα του irac Η «συνάρτηση» δέλτα ορίζεται μέσω της σχέσης φ (0) αν 0 δ[ φ ] = φ δ dx = (9) 0 αν 0 όπου η φ είναι μια συνάρτηση που ανήκει

Διαβάστε περισσότερα

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος Λύσεις των θεμάτων προσομοίωσης -- Σχολικό Έτος 5-6 Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -- Πανελλαδικών Εξετάσεων 6 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής»

Διαβάστε περισσότερα

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 31 Γενάρη 2012 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης 3 ώρες.

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 31 Γενάρη 2012 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης 3 ώρες. ΘΕΜΑ 1[1] ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 31 Γενάρη 1 ( ιδάσκων: ΑΦ Τερζής ιάρκεια εξέτασης 3 ώρες Ηλεκτρόνιο βρίσκεται σε δυναµικό απειρόβαθου πηαδιού και περιράφεται από την 1 πx πx κυµατοσυνάρτηση

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ. Θέμα 2. α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει

ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ. Θέμα 2. α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ Θέμα α) Δείξτε ότι οι διακριτές ιδιοτιμές της ενέργειας σε ένα μονοδιάστατο πρόβλημα δεν είναι εκφυλισμένες β) Με βάση το προηγούμενο ερώτημα να δείξετε ότι μπορούμε να διαλέξουμε τις

Διαβάστε περισσότερα

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΕΙΣΑΓΩΓΗ Σκοπός της κινηματικής είναι η περιγραφή της κίνησης του ρευστού Τα αίτια που δημιούργησαν την κίνηση και η αναζήτηση των δυνάμεων που την διατηρούν είναι αντικείμενο της

Διαβάστε περισσότερα

Διάλεξη 1: Κβαντομηχανική σε τρεις διαστάσεις

Διάλεξη 1: Κβαντομηχανική σε τρεις διαστάσεις Διάλεξη : Κβαντομηχανική σε τρεις διαστάσεις Βασικές Αρχές της Κβαντομηχανικής H κατάσταση ενός φυσικού συστήματος περιγράφεται από την κυματοσυνάρτησή του και αποτελεί το πλάτος πιθανότητας να βρεθεί

Διαβάστε περισσότερα

ETY-202 ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΤΩΝ ΘΕΜΕΛΙΩΔΩΝ ΑΡΧΩΝ ETY-202 ΎΛΗ & ΦΩΣ 03. ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ. Στέλιος Τζωρτζάκης 1/11/2013

ETY-202 ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΤΩΝ ΘΕΜΕΛΙΩΔΩΝ ΑΡΧΩΝ ETY-202 ΎΛΗ & ΦΩΣ 03. ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ. Στέλιος Τζωρτζάκης 1/11/2013 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 03. ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΤΩΝ ΘΕΜΕΛΙΩΔΩΝ ΑΡΧΩΝ Στέλιος Τζωρτζάκης 1 3 4 Ο νόμος της χρονικής μεταβολής των μέσων τιμών και το

Διαβάστε περισσότερα

ΦΥΣ Διάλ Άλγεβρα. 1 a. Άσκηση για το σπίτι: Διαβάστε το παράρτημα Β του βιβλίου

ΦΥΣ Διάλ Άλγεβρα. 1 a. Άσκηση για το σπίτι: Διαβάστε το παράρτημα Β του βιβλίου ΦΥΣ 131 - Διάλ. 4 1 Άλγεβρα a 1 a a ( ± y) a a ± y log a a 10 log a ± logb log( ab ± 1 ) log( a n ) n log( a) ln a a e ln a ± ln b ln( ab ± 1 ) ln( a n ) nln( a) Άσκηση για το σπίτι: Διαβάστε το παράρτημα

Διαβάστε περισσότερα

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 30 Αυγούστου 2010 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης 2,5 ώρες.

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 30 Αυγούστου 2010 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης 2,5 ώρες. ΘΕΜΑ [5575] ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 3 Αυγούστου ( ιδάσκων: ΑΦ Τερζής) ιάρκεια εξέτασης,5 ώρες (α) Να αποδειχθεί ότι για οποιοδήποτε µη εξαρτώµενο από τον χρόνο τελεστή Α, ισχύει d A / dt = A,

Διαβάστε περισσότερα

Δομή Διάλεξης. Εύρεση ακτινικού μέρους εξίσωσης Schrödinger. Εφαρμογή σε σφαιρικό πηγάδι δυναμικού απείρου βάθους. Εφαρμογή σε άτομο υδρογόνου

Δομή Διάλεξης. Εύρεση ακτινικού μέρους εξίσωσης Schrödinger. Εφαρμογή σε σφαιρικό πηγάδι δυναμικού απείρου βάθους. Εφαρμογή σε άτομο υδρογόνου Κεντρικά Δυναμικά Δομή Διάλεξης Εύρεση ακτινικού μέρους εξίσωσης Schrödinger Εφαρμογή σε σφαιρικό πηγάδι δυναμικού απείρου βάθους Εφαρμογή σε άτομο υδρογόνου Ακτινική Συνιστώσα Ορμής Έστω Χαμιλτονιανή

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ. ii) = x και. Περιπτώσεις στις οποίες η συνάρτηση είναι πολλαπλού τύπου και το x

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ. ii) = x και. Περιπτώσεις στις οποίες η συνάρτηση είναι πολλαπλού τύπου και το x ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ Περιπτώσεις στις οποίες βρίσκουμε την παράγωγο της f στο με τον ορισμό ~ Να βρεθούν με τη βοήθεια του ορισμού οι παράγωγοι αριθμοί των παρακάτω συναρτήσεων: i) f() = + + 4 στο =- ii) f()

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ R - ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ - ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΑΚΟΛΟΥΘΙΑΣ [Κεφ..6: Μη Πεπερασμένο Όριο στο R - Κεφ..7: Όρια Συνάρτησης

Διαβάστε περισσότερα

Κβαντικό Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο

Κβαντικό Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Κβαντικό Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Δομή Διάλεξης Χαμιλτονιανή και Ρεύμα Πιθανότητας για Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Μετασχηματισμοί Βαθμίδας Αρμονικός Ταλαντωτής σε Ηλεκτρικό Πεδίο Σωμάτιο

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 12: Θεωρήματα Ehrenfest-Parity- -Μέση τιμή τελεστή. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 12: Θεωρήματα Ehrenfest-Parity- -Μέση τιμή τελεστή. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 12: Θεωρήματα Ehrenfest-Parity- -Μέση τιμή τελεστή Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι να ολοκληρώσει τις ιδιότητες

Διαβάστε περισσότερα

Κλασική Hλεκτροδυναμική

Κλασική Hλεκτροδυναμική Κλασική Hλεκτροδυναμική Ενότητα 1: Εισαγωγή Ανδρέας Τερζής Σχολή Θετικών επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι μια σύντομη επανάληψη στις βασικές έννοιες της ηλεκτροστατικής.

Διαβάστε περισσότερα

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Ο Μονοδιάστατος Γραµµικός Αρµονικός Ταλαντωτής 1.1.1 Εύρεση των ιδιοτοµών και ιδιοσυναρτήσεων

Διαβάστε περισσότερα

ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ

ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ? Εύρεση εφαπτόμενης της γνωστό σημείο (, ( )) με την βοήθεια του ορισμού: Εάν το σημείο αλλαγής τύπου η σημείο μηδενισμού της ύπαρξης ποσότητας, εξετάζω αν η είναι παραγωγισιμη

Διαβάστε περισσότερα

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5 Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 1/ 53 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων Ακαδηµαικό έτος

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 8 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σελίδα από Φάνης Μαργαρώνης Φροντιστήρια Ρούλα Μακρή Τομέας μαθηματικών ΘΕΜΑ

Διαβάστε περισσότερα

Παραμαγνητικός συντονισμός

Παραμαγνητικός συντονισμός Παραμαγνητικός συντονισμός B B teˆ teˆ B eˆ, όπου Έστω ηλεκτρόνιο σε μαγνητικό πεδίο cos sin x y z B, B. Θεωρούμε ότι η σταθερή συνιστώσα του μαγνητικού πεδίου, Be, ˆz είναι ισχυρότερη από τη χρονοεξαρτώμενη

Διαβάστε περισσότερα

0 + a = a + 0 = a, a k, a + ( a) = ( a) + a = 0, 1 a = a 1 = a, a k, a a 1 = a 1 a = 1,

0 + a = a + 0 = a, a k, a + ( a) = ( a) + a = 0, 1 a = a 1 = a, a k, a a 1 = a 1 a = 1, I ΠΙΝΑΚΕΣ 11 Σώμα 111 Ορισμός: Ενα σύνολο k εφοδιασμένο με δύο πράξεις + και ονομάζεται σώμα αν ικανοποιούνται οι παρακάτω ιδιότητες: (Α (α (Προσεταιριστική ιδιότητα της πρόσθεσης (a + b + c = a + (b +

Διαβάστε περισσότερα

Κβαντομηχανική σε μία διάσταση

Κβαντομηχανική σε μία διάσταση vrsy of Io Dr of Mrls Scc & grg Couol Mrls Scc κή Θεωρία της Ύλης ιδάσκων: Λευτέρης Λοιδωρίκης Π 76 ldor@cc.uo.gr csl.rls.uo.gr/ldor σταση Μία ιάσ ανική σε Μ κή Θεωρ ρία της Ύλης: Κβα αντομηχα Κβαντομηχανική

Διαβάστε περισσότερα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΣΥΝΑΡΤΗΣΙΑΚΟΙ ΧΩΡΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Διδάσκων : Επίκ Καθ Κολάσης Χαράλαμπος Άδειες Χρήσης

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ [Κεφ..6: Συνέπειες του Θεωρήματος της Μέσης Τιμής πλην της Ενότητας Μονοτονία Συνάρτησης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες

Διαβάστε περισσότερα

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2 ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ - ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ - ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

αβ (, ) τέτοιος ώστε f(x

αβ (, ) τέτοιος ώστε f(x ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΜΑ Α Άσκηση α) Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [ αβ., ] Αν η f είναι συνεχής στο [ αβ, ]

Διαβάστε περισσότερα

Θεωρητική μηχανική ΙΙ

Θεωρητική μηχανική ΙΙ ΟΣΑ ΓΡΑΦΟΝΤΑΙ ΕΔΩ ΝΑ ΤΑ ΔΙΑΒΑΖΕΤΕ ΜΕ ΣΚΕΠΤΙΚΟ ΒΛΕΜΜΑ. ΜΠΟΡΕΙ ΝΑ ΠΕΡΙΕΧΟΥΝ ΛΑΘΗ. Θεωρητική μηχανική ΙΙ Να δειχθεί ότι αν L x, L y αποτελούν ολοκληρώματα της κίνησης τότε και η L z αποτελεί ολοκλήρωμα της

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 10: Ερμιτιανοί τελεστές και εισαγωγή στους μεταθέτες. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 10: Ερμιτιανοί τελεστές και εισαγωγή στους μεταθέτες. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 10: Ερμιτιανοί τελεστές και εισαγωγή στους μεταθέτες Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι να αναδείξει την ερμιτιανότητα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z)

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z) ΚΕΦΑΛΑΙΟ 1: Πρότυπα Στο κεφάλαιο αυτό θα υπενθυμίσουμε τις βασικές έννοιες που αφορούν πρότυπα πάνω από ένα δακτύλιο Θα περιοριστούμε στα πλέον απαραίτητα για αυτά που ακολουθούν στα άλλα κεφάλαια Η κατευθυντήρια

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Συναρτήσεις Πολλών Μεταβλητών

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Συναρτήσεις Πολλών Μεταβλητών ΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Συναρτήσεις Πολλών Μεταβλητών Να βρεθούν τα όρια, αν υπάρχουν: lim i) (,) (0,0) + ii) lim (,) (0,0) + iii) 3 lim 3 (,) (0,0) 6 + lim iv) (,) (0,0) + + lim sin + sin v) (,) (0,0)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κεντρικά Δυναμικά Διδάσκων : Επίκ. Καθ. Μ. Μπενής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κεντρικά Δυναμικά Διδάσκων : Επίκ. Καθ. Μ. Μπενής ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγxρονη Φυσική II Κεντρικά Δυναμικά Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Ceative Coons.

Διαβάστε περισσότερα

Το κυματοπακέτο. (Η αρίθμηση των εξισώσεων είναι συνέχεια της αρίθμησης που εμφανίζεται στο εδάφιο «Ελεύθερο Σωμάτιο».

Το κυματοπακέτο. (Η αρίθμηση των εξισώσεων είναι συνέχεια της αρίθμησης που εμφανίζεται στο εδάφιο «Ελεύθερο Σωμάτιο». Το κυματοπακέτο (Η αρίθμηση των εξισώσεων είναι συνέχεια της αρίθμησης που εμφανίζεται στο εδάφιο «Ελεύθερο Σωμάτιο». Ένα ελεύθερο σωμάτιο δεν έχει κατ ανάγκη απολύτως καθορισμένη ορμή. Αν, για παράδειγμα,

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Ανακεφαλαίωση. q Εισήγαμε την έννοια των δεσμών. Ø Ολόνομους και μή ολόνομους δεσμούς. Ø Γενικευμένες συντεταγμένες

Ανακεφαλαίωση. q Εισήγαμε την έννοια των δεσμών. Ø Ολόνομους και μή ολόνομους δεσμούς. Ø Γενικευμένες συντεταγμένες ΦΥΣ 211 - Διαλ.06 1 Ανακεφαλαίωση Τι είδαμε μέχρι τώρα: q Συζητήσαμε συστήματα πολλών σωμάτων Ø Εσωτερικές και εξωτερικές δυνάμεις Ø Νόμους δράσης-αντίδρασης Ø Ορμές, νόμους διατήρησης (γραμμική ορμή,

Διαβάστε περισσότερα

Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας

Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας Δομή Διάλεξης Χρονική εξέλιξη Gaussian κυματοσυνάρτησης σε μηδενικό δυναμικό (ελέυθερο σωμάτιο): Μετατόπιση και Διασπορά Πείραμα διπλής οπής: Κροσσοί συμβολής για

Διαβάστε περισσότερα