11. ZUPČASTI PRENOSNICI
|
|
- Μέλισσα Οικονόμου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 . ZUČASTI RENOSNICI.. CILINDRIČNI ZUČANICI SA RAVIM ZUBIMA (CZZ) Zadatak... (Skica CZZ) otrebno je skicirati cilindrični cilindrični zupčanik sa pravim zupcima, obeležiti njegove dimenzije i navesti podatke koji se unose u posebnu tablicu na radioničkom crtežu zupčanika. ovog zadatka je isto kao i zadatka..., sa tom razlikom što kod cilindričnih zupčanika sa pravim zupcima ne postoji nagib bočne linije (odnosno važi: β = 0º) pa podatke vezane za ovaj ugao treba izostaviti. 36
2 Zadatak... (Analiza opterećenja CZZ) Izvršiti analizu opterećenja para CZZ za slučaj dat na slici.. Odrediti opterećenja vratila. Analiza opterećenja para CZZ za dati slučaj izvršena je na slici.., a prenošenje sila i obrtnih momenata na vratila prikazano je na slici.. A-B H Slika.. C-D H V V Slika.. 37
3 Zadatak..3. (Analiza opterećenja CZZ) Izvršiti analizu opterećenja para CZZ za slučaj dat na slici.3. Odrediti opterećenja vratila. Analiza opterećenja para CZZ za dati slučaj izvršena je na slici.3., a prenošenje sila i obrtnih momenata na vratila prikazano je na slici.4. Slika.3. Slika.4. 38
4 Zadatak..4. (Određivanje modula CZZ) Izračunati modul zupčanog para (CZZ) ako su poznati sledeći podaci: ozubljenje je spoljašnje, sa prenosnim odnosom: i = 3 (slika.5.) snaga na zupčaniku = 5 kw broj obrtaja zupčanika n = 70 min - broj zubaca zupčanika z = 0 koeficijent pomeranja profila x = x = 0 ugao dodirnice t 0 materijal zupčanika Č530 N dopušteni napon na savijanje df 46 m Slika.5. Modul zupčanika se proračunava prema dva kriterijuma:. s obzirom na čvrstoću (savijanje) u korenu zupca i. s obzirom na dodirni pritisak bokova zubaca. Usvaja se veća vrednost od ove dve, a zatim se od te veće usvoji prva veća standardna vrednost za modul, po mogućnosti I stepena prioriteta.. roračun modula s obzirom na čvrstoću u korenu zupca Obrazac za proračun modula s obzirom na čvrstoću u korenu zupca kod CZZ glasi: 0,637 d m 3 df z Faktor oblika zupca 0,58 (rilog.3.) Faktor udara d,5 (ravnomerni udari) Faktor dužine zupca 0(rilog.6.) Ugaona brzina n 70 74,35s Faktor sprezanja,8 0,8 0,8 0,78 0,885,, 0 a 33 - parcijalni stepeni sprezanja (rilog.5.) z = 0 = 0,78 i z z m 3 0,885 0, ,58,5 3,850 m,85mm ,35,33 39
5 . roračun modula s obzirom na dodirni pritisak bokova zubaca Obrazac za proračun modula s obzirom na dodirni pritisak bokova zubaca kod CZZ glasi: 6, i d m 3 i Kd z Napomena: znak - odnosi se na unutrašnje ozubljenje Koeficijent izdržljivosti na pritisak (rilog..) N K 5,57 mm Stepen sigurnosti,,8 usvojeno Dozvoljeni napon na pritisak K 5,57 N 6 N Kd 3,094 3,0940,8 mm m 6,5000 3,5 3 m 3 3,040 m 3,04 mm 6 33, ,35 Od ovako dobijene dve vrednosti za modul (m =.85 mm i m = 3.04 mm) usvaja se prva veća standardna, a to je: m = 3,5 mm (II stepen prioriteta - rilog..). Napomena : ovde je konstruktor mogao da ide i na varijantu manje sigurnosti pa da usvoji manji modul m = 3 mm koji je I stepena prioriteta, a mogao bi da ide i na sigurniju varijantu sa m = 4 mm, takođe I stepen prioriteta. Napomena : kod zupčanika izrađenih od čelika za poboljšanje (ovaj slučaj), obično je merodavan proračun modula s obzirom na dodirni pritisak bokova zubaca pošto oni imaju veliku čvrstoću, ali im površima nije otvrdnuta. Obrnuto: kod zupčanika izrađenih od čelika za cementaciju, obično je merodavan proračun modula s obzirom na čvrstoću u korenu zupca pošto oni imaju otvrdnutu površinu. Zadatak..5. (Geometrijske mere CZZ) Za podatke iz predhodnog zadatka proračunati geometrijske mere zupčastog para CZZ. renosni odnos i = 3 Broj zubaca velikog zupčanika z i z Standardni profil n 0,u n,c n 0. JUS M.C.06 Standardni modul m n = 3,5 mm JUS M.C.05 Modul m = m n = 3.5 mm Ugao nagiba bočne linije (ugao nagiba boka zubaca na podeonom krugu) = 0 o Ugao nagiba profila u čeonom preseku ( = 0 o kod CZZ) o n 0 Širina zupčanika b m 03,5 70mm 40
6 rečnici podeonih krugova m z 3,5 0 70mm do do m z 3,5 60 0mm Osno rastojanje, m z z coso 3, a 40mm cos Ovo osno rastojanje se može uvećati kako bi se izbeglo podsecanje, m 3.5 a a 40 4,75mm a = 4 mm - usvojeno Ugao dodirnice za usvojeno osno rastojanje m z z 3, arccos coso arccos cos0, 6 a 4 Zbir koeficijenata pomeranja profila inv inv o 0, ,049 x x z z , 6 tg 4 o,6 inv tg tg,6 0, inv o tg o o tg0 0, Kako je x x 0,5 x 0, 5, a x x x 0, 5, pa je konačno: x = 0,5 x = 0, rečnici kinematskih krugova a 4 d 7mm i 3 d i d 3 7 3mm Napomena: u slučaju da su koeficijenti pomeranja profila x + x = 0, tada su prečnici kinematskih krugova jednaki prečnicima podeonih krugova, odnosno d = d o i d = d o. rečnici osnovnih krugova d d cos 70 cos0 65,7848mm b o o db do coso 0 cos0 97,33545mm rečnici podnožnih krugova d m, x 70 3,5, 0,5 df o df do m rečnici temenih krugova d a d c m d k k a d f f 65, mm, x 0 3,5, 0, 0,3 mm c n m n 4 0,3 0, 3,5 80,3 mm 465, 0, 3,5 7,5 mm Određivanje vrednosti tg x i tg x tg tg x x tg tg o o x x 4 z z cos x x 4 z z cos o o 0,5 0, tg 0 0,4985 cos 0 0, 0, tg 0 0,374 cos 0 4
7 Merni brojevi zubaca za mali i veliki zupčanik z x tg t z w tg x inv t 0, 5 0 0,5 tg0 z w 0,4985 0,049 0,5 3, 3 z w 46 z x tg t z w tg x inv t 0, , tg0 z w 0,374 0,049 0,5 7, 33 z w 7 Mere preko zubaca za mali i veliki zupčanik W mn cos n z w 0,5 z inv o x tg o 3,5 cos0 3 0,5 0 0,049 0,5 tg0 8,009 mm z w 0,5 z inv o x o 7 0,5 60 0,049 0, tg0 70,34mm W W mn cos n tg W 3,5 cos0 Stepen sprezanja profila p d k d b d k d m cos o b a sin 80,3 65,778 7,5 97,335 4sin,6 p,95,3 3,5 cos0 Stepen sprezanja bočnih linija (ne postoji kod CZZ, već se javlja kod CZKZ) q 0 Ukupni stepen spreuanja (stepen sprezanja bokova),95 0,95,3 p q Zadatak..6. (Određivanje sila na CZZ) Za podatke iz prethodnog zadatka izračunati vrednosti sila na zupčanicima. Obrtni momenti na zupčanicima 5000 Mo 67,5Nm 6750Nmm 74,35 M o ,74 Nm 97740Nmm 4,87 =, = ,98 = 4900 W, = 0,98 - koeficijent iskorišćenja zupčastog para CZZ (najčešće) n 36,6 4,87s n 70 n 36,6 min i 3 4
8 Obimne sile M o 6750 Ft 895N d 7 M o Ft 857N d 3 Za proračun se usvaja Ft Ft 895N Ugao dodirnice =,6 o (Napomena: ukoliko je x + x = 0, kod CZZ važi: = o = n = 0 o ) Radijalne sile F tg 895 tg,6 770N Fr t Fr Ft tg 857 tg,6 755N Za proračun se usvaja F 770N Fr r Težine zupčanika Težina zupčanika se može zanemariti. Težina zupčanika se ne može zanemariti, a određuje se preko mase zupčanika koja se dobija kao proizvod gustine čelika i zapremine zupčanika : kg čel 7850 (rilog..) 3 m D 0, 3 Vz h 0,07 0,00445m 4 4 m V , ,03kg z čel G g m z z z 9,89,0387N 43
9 .. CILINDRIČNI ZUČANICI SA KOSIM ZUBIMA (CZKZ) Zadatak... (Skica CZKZ) otrebno je skicirati cilindrični zupčanik sa kosim zupcima, obeležiti njegove dimenzije i navesti podatke koji se unose u posebnu tablicu na radioničkom crtežu zupčanika. Osnovne mere CZKZ prikazane su na slici.6. Slika.6. Oznake sa slike.8. su: d k - prečnik temenog kruga d o - prečnik podeonog kruga d f - prečnik podnožnog kruga β - ugao nagiba bočne linije (kod CZZ β = 0º, odnosno nagib ne postoji) b - širina zupčanika Na sam radionički crtež CZKZ unose se veličime: d k, d o, d f, b. U posebnu tablicu na radioničkom crtežu zupčanika, unose se sledeći podaci:. Tip zupčanika (cilindrični evolventni sa pravim ili sa kosim zubima). Broj zubaca z 3. Standardni modul m n 4. Modul m (kod CZZ, m = m n) 5. Standardni profil (prema JUS M.C.06 ili prema datoj skici) 6. Ugao nagiba standardnog profila α n 7. Ugao nagiba profila osnovne zupčaste letve α o 8. Ugao nagiba bočne linije β (kod CZZ ovaj podatak ne postoji, pošto je β = 0 o ) 9. omeranje profila osnovne zupčaste zupčaste letve x m 0. Smer zavojnica bočnih linija zubaca (desni ili levi). Mera preko zubaca W (sa tolerancijom). Broj pozicije spregnutog zupčanika 3. Broj zubaca spregnutog zupčanika z 4. Osno rastojanje a ( sa tolerancijom) 5. Ugao dodirnice α 6. Kružni zazor (j min, j max) 7. odaci o načinu kontrole 8. odaci o termičkoj obradi i kontroli termičke obrade. 44
10 Zadatak... (Analiza opterećenja CZKZ) Izvršiti analizu opterećenja para CZKZ za slučaj dat na slici.7. Odrediti opterećenja vratila. Analiza opterećenja para CZZ za dati slučaj izvršena je na slici.7., a prenošenje sila i obrtnih momenata na vratila prikazano je na slici.8. Slika.7. Slika.8. 45
11 Zadatak..3. (Analiza opterećenja CZKZ) Izvršiti analizu opterećenja para CZKZ za slučaj dat na slici.9. Odrediti opterećenja vratila. Analiza opterećenja para CZZ za dati slučaj izvršena je na slici.9., a prenošenje sila i obrtnih momenata na vratila prikazano je na slici.0. H Slika.9. Slika.0. 46
12 Zadatak..4. (Određivanje sila na CZKZ) Dati obrasce za izračunavanje vrednosti sila na CZKZ. Obrtni momenti na zupčanicima M o M o ili M o M o, i,, =,, = 0,97 - koeficijent iskorišćenja zupčastog para CZKZ (najčešće) Obimne sile M o Ft d F t M d o gde su: d, d - prečnici kinematskih krugova. Obimna sila na gonjenom zupčaniku je teoretski manja od obimne sile na pogonskom zupčaniku zbog smanjenja snage usled stepena iskorišćenja zupčastog para. Za proraćun se usvaja da su obimne sile jednake i da imaju vrednost veće sile odnosno: Ft Ft. Radijalne sile F tg Fr t Fr Ft tg gde je: - ugao dodirnice Napomena: kod CZKZ za Aksijalne sile F tg Fa t Fa Ft x x 0 o tgn, gde je: o arc tg, n = 0 o. cos tg gde je: β - ugao nagiba boka zubaca na podeonom krugu Za CZKZ važi: Ft Ft, Fr Fr, Fa Fa. ri tome se zbog sigurnosti radi sa većim vrednostima, a to su: F t, F r i F a. 47
13 .3. KONIČNI ZUČANICI SA RAVIM ZUCIMA Zadatak.3.. (Skica KZZ) otrebno je skicirati konični zupčanik sa pravim zupcima promenljive visine, obeležiti njegove osnovne dimenzije i navesti podatke koji se unose u posebnu tablicu na radionočkom crtežu zupčanika. Osnovne mere koničnih zupčanika sa pravim zupcima prikazane su na slici.. Slika.. Oznake sa slike.. su: d ae prečnik spoljašnjeg temenog kruga d e prečnik spoljašnjeg podeonog (kinematskog) kruga dfe prečnik spoljašnjeg podnožnog kruga d m prečnik srednjeg podeonog (kinematskog) kruga dai prečnik unutrašnjeg temenog kruga Re spoljašnje konusno rastojanje b širina zupčanika t E rastojanje spoljašnjeg temenog kruga od naslona t B rastojanje prosečne tačke osa od naslona K - odstojanje spoljašnjeg temenog kruga (rastojanje između presečne tačke osa i spoljašnjeg temenog kruga, K t B t E ). Veličina K je važna dimenzija koja se koristi prilikom nameštanja radnog predmeta na mašinu za obradu zubaca. 48
14 ugao kinematskog konusa a ugao temenog konusa f ugao podnožnog konusa a ugao glave zupca f ugao noge zupca hae visina glave zupca u spoljašnjem preseku hfe visina noge zupca u spoljašnjem preseku h visina zupca u spoljašnjem preseku e Na sam radionočki crtež koničnih zupčanika sa pravim zupcima unose se veličine f, b, t E (sa tolerancijom), t b (sa tolerancijom). d ae, e d, d,, U posebnu tablicu na radioničkom crtežu zupčanika, unose se sledeći podaci. Tip zupčanika konični sa pravim zupcima, sistema Gleason (najčešće). Broj zubaca Z 3. Modul m e (kod koničnih zupčanika sa pravim zupcima merodavan je modul u spoljašnjem čeonom preseku m e m ) 4. Ugao nagiba osnovnog profila t 5. Visina zupca na spoljašnjem preseku h e 6. Visina glave zubca na spoljašnjem preseku h ae 7. Ugao vrha alata 8. Tetivna debljina zupca S t (sa tolerancijom) 9. Tetivna visina zupca h t 0. Kružni zazor j. Broj pozicije spregnutog zupčanika. Broj zubaca spregnutog zupčanika 3. Osni ugao (sa tolerancijom) m 49
15 Zadatak.3.. (Analiza opterećenja KZZ) Izvršiti analizu opterećenja para KZZ za slučaj dat na slici.. Odrediti opterećenja vratila. Analiza opterećenja para KZZ za dati slučaj izvršena je na slici.., a prenošenje sila i obrtnih momenata na vratila prikazano je na slici.3. Mo Slika.. Slika.3. 50
16 Zadatak.3.3. (Analiza opterećenja KZZ) Izvršiti analizu opterećenja para KZZ za slučaj dat na slici.4. Odrediti opterećenja vratila. Analiza opterećenja para KZZ za dati slučaj izvršena je na slici.4., a prenošenje sila i obrtnih momenata na vratila prikazano je na slici.5. Slika.4. Slika.5. 5
17 Zadatak.3.4. (Određivanje sila na KZZ) Dati obrasce za izračunavanje vrednosti sila na KZZ. Obrtni momenti na zupčanicima M o M o ili M o M o, i,, =,, = 0,96 - koeficijent iskorišćenja zupčastog para KZZ (najčešće) Obinme sile na zupčanicima M o Ft d m M o Ft d m gde su: d m, d m - srednji prečnici kinematskih konusa. Obimna sila na gonjenom zupčaniku je teoretski manja od obimne sile na pogonskom zupčaniku zbog smanjenja snage usled stepena iskorišćenja zupčastog para. Za proračun se usvaja da su obimne sile jednake i da imaju vrednost veće sile odnosno: Ft Ft. Radijalne sile F F tg r t o cos Fr Ft tg o cos gde su: o - ugao nagiba profila u čeonom preseku ( o = n = 0 o za KZZ, pošto je m = 0 - ugao nagiba boka zubaca na srednjem prečniku kinematskog konusa),, - uglovi kinematskih konusa. Aksijalne sile F F tg sin a t Fa Ft tg o sin U slučaju da je osni ugao F F F r r a F a o 90 (najčešće, skoro uvek), važi: 5
18 .4. CILINDRIČNI UŽNI AROVI (C) Zadatak.4.. (Skica C) otrebno je skicirati cilindrični pužni par (puž i pužni točak), obeležiti osnovne dimenzije i navesti podatke koji se upisuju u posebnu tablicu na radioničkom crtežu puža i pužnog točka. Osnovne mere cilindričnog pužnog para (puža i pužnog točka) date su na slici.6. Slika.6. Oznake sa slike.6. su: da prečnik temenog kruga puža d prečnik podeonog kruga puža d m prečnik srednjeg kruga puža d f prečnik podnožnog kruga puža de prečnik cilindrižnog dela temene površine pužnog točka d a prečnik temenog kruga pužnog točka d m prečnik srednjeg kruga pužnog točka d prečnik podeonog kruga pužnog točka df prečnik podnožnog kruga pužnog točka b dužina puža b aktivna širina pužnog točka B širina venca pužnog točka r poluprečnik kruga temenog torusa pužnog točka K 53
19 ha visina glave zupca puža h visina noge zupca puža f xm pomeranje profila pužnog para, gde je x koeficijent pomeranja profila, a m modul. Za pozitivno pomeranje profila (češći slučaj) važi da je d d m, odnosno d d m x m. Vrednosti koeficijenata pomeranja profila najčešće su x = (0 ) m ugao zavojnice na srednjem cilindru puža ugao dodirnice aksijalni korak puža z hod zavojnice puža n ugao nagiba osnovnog profila n 0 n korak profila u normalnom preseku ugaona brzina puža ugaona brzina pužnog točka a osno rastojanje Na sam radionoički crtež puža unose se veličine: d a,d,d f, b. Na sam radionički crtež pužnog točka unose se veličine: d,d,d,d,b,r. U posebnu tablicu na radionočkom crtežu puža, unose se sledeći podaci:. Tip puža (ZA, ZN, ZI ili ZH). Treba napomenuti da puževi tipa ZN nisu predviđeni standardom.. Broj zubaca z 3. Modul m (modul puža u aksijalnom preseku- glavnoj ravni). ova vrednost se bira iz reda standardnog modula. 4. Standardni profil (prema JUS M.C.08 ili DIN 3975) 5. omeranje profila xm 6. rečnik srednjeg kruga puža d m 7. Ugao zavojnice na srednjem cilindru puža m 8. Hod zavojnice puža z 9. Smer zavojnice puža: desni ili levi (desni puž ima nagib zubaca \, a levi ) 0. Broj pozicije pužnog točka. Broj zubaca pužnog točka z. Osni ugao 3. Osno rastojanje a U posebnu tablicu na radioničkom crtežu pužnog točka, unose se sledeći podaci:. Tip puža. Broj zubaca z 3. Modul m 4. Standardni profil 5. omeranje profila xm 6. rečnik srednjeg kruga pužnog točka d m 7. Ugao zavojnice na srednjem cilindru puža m 8. Hod zavojnice puža z 9. Smer zavojnice puža: desni ili levi 0. Broj pozicije puža. Broj zubaca pužnog točka z. Osni ugao 3. Osno rastojanje a e a f K 54
20 Zadatak.4.3. (Analiza opterećenja C) Izvršiti analizu opterećenja C za slučaj dat na slici.7. Odrediti opterećenja vratila. Analiza opterećenja C za dati slučaj izvršena je na slici.7., a prenošenje sila i obrtnih momenata na vratila prikazano je na slici.8. Mo Slika.7. Slika.8. 55
21 Zadatak.4.4. (Analiza opterećenja C) Izvršiti analizu opterećenja C za slučaj dat na slici.9. Odrediti opterećenja vratila. Analiza opterećenja C za dati slučaj izvršena je na slici.9., a prenošenje sila i obrtnih momenata na vratila prikazano je na slici.0. Slika.9. Slika.0. 56
22 Zadatak.4.4. (Određivanje sila na C) Dati obrasce za izračunavanje vrednosti sila na C. Obrtni momenti na pužu i pužnom točku M o M o ili M o M o z i z z = z Stepen iskorišćenja pužnog para određuje se po formuli tg m z tg( m ) gde su: m ugao zavojnice na srednjem cilindru puža - ugao trenja: arc tgz z - koeficijent trenja projektovanog pužnog para Obimne sile M o Ft d m M o Ft d m Radijalne sile tg n F r Ft sin m n - ugao nagiba profila u normalnom preseku ( n = 0 o ) Fr Fr Aksijalne sile Ft Fa tg( ) m Fa Ft tg( m ) Kod pužnih prenosnika važi: F F a t Fa Ft Ovo se može uočiti u zadacima sa analizom opterećenja C. Kod pužnih parova često se dešava da pužni točak ima velike dimenzije. Tada se njegova težina ne može zanemariti u proračunu vratila pužnog točka. Težina se određuje kao proizvod G = mg, gde je: m [kg] - masa pužnog točka, a g [m/s ] - ubrzanje zemljine težine. Masa pužnog točka se određuje preko prozvoda gustine materijala pužnog točka i zapremine pužnog točka. ostoje razna konstruktivna izvođenja pužnog točka, a sve u cilju smanjenja mase pužnog točka i uštede materijala. 57
3525$&8158&1(',=$/,&(6$1$92-1,095(7(120
Srednja masinska skola OSOVE KOSTRUISAJA List1/8 355$&8158&1(',=$/,&(6$1$9-1,095(7(10 3ROD]QLSRGDFL maksimalno opterecenje Fa := 36000 visina dizanja h := 440 mm Rucna sila Fr := 350 1DYRMQRYUHWHQR optereceno
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja
PRETHODNI PRORACUN VRATILA (dimenzionisanje vratila)
Predet: Mašinski eleenti Proračun vratila strana Dienzionisati vratilo elektrootora sledecih karakteristika: oinalna snaga P = 3kW roj obrtaja n = 400 in Shea opterecenja: Faktor neravnoernosti K =. F
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD
Predmet: Mašinski elementi Proraþun vratila strana 1 Dimenzionisati vratilo elektromotora sledecih karakteristika: ominalna snaga P 3kW Broj obrtaja n 14 min 1 Shema opterecenja: Faktor neravnomernosti
Proracun zupcastog prenosnika - ZADATAK 2
OSOVE KOSTRUISAJA - MATURSKI RAD Proracun zupcastog prenosnika - ZADATAK Eektromotor snage P 4 kwi broja obrtaja n 1500 min 1 predaje snagu radnoj masini sa jakim udarima posredstvom frikcione spojnice
Srednja mašinska škola Mašinski elementi Nastavnik: Sima Pastor 3525$&8138=12*3$5$ n1 = 1450min 1. zadato. zadato. usvojeno, od 1 do 5
525$&882*$5$ Polazni podaci ulazne vrednosti_ne menjati velicine usvojene_mogu se menjati A Nominalna snaga P 5kW zadato savet _ ne menjati A2 Broj obrtaja pogon. masine n 450min zadato azurirati obavezno
ВИШЕСТЕПЕНИ РЕДУКТОР
Средња машинска школа РАДОЈЕ ДАКИЋ ВИШЕСТЕПЕНИ РЕДУКТОР Милош Мајсторовић Београд 200 год. 2 2 3 0 02 4 4 9 0 9 Poz. Kol. JM. Dimenzije, broj crteza: Standard: 24 Vijak M Poklopac vratila I Sklop vratila
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE
Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
Zadatak 4b- Dimenzionisanje rožnjače
Zadatak 4b- Dimenzionisanje rožnjače Rožnjača je statičkog sistema kontinualnog nosača raspona L= 5x6,0m. Usvaja se hladnooblikovani šuplji profil pravougaonog poprečnog preseka. Raster rožnjača: λ r 2.5m
OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK
OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
Teorija betonskih konstrukcija 1. Vežbe br. 4. GF Beograd
Teorija betonskih konstrukcija 1 Vežbe br. 4 GF Beograd Teorija betonskih konstrukcija 1 1 "T" preseci - VEZANO dimenzionisanje Poznato: statički uticaji (M G,Q ) sračunato kvalitet materijala (f cd, f
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori
MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =
RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović
Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče
DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE
TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Matematka 1 Zadaci za drugi kolokvijum
Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()
Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
Opšte KROVNI POKRIVAČI I
1 KROVNI POKRIVAČI I FASADNE OBLOGE 2 Opšte Podela prema zaštitnim svojstvima: Hladne obloge - zaštita hale od atmosferskih padavina, Tople obloge - zaštita hale od atmosferskih padavina i prodora hladnoće
III VEŽBA: FURIJEOVI REDOVI
III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.
TEORIJA BETONSKIH KONSTRUKCIJA 79
TEORIJA BETOSKIH KOSTRUKCIJA 79 Primer 1. Odrediti potrebn površin armatre za stb poznatih dimenzija, pravogaonog poprečnog preseka, opterećen momentima savijanja sled stalnog ( g ) i povremenog ( w )
Osnovne teoreme diferencijalnog računa
Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako
Program testirati pomoću podataka iz sledeće tabele:
Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti
MEHANIKA FLUIDA Isticanje kroz otvore sa promenljivim nivoom tečnosti zadatak Prizmatična sud podeljen je vertikalnom pregradom, u kojoj je otvor prečnika d, na dve komore Leva komora je napunjena vodom
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
II. ODREĐIVANJE POLOŽAJA TEŽIŠTA
II. ODREĐIVANJE POLOŽAJA TEŽIŠTA Poožaj težišta vozia predstavja jednu od bitnih konstruktivnih karakteristika vozia s obzirom da ova konstruktivna karakteristika ima veiki uticaj na vučne karakteristike
Trigonometrijske nejednačine
Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja
INŽENJERSTVO NAFTE I GASA. 2. vežbe. 2. vežbe Tehnologija bušenja II Slide 1 of 50
INŽENJERSTVO NAFTE I GASA Tehnologija bušenja II 2. vežbe 2. vežbe Tehnologija bušenja II Slide 1 of 50 Proračuni trajektorija koso-usmerenih bušotina 2. vežbe Tehnologija bušenja II Slide 2 of 50 Proračun
Proračunski model - pravougaoni presek
Proračunski model - pravougaoni presek 1 ε b 3.5 σ b f B "" ηx M u y b x D bu G b h N u z d y b1 a1 "1" b ε a1 10 Z au a 1 Složeno savijanje - VEZNO dimenzionisanje Poznato: statički uticaji za (M i, N
10. STABILNOST KOSINA
MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
ЈЕДНОСТЕПЕНИ РЕДУКТОР
Средња машинска школа РАДОЈЕ ДАКИЋ ЈЕДНОСТЕПЕНИ РЕДУКТОР Милош Мајсторовић 9 4 4 40 0 4 0 0 9 0 0 0 4 4 St.iz. Izmene Datum Ime Datum bradio 0.09.04 Milos dobrio Masa: Jednostepeni reduktor znaka: JR.00.00
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
II. ODREĐIVANJE POLOŽAJA TEŽIŠTA
II. ODREĐIVANJE POLOŽAJA TEŽIŠTA Poožaj težišta vozia predstavja jednu od bitnih konstruktivnih karakteristika vozia s obzirom da ova konstruktivna karakteristika ima veiki uticaj na vučne karakteristike
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
UZDUŽNA DINAMIKA VOZILA
UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,
Otpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.
4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)
PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
, 81, 5?J,. 1o~",mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pt"en:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M.
J r_jl v. el7l1 povr.sl?lj pt"en:nt7 cf \ L.sj,,;, ocredz' 3 Q),sof'stvene f1?(j'me")7e?j1erc!je b) po{o!.aj 'i1m/' ce/y11ra.[,p! (j'j,a 1lerc!/e
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Zadaci iz trigonometrije za seminar
Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
3. OSNOVNI POKAZATELJI TLA
MEHANIKA TLA: Onovni paraetri tla 4. OSNONI POKAZATELJI TLA Tlo e atoji od tri faze: od čvrtih zrna, vode i vazduha i njihovo relativno učešće e opiuje odgovarajući pokazateljia.. Specifična težina (G)
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)
Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
Ponašanje pneumatika pod dejstvom bočne sile
Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA
( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min
Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Ponašanje pneumatika pod dejstvom bočne sile
Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo
Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra
Proračun potrebne glavne snage rezanja i glavnog strojnog vremena obrade
Zaod a tehnologiju Katedra a alatne strojee Proračun potrebne glane snage reanja i glanog strojnog remena obrade Sadržaj aj ježbe be: Proračun snage kod udužnog anjskog tokarenja Glano strojno rijeme kod
Dimenzionisanje štapova izloženih uvijanju na osnovu dozvoljenog tangencijalnog napona.
Dimenzionisanje štapova izloženih uvijanju na osnovu dozvoljenog tangencijalnog napona Prema osnovnoj formuli za dimenzionisanje maksimalni tangencijalni napon τ max koji se javlja u štapu mora biti manji
Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum
27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.
KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako
Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja:
Anene Transformacija EM alasa u elekrični signal i obrnuo Osnovne karakerisike anena su: dijagram zračenja, dobiak (Gain), radna učesanos, ulazna impedansa,, polarizacija, efikasnos, masa i veličina, opornos
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.
JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
Geometrijske karakteristike poprenih presjeka nosaa. 9. dio
Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino
, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova
Grupa A 29..206. agreb Prvi kolokvij Analognih sklopova i lektroničkih sklopova Kolokvij se vrednuje s ukupno 42 boda. rijednost pojedinog zadatka navedena je na kraju svakog zadatka.. a pojačalo na slici
PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET
TEORIJ ETONSKIH KONSTRUKCIJ 1 PRESECI S PRSLINO - VELIKI EKSCENTRICITET ČISTO SVIJNJE - VEZNO DIENZIONISNJE Poznato: - statički ticaji za pojedina opterećenja ( i ) - kalitet materijala (f, σ ) - dimenzije
Mašinsko učenje. Regresija.
Mašinsko učenje. Regresija. Danijela Petrović May 17, 2016 Uvod Problem predviđanja vrednosti neprekidnog atributa neke instance na osnovu vrednosti njenih drugih atributa. Uvod Problem predviđanja vrednosti
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika
Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Rešenja. Matematičkom indukcijom dokazati da za svaki prirodan broj n važi jednakost: + 5 + + (n )(n + ) = n n +.
nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.
IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)