Obiectul şi importanţa. Clasificarea sistemelor disperse
|
|
- Κάστωρ Παπάζογλου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 COLOIZI CUPRINS Fizico- chimia suprafeţelor şi a coloizilor. Obiectul şi importanţa. Clasificarea sistemelor disperse Noţiuni de termodinamică a suprafeţelor lichide. Fenomene capilare Adsorbţia pe suprafeţe lichide. Izoterma de adsorbţie a lui Gibbs Adsorbţia din soluţii pe suprafeţe solide Noţiuni de cromatografie.metode şi tehnici cromatografice Electrochimia straturilor superficiale. Fenomene electro-capilare. Fenomene electrocinetice Caracterizarea şi clasificarea sistemelor coloidale Prepararea, purificarea şi separarea sistemelor coloidale Proprietăţi generale ale sistemelor coloidale Procese coloidale: coagularea, gelatinizarea şi peptizarea Tipuri de sisteme coloidale. Sisteme liofile :coloizi macromoleculari,coloizi de asociaţie.sisteme coloidale cu grad mic de dispersie: aerosolii, suspensii, emulsii şi emulgatori,spume. Sisteme coloidale solide: geluri, membrane semipermeabile
2 Obiectul şi importanţa. Clasificarea sistemelor disperse Chimia suprafeţelor şi a coloizilor este o disciplină de graniţă situată între fizică şi chimie. Obiectul ei este studiul sistemelor coloidale. Sistemele coloidale sunt sisteme eterogene de un tip special datorită suprafeţelor de separaţie dintre faze extrem de mari. Această caracteristică se obţine prin dispersarea (fărămiţarea, mărunţirea) uneia dintre fazele existente; se obţine un sistem dispers. În cazul cel mai simplu al sistemului va exista o fază dispersată, constituită din mici particule, răspândite în cealaltă fază, denumită mediu de dispersie. Clasificarea sistemelor disperse Sistemele coloidale tipice sunt acele sisteme disperse în care fărămiţarea este atât de avansată, încât dimensiunile particulelor denumite coloidale sunt cuprinse în intervalul cm; ele se numesc şi ultramicroeterogene. Sistemele disperse cu particule mai mari cm sunt numite sisteme microeterogene. Ele au proprietăţi analoage celor coloidale tipice. O categorie specială o formează coloizii de asociaţie sau semicoloizii. În acest caz, la concentraţii mici sistemul este o soluţie (omogenă); la concentraţii mai mari, moleculele substanţei se asociază, luând naştere particule similare cu cele coloidale. Proprietăţile esenţiale ale substanţelor coloidale sunt determinate de marea lor suprafaţă de separaţie. Suprafeţele de separaţie sunt sediul unor fenomene specifice denumite superficiale. În chimia coloizilor un loc central îl ocupă studiul fenomenelor de suprafaţă.
3 Noţiuni de termodinamică a suprafeţelor lichide. Fenomene capilare Fenomenele capilare constau în variaţia înălţimii lichidului în tuburile capilare (r<2,5 mm) faţă de nivelul lichidului din vas în funcţie de raportul ce există între forţa de coeziune, F 0, şi cea de adeziune, F a. Practic, se întâlnesc două situaţii: Dacă F a >F 0, lichidul udă pereţii tubului, iar forma meniscului este concavă. În acest caz, lichidul se ridică într-un tub capilar la o înălţime, h, faţă de nivelul lichidului dintr-un vas larg (fig. 1. a), are loc ascensiunea capilară. Dacă F a <F 0, lichidul nu udă pereţi vasului, iar forma stratului periferic este convexă şi are loc o coborâre a lichidului din capilară, fenomen numit depresiune capilară (fig. 1. b). h φ h a b Figura 1. Ascensiunea capilară şi depresiunea capilară Valoarea h a ascensiunii capilare este dată de legea lui Jurin: 2σ cosϕ h = r ρ g (1) unde: σ =tensiunea superficială a lichidului; ϕ = unghiul de contact dintre peretele capilarei şi suprafaţa meniscului lichid; r = raza tubului capilar; ρ = densitatea lichidului; g = acceleraţia gravitaţională. Pornind de la legea lui Jurin, se poate exprima tensiunea superficială: ρ g r h σ = (2) 2 cosϕ
4 Pentru determinări curente în capilare de sticlă, în special în cazul apei sau al soluţiilor apoase, se poate considera cos ϕ = 1, iar ecuaţia (3) devine: g r h σ = ρ (4) 2
5 Noţiuni de cromatografie.metode şi tehnici cromatografice Cromatografia grupează o importantă grupă de metode ce permit separarea compuşilor asemănători din amestecurile complexe. În separările cromatografice proba este dizolvată într-o fază mobilă: gaz, lichid sau fluid supercritic. Faza mobilă (eluentul) are rolul de a deplasa diferenţiat componentele amestecului, în funcţie de stabilitatea lor în eluent şi de afinitatea componentelor pentru faza staţionară. Metodele cromatografice sunt bazate pe adsorbţia amestecului de substanţe (solid-lichid, lichid-lichid, gaz-lichid) pe un material adsorbant (faza staţionară), urmată de desorbţia succesivă (cu ajutorul unui dizolvant adecvat eluant) a componentelor din amestec. Faza staţionară (suportul) este o substanţă (sau amestec de substanţe) solida, un film subţire sau lichid aplicat pe suprafaţa unui suport solid prin legături chimice. Faza staţionară este o pulbere fină, are o porozitate şi o suprafaţă specifică mare şi se foloseşte la separarea pe baza unui proces de adsorbţie diferenţiat pentru diferitele componente din amestec. Exemple de faza staţionară: silacagelul (SiO 2 ), oxidul de aluminiu (Al 2 O 3 ), oxidul de magneziu (MgO), carbonat de calciu (CaCO 3 ), hidroxid de calciu (Ca(OH) 2 ), zaharoza, celuloza, etc. O analiză cromatografică constă în: - dizolvarea probei în faza mobilă; - trecerea fazei mobile peste faza staţionară nemiscibilă, etapă numită eluţie; - deplasarea diferenţiată a componenţilor din faza mobilă pe faza staţionară ca urmare a proceselor de desorbţie; - separarea în benzi discrete, vizibile la detector, a componenţilor rezultând cromatograma. Cromatografia poate fi utilizată pentru determinări analitice calitative şi cantitative ale speciilor separate.
6 Analiza calitativă cromatografică furnizează informaţii asupra timpului de retenţie al componentelor analizate şi poziţia acestora pe faza staţionară după un timp de eluţie specific. Analiza cantitativă cromatografică furnizează informaţii asupra cantităţii tuturor componentelor analizate, pe baza relaţiei existente între înălţimea sau suprafaţa picurilor cromatografice şi cantitatea de substanţă analizată. Clasificarea metodelor cromatografice a) După natura fazei mobile cromatografia se clasifică în: - cromatografie de lichide; - cromatografie de gaze. b) După tipul fazei staţionare cromatografia se clasifică în: - cromatografie pe hârtie; - cromatografie pe strat subţire; - cromatografie pe coloană. c) După performanţa tehnică, cromatografia pe coloană se clasifică în: - cromatografia pe coloană deschisă (de performanţă joasă sau medie); - cromatografia pe coloană închisă (de înaltă performanţă HPLC). d) După mecanismul de separare, cromatografia se clasifică în următoarele categorii: - de adsorbţie; - de repartiţie lichid-lichid; - de schimb ionic; - de excluziune sterică (gel-cromatografia); - de afinitate (interacţiuni hidrofobe, separări chirale). CROMATOGRAFIA DE LICHIDE Ca o caracteristică generală pentru diferitele metode în cromatografia de lichide şi în acelaşi timp ca o specificitate pentru natura substanţelor, se calculează factorul de retenţie, R f.
7 Valoarea R f este utilizată pentru determinarea poziţiei substanţelor pe cromatogramă (după separare şi identificare) şi pentru caracterizarea şi diferenţierea lor. Valoarea R f măsoară viteza de deplasare a zonelor de substanţă faţă de a frontului developantului şi se defineşte ca raportul între X S (distanţa de la start până la punctul de concentraţie maximă a zonei de substanţă) şi X D (distanţa parcursă de frontul developantului în acelaşi timp). X R f = X S D Frontul developantului X S X D Linia de start Exemplificarea determinării valorii R f Exprimarea se face în (mm) sau (cm) iar valorile obţinute vor fi cuprinse între 0 şi 1. Dacă spoturile sunt simetrice se măsoară distanţa până la centrul petei, dacă petele au formă asimetrică se consideră punctul de concentraţie maximă, care poate fi diferit de centrul geometric al petei. Se spotează pe hârtia sau placa cromatografică atât proba necunoscută cât şi etaloanele cunoscute şi se măsoară valorile R f pentru etalon şi pentru probă. Dacă valorile R f vor fi identice (concretizate pe cromatogramă prin poziţia petelor de substanţă ale etalonului şi probei la acelaşi nivel), atunci înseamnă că în probă avem acelaşi compus ca şi în etalon. Valoarea R f diferă de la o separare la alta, de aceea este necesară developarea pe aceeaşi plăcuţă a etalonului şi a probei. CROMATOGRAFIA PE HÂRTIE Cromatografia pe hârtie se foloseşte în practica de laborator ca un preţios instrument analitic în diferenţierea şi identificarea cantităţilor mici ale diferiţilor
8 componenţi ai unui amestec. În cazul acestei metode, mediul adsorbant îl formează hârtia de filtru, folosinduse benzi sau discuri de hârtie. În cazul folosirii benzilor de hârtie de filtru, metoda se numeşte dimensională, iar în cazul folosirii discurilor de hârtie de filtru, metoda se numeşte circulară. Metoda circulară se foloseşte pentru o separare mai precisă a componenţilor dintr-un amestec, în cazul în care aceştia se suprapun. Pregătirea probelor şi efectuarea separării - Se aşează soluţia de analizat, sub formă de picătură mică (spot) numit start (având diametrul sub 5mm), cu o micropipetă capilară sau o microseringă sau dungă subţire, la capătul unei benzi de hârtie de filtru (de dimensiuni 3 4/16cm), la o distanţă de 2-3cm de la bază, uscând hârtia după fiecare adăugare succesivă. - Banda de hârtie poate conţine unul sau mai multe spoturi aşezate la aceeaşi distanţă de la capătul benzii şi cu o distanţă de aproximativ 0,5cm între spoturi. - După încărcare şi uscare, hârtia de filtru se introduce în dispozitivul de cromatografiere, care are incinta saturată cu vaporii solventului sau amestecului de solvenţi,unde are loc developarea (trecerea eluentului prin faza staţionară şi separarea amestecului) care se face de obicei ascendent (de jos în sus) front XD X S start solvent Dispozitivul de cromatografiere - Se suspendă hârtia (de partea superioară) la capacul dispozitivului, astfel ca cealaltă parte a benzii (unde se găseşte pata sau dunga cu soluţia de analizat) să intre, până la cel mult 1cm sub pată sau dungă, într-un vas în care se află solventul sau amestecul de solvenţi.
9 - Solventul, care va trece prin locul picăturii, va duce cu el componenţii amestecului de-a lungul benzii de hârtie, fixându-i în raport cu diferitele viteze de deplasare. Astfel, se formează pete sau dungi corespunzătoare diferiţilor componenţi şi care se pun în evidenţă (când sunt incolore), cu ajutorul reactivilor specifici de culoare, cu care se stropeşte hârtia. Stropirea hârtiei cu reactivii de culoare se face după ce, în prealabil, s-au făcut măsurătorile deplasării solventului adică a frontului, X D şi s-a făcut uscarea. - După stropire, se usucă din nou hârtia şi se fac măsurătorilor deplasării substanţelor faţă de linia de start, X S, calculându-se R f. - Cromatografia circulară are ca bază aceleaşi considerente ca şi cea dimensională, cu deosebirea că hârtia cromatografică e tăiată circular (8 10 cm diametru) iar proba se aplică în centrul hârtiei cromatografice. După uscare se perforează un spaţiu circular în mijlocul căruia se introduce un cilindru de hârtie de filtru. Exemple de substanţe ce reacţionează cu componentele amestecului şi dau derivaţi coloraţi : proteinele şi aminoacizii pot fi detectaţi prin reacţia cu ninhidrină, formând compuşi coloraţi violet, glucidele se colorează brun în urma reacţiei cu AgNO 3 amoniacal, fenolii se colorează formând complecşi cu FeCl 3, acizii şi bazele pot fi detectate cu ajutorul indicatorilor acido-bazici.
Metode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
1. PROPRIETĂȚILE FLUIDELOR
1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea
Aplicaţii ale principiului I al termodinamicii la gazul ideal
Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia
Sisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
MARCAREA REZISTOARELOR
1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea
Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"
Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia
4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica
5.1. Noţiuni introductive
ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul
Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
a. 11 % b. 12 % c. 13 % d. 14 %
1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
Integrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
2. STATICA FLUIDELOR. 2.A. Presa hidraulică. Legea lui Arhimede
2. STATICA FLUIDELOR 2.A. Presa hidraulică. Legea lui Arhimede Aplicația 2.1 Să se determine ce masă M poate fi ridicată cu o presă hidraulică având raportul razelor pistoanelor r 1 /r 2 = 1/20, ştiind
Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.
pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu
V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
Curs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent
Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului
Metode de interpolare bazate pe diferenţe divizate
Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare
5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
Profesor Blaga Mirela-Gabriela DREAPTA
DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)
Curs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
Subiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.
III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar
2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3
SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest
Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca
Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este
10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea
2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2
.1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,
Subiecte Clasa a VII-a
lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate
Capitolul 2 - HIDROCARBURI 2.3.ALCHINE
Capitolul 2 - HIDROCARBURI 2.3.ALCHINE TEST 2.3.3 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Acetilena poate participa la reacţii de
Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili
Anexa 2.6.2-1 SO2, NOx şi de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili de bioxid de sulf combustibil solid (mg/nm 3 ), conţinut de O 2 de 6% în gazele de ardere, pentru
5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
Algebra si Geometrie Seminar 9
Algebra si Geometrie Seminar 9 Decembrie 017 ii Equations are just the boring part of mathematics. I attempt to see things in terms of geometry. Stephen Hawking 9 Dreapta si planul in spatiu 1 Notiuni
Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor
Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.
Seminar 5 Analiza stabilității sistemelor liniare
Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare
Reflexia şi refracţia luminii.
Reflexia şi refracţia luminii. 1. Cu cat se deplaseaza o raza care cade sub unghiul i =30 pe o placa plan-paralela de grosime e = 8,0 mm si indicele de refractie n = 1,50, pe care o traverseaza? Caz particular
Unitatea atomică de masă (u.a.m.) = a 12-a parte din masa izotopului de carbon
ursul.3. Mării şi unităţi de ăsură Unitatea atoică de asă (u.a..) = a -a parte din asa izotopului de carbon u. a.., 0 7 kg Masa atoică () = o ărie adiensională (un nuăr) care ne arată de câte ori este
5.4. MULTIPLEXOARE A 0 A 1 A 2
5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării
SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0
Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,
Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice
Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională
REACŢII DE ADIŢIE NUCLEOFILĂ (AN-REACŢII) (ALDEHIDE ŞI CETONE)
EAŢII DE ADIŢIE NULEFILĂ (AN-EAŢII) (ALDEIDE ŞI ETNE) ompușii organici care conțin grupa carbonil se numesc compuși carbonilici și se clasifică în: Aldehide etone ALDEIDE: Formula generală: 3 Metanal(formaldehida
V O. = v I v stabilizator
Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,
CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii
Clasa a IX-a 1 x 1 a) Demonstrați inegalitatea 1, x (0, 1) x x b) Demonstrați că, dacă a 1, a,, a n (0, 1) astfel încât a 1 +a + +a n = 1, atunci: a +a 3 + +a n a1 +a 3 + +a n a1 +a + +a n 1 + + + < 1
CAPITOLUL 9. Separarea cromatografică aspecte generale
CAPITOLUL 9 Separarea cromatografică aspecte generale 9.1. Clasificarea metodelor cromatografice Începuturile separărilor cromatografice se datorează lui Ţvet (1903), care a realizat primele separări de
Problema a II - a (10 puncte) Diferite circuite electrice
Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător
RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,
REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii
Asupra unei inegalităţi date la barajul OBMJ 2006
Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale
Laborator 11. Mulţimi Julia. Temă
Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.
In cazul sistemelor G-L pentru care nu se aplica legile amintite ale echilibrului de faza, relatia y e = f(x) se determina numai experimental.
ECHILIBRUL FAZELOR Este descris de: Legea repartitiei masice Legea fazelor Legea distributiei masice La echilibru, la temperatura constanta, raportul concentratiilor substantei dizolvate in doua faze aflate
Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].
Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie
4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice
4. Măsurarea tensiunilor şi a curenţilor electrici oltmetre electronice analogice oltmetre de curent continuu Ampl.c.c. x FTJ Protectie Atenuator calibrat Atenuatorul calibrat divizor rezistiv R in const.
Proiectarea filtrelor prin metoda pierderilor de inserţie
FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri
a. 0,1; 0,1; 0,1; b. 1, ; 5, ; 8, ; c. 4,87; 6,15; 8,04; d. 7; 7; 7; e. 9,74; 12,30;1 6,08.
1. În argentometrie, metoda Mohr: a. foloseşte ca indicator cromatul de potasiu, care formeazǎ la punctul de echivalenţă un precipitat colorat roşu-cărămiziu; b. foloseşte ca indicator fluoresceina, care
SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0
SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................
COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care
riptografie şi Securitate
riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare
Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE
Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE TEST 2.4.1 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. Rezolvare: 1. Alcadienele sunt hidrocarburi
ŞTIINŢA ŞI INGINERIA. conf.dr.ing. Liana Balteş curs 7
ŞTIINŢA ŞI INGINERIA MATERIALELOR conf.dr.ing. Liana Balteş baltes@unitbv.ro curs 7 DIAGRAMA Fe-Fe 3 C Utilizarea oţelului în rândul majorităţii aplicaţiilor a determinat studiul intens al sistemului metalic
145. Sã se afle acceleraţiile celor trei corpuri din figurã. Ramurile firului care susţin scripetele mobil sunt verticale.
Tipuri de forţe 127. Un corp cu masa m = 5 kg se află pe o suprafaţã orizontalã pe care se poate deplasa cu frecare (μ= 0,02). Cu ce forţã orizontalã F trebuie împins corpul astfel încât sã capete o acceleraţie
Reactia de amfoterizare a aluminiului
Problema 1 Reactia de amfoterizare a aluminiului Se da reactia: Al (s) + AlF 3(g) --> AlF (g), precum si presiunile partiale ale componentelor gazoase in functie de temperatura: a) considerand presiunea
Capitolul 2 - HIDROCARBURI 2.5.ARENE
Capitolul 2 - HIDROCARBURI 2.5.ARENE TEST 2.5.2 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Radicalul C 6 H 5 - se numeşte fenil. ( fenil/
Capitolul 14. Asamblari prin pene
Capitolul 14 Asamblari prin pene T.14.1. Momentul de torsiune este transmis de la arbore la butuc prin intermediul unei pene paralele (figura 14.1). De care din cotele indicate depinde tensiunea superficiala
7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL
7. RETEE EECTRICE TRIFAZATE 7.. RETEE EECTRICE TRIFAZATE IN REGIM PERMANENT SINSOIDA 7... Retea trifazata. Sistem trifazat de tensiuni si curenti Ansamblul format din m circuite electrice monofazate in
Esalonul Redus pe Linii (ERL). Subspatii.
Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste
Geometrie computationala 2. Preliminarii geometrice
Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Geometrie computationala 2. Preliminarii geometrice Preliminarii geometrice Spatiu Euclidean: E d Spatiu de d-tupluri,
Conice - Câteva proprietǎţi elementare
Conice - Câteva proprietǎţi elementare lect.dr. Mihai Chiş Facultatea de Matematicǎ şi Informaticǎ Universitatea de Vest din Timişoara Viitori Olimpici ediţia a 5-a, etapa I, clasa a XII-a 1 Definiţii
8 Intervale de încredere
8 Intervale de încredere În cursul anterior am determinat diverse estimări ˆ ale parametrului necunoscut al densităţii unei populaţii, folosind o selecţie 1 a acestei populaţii. În practică, valoarea calculată
TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:
TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi
IV. CUADRIPOLI SI FILTRE ELECTRICE CAP. 13. CUADRIPOLI ELECTRICI
V. POL S FLTE ELETE P. 3. POL ELET reviar a) Forma fundamentala a ecuatiilor cuadripolilor si parametrii fundamentali: Prima forma fundamentala: doua forma fundamentala: b) Parametrii fundamentali au urmatoarele
Capitolul 2 - HIDROCARBURI 2.5.ARENE
Capitolul 2 - HIDROCARBURI 2.5.ARENE TEST 2.5.3 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Sulfonarea benzenului este o reacţie ireversibilă.
ANALIZE FIZICO-CHIMICE MATRICE APA. Tip analiza Tip proba Metoda de analiza/document de referinta/acreditare
ph Conductivitate Turbiditate Cloruri Determinarea clorului liber si total Indice permanganat Suma Ca+Mg, apa de suprafata, apa, apa grea, apa de suprafata, apa grea, apa de suprafata, apa grea, apa de
Ecuatii trigonometrice
Ecuatii trigonometrice Ecuatiile ce contin necunoscute sub semnul functiilor trigonometrice se numesc ecuatii trigonometrice. Cele mai simple ecuatii trigonometrice sunt ecuatiile de tipul sin x = a, cos
1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB
1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul
Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă
Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare
2 Transformări liniare între spaţii finit dimensionale
Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei
Metode de caracterizare structurala in stiinta nanomaterialelor: aplicatii practice
Metode de caracterizare structurala in stiinta nanomaterialelor: aplicatii practice Utilizare de metode complementare de investigare structurala Proba investigata: SrTiO 3 sub forma de pulbere nanostructurata
II. 5. Probleme. 20 c 100 c = 10,52 % Câte grame sodă caustică se găsesc în 300 g soluţie de concentraţie 10%? Rezolvare m g.
II. 5. Problee. Care ete concentraţia procentuală a unei oluţii obţinute prin izolvarea a: a) 0 g zahăr în 70 g apă; b) 0 g oă cautică în 70 g apă; c) 50 g are e bucătărie în 50 g apă; ) 5 g aci citric
CURS MECANICA CONSTRUCŢIILOR
CURS 10+11 MECANICA CONSTRUCŢIILOR Conf. Dr. Ing. Viorel Ungureanu CINEMATICA SOLIDULUI RIGID In cadrul cinematicii punctului material s-a arătat ca a studia mişcarea unui punct înseamnă a determina la
Functii Breviar teoretic 8 ianuarie ianuarie 2011
Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)
Măsurări în Electronică şi Telecomunicaţii 4. Măsurarea impedanţelor
4. Măsurarea impedanţelor 4.2. Măsurarea rezistenţelor în curent continuu Metoda comparaţiei ceastă metodă: se utilizează pentru măsurarea rezistenţelor ~ 0 montaj serie sau paralel. Montajul serie (metoda
3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4
SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei
Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ
UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, aprilie 7 Proba scrisă la MATEMATICĂ SUBIECTUL I (3 puncte) ) (5 puncte) Fie matricele A = 3 4 9 8
Transformata Laplace
Tranformata Laplace Tranformata Laplace generalizează ideea tranformatei Fourier in tot planul complex Pt un emnal x(t) pectrul au tranformata Fourier ete t ( ω) X = xte dt Pt acelaşi emnal x(t) e poate
Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25
Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 LAGĂRELE CU ALUNECARE!" 25.1.Caracteristici.Părţi componente.materiale.!" 25.2.Funcţionarea lagărelor cu alunecare.! 25.1.Caracteristici.Părţi componente.materiale.
Proprietăţile pulberilor metalice
3 Proprietăţile pulberilor metalice Pulberea reprezintă principala componentă din materia primă folosită la elaborarea pieselor prin tehnologia M.P. (alături de aditivi, lubrefianţi, etc.) Pulberea se
Studiu privind soluţii de climatizare eficiente energetic
Studiu privind soluţii de climatizare eficiente energetic Varianta iniţială O schemă constructivă posibilă, a unei centrale de tratare a aerului, este prezentată în figura alăturată. Baterie încălzire/răcire
GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii
GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile
FENOMENE TRANZITORII Circuite RC şi RLC în regim nestaţionar
Pagina 1 FNOMN TANZITOII ircuite şi L în regim nestaţionar 1. Baze teoretice A) ircuit : Descărcarea condensatorului ând comutatorul este pe poziţia 1 (FIG. 1b), energia potenţială a câmpului electric
VII.2. PROBLEME REZOLVATE
Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea
Transformări de frecvenţă
Lucrarea 22 Tranformări de frecvenţă Scopul lucrării: prezentarea metodei de inteză bazate pe utilizarea tranformărilor de frecvenţă şi exemplificarea aceteia cu ajutorul unui filtru trece-jo de tip Sallen-Key.
Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE
Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE Exerciţii şi probleme E.P.2.4. 1. Scrie formulele de structură ale următoarele hidrocarburi şi precizează care dintre ele sunt izomeri: Rezolvare: a) 1,2-butadiena;
2CP Electropompe centrifugale cu turbina dubla
2CP Electropompe centrifugale cu turbina dubla DOMENIUL DE UTILIZARE Capacitate de până la 450 l/min (27 m³/h) Inaltimea de pompare până la 112 m LIMITELE DE UTILIZARE Inaltimea de aspiratie manometrică
Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:
Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,