Θεωρία. έχει το γράφηµα του παραπλεύρως σχήµατος.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Θεωρία. έχει το γράφηµα του παραπλεύρως σχήµατος."

Transcript

1 ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I ιαγώνισµα 6 ιάρκεια εξέτασης: ώρες Θεωρία. (4 µονάδες) α) Να γίνει το γράφηµα µιας συνεχούς συνάρτησης f() της οποίας η παράγωγος f () έχει το γράφηµα του παραπλεύρως σχήµατος. f () β) Θεωρούµε τη συνάρτηση f() = ln(+ ) α στο διάστηµα:. Να διαπιστωθεί ότι είναι κοίλη, και να βρεθούν οι τιµές του α για τις οποίες το µέγιστό της βρίσκεται στο αριστερό σύνορο: =. γ) Οι µεταβλητές {,} συνδέονται µε την εξίσωση: =. Να βρεθεί η ελαστικότητα του ως προς. δ) Να γίνει το γράφηµα και να υπολογιστεί το εµβαδό της περιοχής που βρίσκεται µεταξύ της καµπύλης (+ ) = και των θετικών ηµιαξόνων. (4 µονάδες) α) Να διαπιστωθεί ότι η συνάρτηση f(, ) = + ικανοποιεί την εξίσωση: f + f = f / β) Θεωρούµε ότι το σύστηµα εξισώσεων: {+ = u, = } ορίζει πλεγµένα τα {,} ως συναρτήσεις των {u,}. Να βρεθεί η µερική παράγωγος του ως προς. 3 3 γ) Θεωρούµε τη συνάρτηση f(, ) = + +. Να διαπιστωθεί ότι το σηµείο (=, = ) είναι στάσιµο, και να χαρακτηριστεί. δ) Το περιορισµένο στάσιµο της συνάρτησης f = µε τον περιορισµό g= + = 6, είναι (=, = ). Να υπολογιστεί ο πολλαπλασιαστής Lagrange και να χαρακτηριστεί το στάσιµο ως ακρότατο γραφικά. Εφαρµογές 3.( µονάδες) Σε µια οικονοµία µε εθνικό εισόδηµα Y, ο πληθυσµός L αυξάνει συνεχώς µε ετήσιο ρυθµό %. Να βρεθούν: α) Ο ρυθµός αύξησης του κατά κεφαλή εισοδήµατος = Y / L αν το εθνικό εισόδηµα Y αυξάνει µε ρυθµό 3% β) Ο ελάχιστος ρυθµός αύξησης του εθνικού εισοδήµατος Y που θα επιτρέψει το κατά κεφαλή εισόδηµα = Y / L να διπλασιαστεί σε χρόνια. 4.( µονάδες) Μια παραγωγική µονάδα χρησιµοποιεί συντελεστή παραγωγής K µε µοναδιαίο κόστος και παράγει ποσότητα Q= K ενός προϊόντος το οποίο διατίθεται µε µοναδιαία τιµή. Να βρεθεί το µέγιστο κέρδος π ως συνάρτηση των παραµέτρων {,} και να διερευνηθούν οι ιδιότητες µονοτονίας, οµογένειας κυρτότητας και οιονεί κυρτότητας αυτής της συνάρτησης. Να ερµηνευτούν οι παραπάνω ιδιότητες, και να σκιαγραφηθούν οι ισοσταθµικές της συνάρτησης µέγιστου κέρδους: π(,). ΤΕΛΟΣ

2 ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I ιάρκεια εξέτασης: ώρες Θεωρία. (4 µονάδες) α) Να γίνει το γράφηµα µιας συνεχούς συνάρτησης f() της οποίας η παράγωγος f () έχει το γράφηµα του παραπλεύρως σχήµατος. Λύση. Η συνάρτηση f() θα είναι:. Αύξουσα κυρτή µέχρι την γωνία, διότι η παράγωγος είναι θετική αύξουσα. Ειδικότερα θα είναι παραβολική, διότι η παράγωγος είναι γραµµική. Επίσης θα αρχίζει µε µηδενική κλίση, διότι η παράγωγος αρχίζει µε µηδενική τιµή.. Αύξουσα γραµµική µετά την γωνία, διότι η παράγωγος είναι σταθερή ιαγώνισµα 6. ΛΥΣΕΙΣ 3. εν θα κάνει γωνία (στην γωνία της παραγώγου) διότι η παράγωγος είναι συνεχής. β) Θεωρούµε τη συνάρτηση f() = ln(+ ) α στο διάστηµα:. Να διαπιστωθεί ότι είναι κοίλη, και να βρεθούν οι τιµές του α για τις οποίες το µέγιστό της βρίσκεται στο αριστερό σύνορο: =. Λύση. α,α> Είναι κοίλη (γνήσια), διότι η δεύτερη παράγωγος είναι γνήσια αρνητική: f () = α = (+ ) α f () = (+ ) = < ln(+ ) + (+ ) Έχουµε πρόβληµα κυρτού προγραµµατισµού και το µέγιστο θα βρίσκεται στο αριστερό σύνορο αν ικανοποιείται η συνθήκη: f () α α Παρατήρηση. Για α η συνάρτηση α είναι µεγαλύτερη από την ln(+ ), όπως φαίνεται στο γράφηµα, οπότε η f() έχει παντού f() αρνητικές τιµές µε µέγιστη µηδενική στο =. γ) Οι µεταβλητές {,} συνδέονται µε την εξίσωση: =. Να βρεθεί η ελαστικότητα του ως προς. Λύση. Λύνοντας ως προς βρίσκουµε συνάρτηση δύναµης: / / / = Εποµένως η ζητούµενη ελαστικότητα είναι: E= /. ηλαδή, αν το αυξηθεί κατά %, τότε (οριακά) το θα πρέπει να µειωθεί κατά (/ )%, ώστε να διατηρηθεί σταθερό το µέγεθος: = δ) Να γίνει το γράφηµα και να υπολογιστεί το εµβαδό της περιοχής που βρίσκεται µεταξύ της καµπύλης (+ ) = και των θετικών ηµιαξόνων. Λύση. (+ ) = = Το γράφηµα είναι η υπερβολική καµπύλη =, µετατοπισµένη κατακόρυφα κατά, οπότε έχει κατακόρυφη ασύµπτωτο στο =, και οριζόντια ασύµπτωτο στο =. Το ζητούµενο εµβαδό είναι άπειρο διότι δίνεται από το ολοκλήρωµα: + + = E= d= ln(+ ) = ln( + ) ln=+ + + Εναλλακτικά δίνεται από το ολοκλήρωµα: = E ( )d ln (ln ) (ln ) = = = =+ f() f ()

3 (4 µονάδες) α) Να διαπιστωθεί ότι η συνάρτηση f(, ) = + ικανοποιεί την εξίσωση: f + f = f / Λύση. Η συνάρτηση είναι προφανώς οµογενής βαθµού / : / / f(t, t) = (t) + (t) = t + = t f(, ) και εποµένως ικανοποιεί την παραπάνω εξίσωση Euler βαθµού /. Λύση. Υπολογίζουµε τις µερικές παραγώγους: / / / f ( ) {f (/ )( ) = + = +, f = (/ )(+ ) } και αντικαθιστούµε στο αριστερό µέρος, οπότε βρίσκουµε το ζητούµενο: / / f + f = (/ )(+ ) + (/ )(+ ) = + + = + = / / ( )( ) / ( ) / f / β) Θεωρούµε ότι το σύστηµα εξισώσεων: {+ = u, = } ορίζει πλεγµένα τα {,} ως συναρτήσεις των {u,}. Να βρεθεί η µερική παράγωγος του ως προς. Λύση. Γράφουµε τις εξισώσεις στην κανονική µορφή, και χρησιµοποιώντας τους τύπους πλεγµένης παραγώγισης µε Ιακωβιανές ορίζουσες, βρίσκουµε: f f (f,g) f(,,u,) = + u= (,) g g = = = = = g(,,u, ) = = (f,g) f f + (, ) g g Λύση. Παραγωγίζουµε πλεγµένα ως προς για σταθερό u, και λύνουµε αλγεβρικά ως προς : + = u + = + = = = = + (Προσθέσαµε τις δύο εξισώσεις κατά µέρη για να απαλλαγούµε από το ) 3 3 γ) Θεωρούµε τη συνάρτηση f(, ) = + +. Να διαπιστωθεί ότι το σηµείο (=, = ) είναι στάσιµο, και να χαρακτηριστεί. Λύση. Είναι στάσιµο διότι µηδενίζει τις παραγώγους ης τάξης: 3 3 f(, ) = + + {f = 3 + =, f = 3 + = } Για τις παραγώγους ης τάξης στο ίδιο σηµείο βρίσκουµε: f = 6 f = H f = {f =, f =, f = Hf = 36 = < } f = f = 6 Έχει αρνητική ορίζουσα και εποµένως ο Εσσιανός πίνακας είναι αόριστος και το στάσιµο είναι σαγµατικό. Ειδικά δεν είναι ακρότατο, ούτε τοπικό. δ) Το περιορισµένο στάσιµο της συνάρτησης f = µε τον περιορισµό g= + = 6, είναι (=, = ). Να υπολογιστεί ο πολλαπλασιαστής Lagrange και να χαρακτηριστεί το στάσιµο ως ακρότατο γραφικά. Λύση. Υπολογίζουµε τον πολλαπλασιαστή στο σηµείο (,)από τη σχέση: f f g g 4 λ= = λ= = = Τα δύο κλάσµατα είναι ίσα διότι το σηµείο είναι περιορισµένο στάσιµο. Όπως φαίνεται στο γράφηµα, το σηµείο δίνει γνήσιο περιορισµένο ολικό µέγιστο διότι ο περιορισµός βρίσκεται γνήσια στην κάτω σταθµική της αντικειµενικής συνάρτησης. g= 6 ma f = (4, 4) f = 4

4 Εφαρµογές 3.( µονάδες) Σε µια οικονοµία µε εθνικό εισόδηµα Y, ο πληθυσµός L αυξάνει συνεχώς µε ετήσιο ρυθµό %. Να βρεθούν: α) Ο ρυθµός αύξησης του κατά κεφαλή εισοδήµατος = Y / L αν το εθνικό εισόδηµα Y αυξάνει µε ρυθµό 3% β) Ο ελάχιστος ρυθµός αύξησης του εθνικού εισοδήµατος Y που θα επιτρέψει στο κατά κεφαλή εισόδηµα = Y / L να διπλασιαστεί σε χρόνια. Λύση. Ο ποσοστιαίος ρυθµός µεταβολής του λόγου δίνεται από την διαφορά των ποσοστιαίων ρυθµών µεταβολής των δύο όρων. Εποµένως: α) Το κατά κεφαλή εισόδηµα θα µεταβάλλεται µε ρυθµό 3% % = %, δηλαδή θα αυξάνει µε ετήσιο ρυθµό %. β) Γενικότερα, αν το εθνικό εισόδηµα αυξάνει µε ρυθµό %, τότε το κατά κεφαλή εισόδηµα θα αυξάνει µε ρυθµό ( )%, δηλαδή µε συντελεστή: r = ( ) / Αν είναι το αρχικό κατά κεφαλή εισόδηµα, τότε µετά από χρόνια θα είναι: r = e οπότε θα είναι διπλάσιο του αρχικού αν ικανοποιείται η συνθήκη: r = e = r = (ln) / Αντικαθιστώντας βρίσκουµε για το : ( ) / = (ln) / = + 5ln ηλαδή το εθνικό εισόδηµα πρέπει να αυξάνει µε ρυθµό τουλάχιστον 5 ln 3.5% µεγαλύτερο από τον ρυθµό αύξησης του πληθυσµού.

5 4.( µονάδες) Μια παραγωγική µονάδα χρησιµοποιεί συντελεστή παραγωγής K µε µοναδιαίο κόστος και παράγει ποσότητα Q= K ενός προϊόντος το οποίο διατίθεται µε µοναδιαία τιµή. Να βρεθεί το µέγιστο κέρδος π ως συνάρτηση των παραµέτρων {,} και να διερευνηθούν οι ιδιότητες µονοτονίας, οµογένειας, κυρτότητας και οιονεί κυρτότητας αυτής της συνάρτησης. Να ερµηνευτούν οι παραπάνω ιδιότητες ιδιότητες, και να σκιαγραφηθούν οι ισοσταθµικές της συνάρτησης µέγιστου κέρδους: π(,). Λύση. Η συνάρτηση κέρδους: Π(K) = R(K) C(K) = Q(K) K= K K είναι κοίλη µε µέγιστο στο στάσιµο σηµείο: Π (K) = / K = K = / 4 Το µέγιστο κέρδος είναι: Π(K ) = K K = = = / Ως συνάρτηση των παραµέτρων είναι:. αύξουσα, φθίνουσα. Το µέγιστο κέρδος αυξάνει όταν αυξάνει η τιµή του προιόντος ή όταν µικραίνει το κόστος του συντελεστή. Οµογενής βαθµού. Αν η τιµή του προιόντος και το κόστος του συντελεστή αυξηθούν κατά το ίδιο ποσοστό, τότε το µέγιστο κέρδος θα αυξηθεί κατά το ίδιο αυτό ποσοστό. 3. κυρτή, κυρτή, (,) κυρτή, διότι ο Εσσιανός πίνακας H π είναι θετικά ηµιορισµένος: 3 {π = /,π = / 4}, {π = /,π = / 4,π = / } = = = 4 4 ππ (π ) {π >,π >, = } Hπ. Καθώς η τιµή του προιόντος αυξάνει ή/και το κόστος του συντελεστή µικραίνει, το µέγιστο κέρδος αυξάνει µε αύξοντα ρυθµό 4. (,) οιονεί κυρτή, διότι είναι (,) κυρτή. Εξάλλου οι κάτω σταθµικές περιοχές είναι κυρτές, όπως φαίνεται στο γράφηµα, διότι δίνονται από το εσωτερικό παραβολών. π c 3 c c κάτω σταθµική: c / 4c 4 Ακραίοι συνδυασµοί τιµής του προιόντος και κόστους του συντελεστή: {A,B}, είναι περισσότερο κερδοφόροι από ενδιάµεσους συνδυασµούς C. Έχουµε: π(a) = π(b) = c, αλλά π(c) < c Επίσης καθώς το αυξάνει τότε για να διατηρηθεί σταθερή η κερδοφορία: c, θα πρέπει βέβαια και το να αυξάνει αλλά µε φθίνοντα ρυθµό, διότι: = c = c 4 είναι αύξουσα κοίλη A C B π c / 4c c ΤΕΛΟΣ

ΔΙΑΓΩΝΙΣΜΑ 11. (δ). Να βρεθεί η λύση της διαφορικής εξίσωσης: y = xy, που έχει θετικές τιμές: y 0 και ικανοποιεί: y(0) = 1. 2.

ΔΙΑΓΩΝΙΣΜΑ 11. (δ). Να βρεθεί η λύση της διαφορικής εξίσωσης: y = xy, που έχει θετικές τιμές: y 0 και ικανοποιεί: y(0) = 1. 2. ΔΙΑΓΩΝΙΣΜΑ 11 Μέρος Α 1. (4 μονάδες) (α). Να δοθεί το γράφημα μιας συνάρτησης () στο διάστημα, της οποίας η παράγωγος έχει το γράφημα του παραπλεύρως σχήματος. (β). Οι μεταβλητές {,} συνδέονται με την

Διαβάστε περισσότερα

E4. ΕΛΑΣΤΙΚΟΤΗΤΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ

E4. ΕΛΑΣΤΙΚΟΤΗΤΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ E4. ΕΛΑΣΤΙΚΟΤΗΤΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ.Παραδείγματα αναλυτικά.παραδείγματα αριθμητικά 3.Ελαστικότητα ζήτησης 4.Ελαστικότητα προσφοράς 5. Έσοδο 6.Κέρδος μονοπωλίου. Παραδείγματα αναλυτικά Παράδειγμα. Σε μια οικονομία

Διαβάστε περισσότερα

E1. ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ Ι

E1. ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ Ι E. ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ Ι.Κόστος.Παραγωγή 3.Χρησιµότητα 4.Ζήτηση-Προσφορά 5.Φόρος. Κόστος Θεωρούµε ότι το κόστος παραγωγής (cost) ενός προιόντος είναι συνάρτηση της ποσότητας παραγωγής (production)

Διαβάστε περισσότερα

Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17

Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 Περιεχόμενα Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 ΚΕΦΑΛΑΙΟ 1. Το σύνολο των πραγματικών αριθμών... 19 1.1 Σύνολα αριθμών... 19 1.2 Αλγεβρική δομή του R... 20 1.2.1 Ιδιότητες πρόσθεσης...

Διαβάστε περισσότερα

Παράγωγοι ανώτερης τάξης

Παράγωγοι ανώτερης τάξης Παράγωγοι ανώτερης τάξης Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Διαφορικά Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglks.gr 2 3 / 1 0 / 2 0 1 6 σε μερικές παραγώγους σε μέγιστα, ελάχιστα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 22Νοεμβρίου 2015 ΑΥΞΟΥΣΕΣ ΦΘΙΝΟΥΣΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Αν μια συνάρτηση f ορίζεται σε ένα διάστημα

Διαβάστε περισσότερα

2.0. , κ R, η γραφική παράσταση της οποίας διέρχεται από το σημείο Ρ=(1,1). Να βρεθεί η τιμή του αριθμού κ.

2.0. , κ R, η γραφική παράσταση της οποίας διέρχεται από το σημείο Ρ=(1,1). Να βρεθεί η τιμή του αριθμού κ. Άσκηση. α Να βρεθεί η εξίσωση της ευθείας που διέρχεται από τα σημεία (,y, Α=(, και Β=(0, β Να βρεθεί η εξίσωση της ευθείας που διέρχεται από το σημείο B(0, και έχει κλίση -0.. Να βρεθούν τα σημεία που

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ι. Δημόπουλος Τμήμα Διοίκησης Μονάδων Υγείας και Πρόνοιας -ΤΕΙ Καλαμάτας ΠΑΡΑΓΩΓΟΣ ΚΑΙ ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ Τοπική μονοτονία Αν μια συνεχής συνάρτηση έχει γνήσια θετική αρνητική παράγωγο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 11 ΟΚΤΩΒΡΙΟΥ 2016 ΜΗ ΓΡΑΜΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Οικονομικές Συναρτήσεις με μεταβλητούς ρυθμούς

Διαβάστε περισσότερα

ÈÅÌÅËÉÏ ÅËÅÕÓÉÍÁ ΟΜΑ Α ΠΡΩΤΗ ΟΜΑ Α ΕΥΤΕΡΗ ΑΠΑΝΤΗΣΕΙΣ. Α1 α. Λάθος β. Λάθος γ. Λάθος δ. Σωστό ε. Σωστό. Α2. α. Α3. γ

ÈÅÌÅËÉÏ ÅËÅÕÓÉÍÁ ΟΜΑ Α ΠΡΩΤΗ ΟΜΑ Α ΕΥΤΕΡΗ ΑΠΑΝΤΗΣΕΙΣ. Α1 α. Λάθος β. Λάθος γ. Λάθος δ. Σωστό ε. Σωστό. Α2. α. Α3. γ ΠΝΤΗΣΕΙΣ ΟΜ ΠΡΩΤΗ 1 α. Λάθος β. Λάθος γ. Λάθος δ. Σωστό ε. Σωστό. α 3. γ ΟΜ ΕΥΤΕΡΗ Β1. πό το 4 ο κεφάλαιο του σχολικού βιβλίου σελίδες 83-84 ή η ενότητα 5. «Προσδιοριστικοί παράγοντες της προσφοράς» Η

Διαβάστε περισσότερα

ÖÑÏÍÔÉÓÔÇÑÉÁ ÓÕÍÏËÏ ËÁÌÉÁ. ( i) ( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ( ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β ΘΕΜΑ Γ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ.

ÖÑÏÍÔÉÓÔÇÑÉÁ ÓÕÍÏËÏ ËÁÌÉÁ. ( i) ( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ( ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β ΘΕΜΑ Γ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β ΙΟΥΝΙΟΥ 4 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία σελ. 5 σχολικού βιβλίου. Α. Θεωρία σελ. 73 σχολικού βιβλίου. Α3. Θεωρία σελ. 5 σχολικού βιβλίου. Α4. α) Λ, β) Σ, γ) Σ,

Διαβάστε περισσότερα

Ε7 Βελτιστοποίηση στην Κατανάλωση

Ε7 Βελτιστοποίηση στην Κατανάλωση 217 Ε7 Βελτιστοποίηση στην Κατανάλωση Θεωρούµε ότι η χρησιµότητα που αποφέρει η κατανάλωση αγαθών είναι κάποια συνάρτηση των ποσοτήτων κατανάλωσης. Θα αναφερθούµε σε ορισµένες απλές συναρτήσεις χρησιµότητας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ 31 Ορισµοί Ορισµός 311 Εστω f : A f( A), A, f( A) και έστω 0 Α είναι σηµείο συσσώρευσης του συνόλου Α Θα λέµε ότι η f είναι παραγωγίσιµη στο σηµείο 0 εάν υπάρχει λ : Ισοδύναµα:

Διαβάστε περισσότερα

5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ 48 49 5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ 5 ΕΙΣΑΓΩΓΗ ΟΡΙΣΜΟΣ: Κάθε συνάρτηση : A B με Α R n και Β R ονομάζεται πραγματική συνάρτηση n μεταβλητών ΠΑΡΑΤΗΡΗΣΕΙΣ: Ι Αν Α R n και Β R n τότε έχουμε διανυσματική συνάρτηση

Διαβάστε περισσότερα

Απαντήσεις στα Μαθηματικά Κατεύθυνσης 2016

Απαντήσεις στα Μαθηματικά Κατεύθυνσης 2016 ΘΕΜΑ Α Απαντήσεις στα Μαθηματικά Κατεύθυνσης 6 Α.. Σχολ. Βιβλίο, Θεωρία, σελ.6-(i) Α.. Σχολ. Βιβλίο, Θεωρία, σελ. 4 Α. Σχολ. Βιβλίο, Θεωρία, σελ. 46,47 Α.4. α. Λ β. Σ γ. Λ δ. Σ ε. Σ ΘΕΜΑ Β B. Η συνάρτηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΤEΤΑΡΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ ( ΙΑΦΟΡΙΚΟ-ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΕΩΣ- ΕΦΑΡΜΟΓΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ)

ΜΑΘΗΜΑ ΤEΤΑΡΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ ( ΙΑΦΟΡΙΚΟ-ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΕΩΣ- ΕΦΑΡΜΟΓΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ) ΜΑΘΗΜΑ ΤEΤΑΡΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ ( ΙΑΦΟΡΙΚΟ-ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΕΩΣ- ΕΦΑΡΜΟΓΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ) A. Κανόνας de L Hospital (Συνέχεια από το προηγούµενο µάθηµα) Παράδειγµα 1. Να βρεθεί το

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ 1 ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση, η οποία είναι ορισµένη σε ένα κλειστό διάστηµα,. Αν: η συνεχής στο, και τότε, για κάθε αριθµό µεταξύ των

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν Η f είναι συνεχής στο Δ και f = για κάθε εσωτερικό σημείο του Δ τότε να αποδείξετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο A. Έστω µια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστηµα. Αν f () > σε κάθε εσωτερικό σηµείο του, τότε να αποδείξετε ότι η f είναι γνησίως

Διαβάστε περισσότερα

Γενικά Μαθηματικά (Φυλλάδιο 1 ο )

Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Περιλαμβάνει: ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΚΕΦΑΛΑΙΟ : ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Διαβάστε περισσότερα

ΑΝΑ ΚΕΦΑΛΑΙΟ. geeconomy@yahoo.com. Γ Ι Ω Ρ Γ Ο Σ Κ Α Μ Α Ρ Ι Ν Ο Σ Ο Ι Κ Ο Ν Ο Μ Ο Λ Ο Γ Ο Σ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012

ΑΝΑ ΚΕΦΑΛΑΙΟ. geeconomy@yahoo.com. Γ Ι Ω Ρ Γ Ο Σ Κ Α Μ Α Ρ Ι Ν Ο Σ Ο Ι Κ Ο Ν Ο Μ Ο Λ Ο Γ Ο Σ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 1 ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 ΑΝΑ ΚΕΦΑΛΑΙΟ Στο παρόν είναι συγκεντρωµένες όλες σχεδόν οι ερωτήσεις κλειστού τύπου που

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

Α1. α. Λ β. Σ γ. Σ δ. Σ ε. Λ

Α1. α. Λ β. Σ γ. Σ δ. Σ ε. Λ Ενδεικτικές Απαντήσεις Γ Λυκείου Φεβρουάριος Αρχές Οικονοµικής Θεωρίας επιιλογής Α. α. Λ β. Σ γ. Σ δ. Σ ε. Λ ΟΜΑΔΑ ΠΡΩΤΗ Α. δ Α. δ ΟΜΑΔΑ ΔΕΥΤΕΡΗ Β. Σχολικό βιβλίο, σελ. 5: «Τα οικονομικά αγαθά και οι υπηρεσίες

Διαβάστε περισσότερα

Κεφάλαιο 2ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ

Κεφάλαιο 2ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ Κεφάλαιο ο: ΙΑΦΟΡΙΚΟ ΟΓΙΜΟ ο ΜΕΡΟ Ερωτήσεις του τύπου «ωστό - άθος» 1. * Αν η συνάρτηση f είναι παραγωγίσιµη στο R και f (α) f (β), α, β R, α < β, τότε ισχύει f () για κάθε (α, β).. * Αν η συνάρτηση f

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ Η ύλη της εργασίας είναι οι ενότητες 5, 6 και 7 από τον Λογισµό µιας Μεταβλητής Η άσκηση αφορά στην έννοια

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 7 Από τα κάτωθι Θέµατα καλείστε να λύσετε το ο που περιλαµβάνει ερωτήµατα από όλη την ύλη

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 4 o Κεφάλαιο ΑΝΑΛΥΣΗ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 0. Σ 9. Λ. Λ. Σ 40. Σ. Σ. Σ 4. Λ 4. Λ. Σ 4. Σ 5. Σ 4. Σ 4. Λ 6. Σ 5. Λ 44.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 4 ΟΚΤΩΒΡΙΟΥ 2016 ΓΡΑΜΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ι Κεντρική έννοια το μέτρο ή ρυθμός μεταβολής:

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ 011 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση τη λέξη

Διαβάστε περισσότερα

E3 ΠΛΕΟΝΑΣΜΑΤΑ 1.Πλεόνασµα καταναλωτή 2.Πλεόνασµα προµηθευτή 3.Συνολικό πλεόνασµα

E3 ΠΛΕΟΝΑΣΜΑΤΑ 1.Πλεόνασµα καταναλωτή 2.Πλεόνασµα προµηθευτή 3.Συνολικό πλεόνασµα E3 ΠΛΕΟΝΑΣΜΑΤΑ.Πλεόνασµα καταναλωτή 2.Πλεόνασµα προµηθευτή 3.Συνολικό πλεόνασµα. Πλεόνασµα καταναλωτή Η αντίστροφη συνάρτηση ζήτησης: = () έχει καταρχήν την γνωστή ερµηνεία όπου είναι η µοναδιαία τιµή

Διαβάστε περισσότερα

ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ

ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ Κάθε εξίσωση της µορφής α + β = γ όπου α + β 0 ( α, β όχι συγχρόνως 0) παριστάνει ευθεία. (Η εξίσωση λέγεται : ΓΡΑΜΜΙΚΗ) ΕΙ ΙΚΑ γ Αν α = 0 και β 0έχουµε =. ηλαδή µορφή = c.

Διαβάστε περισσότερα

Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης ΚΕΦΑΛΑΙΟ. 1 ο :Μιγαδικοί Αριθµοί

Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης ΚΕΦΑΛΑΙΟ. 1 ο :Μιγαδικοί Αριθµοί ΚΕΦΑΛΑΙΟ ο :Μιγαδικοί Αριθµοί. Ποιο σύνολο ονοµάζεται σύνολο των µιγαδικών αριθµών ;. Tι ονοµάζεται µιγαδικός αριθµός; Ποιο είναι το πραγµατικό και ποιο το φανταστικό του µέρος ; 3. Tι ονοµάζεται εικόνα

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΚΑΤΑΝΑΛΩΣΗΣ ΚΑΙ ΤΗΣ ΠΑΡΑΓΩΓΗΣ

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΚΑΤΑΝΑΛΩΣΗΣ ΚΑΙ ΤΗΣ ΠΑΡΑΓΩΓΗΣ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΚΑΤΑΝΑΛΩΣΗΣ ΚΑΙ ΤΗΣ ΠΑΡΑΓΩΓΗΣ Εξέταση Φεβρουαρίου 2012 / ιάρκεια: 2 ώρες ιδάσκοντες: Μ. Αθανασίου, Γ.

Διαβάστε περισσότερα

Προσφορά Εργασίας Προτιμήσεις και Συνάρτηση Χρησιμότητας ( Χ,Α συνάρτηση χρησιμότητας U(X,A)

Προσφορά Εργασίας Προτιμήσεις και Συνάρτηση Χρησιμότητας ( Χ,Α συνάρτηση χρησιμότητας U(X,A) Προσφορά Εργασίας - Έστω ότι υπάρχουν δύο αγαθά Α και Χ στην οικονομία. Το αγαθό Α παριστάνει τα διάφορα καταναλωτικά αγαθά. Το αγαθό Χ παριστάνει τον ελεύθερο χρόνο. Προτιμήσεις και Συνάρτηση Χρησιμότητας

Διαβάστε περισσότερα

ΚΑΜΠΥΛΗ ENGEL ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΖΗΤΗΣΗΣ ΚΑΤΑ MARSHALL ΚΑΙ HICKS. 1. Η καµπύλη Engel

ΚΑΜΠΥΛΗ ENGEL ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΖΗΤΗΣΗΣ ΚΑΤΑ MARSHALL ΚΑΙ HICKS. 1. Η καµπύλη Engel ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΘΗΓΗΤΗΣ ΚΩΣΤΑΣ ΒΕΛΕΝΤΖΑΣ ΚΑΜΠΥΛΗ ENGEL ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΖΗΤΗΣΗΣ ΚΑΤΑ ARSALL ΚΑΙ ICKS. Η καµπύλη Egel Η καµπύλη Egel παράγεται από την

Διαβάστε περισσότερα

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση 8 Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση Υπάρχουν δύο θεµελιώδη αποτελέσµατα που µας βοηθούν να υπολογίζουµε πολλαπλά ολοκληρώµατα Το πρώτο αποτέλεσµα σχετίζεται µε τον υπολογισµό ενός

Διαβάστε περισσότερα

από την ποσοστιαία μεταβολή της ζητούμενης ποσότητας προς την ποσοστιαία Σχέση ελαστικότητας ζήτησης και κλίση της καμπύλης ζήτησης.

από την ποσοστιαία μεταβολή της ζητούμενης ποσότητας προς την ποσοστιαία Σχέση ελαστικότητας ζήτησης και κλίση της καμπύλης ζήτησης. ΕΛΑΣΤΙΚΟΤΗΤΑ ΖΗΤΗΣΗΣ Ορισμός: Η ελαστικότητα ζήτησης, ενός αγαθού ως προς την τιμή του δίνεται από την ποσοστιαία μεταβολή της ζητούμενης ποσότητας προς την ποσοστιαία μεταβολή της τιμής του. Δηλαδή %

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΟΜΑ Α Α ΟΜΑ Α Β

ΑΠΑΝΤΗΣΕΙΣ ΟΜΑ Α Α ΟΜΑ Α Β ΑΠΑΝΤΗΣΕΙΣ ΟΜΑ Α Α Α.1: Σωστό, Α.: Λάθος, Α.: Σωστό, Α.: Λάθος, Α.5: Σωστό Α.6: β, Α.7: γ ΟΜΑ Α Β Υπάρχουν αγαθά στα οποία η τιµή του ενός αγαθού επηρεάζει τη ζήτηση ενός άλλου αγαθού. Τα αγαθά αυτά τα

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Η αδυναµία επίλυσης της πλειοψηφίας των µη γραµµικών εξισώσεων µε αναλυτικές µεθόδους, ώθησε στην ανάπτυξη αριθµητικών µεθόδων για την προσεγγιστική επίλυσή τους, π.χ. συν()

Διαβάστε περισσότερα

8 Ακρότατα και µονοτονία

8 Ακρότατα και µονοτονία 8 Ακρότατα και µονοτονία Πρόταση 8.1. Εστω ότι η y = f (x) είναι συνεχής σε κάποιο διάστηµα I και έχει παράγωγο σε κάθε εσωτερικό σηµείο του I. 1. Η y = f (x) είναι σταθερή στο I αν και µόνο να είναι f

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

20 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ - ΟΡΙΣΜΟΙ

20 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ - ΟΡΙΣΜΟΙ ΕΚΔΣΕΙΣ ΚΕΛΑΦΑ 19 Μιγαδικός αριθμός λέγεται η έκφραση α + i, με α, ΙR. Φανταστικός αριθμός λέγεται η έκφραση i, με ΙR. Αν z = α + i, α, ΙR, το α λέγεται πραγματικό μέρος του z. Αν z = α + i, α, ΙR, το

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΕΠΙΛΟΓΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) 25 ΜΑΪΟΥ 2016 ΑΠΑΝΤΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ ΟΜΑ Α ΕΥΤΕΡΗ ÌÁÈÅÉÍ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΕΠΙΛΟΓΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) 25 ΜΑΪΟΥ 2016 ΑΠΑΝΤΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ ΟΜΑ Α ΕΥΤΕΡΗ ÌÁÈÅÉÍ ΘΕΜΑ Α ΑΡΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΕΠΙΛΟΓΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) 25 ΜΑΪΟΥ 2016 ΑΠΑΝΤΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ Α1. α. Σωστό β. Λάθος γ. Σωστό δ. Σωστό ε. Λάθος Α2. α Α3. γ ΘΕΜΑ Β ΟΜΑ Α ΕΥΤΕΡΗ

Διαβάστε περισσότερα

Επιχειρησιακά Μαθηματικά (1)

Επιχειρησιακά Μαθηματικά (1) Τηλ:10.93.4.450 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Α Επιχειρησιακά Μαθηματικά (1) ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 01 Τηλ:10.93.4.450 ΚΕΦΑΛΑΙΟ 1 Ο Συνάρτηση μιας πραγματικής μεταβλητής Ορισμός : Συνάρτηση f μιας πραγματικής

Διαβάστε περισσότερα

1.4 ΕΦΑΡΜΟΓΕΣ ΤΩΝ ΠΑΡΑΓΩΓΩΝ

1.4 ΕΦΑΡΜΟΓΕΣ ΤΩΝ ΠΑΡΑΓΩΓΩΝ 1 1. ΕΦΑΡΜΟΓΕΣ ΤΩΝ ΠΑΡΑΓΩΓΩΝ ΘΕΩΡΙΑ 1. Θεώρηµα γνησίως αύξουσας Αν µία συνάρτηση είναι παραγωγίσιµη σ ένα διάστηµα και για κάθε εσωτερικό σηµείο του ισχύει f () > 0 τότε η f είναι γνησίως αύξουσα στο.

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ - 1 ο ΔΙΑΓΩΝΙΣΜΑ

ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ - 1 ο ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ - 1 ο ΔΙΑΓΩΝΙΣΜΑ Βάλτε σε κύκλο το σωστό γράμμα: Α. 1. Ταυτόχρονη αύξηση της ζήτησης και της προσφοράς μπορεί να μη μεταβάλλει την ποσότητα ισορροπίας. Α. 2. Έστω

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ. και το Κόστος

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ. και το Κόστος ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 3 ο : Η Παραγωγή της Επιχείρησης και το Κόστος ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Ερωτήσεις πολλαπλής επιλογής 1. Το συνολικό προϊόν παίρνει την μέγιστη τιμή

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

1. ** α) Αν η f είναι δυο φορές παραγωγίσιµη συνάρτηση, να αποδείξετε ότι. β α. = [f (x) ηµx] - [f (x) συνx] β α. ( )

1. ** α) Αν η f είναι δυο φορές παραγωγίσιµη συνάρτηση, να αποδείξετε ότι. β α. = [f (x) ηµx] - [f (x) συνx] β α. ( ) Ερωτήσεις ανάπτυξης. ** α) Αν η f είναι δυο φορές παραγωγίσιµη συνάρτηση, να αποδείξετε ότι β ( f () f () ) + α ηµ d β α = [f () ηµ] - [f () συν] β α. ( ) β) Αν f () = ηµ, να αποδείξετε ότι f () + f ()

Διαβάστε περισσότερα

Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων:

Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων: Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων: Φάμπιο Αντωνίου Στοιχεία Επικοινωνίας: email: fantoniou@cc.uoi.gr Τηλ:651005954 Προσωπική Ιστοσελίδα: fantoniou.wordpress.com Γραφείο: Κτίριο

Διαβάστε περισσότερα

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΦΥΕ10 (Γενικά Μαθηματικά Ι) ΠΕΡΙΕΧΕΙ ΤΙΣ

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ / ΕΠΙΛΟΓΗΣ Α1. α. Λάθος β. Σωστό γ. Σωστό δ. Λάθος ε. Σωστό Α2. δ Α3. β Ηµεροµηνία: Κυριακή 4 Μαΐου 2014 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ ΟΜΑ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α Άσκηση i. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα Δ. Αν F είναι μια παράγουσα της στο Δ, τότε να αποδείξετε ότι: όλες οι συναρτήσεις της

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 6 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 8 ΘΕΜΑ ο Έστω, α,β, α β και ν α + + i = βi () β + αi α) Να αποδείξετε ότι ο δεν είναι πραγµατικός αριθµός. β) Να αποδείξετε

Διαβάστε περισσότερα

Η ζήτηση ενός προϊόντος εξαρτάται από την τιμή του

Η ζήτηση ενός προϊόντος εξαρτάται από την τιμή του ΣΥΜΒΟΛΙΣΜΟΙ - ΕΝΝΟΙΕΣ Q ή q : Ποσότητα (Quantity) προϊόντος ρ, Ρ : τιμή (Price) προϊόντος ανά μονάδα προϊόντος. Συνάρτηση τηςζητησης; Η ζήτηση ενός προϊόντος εξαρτάται από την τιμή του. Δηλαδή Qd = f(p).

Διαβάστε περισσότερα

ΖΗΤΗΣΗ ΕΡΓΑΣΙΑΣ Τεχνολογία και Συναρτήσεις Παραγωγής παραγωγή εισροές εκροές επιχείρηση παραγωγικοί συντελεστές

ΖΗΤΗΣΗ ΕΡΓΑΣΙΑΣ Τεχνολογία και Συναρτήσεις Παραγωγής παραγωγή εισροές εκροές επιχείρηση παραγωγικοί συντελεστές ΖΗΤΗΣΗ ΕΡΓΑΣΙΑΣ Τεχνολογία και Συναρτήσεις Παραγωγής - Η παραγωγή είναι η δραστηριότητα μέσω της οποίας κάποια αγαθά και υπηρεσίες (εισροές) μετατρέπονται σε άλλα αγαθά και υπηρεσίες (εκροές ή προϊόντα).

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 3ο : Δίνεται η συνάρτηση f :(,) R με f() η οποία για κάθε (,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν η f είναι συνεχής στο Δ και f για κάθε εσωτερικό σημείο

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ).

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ). 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1 ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ Α. Βλέπε σχολικό βιβλίο σελίδα 194, το θεώρηµα ενδιάµεσων τιµών. Β. Βλέπε τον ορισµό στη σελίδα 279 του σχολικού βιβλίου. Γ. Βλέπε

Διαβάστε περισσότερα

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Η συνάρτηση y = αχ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y = αχ με α 0 Μια συνάρτηση της μορφής y = α + β + γ με α 0 ονομάζεται τετραγωνική συνάρτηση.

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΕΠΙΛΟΓΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) 25 ΜΑΪΟΥ 2016 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΕΠΙΛΟΓΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) 25 ΜΑΪΟΥ 2016 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ ΘΕΜΑ Α ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΕΠΙΛΟΓΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) 25 ΜΑΪΟΥ 2016 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας,

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΤΥΠΟΛΟΓΙΟ ΠΕΡΙΕΧΕΙ: ΤΥΠΟΥΣ ΜΕΘΟ ΟΛΟΓΙΑ ΠΑΡΑ ΕΙΓΜΑΤΑ. Τώρα τα κατάλαβα όλα...και τα θυµάµαι όλα!!!

ΑΝΑΛΥΤΙΚΟ ΤΥΠΟΛΟΓΙΟ ΠΕΡΙΕΧΕΙ: ΤΥΠΟΥΣ ΜΕΘΟ ΟΛΟΓΙΑ ΠΑΡΑ ΕΙΓΜΑΤΑ. Τώρα τα κατάλαβα όλα...και τα θυµάµαι όλα!!! ΑΝΑΛΥΤΙΚΟ ΤΥΠΟΛΟΓΙΟ ΠΕΡΙΕΧΕΙ: ΘΕΩΡΙΑ ΤΥΠΟΥΣ ΜΕΘΟ ΟΛΟΓΙΑ ΠΑΡΑ ΕΙΓΜΑΤΑ Τώρα τα κατάλαβα όλα...και τα θυµάµαι όλα!!! ΛΑΖΑΡΙ Η ΦΡΟΝΤΙΣΤΗΡΙΑ www.lzridi.info τηλ. 6977-85-58 1 ΛΑΖΑΡΙ Η ΦΡΟΝΤΙΣΤΗΡΙΑ www.lzridi.info

Διαβάστε περισσότερα

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÙÑÇÔÉÊÏ ÊÅÍÔÑÏ ÁÈÇÍÁÓ - ÐÁÔÇÓÉÁ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÙÑÇÔÉÊÏ ÊÅÍÔÑÏ ÁÈÇÍÁÓ - ÐÁÔÇÓÉÁ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΙΛΟΓΗΣ ΕΠΑ.Λ (ΟΜΑ Α Β ) 009 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α Για τις προτάσεις από Α.1 µέχρι και Α.5, να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό τη λέξη

Διαβάστε περισσότερα

3 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

3 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ 1 2 3 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ 31 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΟΡΙΣΜΟΣ: Έστω δύο σύνολα Α και Β ΑΠΕΙΚΟΝΙΣΗ του συνόλου Α στο Β είναι η διμελής σχέση f A B για την οποία A αντιστοιχεί ένα και μόνο ένα y B δηλαδή

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ / ΕΠΙΛΟΓΗΣ Ηµεροµηνία: Τετάρτη 8 Μαΐου 2013 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν,

Διαβάστε περισσότερα

ΣΥΓΚΡΙΤΙΚΗ ΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ ΠΑΡΑΓΩΓΟΣ- ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ

ΣΥΓΚΡΙΤΙΚΗ ΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ ΠΑΡΑΓΩΓΟΣ- ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ ΣΥΓΚΡΙΤΙΚΗ ΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ ΠΑΡΑΓΩΓΟΣ- ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ Η Συγκριτική Στατική Ανάλυση ασχολείται με την σύγκριση διαφόρων καταστάσεων ισορροπίας οι οποίες συνδέονται με διαφορετικά σύνολα τιμών των παραμέτρων

Διαβάστε περισσότερα

Σηµειώσεις Θεωρίας και Μέθοδοι. Κεφάλαιο: Παράγωγοι. και Cgδυο συναρτήσεων f και g εργαζόµαστε ως εξής: x,f(x ) και ( ) ó a

Σηµειώσεις Θεωρίας και Μέθοδοι. Κεφάλαιο: Παράγωγοι. και Cgδυο συναρτήσεων f και g εργαζόµαστε ως εξής: x,f(x ) και ( ) ó a Κοινή εφα τοµένη Αν θέλουµε να βρούµε τη κοινή εφα τοµένη ( ε ) : y=α +β των γραφικών αραστάσεων gδυο συναρτήσεων g εργαζόµαστε ως εξής:,( ) ( ) Έστω ( ),g( ) τα κοινά σηµεία της (ε) µε την εφα τοµένη

Διαβάστε περισσότερα

ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ Νίκος Ζανταρίδης (Φροντιστήριο Πυραμίδα) ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ Ένα γενικό θέμα Ανάλυσης Χρήσιμες Προτάσεις Ασκήσεις για λύση Μικρό βοήθημα για τον υποψήφιο μαθητή της Γ Λυκείου λίγο πριν τις εξετάσεις Απρίλιος

Διαβάστε περισσότερα

Σχολή E.Μ.Φ.Ε ΦΥΣΙΚΗ ΙΙΙ (ΚΥΜΑΤΙΚΗ) Κανονικές Εξετάσεις Χειµερινού εξαµήνου t (α) Αν το παραπάνω σύστηµα, ( m, s,

Σχολή E.Μ.Φ.Ε ΦΥΣΙΚΗ ΙΙΙ (ΚΥΜΑΤΙΚΗ) Κανονικές Εξετάσεις Χειµερινού εξαµήνου t (α) Αν το παραπάνω σύστηµα, ( m, s, Σχολή E.Μ.Φ.Ε ΦΥΣΙΚΗ ΙΙΙ (ΚΥΜΑΤΙΚΗ) Κανονικές Εξετάσεις Χειµερινού εξαµήνου 9-1 ιάρκεια εξέτασης :3 5//1 Ι. Σ. Ράπτης Ε. Φωκίτης Θέµα 1. Ένας αρµονικός ταλαντωτής µε ασθενή απόσβεση (µάζα m σταθερά ελατηρίου

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ Α. Θέµα 1 ο

ΔΙΑΓΩΝΙΣΜΑ Α. Θέµα 1 ο Θέµα 1 ο 116 ΔΙΑΓΩΝΙΣΜΑ Α Α. Να χαρακτηρίσετε ΣΩΣΤΗ ή ΛΑΘΟΣ καθεµία από τις παρακάτω προτάσεις i. Μία ευθεία καµπύλη ζήτησης, που τέµνει τους άξονες και Q, έχει σταθερή ελαστικότητα ζήτησης ως προς την

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΝΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΝΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΝΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Βάλτε σε κύκλο το σωστό γράμμα: 1 ο ΔΙΑΓΩΝΙΣΜΑ Α. 1. Ταυτόχρονη αύξηση της ζήτησης και της προσφοράς μπορεί να μη μεταβάλλει την ποσότητα ισορροπίας. Σ Λ Α. 2. Έστω δύο αγαθά

Διαβάστε περισσότερα

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή.

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή. Η Αριθµητική Ανάλυση χρησιµοποιεί απλές αριθµητικές πράξεις για την επίλυση σύνθετων µαθηµατικών προβληµάτων. Τις περισσότερες φορές τα προβλήµατα αυτά είναι ή πολύ περίπλοκα ή δεν έχουν ακριβή αναλυτική

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ. Mια συνάρτηση λέμε ότι είναι παραγωγίσιμη σε ένα σημείο του πεδίου ορισμού ( της, αν υπάρει το lim και είναι πραγματικός αριθμός. Το όριο αυτό λέγεται παράγωγος της στο και συμβολίζεται

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Μ. Τρίτη 3 Απριλίου 3 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Σχολικό βιβλίο,

Διαβάστε περισσότερα

Παραγωγική διαδικασία. Τεχνολογία

Παραγωγική διαδικασία. Τεχνολογία Σκοπός: Η μελέτη της σχέσης εισροών και εκροών Συντελεστές παραγωγής (Εισροές) Παραγωγική διαδικασία Παραγόμενο Προϊόν (Εκροές) Κεφαλαιουχικά αγαθά Εργασία Γή Επιχειρηματικές ή διοικητικές ικανότητες κλπ

Διαβάστε περισσότερα

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Κεφάλαιο 5 ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Οταν ένα µεταβλητό µέγεθος εξαρτάται αποκλειστικά από τις µεταβολές ενός άλλου µεγέθους, τότε η σχέση που συνδέει

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ 16 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 16 ΕΠΙΜΕΛΕΙΑ: ASK4MATH WWW.ASKISIOLOGIO.GR ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ 16 Εξεταζόμενο

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 4 Λύσεις των θεμάτων Έκδοση η

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 Ε_3.Αλ3Ε(ε) ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ / ΕΠΙΛΟΓΗΣ Ηµεροµηνία: Κυριακή 4 Μαΐου 2014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ Α1. Να χαρακτηρίσετε τις προτάσεις που

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ http://www.economics.edu.gr 1 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΕΦΑΛΑΙΟ 1 ο : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΣΚΗΣΕΙΣ ΥΠΟ ΕΙΓΜΑΤΑ ( τρόποι επίλυσης παρατηρήσεις σχόλια ) ΑΣΚΗΣΗ 1 Έστω ο πίνακας παραγωγικών δυνατοτήτων µιας

Διαβάστε περισσότερα

Δεύτερο πακέτο ασκήσεων και λύσεων

Δεύτερο πακέτο ασκήσεων και λύσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 04-05 Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Δεύτερο πακέτο ασκήσεων και λύσεων Αντιστοιχούν τέσσερις μονάδες

Διαβάστε περισσότερα

3.7 Παραδείγματα Μεθόδου Simplex

3.7 Παραδείγματα Μεθόδου Simplex 3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x

Διαβάστε περισσότερα

Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 9

Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 9 Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 9 Λουκάς Βλάχος και Μανώλης Πλειώνης Άσκηση : Η καµπύλη y = /x µε x >, περιστρέφεται γύρω από τον άξονα Ox και δηµιουργεί ένα στερεό µε επιφάνεια S και όγκο V. είξτε

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

= γ + δ P απαιτεί γ > 0

= γ + δ P απαιτεί γ > 0 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ ΙΑΓΩΝΙΣΜΑ 10 (για καλά διαβασµένους) ΟΜΑ Α Α Να απαντήσετε στις επόµενες ερωτήσεις πολλαπλής επιλογής: Α1. Η τιµή ενός αγαθού Χ αυξάνεται.

Διαβάστε περισσότερα

(α) Από τους κανόνες σύνθετης παραγώγισης δύναμης συναρτήσεως και λογαρίθμου συναρτήσεως:

(α) Από τους κανόνες σύνθετης παραγώγισης δύναμης συναρτήσεως και λογαρίθμου συναρτήσεως: http://elearn.maths.gr/, maths@maths.gr, Τηλ: 6979 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΔΕΟ -: Άσκηση I. (α) Από τους κανόνες σύνθετης παραγώγισης δύναμης συναρτήσεως και λογαρίθμου συναρτήσεως:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 0-0 Δεύτερη Γραπτή Εργασία Επιχειρησιακά Μαθηματικά Γενικές

Διαβάστε περισσότερα

Επαναληπτικά Θέματα Μαθηματικών Γ Λυκείου Κατεύθυνσης

Επαναληπτικά Θέματα Μαθηματικών Γ Λυκείου Κατεύθυνσης 6 Επαναληπτικά Θέματα Μαθηματικών Γ Λυκείου Κατεύθυνσης ΘΕΜΑ Έστω η συνεχής συνάρτηση f : (, ) R τέτοια ώστε για κάθε να ισχύει: t f ( ) dt. f () t te ( ) α) Να αποδείξετε ότι για κάθε ισχύει: β) Να αποδείξετε

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ ΛΥΚΕΙΟΥ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ ΛΥΚΕΙΟΥ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ ΛΥΚΕΙΟΥ 3. Σωστό 4. Λάθος 5. Σωστό 6. Σωστό 7. Λάθος 8. Σωστό 9. Λάθος 10. Σωστό 11. Σωστό 12. Σωστό 13. Λάθος 14. Λάθος 15. Σωστό 1. δ 2. α 3. β 4. γ 5. δ 6. α 7. δ 1 ο ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΑΝΑ ΚΕΦΑΛΑΙΟ. geeconomy@yahoo.com. Γ Ι Ω Ρ Γ Ο Σ Κ Α Μ Α Ρ Ι Ν Ο Σ Ο Ι Κ Ο Ν Ο Μ Ο Λ Ο Γ Ο Σ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2015

ΑΝΑ ΚΕΦΑΛΑΙΟ. geeconomy@yahoo.com. Γ Ι Ω Ρ Γ Ο Σ Κ Α Μ Α Ρ Ι Ν Ο Σ Ο Ι Κ Ο Ν Ο Μ Ο Λ Ο Γ Ο Σ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2015 ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2015 1 ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2015 ΑΝΑ ΚΕΦΑΛΑΙΟ Στο παρόν είναι συγκεντρωµένες όλες σχεδόν οι ερωτήσεις κλειστού τύπου που

Διαβάστε περισσότερα

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ. i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( x )

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ. i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( x ) () Μονοτονία ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( ) και βρίσκω το πρόσηµό της ii) Αν προκύψει να είναι αύξουσα ή φθίνουσα,

Διαβάστε περισσότερα

Υπολογίζουµε την πρώτη παράγωγο: f ' ( x ) = 3 x 2 6 x. Βρίσκουµε τα διαστήµατα µονοτονίας: Στο τριώνυµο είναι: = β 2 4 aγ. άρα οι ρίζες είναι: x 1,2

Υπολογίζουµε την πρώτη παράγωγο: f ' ( x ) = 3 x 2 6 x. Βρίσκουµε τα διαστήµατα µονοτονίας: Στο τριώνυµο είναι: = β 2 4 aγ. άρα οι ρίζες είναι: x 1,2 ================================================= Μαθηµατική Υποστήριξη Φοιτητών : Ιδιαίτερα Μαθήµατα, Λυµένες Ασκήσεις, Βοήθεια στη λύση Εργασιών. Θ. Χριστόπουλος, www.maths.gr, Tηλ.: 69 79 21 251 Ασκήσεις

Διαβάστε περισσότερα

2.10. Τιμή και ποσότητα ισορροπίας

2.10. Τιμή και ποσότητα ισορροπίας .. Τιμή και ποσότητα ισορροπίας ίδαμε ότι η βασική επιδίωξη των επιχειρήσεων είναι η επίτευξη του μέγιστου κέρδους με την πώληση όσο το δυνατόν μεγαλύτερων ποσοτήτων ενός αγαθού στη μεγαλύτερη δυνατή τιμή

Διαβάστε περισσότερα

6. Το Υπόδειγμα των Επικαλυπτόμενων Γενεών: Ανταλλαγή I

6. Το Υπόδειγμα των Επικαλυπτόμενων Γενεών: Ανταλλαγή I 6. Το Υπόδειγμα τν Επικαλυπτόμενν Γενεών: Ανταλλαγή I 6.. Ερτήσεις Σχολιάστε την εγκυρότητα τν παρακάτ προτάσεν. Αν πιστεύετε ότι μια πρόταση είναι σστή κάτ από ορισμένες προϋποθέσεις τότε να αναφέρετε

Διαβάστε περισσότερα

ΛΙΒΑΘΙΝΟΣ ΝΙΚΟΛΑΟΣ Επιστήµη και Τεχνολογία των Υπολογιστών Α.Μ.: 403. Πρώτη Οµάδα Ασκήσεων

ΛΙΒΑΘΙΝΟΣ ΝΙΚΟΛΑΟΣ Επιστήµη και Τεχνολογία των Υπολογιστών Α.Μ.: 403. Πρώτη Οµάδα Ασκήσεων ΕΙ ΙΚΑ ΘΕΜΑΤΑ ΘΕΜΕΛΙΩΣΕΩΝ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΙΒΑΘΙΝΟΣ ΝΙΚΟΛΑΟΣ LIBATI@CEIDUPATRASGR Επιστήµη και Τεχνολογία των Υπολογιστών ΑΜ: Πρώτη Οµάδα Ασκήσεων 8// Να βρεθούν οι OGF για καθεµία από τις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας ΚΕΦΑΛΑΙΑ,4. Συστήµατα ενός Βαθµού ελευθερίας. Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα ' O για την απωστική δύναµη F, > και για ενέργεια Ε. (α) Είναι V και οι επιτρεπτές περιοχές της κίνησης

Διαβάστε περισσότερα

7.2 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f(x) = x

7.2 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f(x) = x 7. ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ () = α ΘΕΩΡΙΑ. Μορφή της συνάρτησης (Ισοσκελής υπερβολή) Ιδιότητες Πεδίο ορισµού g() = R = (, 0) (0, + ) Είναι περιττή, άρα συµµετρική ως προς την αρχή των αξόνων Είναι γν.φθίνουσα

Διαβάστε περισσότερα