(REASONING WITH UNCERTAINTY)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "(REASONING WITH UNCERTAINTY)"

Transcript

1 ΣΥΛΛΟΓΙΣΜΟΣ ΜΕ ΑΒΕΒΑΙΟΤΗΤΑ REASONING WITH UNCERTAINTY Ακριβής και πλήρης γνώση δεν είναι πάντα δυνατή Οι εµπειρογνώµονες πολλές φορές παίρνουν αποφάσεις από αβέβαια, ηµιτελή ή και αλληλοσυγκρουόµενα δεδοµένα Η κλασσική λογική επιτρέπει µόνο ακριβή συλλογισµό xact rasonngδηλ. κάτι είναι αληθές ή ψευδές, δεν υπάρχει ενδιάµεσο Εποµένως προκύπτει η ανάγκη για αναπαράσταση αβέβαιης γνώσης συλλογισµό από αβέβαιη γνώση

2 ΚΑΤΗΓΟΡΙΕΣ ΜΕΘΟ ΩΝ ΣΥΛΛΟΓΙΣΜΟΥ ΜΕ ΑΒΕΒΑΙΟΤΗΤΑ Πιθανοτικές µέθοδοι Probablstc mtods Θεωρήµατα Bays Σχεδόν-πιθανοτικές µέθοδοι Quasrobablstc mtods Υποκειµενική µέθοδος Bays Subjctv Baysan mtod Μέθοδος συντελεστών βεβαιότητας Crtanty factors Επεκτεταµένες πιθανοτικές µέθοδοι Θεωρία Dmstr-Safr ικτυακά Μοντέλα Μοντέλο KIM-PEARL Μοντέλο LAURITZEN-SPIEGELHALTER Μέθοδοι ασαφούς λογικής fuzzy modls

3 ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Συνάρτηση πιθανότητας P: η πιθανότητα να παρατηρηθεί το γεγονός Υποθέσεις 0 P PΩ Ω: δειγµατικός χώρος. Το µη κενό σύνολο όλων των δυνατών γεγονότων,,,n 3 Εάν αµοιβαία αποκλειόµενα j, j,,j,nτότε P Σ P Επίσης ισχύουν: ~ Ω\ + ~

4 ΠΑΡΑ ΕΙΓΜΑ Ζάρι Η πιθανότητα να έλθει 6 σ ένα ρίξιµο αριθµός δυνατών επιτυχιών επιτυχίες αριθµός δυνατών αποτελεσµάτων επιτυχίες + αποτυχίες ,66 Ανεξαρτησία γεγονότων: κάθε αποτέλεσµα ανεξάρτητο από τα άλλα Αµοιβαίος αποκλεισµός: κανένα αποτέλεσµα ταυτόχρονα µε άλλο Η πιθανότητα να µην έλθει 6 σ ένα ρίξιµο ~ αριθµός δυνατών αποτυχιών αποτυχίες 5 5 ~ 0,833 αριθµός δυνατών αποτελεσµάτων επιτυχίες + αποτυχίες ~

5 ΠΙΘΑΝΟΤΗΤΕΣ ΥΠΟ ΣΥΝΘΗΚΗ Πιθανότητα υπό συνθήκη ή εκ-των-υστέρων πιθανότητα condtonal or ostror robablty / ορισµός Η πιθανότητα του να συµβεί το δεδοµένου ότι συνέβη το., : εκ-των-προτέρων πιθανότητες ror robablts P : συνδυασµένη πιθανότητα conjunctv robablty Στον πραγµατικό κόσµο, η / δεν µπορεί να βρεθεί στη βιβλιογραφία ή να εξαχθεί από στατιστικά δεδοµένα.

6 ΝΟΜΟΣ ΤΟΥ BAYES * / / µπορούν να είναι γνωστές απόδειξη Π.χ. lvr-crross, jaundc γνωστά από στατιστικές jaundc/lvr-crross µπορεί να είναι γνωστή Εποµένως η lvr-crross/jaundc µπορεί να υπολογιστεί από τον νόµο του Bays ~ * ~ / * / * / / + απόδειξη Άλλη µορφή του νόµου Bays θεωρώντας ότι το εξαρτάται από τα αµοιβαία αποκλειόµενα και ~

7 ΣΥΛΛΟΓΙΣΜΟΣ ΚΑΤΑ BAYES Συνήθως αυτό που ξέρουµε είναι: f π.χ. ασθένεια tn π.χ. σύµπτωµα Όµως συνήθως παρατηρούµε το και θέλουµε να επιβεβαιώσουµε το : f tn vdnc δεδοµένο yotss υπόθεση Π.χ. σε διαγνωστικά συστήµατα: άπαγωγική µέθοδος abducton

8 ΣΥΛΛΟΓΙΣΜΟΣ ΚΑΤΑ BAYES ιαδικασία. Ο εµπειρογνώµων παρέχει τα, /, /~. Ο χρήστης παρέχει πληροφορίες για τα δεδοµένα/γεγονότα που παρατηρήθηκαν 3. Το έµπειρο σύστηµα υπολογίζει το / τύπος

9 ΠΑΡΑ ΕΙΓΜΑ Ζητούµενο: Κατά πόσο ο Γιάννης έχει κρυολόγηµα δεδοµένου ότι φταρνίζεται. εδοµένα: 0., /0.7, /~0.5 Υπολογισµός /: ~ / 0.7*0./0.7* * / / Το γεγονός ότι φταρνίζεται αύξησε την πιθανότητα να έχει κρυολόγηµα από 0. σε 0.4

10 ΓΕΝΙΚΕΥΣΕΙΣ ΝΟΜΟΥ BAYES Ο Νόµος του Bays αφορά ένα στοιχείο γεγονός και µία υπόθεση η Γενίκευση: ένα στοιχείο γεγονός και πολλές m υποθέσεις,,, m / m k / / * k * k 3 Τα,,, m πρέπει να είναι αµοιβαία αποκλειόµενα και εξαντλητικά

11 ΓΕΝΙΚΕΥΣΕΙΣ ΝΟΜΟΥ BAYES η Γενίκευση: πολλά n στοιχεία γεγονότα,,, n και πολλές m υποθέσεις,,, m /... n m k... n... / n / * k * k 4 Τα,,, m και,,, n πρέπει να είναι αµοιβαία αποκλειόµενα και εξαντλητικά

12 ΓΕΝΙΚΕΥΣΕΙΣ ΝΟΜΟΥ BAYES 3 Ο προηγούµενος τύπος είναι ουσιαστικά µη πρακτικά εφαρµόσιµος απαιτεί τις υπο συνθήκη πιθανότητες για όλους τους πιθανούς συνδυασµούς των στοιχείων για όλες τις υποθέσεις Επί πλέον υπόθεση: Θεωρούµε τα,,, n υπό συνθήκη ανεξάρτητα δεδοµένης οποιασδήποτε υπόθεσης /... n m k / / * k * 5 / / *...* k n *...* / n / * k * k

13 ΠΑΡΑ ΕΙΓΜΑ Ζητούµενο: Τι είναι πιθανότερο να έχει ο Γιάννης : κρυολόγηµα, : αλλεργία, 3: ίωση δεδοµένου ότι φταρνίζεται, βήχει και έχει πυρετό 3. εδοµένα: / / /

14 ΠΑΡΑ ΕΙΓΜΑ Υποθέτουµε ότι κατ αρχήν παρατηρείται το 3. Τότε από τον τύπο 3 έχουµε: *0.4 / * * * *0.35 / * * * *0.5 / * * *0.5 Στη συνέχεια παρατηρείται το. Τότε από τον τύπο 5 έχουµε: 3 0.3* 0.6*0.4 / *0.6 * * 0.7 * *0.9 * *0.7 * 0.35 / * 0.6* *0.7 * * 0.9* *0.9 *0.5 / *0.6 * * 0.7 * *0.9 *0.5

15 ΠΑΡΑ ΕΙΓΜΑ 3 Τέλος, παρατηρείται το. Τότε από τον τύπο 5 έχουµε: 3 0.3*0.9 *0.6 *0.4 / * 0.9*0.6* *0.0 *0.7 * * 0.7 *0.9 * * 0.0*0.7 *0.35 / *0.9 *0.6 * * 0.0*0.7 * *0.7 * 0.9* *0.7 * 0.9*0.5 / * 0.9*0.6* *0.0 *0.7 * * 0.7 *0.9 *0.5

16 ΠΛΕΟΝΕΚΤΗΜΑΤΑ-ΜΕΙΟΝΕΚΤΗΜΑΤΑ Πλεονεκτήµατα Καλά θεµελιωµένη θεωρία Καλά ορισµένη σηµασιολογία Μειονεκτήµατα Λειτουργούν καλά µόνο σε πολύ περιορισµένα πεδία Οι υποθέσεις δεν ισχύουν πάντοτε Απαιτείται µεγάλος αριθµός πιθανοτήτων που πρέπει να υπολογιστούν εν είναι πάντοτε δυνατόν να προσδιοριστούν όλες οι πιθανότητες

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι Ροµ οτικοί Πράκτορες Αβεβαιότητα Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Πράκτορες χαρακτηριστικά στοιχεία είδη πρακτόρων αυτόνοµοι

Διαβάστε περισσότερα

Κεφάλαιο 2 Πιθανότητες. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς

Κεφάλαιο 2 Πιθανότητες. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς Κεφάλαιο 2 Πιθανότητες Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς 2-2 2 Πιθανότητες Χρησιμοποιώντας την Στατιστική Βασικοί ορισμοί: Ενδεχόμενα, Δειγματικός χώρος και Πιθανότητες

Διαβάστε περισσότερα

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Πιθανοτική Συλλογιστική Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Αβεβαιότητα πεποιθήσεων πράκτορας θεωρίας

Διαβάστε περισσότερα

Πανεπιστήµιο Πατρών Τµήµα Μηχ/κών Η/Υ & Πληροφορικής ΜΠΣ ΕΠΙΣΤΗΜΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΥΦΥΗ ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ. Ι.

Πανεπιστήµιο Πατρών Τµήµα Μηχ/κών Η/Υ & Πληροφορικής ΜΠΣ ΕΠΙΣΤΗΜΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΥΦΥΗ ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ. Ι. Πανεπιστήµιο Πατρών Τµήµα Μηχ/κών Η/Υ & Πληροφορικής ΜΠΣ ΕΠΙΣΤΗΜΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΥΦΥΗ ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ Ι. Χατζηλυγερούδης ΩΡΟΛΟΓΙΟ ΠΡΟΓΡΑΜΜΑ Τετάρτη/Τρίτη 5.00-7.00 µ.µ. (ΠΡΟΚΑΤ Τµήµατος

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΝΝΟΙΑ ΠΙΘΑΝΟΤΗΤΑΣ Μαθηματική περιγραφή συστημάτων με αβεβαιότητα Παραδείγματα από την οργάνωση παραγωγής Διάρκεια παραγωγής προϊόντων

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Έστω t, t,..., t ν οι παρατηρήσεις µιας ποσοτικής µεταβλητής Χ ενός δείγµατος µεγέθους ν, που έχουν µέση τιµή x. Σχηµατίζουµε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ιδάσκων:

Διαβάστε περισσότερα

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος Έλεγχοι Υποθέσεων 1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος µ = 100 Κάθε υπόθεση συνοδεύεται από µια εναλλακτική: Ο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 00 Πέµπτη, Ιουνίου 00 ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α.. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι P(A B) P(A)

Διαβάστε περισσότερα

Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ

Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ Ενότητα 2: Επαγωγική-περιγραφική στατιστική, παραµετρικές

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 006 ΕΚΦΩΝΗΣΕΙΣ A. Η συνάρτηση f είναι παραγωγίσιµη στο ΙR. και c πραγµατική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR. Μονάδες

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 21 Οκτωβρίου 2009 ΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ Η ανάγκη εισαγωγής της δεσµευµένης πιθανότητας αναφύεται στις περιπτώσεις όπου µία µερική

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β ηµήτρης Κουγιουµτζής http://users.auth.gr/dkugiu/teach/civilengineer E mail: dkugiu@gen.auth.gr 1/11/2009 2 Περιεχόµενα 1 ΠΕΡΙΓΡΑΦΙΚΗ

Διαβάστε περισσότερα

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και 1. ΕΙΣΑΓΩΓΗ Όλα τα είδη ερωτήσεων που αναφέρονται στο «Γενικό Οδηγό για την Αξιολόγηση των µαθητών στην Α Λυκείου» µπορούν να χρησιµοποιηθούν στα Μαθηµατικά, τόσο στην προφορική διδασκαλία/εξέταση, όσο

Διαβάστε περισσότερα

Κεφάλαιο 7. Έλεγχος Υποθέσεων. Ένα παράδειγµα

Κεφάλαιο 7. Έλεγχος Υποθέσεων. Ένα παράδειγµα Κεφάλαιο 7 Έλεγχος Υποθέσεων 1 Ένα παράδειγµα Ένας ερευνητής θέλησε να διαπιστώσει κατά πόσο η από απόσταση εκπαίδευση είναι καλύτερη από τη δια ζώσης εκπαίδευση. Για το σκοπό αυτό, επέλεξε δύο οµάδες

Διαβάστε περισσότερα

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς Πρόλογος Ο μηχανικός πρέπει να συνεχίσει να βελτιώνει την ποιότητα της δουλειάς του εάν επιθυμεί να είναι ανταγωνιστικός στην αγορά της χώρας του και γενικότερα της Ευρώπης. Μία σημαντική αναλογία σε αυτήν

Διαβάστε περισσότερα

ροµολόγηση πακέτων σε δίκτυα υπολογιστών

ροµολόγηση πακέτων σε δίκτυα υπολογιστών ροµολόγηση πακέτων σε δίκτυα υπολογιστών Συµπληρωµατικές σηµειώσεις για το µάθηµα Αλγόριθµοι Επικοινωνιών Ακαδηµαϊκό έτος 2011-2012 1 Εισαγωγή Οι παρακάτω σηµειώσεις παρουσιάζουν την ανάλυση του άπληστου

Διαβάστε περισσότερα

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ 2004

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ 2004 ΑΡΧΕΣ ΟΙΟΝΟΜΙΗΣ ΘΕΩΡΙΑΣ ΛΥΕΙΟΥ ΜΑΘΗΜΑ ΕΠΙΛΟΗΣ ΙΑ ΟΛΕΣ ΤΙΣ ΑΤΕΥΘΥΝΣΕΙΣ 2004 ΕΦΩΝΗΣΕΙΣ ΟΜΑ Α Α ια τις προτάσεις από Α1 µέχρι και Α5 να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 1. ΕΙ Η Ε ΟΜΕΝΩΝ, ΣΥΛΛΟΓΗ, ΚΩ ΙΚΟΠΟΙΗΣΗ ΚΑΙ ΕΙΣΑΓΩΓΗ

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 1. ΕΙ Η Ε ΟΜΕΝΩΝ, ΣΥΛΛΟΓΗ, ΚΩ ΙΚΟΠΟΙΗΣΗ ΚΑΙ ΕΙΣΑΓΩΓΗ ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 1. ΕΙ Η Ε ΟΜΕΝΩΝ, ΣΥΛΛΟΓΗ, ΚΩ ΙΚΟΠΟΙΗΣΗ ΚΑΙ ΕΙΣΑΓΩΓΗ Βασικές µορφές Ερωτήσεων - απαντήσεων Ανοιχτές Κλειστές Κλίµακας ΕΛΕΥΘΕΡΙΟΣ ΑΓΓΕΛΗΣ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΘ 2 Ανοιχτές ερωτήσεις Ανοιχτές

Διαβάστε περισσότερα

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua. Μέρος Β /Στατιστική Μέρος Β Στατιστική Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) Από τις Πιθανότητες στη Στατιστική Στα προηγούμενα, στο

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ http://www.economics.edu.gr 1 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΕΦΑΛΑΙΟ 1 ο : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΣΚΗΣΕΙΣ ΥΠΟ ΕΙΓΜΑΤΑ ( τρόποι επίλυσης παρατηρήσεις σχόλια ) ΑΣΚΗΣΗ 1 Έστω ο πίνακας παραγωγικών δυνατοτήτων µιας

Διαβάστε περισσότερα

Αναγνώριση Προτύπων (Pattern Recognition) Μπεϋζιανή Θεωρία Αποφάσεων (Bayesian Decision Theory) Π. Τσακαλίδης

Αναγνώριση Προτύπων (Pattern Recognition) Μπεϋζιανή Θεωρία Αποφάσεων (Bayesian Decision Theory) Π. Τσακαλίδης Αναγνώριση Προτύπων (Pattern Recognton Μπεϋζιανή Θεωρία Αποφάσεων (Bayesan Decson Theory Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Μπεϋζιανή Θεωρία Αποφάσεων (Bayes Decson theory Στατιστικά

Διαβάστε περισσότερα

Case 01: Προγραµµατισµός Αγροτικής Παραγωγής «AGRO» ΣΕΝΑΡΙΟ

Case 01: Προγραµµατισµός Αγροτικής Παραγωγής «AGRO» ΣΕΝΑΡΙΟ Case 01: Προγραµµατισµός Αγροτικής Παραγωγής «AGRO» ΣΕΝΑΡΙΟ Προγραµµατισµός τεσσάρων διαφορετικών προϊόντων Σιτάρι, σόγια, βρώµη καικαλαµπόκι Μέγιστη συνολική έκταση 1.500 στρέµµατα Ακριβώς 100 στρέµµατα

Διαβάστε περισσότερα

ΕΣΜΕΥΜΕΝΕΣ ΠΙΘΑΝΟΤΗΤΕΣ

ΕΣΜΕΥΜΕΝΕΣ ΠΙΘΑΝΟΤΗΤΕΣ Τµ. Επιστήµης των Υλικών εσµευµένες Πιθανότητες Εστω (Ω, A, P) ένας πιθανοθεωρητικός χώρος. Αξιωµατικός Ορισµός της Πιθανότητας (Kolmogorov) Θεωρούµε (Ω, A) έναν µετρήσιµο χώρο. Ενα πιθανοθεωρητικό µέτρο

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

Περιεχόµενα. ΜΕΡΟΣ Α: Επίλυση Προβληµάτων... 17

Περιεχόµενα. ΜΕΡΟΣ Α: Επίλυση Προβληµάτων... 17 ΠΡΟΛΟΓΟΣ... I ΠΡΟΛΟΓΟΣ ΤΩΝ ΣΥΓΓΡΑΦΕΩΝ...III ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΩΝ... IX ΠΕΡΙΕΧΟΜΕΝΑ... XI 1 ΕΙΣΑΓΩΓΗ... 1 1.1 ΤΙ ΕΙΝΑΙ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ... 1 1.1.1 Ορισµός της Νοηµοσύνης... 2 1.1.2 Ορισµός

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ 1ο Α.1. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός

Διαβάστε περισσότερα

Αβεβαιότητα ανάγκη για πιθανότητα

Αβεβαιότητα ανάγκη για πιθανότητα Αβεβαιότητα ανάγκη για πιθανότητα ΦΥΣ 145 - Διαλ.11 1 Ø Καθηµερινά έχουµε να κάνουµε µε αβεβαιότητα αποφάσεις λαµβάνονται απουσία πλήρους πληροφορίας Ø Οι περισσότεροι κλάδοι των επιστηµών «φαίνεται» να

Διαβάστε περισσότερα

1-3 10 1-3 6 3-5 40 3-5 30 5-7 20 5-7 20 7-9 20 7-9 30 9-11 8 9-11 10 11-13 2 11-13 4 Σύνολο 100 Σύνολο 100

1-3 10 1-3 6 3-5 40 3-5 30 5-7 20 5-7 20 7-9 20 7-9 30 9-11 8 9-11 10 11-13 2 11-13 4 Σύνολο 100 Σύνολο 100 1. (Εξεταστ. Φεβ. 2004) Μια µεγάλη εταιρία θέλει να εξετάσει εάν το εκπαιδευτικό πρόγραµµα που ακολουθήσανε οι 100 πωλητές της ήταν αποτελεσµατικό (δηλαδή εάν αυξήθηκαν οι πωλήσεις). Οι δύο παρακάτω πίνακες

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ι θ α ν ό τ η τ ε ς Ι Πειραιάς 2008 Πιθανότητες Ι-Μ. Κούτρας 2 Κατανομές χρόνου αναμονής (... μέχρι να συμβεί ηπρώτη επιτυχία) 3 Ας θεωρήσουμε μία ακολουθία

Διαβάστε περισσότερα

Πληροφοριακά Συστήµατα ιοίκησης Τµήµα Χρηµατοοικονοµικής και Ελεγκτικής Management Information Systems Εργαστήριο 4 ΤΕΙ Ηπείρου (Παράρτηµα Πρέβεζας)

Πληροφοριακά Συστήµατα ιοίκησης Τµήµα Χρηµατοοικονοµικής και Ελεγκτικής Management Information Systems Εργαστήριο 4 ΤΕΙ Ηπείρου (Παράρτηµα Πρέβεζας) Πληροφοριακά Συστήµατα ιοίκησης Τµήµα Χρηµατοοικονοµικής και Ελεγκτικής Management Information Systems Εργαστήριο 4 ΤΕΙ Ηπείρου (Παράρτηµα Πρέβεζας) ΑΝΤΙΚΕΙΜΕΝΟ: Προσοµοίωση (Simulation) και Τυχαίες µεταβλητές

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Σε κάθε αποτέλεσμα του πειράματος αντιστοιχεί μία αριθμητική τιμή Μαθηματικός ορισμός: Τυχαία μεταβλητή X είναι

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 7 Από τα κάτωθι Θέµατα καλείστε να λύσετε το ο που περιλαµβάνει ερωτήµατα από όλη την ύλη

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ).

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ). 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1 ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ Α. Βλέπε σχολικό βιβλίο σελίδα 194, το θεώρηµα ενδιάµεσων τιµών. Β. Βλέπε τον ορισµό στη σελίδα 279 του σχολικού βιβλίου. Γ. Βλέπε

Διαβάστε περισσότερα

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής. 2.6 ΟΡΙΑ ΑΝΟΧΗΣ Το διάστηµα εµπιστοσύνης παρέχει µία εκτίµηση µιας άγνωστης παραµέτρου µε την µορφή διαστήµατος και ένα συγκεκριµένο βαθµό εµπιστοσύνης ότι το διάστηµα αυτό, µε τον τρόπο που κατασκευάσθηκε,

Διαβάστε περισσότερα

Στόχος µαθήµατος: Παράδειγµα 1: µελέτη ασθενών-µαρτύρων ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ

Στόχος µαθήµατος: Παράδειγµα 1: µελέτη ασθενών-µαρτύρων ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΜΑΘΗΜΑ 5 ΕΡΓΑΣΤΗΡΙΟ 1 ΜΕΤΡΑ ΚΙΝ ΥΝΟΥ & ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΜΕ ΤΗΝ ΧΡΗΣΗ SPSS

Διαβάστε περισσότερα

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή.

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή. Η Αριθµητική Ανάλυση χρησιµοποιεί απλές αριθµητικές πράξεις για την επίλυση σύνθετων µαθηµατικών προβληµάτων. Τις περισσότερες φορές τα προβλήµατα αυτά είναι ή πολύ περίπλοκα ή δεν έχουν ακριβή αναλυτική

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Α Να αποδείξετε ότι η παράγωγος της συνάρτησης f(x) x είναι f (x) Β Πότε µια συνάρτηση f σε ένα διάστηµα

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραµµα Σπουδών: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεµατική Ενότητα: ΕΟ-3 Ποσοτικές Μέθοδοι Ακαδηµαϊκό Έτος: 003- ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ ΑΡΙΘΜΗΤΙΚΗ ΠΕΡΙΓΡΑΦΗ Ε ΟΜΕΝΩΝ ΑΤΑΞΙΝΟΜΗΤΑ

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 2000

Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 2000 Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 000 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα ο Α.α) ίνεται η συνάρτηση F() f() + g(). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F () f () + g

Διαβάστε περισσότερα

Επιλογή επενδύσεων κάτω από αβεβαιότητα

Επιλογή επενδύσεων κάτω από αβεβαιότητα Επιλογή επενδύσεων κάτω από αβεβαιότητα Στατιστικά κριτήρια επιλογής υποδειγμάτων Παράδειγμα Θεωρήστε τον παρακάτω πίνακα ο οποίος δίνει τις ροές επενδυτικών σχεδίων λήξης μιας περιόδου στο μέλλον, όταν

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ι θ α ν ό τ η τ ε ς Ι Πειραιάς 2008 Πιθανότητες Ι-Μ. Κούτρας 2 Δοκιμές Bernoulli Ας θεωρήσουμε μία ακολουθία (σειρά) πειραμάτων στην οποία ισχύουν τα επόμενα

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 5 Ο ΠΟΣΟΤΙΚΕΣ ΜΕΘΟ ΟΙ ΣΤΗΝ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (εργαστήριο) ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2012-2013-ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ

ΜΑΘΗΜΑ 5 Ο ΠΟΣΟΤΙΚΕΣ ΜΕΘΟ ΟΙ ΣΤΗΝ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (εργαστήριο) ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2012-2013-ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΜΑΘΗΜΑ 5 Ο ΠΟΣΟΤΙΚΕΣ ΜΕΘΟ ΟΙ ΣΤΗΝ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (εργαστήριο) ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2012-2013-ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΠΕΡΙΒΑΛΛΟΥΣΑΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ(DEA) Η ανάλυση DEA είναι πολύ ισχυρή και ιδιαίτερα διαδεδοµένη µέθοδο,

Διαβάστε περισσότερα

Συλλογή,, αποθήκευση, ανανέωση και παρουσίαση στατιστικών δεδοµένων

Συλλογή,, αποθήκευση, ανανέωση και παρουσίαση στατιστικών δεδοµένων Συλλογή,, αποθήκευση, ανανέωση και παρουσίαση στατιστικών δεδοµένων 1. Αναζήτηση των κατάλληλων δεδοµένων. 2. Έλεγχος µεταβλητών και κωδικών για συµβατότητα. 3. Αποθήκευση σε ηλεκτρονική µορφή (αρχεία

Διαβάστε περισσότερα

ιαστασιοποίηση του Ασύρµατου Μέρους του ικτύου

ιαστασιοποίηση του Ασύρµατου Μέρους του ικτύου ιαστασιοποίηση του Ασύρµατου Μέρους του ικτύου Συγκέντρωση/Οµαδοποίηση Πόρων Τα συστήµατα απευθύνονται σε µεγάλο πλήθος χρηστών Η συγκέντρωση (trunking) ή αλλιώς οµαδοποίηση των διαθέσιµων καναλιών επιτρέπει

Διαβάστε περισσότερα

ΠΛΑΙΣΙΑ. Τα πλαίσια έχουν:

ΠΛΑΙΣΙΑ. Τα πλαίσια έχουν: ΠΛΑΙΣΙΑ Ορίστηκαν από τον Minsky σαν "δοµές δεδοµένων για την αναπαράσταση στερεότυπων καταστάσεων". Ονοµάζονται και σχήµατα (schemata). Κατά µία έννοια αποτελούν εξέλιξη των σηµαντικών δικτύων (ή δικτύων

Διαβάστε περισσότερα

Διεθνές εµπόριο-1 P 1 P 2

Διεθνές εµπόριο-1 P 1 P 2 Διεθνές εµπόριο-1 Το διεθνές εµπόριο συµβάλλει στην καλύτερη αξιοποίηση των παραγωγικών πόρων της ανθρωπότητας γιατί ελαχιστοποιεί το κόστος παραγωγής της συνολικής προσφοράς αγαθών και υπηρεσιών που διακινείται

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ ΚΕΦΑΛΑΙΟ 5 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ Α. Περίπτωση Ενός Πληθυσμού Έστω ότι μελετάμε μια ακολουθία ανεξαρτήτων δοκιμών κάθε μία από τις οποίες οδηγεί είτε σε επιτυχία είτε σε αποτυχία με σταθερή

Διαβάστε περισσότερα

6.2 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ

6.2 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ 1 6. ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΙΑ 1. Οι συντεταγµένες σηµείου Ο Ο άξονας τετµηµένων άξονας τεταγµένων (ΟΚ) µε πρόσηµο = α, η τετµηµένη του Μ (ΟΛ) µε πρόσηµο = β, η τεταγµένη του Μ Το ζευγάρι (α,

Διαβάστε περισσότερα

Φροντιστήριο #8 Ασκήσεις σε Πιθανότητες 15/05/2015

Φροντιστήριο #8 Ασκήσεις σε Πιθανότητες 15/05/2015 Φροντιστήριο #8 Ασκήσεις σε Πιθανότητες 15/05/2015 Άσκηση Φ8.1 Τρεις λαμπτήρες επιλέγονται τυχαία από ένα σύνολο 15 λαμπτήρων εκ των οποίων οι 5 είναι ελαττωματικοί. (α) Βρέστε την πιθανότητα κανείς από

Διαβάστε περισσότερα

6. ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ

6. ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ 6. ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΥΟ ΕΙΣΟ ΩΝ ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΠΙΠΕ ΩΝ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ

Διαβάστε περισσότερα

Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη:

Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη: 4. ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΘΕΜΑΤΩΝ ΥΠΟ ΑΒΕΒΑΙΑ ΖΗΤΗΣΗ Στις περισσότερες περιπτώσεις η ζήτηση είναι αβέβαια. Οι περιπτώσεις αυτές διαφέρουν ως προς το μέγεθος της αβεβαιότητας. Δηλαδή εάν η αβεβαιότητα είναι περιορισμένη

Διαβάστε περισσότερα

Λογικοί πράκτορες. Πράκτορες βασισµένοι στη γνώση

Λογικοί πράκτορες. Πράκτορες βασισµένοι στη γνώση Λογικοί πράκτορες Πράκτορες βασισµένοι στη γνώση Βάση γνώσης (knowledge base: Σύνολο προτάσεων (sentences Γλώσσα αναπαράστασης της γνώσης Γνωστικό υπόβαθρο: «Αµετάβλητο» µέρος της ΒΓ Βασικές εργασίες:

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÓÕÍÅÉÑÌÏÓ ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÓÕÍÅÉÑÌÏÓ ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ / ΕΠΙΛΟΓΗΣ Ηµεροµηνία: Παρασκευή 17 Απριλίου 2015 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ Α.1 Να χαρακτηρίσετε τις προτάσεις που ακολουθούν,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΠΟΣΟΤΙΚΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΚΕΦΑΛΑΙΟ 3 ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΠΟΣΟΤΙΚΩΝ ΜΕΤΑΒΛΗΤΩΝ ΚΕΦΑΛΑΙΟ 3 ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΠΟΣΟΤΙΚΩΝ ΜΕΤΑΒΛΗΤΩΝ Εισαγωγή Στο Κεφάλαιο 3 υπολογίζονται και συγκρίνονται οι µέσες τιµές όλων των αριθµητικών µεταβλητών που είναι ο γραπτός µέσος όρος όλων των µαθηµάτων,

Διαβάστε περισσότερα

ηµοκρίτειο Πανεπιστήµιο, Τµήµα ΜηχανικώνΠαραγωγής& ιοίκησης 1

ηµοκρίτειο Πανεπιστήµιο, Τµήµα ΜηχανικώνΠαραγωγής& ιοίκησης 1 Στατιτική υµπεραµατολογία για τη διαδικαία της ποιότητας Στο προηγούµενο κεφάλαιο κάναµε την παραδοχή και υποθέαµε ότι οι παράµετροι των κατανοµών των πιθανοτήτων άρα και οι παράµετροι της διαδικαίας ήταν

Διαβάστε περισσότερα

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ 6. Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΙΑ. Ορισµός της συνάρτησης Συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β λέγεται µια διαδικασία (κανόνας τρόπος ), µε την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Baysian Θεωρία Αποφάσεων ΕΠΙΣΚΟΠΗΣΗ-ΑΣΚΗΣΕΙΣ

Αναγνώριση Προτύπων. Baysian Θεωρία Αποφάσεων ΕΠΙΣΚΟΠΗΣΗ-ΑΣΚΗΣΕΙΣ Αναγνώριση Προτύπων Baysian Θεωρία Αποφάσεων ΕΠΙΣΚΟΠΗΣΗ-ΑΣΚΗΣΕΙΣ Χριστόδουλος Χαμζάς Τα περιεχόμενο της παρουσίασης βασίζεται στο βιβλίο: Introduction to Pattern Recognition A Matlab Approach, S. Theodoridis,

Διαβάστε περισσότερα

1. Ανάλυση προβλήµατος

1. Ανάλυση προβλήµατος 1. Ανάλυση προβλήµατος 1.1 Η έννοια πρόβληµα. ΕΣΕΠ06-Θ1Α1 Να δώσετε τον ορισµό του προβλήµατος. 1.2 Κατανόηση προβλήµατος. ΕΣ02-Θ1Α2 Με τον όρο δεδοµένο αναφέρεται οποιοδήποτε γνωσιακό στοιχείο προέρχεται

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεµατική Ενότητα ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Ακαδηµαϊκό Έτος 2006 2007 Γραπτή Εργασία #2 Ηµεροµηνία Παράδοσης 28-0 - 2007 ΠΛΗ 2: Ψηφιακά Συστήµατα ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ Άσκηση : [5 µονάδες] Έχετε στη

Διαβάστε περισσότερα

Ανάλυση Κόστους Κύκλου Ζωής

Ανάλυση Κόστους Κύκλου Ζωής Ανάλυση Κόστους Κύκλου Ζωής ρ Γ. Γιαννακίδης Εισαγωγή Στόχοι και Οφέλη Ανάλυση Κόστους Κύκλου Ζωής Life Cycle Cost Analysis - LCCA Μέθοδος οικονοµικής σύγκρισης εναλλακτικών επενδύσεων που βασίζεται στο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 04 Λύσεις των θεµάτων

Διαβάστε περισσότερα

Kωδικοποίηση & Σήµανση προϊόντων Μέσα στο Κατάστηµα (in store)

Kωδικοποίηση & Σήµανση προϊόντων Μέσα στο Κατάστηµα (in store) Kωδικοποίηση & Σήµανση προϊόντων Μέσα στο Κατάστηµα (in store) 2 1. Κωδικοποίηση ειδών µέσα στο κατάστηµα (in store) Στις δοµές κωδικοποίησης έχει δεσµευθεί το πρόθεµα 04 και 2 για κωδικοποίηση προϊόντων

Διαβάστε περισσότερα

p k = (1- ρ) ρ k. E[N(t)] = ρ /(1- ρ).

p k = (1- ρ) ρ k. E[N(t)] = ρ /(1- ρ). ΚΕΦΑΛΑΙΟ 2: CAM 2.1 Συστήµατα Μ/Μ/1 2.1.1 Ανασκόπηση θεωρίας Η ουρά Μ/Μ/1 είναι η πιο σηµαντική διαδικασία ουράς Άφιξη: ιαδικασία Poisson Εξυπηρέτηση: Ακολουθεί εκθετική κατανοµή Εξυπηρετητής: Ένας Χώρος

Διαβάστε περισσότερα

ΜΕΘΟ ΟΛΟΓΙΑ: ΙΑΛΥΜΑΤΑ

ΜΕΘΟ ΟΛΟΓΙΑ: ΙΑΛΥΜΑΤΑ ΜΕΘΟ ΟΛΟΓΙΑ: ΙΑΛΥΜΑΤΑ Οι ασκήσεις διαλυµάτων που αφορούν τις περιεκτικότητες % w/w, % w/v και % v/v χωρίζονται σε 3 κατηγορίες: α) Ασκήσεις όπου πρέπει να βρούµε ή να µετατρέψουµε διάφορες περιεκτικότητες.

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις HY118- ιακριτά Μαθηµατικά Παρασκευή, 06/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/8/2015

Διαβάστε περισσότερα

ΕΥΡΕΣΗ ΣΥΝΟΛΟΥ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ. της f : A. Rούτε εύκολη είναι ούτε πάντοτε δυνατή. Για τις συναρτήσεις f (x) = x ηµ x και ΜΕΘΟ ΟΛΟΓΙΑ

ΕΥΡΕΣΗ ΣΥΝΟΛΟΥ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ. της f : A. Rούτε εύκολη είναι ούτε πάντοτε δυνατή. Για τις συναρτήσεις f (x) = x ηµ x και ΜΕΘΟ ΟΛΟΓΙΑ ΕΥΡΕΣΗ ΣΥΝΟΛΟΥ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ Έστω fµια συνάρτηση µε πεδίο ορισµού το Α. Το σύνολο των τιµών της είναι f( A) { R = υπάρχει (τουλάχιστον) ένα A : f () = }. Ο προσδιορισµός του συνόλου τιµών f( A) της

Διαβάστε περισσότερα

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι:

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: Κατανοµές ειγµατοληψίας 1.Εισαγωγή Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: 1. Στατιστικής και 2. Κατανοµής ειγµατοληψίας

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ι θ α ν ό τ η τ ε ς ΙΙ Πειραιάς 2007 1 2 Από κοινού συνάρτηση πυκνότητας μιας δισδιάστατης συνεχούς τυχαίας μεταβλητής Μία διδιάστατη συνεχής τυχαία μεταβλητή

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων «πειράματος» ή «γεγονότος» (με συνδυαστικά επιχειρήματα). «Πείραμα» ή «γεγονός»: διαδικασία με συγκεκριμένο (πεπερασμένο) σύνολο παρατηρήσιμων

Διαβάστε περισσότερα

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ Κοίταξε τις µεθόδους, τις λυµένες ασκήσεις και τις ασκήσεις προς λύση των ενοτήτων 6, 7 του βοηθήµατος Μεθοδολογία Άλγεβρας και Στοιχείων Πιθανοτήτων Α Γενικού Λυκείου των Ευσταθίου Μ. και Πρωτοπαπά Ελ.

Διαβάστε περισσότερα

Άρα, Τ ser = (A 0 +B 0 +B 0 +A 0 ) επίπεδο 0 + (A 1 +B 1 +A 1 ) επίπεδο 1 + +(B 5 ) επίπεδο 5 = 25[χρονικές µονάδες]

Άρα, Τ ser = (A 0 +B 0 +B 0 +A 0 ) επίπεδο 0 + (A 1 +B 1 +A 1 ) επίπεδο 1 + +(B 5 ) επίπεδο 5 = 25[χρονικές µονάδες] Α. Στο παρακάτω διάγραµµα εµφανίζεται η εκτέλεση ενός παράλληλου αλγόριθµου που λύνει το ίδιο πρόβληµα µε έναν ακολουθιακό αλγόριθµο χωρίς πλεονασµό. Τα Α i και B i αντιστοιχούν σε ακολουθιακά υποέργα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραµµα Σπουδών: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεµατική Ενότητα: ΕΟ-3 Ποσοτικές Μέθοδοι Ακαδηµαϊκό Έτος: 003-4 ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ . ΑΡΙΘΜΗΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΤΩΝ Ε

Διαβάστε περισσότερα

Το ιδακτικό Υλικό στο Κεφάλαιο των Πιθανοτήτων της Γ τάξης του ηµοτικού: Τρόπος Κατανόησης και ιαχείρισής του από Μαθητές και ασκάλους Χρυσάνθη Σκουµπουρδή και Φραγκίσκος Καλαβάσης Περίληψη Στην εργασία

Διαβάστε περισσότερα

ΙΙΙ εσµευµένη Πιθανότητα

ΙΙΙ εσµευµένη Πιθανότητα ΙΙΙ εσµευµένη Πιθανότητα 1 Λυµένες Ασκήσεις Ασκηση 1 Στρίβουµε ένα νόµισµα δύο ϕορές. Υποθέτοντας ότι και τα τέσσερα στοιχεία του δειγµατοχώρου Ω {(K, K, (K, Γ, (Γ, K, (Γ, Γ} είναι ισοπίθανα, ποια είναι

Διαβάστε περισσότερα

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x. Κεφάλαιο 4 Μήκη και ορθές γωνίες Μήκος διανύσµατος Στο επίπεδο, R 2, ϐρίσκουµε το µήκος ενός διανύσµατος x = (x 1, x 2 ) χρησιµοποιώντας το Πυθαγόρειο ϑεώρηµα : x 2 = x 2 1 + x 2 2. Στο χώρο R 3, εφαρµόζουµε

Διαβάστε περισσότερα

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ. i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( x )

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ. i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( x ) () Μονοτονία ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( ) και βρίσκω το πρόσηµό της ii) Αν προκύψει να είναι αύξουσα ή φθίνουσα,

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 7: Εισαγωγή στη Θεωρία Αποφάσεων Δέντρα Αποφάσεων

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 7: Εισαγωγή στη Θεωρία Αποφάσεων Δέντρα Αποφάσεων Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 7: Εισαγωγή στη Θεωρία Αποφάσεων Δέντρα Αποφάσεων Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Σεπτεμβρίου 2008 στο Μάθημα Στατιστική Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ 29.9.2008

Γραπτή Εξέταση Περιόδου Σεπτεμβρίου 2008 στο Μάθημα Στατιστική Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ 29.9.2008 Γραπτή Εξέταση Περιόδου Σεπτεμβρίου 8 στο Μάθημα Στατιστική Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ 9.9.8. [] Μια βιομηχανία τροφίμων προμηθεύεται νωπά κοτόπουλα από τρεις διαφορετικούς παραγωγούς Α, Β, Γ. Το % των κοτόπουλων

Διαβάστε περισσότερα

ρ. Ευστρατία Μούρτου

ρ. Ευστρατία Μούρτου ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΩΝ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΕΞΑΜΗΝΟ : Ε ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ : - ΜΑΘΗΜΑ «ΒΙΟΣΤΑΤΙΣΤΙΚΗ» ΚΕΦ. ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ρ. Ευστρατία Μούρτου

Διαβάστε περισσότερα

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Πιθανοτική Συλλογιστική II Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης ίκτυα Bayes σηµασιολογία Πλεονεκτήµατα συµπαγής αναπαράσταση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο, να αποδείξετε ότι (f() + g ()) f () + g (),. Μονάδες 7 Α. Σε ένα πείραµα µε ισοπίθανα

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ

ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ 6. Βέλτιστες προσεγγίσεις σε ευκλείδειους χώρους Στο κεφάλαιο αυτό θα ασχοληθούµε µε προσεγγίσεις που ελαχιστοποιούν αποστάσεις σε διανυσµατικούς χώρους, µε νόρµα που προέρχεται

Διαβάστε περισσότερα

Διάλεξη 1. Πράξεις Τελεστές Έλεγχος Ροής

Διάλεξη 1. Πράξεις Τελεστές Έλεγχος Ροής Διάλεξη 1 Πράξεις Τελεστές Έλεγχος Ροής Διοργάνωση : ΚΕΛ ΣΑΤΜ Διαφάνειες: Skaros, MadAGu Παρουσίαση: MadAGu Άδεια: Creative Commons 3.0 Αριθμητικοί Τελεστές- Αριθμητικές Πράξεις 2 Internal use only Αριθμητικοί

Διαβάστε περισσότερα

Τρίτη 7 Οκτωβρίου 2008

Τρίτη 7 Οκτωβρίου 2008 ΕΛΤΙΟ ΤΥΠΟΥ - ΚΑΡΚΙΝΟΣ ΜΑΣΤΟΥ Τρίτη 7 Οκτωβρίου 2008 Ο καρκίνος του µαστού είναι ο συχνότερος καρκίνος στις γυναίκες. Οι Ελληνίδες φαίνεται να ανησυχούν αρκετά για το ενδεχόµενο να νοσήσουν οι ίδιες, χωρίς

Διαβάστε περισσότερα

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες Πινάκες συνάφειας εξερεύνηση σχέσεων μεταξύ τυχαίων μεταβλητών. Είναι λογικό λοιπόν, στην ανάλυση των κατηγορικών δεδομένων να μας ενδιαφέρει η σχέση μεταξύ δύο ή περισσότερων κατηγορικών μεταβλητών. Έστω

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ 31 5 2007 Γ Τάξη Ηµερήσιου Γενικού Λυκείου

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ 31 5 2007 Γ Τάξη Ηµερήσιου Γενικού Λυκείου ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ 31 5 2007 Γ Τάξη Ηµερήσιου Γενικού Λυκείου Θέµα 1 ο ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ - ΣΧΟΛΙΑ Α) 1) Σωστό 2) Λάθος 3) Σωστό 4) Λάθος 5) Λάθος Β) 1) i) σελ 127 σχολικού (πλεονεκτήµατα

Διαβάστε περισσότερα

sup B, τότε υπάρχουν στοιχεία α A και β B µε α < β.

sup B, τότε υπάρχουν στοιχεία α A και β B µε α < β. ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Εξετάσεις στη Μαθηµατική Ανάλυση Ι Φεβρουαρίου, 3 Θ. (α ) Εστω A, B µη κενά ϕραγµένα σύνολα πραγµατικών αριθµών. είξτε ότι αν inf A

Διαβάστε περισσότερα

(t) x (t) t t t t. ΘΕΜΑ Α Α 1. Σχολικό βιβλίο σελ. 150 Α 2. Σχολικό βιβλίο σελ. 56 Α 3. Σχολικό βιβλίο σελ. 149 Α 4. i) Λ ii) Σ iii) Λ iv) Λ v) Σ

(t) x (t) t t t t. ΘΕΜΑ Α Α 1. Σχολικό βιβλίο σελ. 150 Α 2. Σχολικό βιβλίο σελ. 56 Α 3. Σχολικό βιβλίο σελ. 149 Α 4. i) Λ ii) Σ iii) Λ iv) Λ v) Σ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ Α Α Σχολικό βιβλίο σελ Α Σχολικό βιβλίο σελ 6 Α Σχολικό βιβλίο σελ 9 Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΚΥΡΙΑΚΗ // - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 3 Επιλογή μοντέλου Επιλογή μοντέλου Θεωρία αποφάσεων Επιλογή μοντέλου δεδομένα επικύρωσης Η επιλογή του είδους του μοντέλου που θα χρησιμοποιηθεί σε ένα πρόβλημα (π.χ.

Διαβάστε περισσότερα

Μάστερ στην Εφαρµοσµένη Στατιστική

Μάστερ στην Εφαρµοσµένη Στατιστική Μάστερ στην Εφαρµοσµένη Στατιστική Πρότυπο Πρόγραµµα Master Εξάµηνο Σπουδών Κωδικός Τίτλος Μαθήµατος ιδακτικές Μονάδες 1 ο Εξάµηνο ΜΑΣ650 Μαθηµατική Στατιστική 10 ΜΑΣ655 ειγµατοληψία 10 ΜΑΣ658 Στατιστικά

Διαβάστε περισσότερα