1. Ολικά και τοπικά ακρότατα. 2. Εσωτερικά και συνοριακά ακρότατα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1. Ολικά και τοπικά ακρότατα. 2. Εσωτερικά και συνοριακά ακρότατα"

Transcript

1 Β3. ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE.Ολικά και τοπικά ακρότατα.εσωτερικά και συνοριακά ακρότατα 3. Χωριζόμενες μεταβλητές 4.Ισοτικός περιορισμός 5.Περιορισμένη στασιμότητα 6.Πολλαπλασιαστής Lagrange 7.Συνάρτηση Lagrange 8.Ερμηνεία του πολλαπλασιαστή Lagrange 9.Περισσότερες μεταβλητές και περιορισμοί. ΕΦΑΡΜΟΓΕΣ 0.Βελτιστοποίηση ΑΣΚΗΣΕΙΣ. Ολικά και τοπικά ακρότατα Θεωρούμε τις τιμές της συνάρτησης f(,) στα σημεία μιας επίπεδης περιοχής D. Σημεία στα οποία η συνάρτηση έχει μέγιστη ή ελάχιστη τιμή καλούνται ακρότατα της συνάρτησης, και η αντίστοιχη τιμή της ακρότατη τιμή, μέγιστη ή ελάχιστη αντίστοιχα. Θα καλείται γνήσιο ακρότατο αν είναι γνήσια μεγαλύτερο ή μικρότερο αντίστοιχα, δηλαδή αν είναι μοναδικό. Το πρόβλημα εύρεσης των ακρότατων θα διατυπώνεται στη μορφή: ma{f(, ) D}, min{f(, ) D},, αντίστοιχα. Όσον αφορά την λύση θα χρησιμοποιήσουμε τον ίδιο συμβολισμό και για μέγιστο και για ελάχιστο: (, ) f = f(, ) Εξάλλου, στις εφαρμογές μας ενδιαφέρει συνήθως το ένα από τα δύο. Σε κάθε περίπτωση, η μαθηματική αντιμετώπιση των δύο προβλημάτων είναι ισοδύναμη διότι το μέγιστο μιας συνάρτησης συμπίπτει με το ελάχιστο της αρνητικής της. Η συνάρτηση f(,) αποτελεί το κριτήριο βελτιστοποίησης και καλείται αντικειμενική συνάρτηση. Παράδειγμα. Η f = = ( + ) σε ολόκληρο το επίπεδο, έχει γνήσιο ολικό μέγιστο στο σημείο (0,0) με μέγιστη τιμή. Δεν είναι κάτω φραγμένη και επομένως δεν έχει ολικό ελάχιστο σε σημείο του επιπέδου.. Η f = + + = + ( ) σε ολόκληρο το επίπεδο, έχει ελάχιστη τιμή σε όλα τα σημεία της ευθείας: =. Το ελάχιστο δεν είναι γνήσιο. Δεν είναι πάνω φραγμένη και έτσι δεν έχει ολικό μέγιστο σε σημείο του επιπέδου. Τα παραπάνω καλούνται ολικά ακρότατα διότι συγκρίνουμε μεταξύ τους τις τιμές της συνάρτησης σε μια ολόκληρη περιοχή D η οποία και καλείται περιοχή βελτιστοποίησης. Αν η σύγκριση γίνεται μόνο μεταξύ γειτονικών σημείων στην περιοχή, δηλαδή αφορά το πρόσημο του Δf για μικρές μεταβολές {Δ,Δ}, τότε το ακρότατο, μέγιστο ή ελάχιστο, καλείται τοπικό ακρότατο.. Εσωτερικά και συνοριακά ακρότατα Γενικά, σε μια περιοχή που παριστάνεται με ανισότητα: g(,) 0, διακρίνουμε το εσωτερικό της που παριστάνεται με τη γνήσια ανισότητα: g(, ) > 0, και το σύνορο που παριστάνεται με την ισότητα: g(,) = 0. Ανάλογα ορίζεται το εσωτερικό και το σύνορο αν η ανισότητα είναι της μορφής: g(,) 0, ή αν έχουμε ένα σύνολο ανισοτήτων. Παράδειγμα. Ολόκληρο το επίπεδο: R, είναι μόνο εσωτερικό χωρίς σύνορο.. Η θετική περιοχή: R = { 0, 0}, έχει για εσωτερικό τη γνήσια θετική περιοχή: R ++ { 0, 0} + = > >, και για σύνορο τους θετικούς ημιάξονες: {= 0με 0} και {= 0με 0}. 3. Η περιοχή: { +, 0, 0}, έχει ως εσωτερικό τα γνήσια θετικά σημεία που βρίσκονται γνήσια εντός του μοναδιαίου κύκλου: { + <, > 0, > 0}, ενώ το σύνορο αποτελείται από τρία τμήματα, το τμήμα της περιφέρειας στη θετική περιοχή: { + =, 0, 0} και τις δύο ακτίνες: {= 0, 0 }, {= 0, 0 }.

2 Ένα ακρότατο, ολικό ή τοπικό, θα καλείται εσωτερικό ακρότατο αν βρίσκεται στο εσωτερικό της περιοχής βελτιστοποίησης και συνοριακό ακρότατο αν βρίσκεται στο σύνορο. Θα ασχοληθούμε κυρίως με εσωτερικά ακρότατα. Παρατηρούμε καταρχήν ότι ένα ακρότατο θα είναι ακρότατο και ως προς μεταβολές μόνο της μιας μεταβλητής κρατώντας την άλλη σταθερή. Από τη θεωρία ακρότατων για συναρτήσεις μιας μεταβλητής προκύπτει ότι ένα εσωτερικό ακρότατο θα ναι οπωσδήποτε στάσιμο, δηλαδή θα ικανοποιεί τις εξισώσεις: {f = 0,f = 0} ή διανυσματικά f = 0 Συμπεραίνουμε ότι το ακρότατο θα ανήκει σε μια από τις παρακάτω κατηγορίες: Στάσιμο, αν υπάρχουν. Συνοριακό, αν έχουμε σύνορο. Στο άπειρο, αν η περιοχή βελτιστοποίησης δεν είναι φραγμένη. Οι γραμμικές συναρτήσεις δεν έχουν στάσιμα σημεία οπότε τα ακρότατα βρίσκονται στο σύνορο ή στο άπειρο, εκτός βέβαια αν είναι σταθερές. Παράδειγμα. Θα βρούμε τα ακρότατα της συνάρτησης f(, ) = + στην τετραγωνική περιοχή: {0, 0 }. Λύση. Η περιοχή είναι φραγμένη, οπότε το μέγιστο θα βρίσκεται σε σημεία της περιοχής, στάσιμα ή συνοριακά. Θα τα εντοπίσουμε και θα συγκρίνουμε τις τιμές τους. Στάσιμα. A : {f = + = 0, f = = 0} (0,) με f = 0. Το σύνορο αποτελείται από τέσσερα ευθύγραμμα τμήματα. B : {= 0,0 } f = 0, σταθερή B : { =,0 } f =, μέγιστο στο (,0) με f = 6 B : 3 {0, = 0} f =, μέγιστο στο (,0) με f = 6 B 4 : {0, = } f = 3, μέγιστο στο (0,) με f = 0 Συγκρίνοντας τις παραπάνω τιμές συμπεραίνουμε ότι:. Το μέγιστο βρίσκεται στην κορυφή: (, ) = (,0) με f = 6.. Το ελάχιστο βρίσκεται στο σύνορο B : { = 0,0 } με f = Χωριζόμενες μεταβλητές Το πρόβλημα ακρότατων τιμών με δύο μεταβλητές ανάγεται σε δύο απλά προβλήματα ακρότατων τιμών με μια μεταβλητή, στην παρακάτω περίπτωση: Θεωρούμε μια συνάρτηση χωριζόμενων μεταβλητών με ορθογώνιο πεδίο ορισμού: f(,) = g() + h(), D : {α β,γ δ} Ένα σημείο (, ) είναι ολικό ακρότατο οι συντεταγμένες του είναι ολικά ακρότατα του ίδιου τύπου των αντίστοιχων συναρτήσεων μιας μεταβλητής στα αντίστοιχα διαστήματα, αμφότερα μέγιστα ή αμφότερα ελάχιστα: ma/ min{g() α β} ma/ min{f(, ) = g() + h() α β, γ δ} ma/ min{h() γ δ} Το ορθογώνιο πεδίο ορισμού μπορεί να είναι και μη φραγμένο. Παράδειγμα. f = = ( ) + ( ) σε ολόκληρο το επίπεδο, είναι χωριζόμενων μεταβλητών, με στάσιμο: {f = = 0, f = = 0} ( = 0, = 0) με f(0,0) = Είναι ολικό μέγιστο διότι το = 0 είναι ολικό μέγιστο της h() =. Εξάλλου σε κάθε άλλο σημείο αφαιρούμε μια γνήσια θετική ποσότητα: g() =, και το = 0 είναι ολικό μέγιστο της f(,) = ( + ) Παράδειγμα. f = = ( ) + ( ) είναι χωριζόμενων μεταβλητών στη ορθογώνια θετική περιοχή: { 0, 0}. Έχει γνήσιο ολικό μέγιστο στο συνοριακό σημείο (0,0), διότι το = 0 είναι ολικό μέγιστο της g() = στο διάστημα: 0, και το = 0 είναι ολικό μέγιστο της h() = στο διάστημα: 0. Εξάλλου σε κάθε άλλο σημείο της θετικής περιοχής αφαιρούμε μια γνήσια θετική ποσότητα: f(,) = (+ ) B 4 A B B,B3

3 Παράδειγμα. f = = ( ) + ( ) σε ολόκληρο το επίπεδο, είναι χωριζόμενων μεταβλητών. Το στάσιμό της ( =, = 0) δεν είναι ακρότατο, διότι το = είναι ελάχιστο για την = 0 είναι μέγιστο για την h() g() =, ενώ το =. Λέμε ότι είναι σαγματικό σημείο. Τα ακρότατα βρίσκονται στο άπειρο. Παράδειγμα. ma{f(, ) = p( + ) v w 0, 0} με {p> 0, v> 0, w> 0} Είναι χωριζομένων μεταβλητών σε ορθογώνια περιοχή. Οι επιμέρους συναρτήσεις είναι κοίλες σε διάστημα, με λύση στάσιμη: p p ma{g() = p v 0} g () = v= 0 =, v p p ma{h() = p w 0} h () = w = 0 =, 4w Η μέγιστη τιμή της συνάρτησης είναι: p p p p f = f(, ) = p( + ) v w = p v w v 4w + v 4w Ως συνάρτηση των παραμέτρων, η μέγιστη τιμή είναι: p αύξουσα κυρτή, {v,w} φθίνουσα κυρτή. 4. Ισοτικός περιορισμός: ma/ min{f(, ) g(, ) =, D}, Παραπάνω ασχοληθήκαμε με τα ακρότατα συναρτήσεων σε ολόκληρες περιοχές. Εδώ θα ασχοληθούμε με τα ακρότατα μιας συνάρτησης f(,), όχι σε ολόκληρη περιοχή, αλλά μόνο στα σημεία μιας καμπύλης που βρίσκεται στην περιοχή. Η καμπύλη περιγράφεται με μια εξίσωση: g(,) = η οποία καλείται εξίσωση περιορισμού. Η ίδια η συνάρτηση g(,) καλείται συνάρτηση περιορισμού. Η f(,) που αποτελεί και το κριτήριο βελτιστοποίησης καλείται αντικειμενική συνάρτηση. Τέτοια ακρότατα τα ονομάζουμε περιορισμένα ακρότατα. Για διάκριση, τα ακρότατα όπως προηγουμένως όπου δεν υπάρχουν ισοτικοί περιορισμοί ονομάζονται και ελεύθερα ακρότατα. Τα περιορισμένα ακρότατα διακρίνονται πάλι σε εσωτερικά που βρίσκονται στο εσωτερικό του πεδίου ορισμού και σε συνοριακά που βρίσκονται στο σύνορο. Θα δώσουμε συνθήκες μόνο για τα εσωτερικά. Παρατήρηση. Στην απλούστερη περίπτωση μπορούμε να λύσουμε το πρόβλημα λύνοντας τον περιορισμό ως προς την μια μεταβλητή την οποία και αντικαθιστούμε στη αντικειμενική συνάρτηση, η οποία τώρα θα είναι συνάρτηση μιας μεταβλητής χωρίς περιορισμό. Δηλαδή, το πρόβλημα περιορισμένης βελτιστοποίησης με δύο μεταβλητές και έναν περιορισμό είναι ισοδύναμο με πρόβλημα ελεύθερης βελτιστοποίησης με μια μεταβλητή. 5. Περιορισμένη στασιμότητα Διαπιστώνουμε γεωμετρικά ότι σένα περιορισμένο ακρότατο η καμπύλη του περιορισμού θα εφάπτεται της αντίστοιχης ισοσταθμικής της συνάρτησης, έτσι ώστε η καμπύλη του περιορισμού να βρίσκεται καθ' ολοκληρίαν στην αντίστοιχη κάτω σταθμική αν πρόκειται για ma, πάνω σταθμική αν πρόκειται για min, όπως στο παρακάτω σχήμα. Ειδικότερα θα έχουμε: Αναγκαίες συνθήκες ης τάξης για περιορισμένο εσωτερικό ακρότατο f g = & g= f g Δηλαδή, το περιορισμένο εσωτερικό ακρότατο θα είναι σημείο της καμπύλης περιορισμού στο οποίο η αντικειμενική συνάρτηση και η συνάρτηση του περιορισμού ορίζουν τον ίδιο ρυθμό υποκατάστασης.. ma{f g= } min{f g= } Έχουμε εξισώσεις με αγνώστους: {,}. Η παραπάνω καλείται συνθήκη δεσμευμένης ή περιορισμένης στασιμότητας και οι λύσεις της δεσμευμένες ή περιορισμένες στάσιμες. Για διάκριση, αν δεν υπάρχουν ισοτικοί περιορισμοί όπως προηγουμένως, οι αντίστοιχες συνθήκες ονομάζονται συνθήκες ελεύθερης στασιμότητας. f f f g= f f g= f 3

4 Έτσι το περιορισμένο ακρότατο θα ανήκει στη καμπύλη του περιορισμού και θα είναι ένα από τα παρακάτω: Περιορισμένο στάσιμο. Στο σύνορο, αν η καμπύλη συναντάει το σύνορο του πεδίου ορισμού. Στο άπειρο, αν η καμπύλη δεν είναι φραγμένη. Παράδειγμα. min{f = g= + = } min f / f = g / g (4 4) /( ) = = = / 3 f g= + = + = = / 3 Δεν έχουμε σύνορο, οπότε το ελάχιστο είτε θα είναι στο παραπάνω στάσιμο είτε στο άπειρο. Από το γράφημα παραπλεύρως διαπιστώνουμε ότι η ευθεία του περιορισμού βρίσκεται στην πάνω σταθμική της αντικειμενικής συνάρτησης και επομένως το σημείο είναι ολικό ελάχιστο. Εναλλακτικά, μπορούμε να λύσουμε το πρόβλημα με αντικατάσταση της μιας μεταβλητής από τον περιορισμό: g= + = = f = + 4 ( ) + = 3 4 ( ) Βρήκαμε κυρτή συνάρτηση μιας μεταβλητής με ολικό ελάχιστο στο στάσιμο που βρήκαμε παραπάνω: f = 6 4= 0 = / 3, = = / 3 Παράδειγμα. ma/ min{f = + g= + = 5, D : 0, 0} f / f = g / g = 0 /= / ( =, = ) g= + = 5 ( =, = ). Αποδεκτή μόνο η θετική λύση: ( =, = ) με f = + = 5 Το παραπάνω είναι εσωτερικό υποψήφιο σημείο. Η καμπύλη είναι φραγμένη και έχει συνοριακά υποψήφια σημεία στους θετικούς ημιάξονες, ως εξής:. {= 0, + = 5} = 0, =± 5. Αποδεκτό το θετικό : ( = 0, = 5) με f = + = 5 3. {= 0, + = 5} = 0, =± 5. Αποδεκτό το θετικό :(3 = 5, 3 = 0) με f 3 = = 5 Βρήκαμε τρία υποψήφια σημεία, με τιμές: f = 5, f = 5, f = 5 3 Έχουμε μέγιστη τιμή f = 5 στο περιορισμένο στάσιμο και ελάχιστη τιμή f = 5 στο σύνορο με = 0. Παρατήρηση. Γραφικά, το ακρότατο βρίσκεται στην τομή της καμπύλης του περιορισμού και μιας ισοσταθμικής της αντικειμενικής συνάρτησης με τη μεγαλύτερη ή μικρότερη τιμή για μέγιστο ή ελάχιστο αντίστοιχα. Στο παραπάνω παράδειγμα το μέγιστο είναι εσωτερικό οπότε εφάπτονται, ενώ το ελάχιστο είναι συνοριακό και δεν εφάπτονται. 6. Πολλαπλασιαστής Lagrange Η συνθήκη περιορισμένης στασιμότητας γράφεται και στις παρακάτω ισοδύναμες μορφές: min f g f f f f = ή = fg fg = 0 ή = f g g g g g Ο κοινός λόγος στην τρίτη μορφή καλείται πολλαπλασιαστής Lagrange της λύσης και έχει ιδιαίτερη σημασία στις εφαρμογές. Μάλιστα, παριστάνοντας τον με λ, μπορούμε να γράψουμε τη συνθήκη περιορισμένης στασιμότητας στη μορφή: f f f = λg = = λ g g f = λg με λύση: (,,λ) g= g= Τώρα έχουμε 3 εξισώσεις με 3 αγνώστους, δηλαδή μαζί με τη λύση βρίσκουμε και την τιμή του λ. Οι εξισώσεις σαυτή την μορφή ονομάζονται και εξισώσεις Lagrange. Μπορούμε να βρούμε πρώτα τη λύση (,) από τις εξισώσεις περιορισμένης στασιμότητας και να υπολογίσουμε το λ εκ των υστέρων, ή να λύσουμε το παραπάνω σύστημα τριών εξισώσεων οπότε βρίσκουμε το λ ως μέρος της λύσης. ma f 4

5 Παράδειγμα. min{f = g= + = } Βρήκαμε παραπάνω το ακρότατο ως το περιορισμένο στάσιμο: {= / 3, = / 3}. Μπορούμε να υπολογίσουμε τον πολ/τή Lagrange από τη συνθήκη: λ= f / g = 4 4= 4 / 3 ή λ= f / g = = 4 / 3, τα δύο πρέπει να είναι ίσα. Εναλλακτικά, μπορούμε να το βρούμε ως μέρος της λύσης των εξισώσεων Lagrange: f = λg 4 4= λ = λ / 4+ = / 3, = / 3 f = λg = λ = λ / + g= + = λ / 4+ + λ / + = λ= 4 / 3 Παρατήρηση. Συνήθως λύνουμε τις δύο πρώτες εκφράζοντας τα {,} ως συναρτήσεις του λ και στη συνέχεια αντικαθιστούμε στην τρίτη που είναι και η εξίσωση του περιορισμού οπότε υπολογίζουμε πρώτα το λ. Μετά πάμε πίσω και υπολογίζουμε τα {,} 7. Συνάρτηση Lagrange του προβλήματος περιορισμένου ακρότατου καλείται η παρακάτω συνάρτηση των τριών μεταβλητών {,,λ} : ma/ min{f(, ) g(, ) =, D} L(,, λ) = f(, ) + λ[ g(, )], Οι συνθήκες περιορισμένης στασιμότητας στη μορφή των εξισώσεων Lagrange διατυπώνονται τώρα και ως συνθήκες (ελεύθερης) στασιμότητας της συνάρτησης Lagrange L = f λg = 0 L = f λg = 0 εξισώσεις Lagrange L = g = 0 λ Έτσι το ακρότατο θα ανήκει σε μια από τις παρακάτω τρεις κατηγορίες:. Λύση Lagrange. Συνοριακό 3. Στο άπειρο 8. Ερμηνεία του πολλαπλασιαστή Lagrange Αν σένα πρόβλημα περιορισμένου ακρότατου η τιμή του περιορισμού δεν είναι συγκεκριμένη αλλά εμφανίζεται ως παράμετρος, τότε η λύση και ειδικότερα η ακρότατη τιμή θα εκφράζονται ως συναρτήσεις αυτής της παραμέτρου: ma/ min{f(,) g(,) = } { (), (),λ ()}, f () = f( (), ()), Σαυτή την περίπτωση: Ο πολλαπλασιαστής Lagrange ισούται με την παράγωγο της ακρότατης τιμής f περιορισμού : ως προς την τιμή του f () = λ () Στις εφαρμογές καλείται και σκιώδης ή εσωτερική αξία του περιορισμού, με την έννοια ότι αν η τιμή του περιορισμού αυξηθεί κατά μια μονάδα τότε η αντίστοιχη ακρότατη τιμή θα μεταβληθεί κατά λ, οριακά. Παράδειγμα. Θα επαληθεύσουμε την ερμηνεία του πολλαπλασιαστή Lagrange: min{f = α+ β g= =, 0, 0} με α> 0,β > 0, > 0. f = λg β /α α= λ = f = λg β= λ = α /β, g = = λ= αβ / Παραγωγίζοντας ως προς, βρίσκουμε: β α f = α + β = αβ α β / f = αβ f = αβ / = λ () Όπως και για τα ελεύθερα στάσιμα, ο αναλυτικός χαρακτηρισμός ενός περιορισμένου στάσιμου ως ακρότατου γίνεται με τη χρήση παραγώγων ης τάξης, όπως θα εξετάσουμε σε επόμενα κεφάλαια. 5

6 9. Περισσότερες μεταβλητές και περιορισμοί Όλα τα παραπάνω γενικεύονται άμεσα σε περισσότερες μεταβλητές και περιορισμούς. Π.χ.. Για το πρόβλημα χωριζόμενων μεταβλητών σε 3 μεταβλητές, έχουμε την ισοδυναμία: ma{g() α β} ma{f(,,z) = g() + h() + e(z) α β,γ δ,ε z η} ma{h() γ δ} {,,z }, f ma{e(z) ε z η} και αντίστοιχα για το πρόβλημα ελαχίστου (min). Επίσης, οι συνθήκες περιορισμένης στασιμότητας στη μορφή των εξισώσεων Lagrange γενικεύονται άμεσα σε πολλές μεταβλητές και πολλούς περιορισμούς.. Ακρότατα με τρεις μεταβλητές και έναν περιορισμό. ma/ min{f(,,z) g(,,z) =, D} L(,,z,λ) = f(,,z) + λ[ g(,,z)] 6 L = 0 f = λg L = 0 f = λg {,,z,λ}, f Lz = 0 fz = λgz Lλ = 0 g= Αν η τιμή του περιορισμού εμφανίζεται ως παράμετρος, τότε η λύση και ειδικότερα η ακρότατη τιμή f θα εκφράζονται ως συναρτήσεις αυτής της παραμέτρου. Σαυτή την περίπτωση ο πολλαπλασιαστής Lagrange ισούται με την παράγωγο της ακρότατης τιμής f ως προς την τιμή του περιορισμού : f () = λ () 3. Ακρότατα με τρεις μεταβλητές και δύο περιορισμούς. L = 0 f = λg + μh L = 0 f = λg + μh ma/ min{f(,, z) g(,, z) =,h(,, z) = e, D} Lz = 0 fz = λgz + μh z {,,z,λ,μ}, f L(,,z,λ,μ) = f(,,z) + λ[ g(,,z)] + μ[e h(,,z)] Lλ = 0 g= Lμ = 0 h= e Τώρα έχουμε δύο πολλαπλασιαστές Lagrange: {λ,μ}, έναν για τον κάθε περιορισμό, οπότε η λύση και ειδικότερα η ακρότατη τιμή f θα εξαρτώνται από τις τιμές των παραμέτρων {,e}. Σαυτή την περίπτωση οι πολλαπλασιαστές Lagrange θα ισούνται με τις μερικές παραγώγους της ακρότατης τιμής f ως προς αυτές τις παραμέτρους που είναι οι τιμές των αντίστοιχων περιορισμών: f (,e) = λ (,e), f (,e) = μ (,e) e Παράδειγμα. Στον χώρο Οz, θα βρούμε το σημείο του επιπέδου + z=, σε ελάχιστη απόσταση από την αρχή του συστήματος:(0,0,0), λύνοντας το πρόβλημα: min{f = + + z g= + z= } {,,z} Λύση. Οι εξισώσεις Lagrange: {= λ, = λ, z= λ, + z= }, μας δίνουν: { = / 6, = / 3,z = / 6,λ = / 3} με f = και d= f = / 6 6 Από την γεωμετρία διαπιστώνουμε ότι υπάρχει ελάχιστη απόσταση, που θα είναι υποχρεωτικά η παραπάνω. Παρατήρηση. Για ευκολία αντί της απόστασης: d= + + z, ελαχιστοποιήσαμε τη συνάρτηση: f = d. Οι δύο συναρτήσεις έχουν ελάχιστο στο ίδιο σημείο διότι η μία είναι αύξων μετασχηματισμός της άλλης, αλλά βέβαια έχουν διαφορετική ελάχιστη τιμή και διαφορετικό πολλαπλασιαστής Lagrange. Για την συνάρτηση της απόστασης d μπορεί να υπολογιστεί εκ των υστέρων από οιαδήποτε των παρακάτω σχέσεων: d d dz μ= = = Θα έχουμε μ= d () =± / 6 g g g z

7 ΕΦΑΡΜΟΓΕΣ 0. Βελτιστοποίηση στην Οικονομία Στην παραγωγή και στην κατανάλωση εμφανίζονται διάφορα προβλήματα βελτιστοποίησης, ως εξής:. Σε μια απλή παραγωγική διαδικασία χρησιμοποιούνται δύο συντελεστές παραγωγής {K,L} με κόστος C(K,L) και παράγεται ένα προϊόν σε ποσότητα Q(K,L) που διατίθεται με μοναδιαία τιμή P(Q) και αποφέρει έσοδο R(K,L) = P(Q)Q. Εμφανίζονται τα προβλήματα: min{c= C(K,L) R= R(K,L) r}, ελάχιστο κόστος για έσοδο r ma{r = R(K,L) C= C(K,L) }, μέγιστο έσοδο για κόστος ma{π= R(K,L) C(K,L)}, μέγιστο κέρδος Ειδικά στην περίπτωση που τα μοναδιαία κόστη των συντελεστών {v,w} καθώς και η μοναδιαία τιμή του προϊόντος p είναι εξωγενώς καθορισμένα, όπως συμβαίνει σε συνθήκες πλήρους ανταγωνισμού στην αγορά των συντελεστών και των προϊόντων, τότε τα προβλήματα αυτά παίρνουν την μορφή: min{c= vk+ wl Q= Q(K,L) q},ελάχιστο κόστος για παραγωγή q ma{q(k,l) C= vk+ wl }, μέγιστη παραγωγή για κόστος ma{π= pq(k,l) vk wl}, μέγιστο κέρδος Στο δεύτερο πρόβλημα αντικαταστήσαμε την συνάρτηση εσόδου με την συνάρτηση παραγωγής: R= pq(k,l) Q= Q(K,L) Οι δύο συναρτήσεις είναι μονότονα εξαρτημένες και επομένως δίνουν την ίδια λύση.. Σε μια σύνθετη παραγωγική διαδικασία παράγονται δύο προϊόντα {X,Y} με κόστος C(X,Y) και αποφέρουν έσοδο R(X,Y). Εμφανίζονται τα προβλήματα: ma{r = R(X, Y) C(X, Y) }, μέγιστο έσοδο για κόστος min{c= C(X, Y) R= R(X, Y) r}, ελάχιστο κόστος για έσοδο r ma{π= R(X, Y) C(X, Y)}, μέγιστο κέρδος Ειδικά στην περίπτωση που οι μοναδιαίες τιμές των προϊόντων {v,w} είναι εξωγενώς καθορισμένες, όπως συμβαίνει σε συνθήκες πλήρους ανταγωνισμού στην αγορά των προϊόντων, τότε τα προβλήματα αυτά παίρνουν την παρακάτω μορφή: ma{r = vx+ wy C(X, Y) }, μέγιστο έσοδο για κόστος min{c= C(X, Y) R= vx+ wy r}, ελάχιστο κόστος για έσοδο r ma{π= vx+ wy C(X, Y)}, μέγιστο κέρδος 3. Στην κατανάλωση δύο αγαθών {X,Y} με συνάρτηση χρησιμότητας U(X,Y) και συνάρτηση κόστους γραμμική C= vx+ wy, εμφανίζονται τα παρακάτω προβλήματα. min{c= vx+ wy U(X, Y) u} : ελάχιστη δαπάνη για χρησιμότητα u ma{u= U(X, Y) C= vx+ wy } :μέγιστη χρησιμότητα γα δαπάνη Παρατήρηση. Υπάρχει αντιστοιχία μεταξύ προβλημάτων βελτιστοποίησης στην κατανάλωση και προβλημάτων βελτιστοποίησης στην παραγωγή όπου τα καταναλωτικά αγαθά αντιστοιχούν στους συντελεστές παραγωγής και η συνάρτηση χρησιμότητας στην συνάρτηση παραγωγής. Αναφέρουμε επίσης ότι στα προβλήματα περιορισμένης βελτιστοποίησης η λύση δεν αλλάζει αν χρησιμοποιήσουμε άλλες ισοδύναμες συναρτήσεις που προκύπτουν με γνήσια αύξοντες μετασχηματισμούς. Ειδικά στο πρόβλημα 3 μπορούμε να χρησιμοποιήσουμε οιαδήποτε άλλη διατακτικά ισοδύναμη συνάρτηση χρησιμότητας διότι θα έχει τις ίδιες καμπύλες αδιαφορίας. Παρατήρηση. Σε όλα τα παραπάνω προβλήματα περιορισμένης βελτιστοποίησης μπορούμε να αντικαταστήσουμε τις ανισότητες στους περιορισμούς με τις αντίστοιχες ισότητες. Π.χ. min{c= C(K,L) R= R(K,L) r} min{c= C(K,L) R= R(K,L) = r} Αυτό ισχύει εφόσον οι συναρτήσεις είναι γνήσια αύξουσες ή γενικότερα μονότονες, οπότε στη βέλτιστη λύση εξαντλείται ο περιορισμός. Σε ειδικές περιπτώσεις αυτό μπορεί να μην ισχύει. Π.χ. στην κατανάλωση αν υπάρχει κορεσμός τότε μπορεί να μην εξαντληθεί η δυνατότητα δαπάνης και το βέλτιστο να είναι εσωτερικό. 7

8 Β3. ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE Ασκήσεις. Να βρεθούν οι ακρότατες τιμές των παρακάτω συναρτήσεων στις αντίστοιχες φραγμένες περιοχές: 3, στην τετραγωνική περιοχή: { 4, 4} +, στην κυκλική περιοχή: + 4 +, στην τετραγωνική περιοχή: {, 0 }. Να βρεθεί η μέγιστη τιμή της παρακάτω συνάρτησης 3 μεταβλητών: z f() + g() + h(z), όπου: f() e + =, g() = ln, h(z) = z e 3. Να διαπιστωθεί ότι στα παρακάτω προβλήματα μεγιστοποίησης στη θετική περιοχή: { 0, 0}, το ακρότατο είναι συνοριακό. ma{f = 0, 0}, ma{f = 0, 0} 4. Να βρεθούν οι τιμές των παραμέτρων {α,β} για τις οποίες το παρακάτω πρόβλημα μεγιστοποίησης στη θετική περιοχή: { 0, 0}, έχει συνοριακό ακρότατο. ma{f = α+ β 4 0, 0} 5. Να βρεθεί η απόσταση του σημείου (,4) από τις καμπύλες: + =, + =, + 4 = 8 6. Να λυθούν τα παρακάτω προβλήματα στη θετική περιοχή { 0, 0}. Σε κάθε περίπτωση να επαληθευτεί η ερμηνεία του πολλαπλασιαστή Lagrange, και να βρεθεί το γράφημα της τροχιάς των βέλτιστων τιμών των μεταβλητών επιλογής ως προς την παράμετρο. ma{u = C= + }, ma{u = ln( ) C= + } / / 4 ma{q= C= + }, ma{u= C= + }, / / 4 min{c= + Q= q} min{u= + U= u} ma{q= + C= + = }, ma{q = ( + ) C= + = } 7. Να διαπιστωθεί ότι μεταξύ όλων των ορθογωνίων παραλληλογράμμων με την ίδια περίμετρο, το τετράγωνο έχει μέγιστο εμβαδό. 8. Να βρεθούν τα στάσιμα σημεία της συνάρτησης: f(,, z) = + + 3z + + 3z με τον περιορισμό + + z=. 9. Να διαπιστωθεί αναλυτικά και γραφικά ότι στα παρακάτω προβλήματα βελτιστοποίησης στη θετική περιοχή: { 0, 0}, το ακρότατο είναι συνοριακό. min{c= + Q= + q}, ma{u= + C= + }, 0. Στον τρισδιάστατο χώρο να βρεθούν: α) Η απόσταση του σημείου (4,4,0.5) από την επιφάνεια z= +. β) Η απόσταση του μηδενικού σημείου:(0,0,0) από την ευθεία με εξισώσεις: {+ + z= 5, + 3z= 5} 8

III.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE

III.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE III.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE 1.Ισοτικός περιορισμός.περιορισμένη στασιμότητα 3.Πολλαπλασιαστής Lagrange 4.Συνάρτηση Lagrange 5.Ερμηνεία του πολλαπλασιαστή Lagrange 6.Περιορισμένη τετραγωνική μορφή 7.

Διαβάστε περισσότερα

III.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE

III.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE III.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE 1.Ισοτικός περιορισμός.περιορισμένη στασιμότητα 3.Πολλαπλασιαστής Lagrange 4.Συνάρτηση Lagrange 5.Ερμηνεία του πολλαπλασιαστή Lagrange 6.Περιορισμένη τετραγωνική μορφή 7.

Διαβάστε περισσότερα

III.9 ΑΚΡΟΤΑΤΑ ΣΕ ΠΕΡΙΟΧΗ

III.9 ΑΚΡΟΤΑΤΑ ΣΕ ΠΕΡΙΟΧΗ III.9 ΑΚΡΟΤΑΤΑ ΣΕ ΠΕΡΙΟΧΗ.Ολικά και τοπικά ακρότατα..εσωτερικά και συνοριακά ακρότατα 3.Χωριζόμενες μεταβλητές 4.Συνθήκες για ακρότατα 5.Ολικά ακρότατα κυρτών/κοίλων συναρτήσεων 6.Περισσότερες μεταβλητές.

Διαβάστε περισσότερα

B5. ΠΛΑΙΣΙΩΜΕΝΟΣ ΕΣΣΙΑΝΟΣ

B5. ΠΛΑΙΣΙΩΜΕΝΟΣ ΕΣΣΙΑΝΟΣ B5. ΠΛΑΙΣΙΩΜΕΝΟΣ ΕΣΣΙΑΝΟΣ 1.Περιορισμένη τετραγωνική μορφή. Χαρακτηρισμός πλαισιωμένων συμμετρικών πινάκων 3.Συνθήκες για περιορισμένα τοπικά ακρότατα 4.Περισσότερες μεταβλητές και περιορισμοί 5.Περιορισμένα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I 22 Διάρκεια εξέτασης: 2 ώρες και 15' 1 (4 μονάδες)

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I 22 Διάρκεια εξέτασης: 2 ώρες και 15' 1 (4 μονάδες) ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I Διάρκεια εξέτασης: ώρες και 15' 1 (4 μονάδες) f() α) Να βρεθούν γραφικά τα σημεία ισοελαστικότητας, αν υπάρχουν, της συνάρτησης f() που έχει το γράφημα του παραπλεύρως

Διαβάστε περισσότερα

(f,g) f(x,y,v, w) = xy v= 0 x (v,y) = = = = = 3. g(x,y,v,w) = x+ 2y w= 0. (x,y) g g 1 2. Λύση 2. Με πλεγμένη παραγώγιση ως προς v, με σταθερό w :

(f,g) f(x,y,v, w) = xy v= 0 x (v,y) = = = = = 3. g(x,y,v,w) = x+ 2y w= 0. (x,y) g g 1 2. Λύση 2. Με πλεγμένη παραγώγιση ως προς v, με σταθερό w : ΤΕΣΤ Β.λύσεις ΟΜΑΔΑ Ι Οι εξισώσεις: {=, + = w} ορίζουν πλεγμένα τα {,} ως συναρτήσεις των {,w}. Να βρεθεί η μερική παράγωγος του ως προς. Λύση. Με τους τύπους πλεγμένης παραγώγισης: (,g) (,,, w) = = (,)

Διαβάστε περισσότερα

f(x) Af(x) = και Mf(x) = f (x) x

f(x) Af(x) = και Mf(x) = f (x) x ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I Διάρκεια εξέτασης: ώρες και 5' (4 μονάδες) (α). Η συνάρτηση f() έχει το παραπλεύρως γράφημα με πλάγια ασύμπτωτο. Να δοθούν, στο ίδιο σύστημα συντεταγμένων, τα γραφήματα

Διαβάστε περισσότερα

ΤΕΣΤ Β2.λύσεις ΟΜΑΔΑ Ι

ΤΕΣΤ Β2.λύσεις ΟΜΑΔΑ Ι Η εξίσωση ΤΕΣΤ Β.λύσεις ΟΜΑΔΑ Ι αβ+ α = ορίζει πλεγμένα το ως συνάρτηση των {α,β}. Να βρεθούν η παράγωγος και η ελαστικότητα του ως προς β, στις τιμές: {α=,β =, = }. Λύση. Ο τύπος πλεγμένης παραγώγισης

Διαβάστε περισσότερα

E5 ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ II

E5 ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ II E5 ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ II 1.Εισροές-Συντελεστές παραγωγής.εκροές-παραγόμενα προιόντα 3.Εξωτερικότητες 4.Εισροές-Καταναλωτικά αγαθά 5.Καμπύλες αδιαφορίας 6.Βελτιστοποίηση Σε μια παραγωγική διαδικασία

Διαβάστε περισσότερα

g= x + y 1}. Να βρεθεί γραφικά και αναλυτικά η MR Π(Q) = R(Q) C(Q). Στο παραπλεύρως σχήμα

g= x + y 1}. Να βρεθεί γραφικά και αναλυτικά η MR Π(Q) = R(Q) C(Q). Στο παραπλεύρως σχήμα ΔΙΑΓΩΝΙΣΜΑ 0 Μέρος Α. (.6 μονάδες) α). Οι μεταβλητές {,,} συνδέονται με τις εξισώσεις κανόνας αλυσωτής παραγώγισης. { = e +, = ln}. Να επαληθευτεί ο β). Οι μεταβλητές {, y} συνδέονται με μια εξίσωση. Για

Διαβάστε περισσότερα

Af(x) = και Mf(x) = f (x) x

Af(x) = και Mf(x) = f (x) x ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι. Λύσεις 9 Διάρκεια εξέτασης: ώρες και 5' (4 μονάδες) (α). Η συνάρτηση f() έχει το παραπλεύρως γράφημα με πλάγια ασύμπτωτο. Να δοθούν, στο ίδιο σύστημα συντεταγμένων,

Διαβάστε περισσότερα

II.6 ΙΣΟΣΤΑΘΜΙΚΕΣ. 1. Γραφήματα-Επιφάνειες: z= 2. Γραμμική προσέγγιση-εφαπτόμενο επίπεδο. 3. Ισοσταθμικές: f(x, y) = c

II.6 ΙΣΟΣΤΑΘΜΙΚΕΣ. 1. Γραφήματα-Επιφάνειες: z= 2. Γραμμική προσέγγιση-εφαπτόμενο επίπεδο. 3. Ισοσταθμικές: f(x, y) = c II.6 ΙΣΟΣΤΑΘΜΙΚΕΣ.Γραφήματα-Επιφάνειες.Γραμμική προσέγγιση-εφαπτόμενο επίπεδο 3.Ισοσταθμικές 4.Κλίση ισοσταθμικών 5.Διανυσματική ή Ιακωβιανή παράγωγος 6.Ιδιότητες των ισοσταθμικών 7.κυρτότητα των ισοσταθμικών

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 13. A παραπλεύρως σχήματος. Να βρεθούν τα πρόσημα των μερικών

ΔΙΑΓΩΝΙΣΜΑ 13. A παραπλεύρως σχήματος. Να βρεθούν τα πρόσημα των μερικών Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 3. (4 μονάδες) (α). Να δοθεί το γράφημα μιας συνάρτησης f() f () της οποίας η παράγωγος έχει το γράφημα του παραπλεύρως σχήματος, και αρχική τιμή f() =. (β). Οι μεταβλητές {,} συνδέονται

Διαβάστε περισσότερα

B6. OΜΟΓΕΝΕΙΑ-ΔΙΑΦΟΡΙΚΑ

B6. OΜΟΓΕΝΕΙΑ-ΔΙΑΦΟΡΙΚΑ B6. OΜΟΓΕΝΕΙΑ-ΔΙΑΦΟΡΙΚΑ 1.Διαφορικά.Σχετικά ή ποσοστιαία διαφορικά 3.Λογισμός Διαφορικών 4.Ομογενείς συναρτήσεις μιας μεταβλητής 5.Ελαστικότητα κλίμακας 6.Ομογενής μηδενικού βαθμού 7.Ομογενής βαθμού κ

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 14. Μέρος Α

ΔΙΑΓΩΝΙΣΜΑ 14. Μέρος Α Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 14 1. (4 μονάδες) (α). Να δοθεί το γράφημα μιας συνάρτησης f() της οποίας η παράγωγος έχει το γράφημα του παραπλεύρως σχήματος, και αρχική τιμή f() =. (β). Να βρεθεί συνάρτηση f() σταθερής

Διαβάστε περισσότερα

1. Τετραγωνικές μορφές. x y 0. 0x y 0 1α 1β 2α 2β 3. 0x + y 0

1. Τετραγωνικές μορφές. x y 0. 0x y 0 1α 1β 2α 2β 3. 0x + y 0 Β4. ΕΣΣΙΑΝΟΣ ΠΙΝΑΚΑΣ-ΚΥΡΤΟΤΗΤΑ 1.Τετραγωνικές μορφές.χαρακτηρισμός συμμετρικών πινάκων 3.Δεύτερες μερικές παράγωγοι-εσσιανός πίνακας 4.Συνθήκες για ακρότατα 5.Κυρτές/κοίλες συναρτήσεις 6.Ολικά ακρότατα

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 11. (δ). Να βρεθεί η λύση της διαφορικής εξίσωσης: y = xy, που έχει θετικές τιμές: y 0 και ικανοποιεί: y(0) = 1. 2.

ΔΙΑΓΩΝΙΣΜΑ 11. (δ). Να βρεθεί η λύση της διαφορικής εξίσωσης: y = xy, που έχει θετικές τιμές: y 0 και ικανοποιεί: y(0) = 1. 2. ΔΙΑΓΩΝΙΣΜΑ 11 Μέρος Α 1. (4 μονάδες) (α). Να δοθεί το γράφημα μιας συνάρτησης () στο διάστημα, της οποίας η παράγωγος έχει το γράφημα του παραπλεύρως σχήματος. (β). Οι μεταβλητές {,} συνδέονται με την

Διαβάστε περισσότερα

που προκύπτουν στις δύο περιπτώσεις: (α) και (β) αντίστοιχα;

που προκύπτουν στις δύο περιπτώσεις: (α) και (β) αντίστοιχα; ΔΙΑΓΩΝΙΣΜΑ 9 Μέρος Α. (3.6 μονάδες) (α). Να γίνει το γράφημα της συνάρτησης f() = ln(+ ), και να βρεθεί γραφικά το σημείο ισοελαστικότητας. (β). Δίνεται η συνάρτηση f() = ln. Να διαπιστωθεί ότι είναι κυρτή

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 12., στο ίδιο σύστημα

ΔΙΑΓΩΝΙΣΜΑ 12., στο ίδιο σύστημα Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 1 1. (4 μονάδες) α). Η συνάρτηση () έχει το παραπλεύρως γράφημα. () Να βρεθούν τα γραφήματα της μέσης τιμής: A() = () / και του οριακού ρυθμού: M() = (), στο ίδιο σύστημα συντεταγμένων.

Διαβάστε περισσότερα

και να σχολιαστεί το αποτέλεσμα. ΤΕΛΟΣ

και να σχολιαστεί το αποτέλεσμα. ΤΕΛΟΣ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι 7 Διάρκεια εξέτασης: ώρες Μέρος Α. (4 μονάδες) (α). Μια συνάρτηση () έχει το γράφημα του παραπλεύρως σχήματος. Να γίνουν τα γραφήματα των συναρτήσεων () οριακής τιμής:

Διαβάστε περισσότερα

dy df(x) y= f(x) y = f (x), = dx dx θ x m= 1

dy df(x) y= f(x) y = f (x), = dx dx θ x m= 1 I. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ d df() = f() = f (), = d d.κλίση ευθείας.μεταολές 3.(Οριακός) ρυθμός μεταολής ή παράγωγος 4.Παράγωγοι ασικών συναρτήσεων 5. Κανόνες παραγώγισης 6.Αλυσωτή παράγωγος 7.Μονοτονία 8.Στάσιμα

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 8. Μέρος Α. 1. (3.2 μονάδες) Η συνάρτηση f(x) είναι ορισμένη στο διάστημα x 0,

ΔΙΑΓΩΝΙΣΜΑ 8. Μέρος Α. 1. (3.2 μονάδες) Η συνάρτηση f(x) είναι ορισμένη στο διάστημα x 0, Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 8. (3. μονάδες) Η συνάρτηση f() είναι ορισμένη στο διάστημα 0, και έχει το γράφημα του παραπλεύρως σχήματος. α). Να βρεθεί γραφικά το σημείο ισοελαστικότητας β). Να γίνουν τα γραφήματα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I ιαγώνισµα 24 ιάρκεια εξέτασης: 2 ώρες Θεωρία. 2 (4 µονάδες)

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I ιαγώνισµα 24 ιάρκεια εξέτασης: 2 ώρες Θεωρία. 2 (4 µονάδες) ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I ιαγώνισµα 4 ιάρκεια εξέτασης: ώρες Θεωρία (4 µονάδες) (α) Μια συνάρτηση f() έχει την παράγωγο του f () γραφήµατος παραπλεύρως. Να βρεθεί η µέγιστη τιµή της για, υποθέτοντας

Διαβάστε περισσότερα

I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ

I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ.Δεύτερη παράγωγος.παραβολική προσέγγιση ή επέκταση 3.Κυρτή 4.Κοίλη 5.Ιδιότητες κυρτών/κοίλων συναρτήσεων 6.Σημεία καμπής ΠΑΡΑΡΤΗΜΑ 7.Δεύτερη πλεγμένη παραγώγιση 8.Χαρακτηρισμός

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 1. Α Μέρος

ΔΙΑΓΩΝΙΣΜΑ 1. Α Μέρος Α Μέρος ΔΙΑΓΩΝΙΣΜΑ 1 1. (3.6 μονάδες) (α). Δίνεται η εξίσωση: = 8. Αν το ελαττωθεί από την τιμή = κατά 1%, να εκτιμηθεί η αντίστοιχη ποσοστιαία μεταβολή στην τιμή του. (β). Να διαπιστωθεί ότι η συνάρτηση

Διαβάστε περισσότερα

I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ

I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ.Δεύτερη παράγωγος.κυρτή 3.Κοίλη 4.Ιδιότητες κυρτών/κοίλων συναρτήσεων 5.Σημεία καμπής 6.Παραβολική προσέγγιση(επέκταση) ΠΑΡΑΡΤΗΜΑ 7.Δεύτερη πλεγμένη παραγώγιση 8.Χαρακτηρισμός

Διαβάστε περισσότερα

II.7 ΕΣΣΙΑΝΟΣ ΠΙΝΑΚΑΣ

II.7 ΕΣΣΙΑΝΟΣ ΠΙΝΑΚΑΣ II.7 ΕΣΣΙΑΝΟΣ ΠΙΝΑΚΑΣ.Τετραγωνικές μορφές.χαρακτηρισμός συμμετρικών πινάκων 3.Δεύτερες μερικές παράγωγοι-εσσιανός πίνακας 4.Κυρτές/κοίλες συναρτήσεις 5.Σταθμικές περιοχές κυρτών/κοίλων συναρτήσεων 6.Παραβολική

Διαβάστε περισσότερα

Θεωρία. έχει το γράφηµα του παραπλεύρως σχήµατος.

Θεωρία. έχει το γράφηµα του παραπλεύρως σχήµατος. ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I ιαγώνισµα 6 ιάρκεια εξέτασης: ώρες Θεωρία. (4 µονάδες) α) Να γίνει το γράφηµα µιας συνεχούς συνάρτησης f() της οποίας η παράγωγος f () έχει το γράφηµα του παραπλεύρως

Διαβάστε περισσότερα

αx αx αx αx 2 αx = α e } 2 x x x dx καλείται η παραβολική συνάρτηση η οποία στο x

αx αx αx αx 2 αx = α e } 2 x x x dx καλείται η παραβολική συνάρτηση η οποία στο x A3. ΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ. εύτερη παράγωγος.παραβολική προσέγγιση ή επέκταση 3.Κυρτή 4.Κοίλη 5.Ιδιότητες κυρτών/κοίλων συναρτήσεων 6.Σηµεία καµπής ΠΑΡΑΡΤΗΜΑ 7. εύτερη πλεγµένη παραγώγιση 8.Χαρακτηρισµός

Διαβάστε περισσότερα

(iii) Να βρεθεί το δεσμευμένο στάσιμο της συνάρτησης f(x, y) = x + y με τον περιορισμό:

(iii) Να βρεθεί το δεσμευμένο στάσιμο της συνάρτησης f(x, y) = x + y με τον περιορισμό: ΔΙΑΓΩΝΙΣΜΑ 1 (3 μονάδες) (i) Δίνονται οι παραμετρικές εξισώσεις: = ln(t+ 1), y= t + t. Να υπολογιστεί η παράγωγος του ως προς y, όταν t= 0. (ii) Δίνεται η συνάρτηση: f() = p+. Να διερευνηθεί αν είναι κυρτή

Διαβάστε περισσότερα

EIII.9 ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΤΗ ΚΑΤΑΝΑΛΩΣΗ

EIII.9 ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΤΗ ΚΑΤΑΝΑΛΩΣΗ EIII.9 ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΤΗ ΚΑΤΑΝΑΛΩΣΗ.Εισοδηματικός περιορισμός.μεγιστοποίηση χρησιμότητας 3.Γραμμική χρησιμότητα 4.Λογαριθμική χρησιμότητα τύπου C-D 5.Χρησιμότητα τύπου Leontief-min 6.Μεγιστοποίηση χρησιμότητας-κανονικές

Διαβάστε περισσότερα

ΤΕΣΤ Α2 ΟΜΑΔΑ Ι. παράγωγος είναι αρνητική: f (x) = 1 2x, f

ΤΕΣΤ Α2 ΟΜΑΔΑ Ι. παράγωγος είναι αρνητική: f (x) = 1 2x, f ΤΕΣΤ Α ΟΜΑΔΑ Ι Θεωρούμε την συνάρτηση: f() = pln(+ ) για, με p>. Να διερευνηθεί αν είναι κυρτή η κοίλη. Να βρεθούν οι τιμές της παραμέτρου p για τις οποίες η μέγιστη τιμή της βρίσκεται στο =.. Η συνάρτηση

Διαβάστε περισσότερα

A2. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ

A2. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ A. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ d df() = f() = f (), = d d.κλίση ευθείας.μεταβολές 3.(Οριακός) ρυθµός µεταβολής ή παράγωγος 4.Παράγωγοι βασικών συναρτήσεων 5. Κανόνες παραγώγισης 6.Αλυσωτή παράγωγος 7.Μονοτονία

Διαβάστε περισσότερα

E4. ΕΛΑΣΤΙΚΟΤΗΤΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ

E4. ΕΛΑΣΤΙΚΟΤΗΤΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ E4. ΕΛΑΣΤΙΚΟΤΗΤΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ.Παραδείγματα αναλυτικά.παραδείγματα αριθμητικά 3.Ελαστικότητα ζήτησης 4.Ελαστικότητα προσφοράς 5. Έσοδο 6.Κέρδος μονοπωλίου. Παραδείγματα αναλυτικά Παράδειγμα. Σε μια οικονομία

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι 15 Διάρκεια εξέτασης: 2 ώρες

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι 15 Διάρκεια εξέτασης: 2 ώρες ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι 15 Διάρκεια εξέτασης: ώρες Μέρος Α 1. (4 μονάδες) (α). Να γίνει το γράφημα μιας συνεχούς συνάρτησης f() της οποίας η παράγωγος έχει το γράφημα του παραπλεύρως σχήματος.

Διαβάστε περισσότερα

1. Ισοσταθμικές: f(x, y) = c. Θεωρούμε μια συνάρτηση δύο μεταβλητών και την παράστασή της ως επιφάνεια στον τρισδιάστατο χώρο:

1. Ισοσταθμικές: f(x, y) = c. Θεωρούμε μια συνάρτηση δύο μεταβλητών και την παράστασή της ως επιφάνεια στον τρισδιάστατο χώρο: Β. ΙΣΟΣΤΑΘΜΙΚΕΣ-ΙΑΚΩΒΙΑΝΕΣ ΟΡΙΖΟΥΣΕΣ 1.Ισοσταθμικές.Εξίσωση υποκατάστασης-ρυθμός υποκατάστασης 3.Κλίση ισοσταθμικών 4.Κυρτότητα ισοσταθμικών 5.Εξαρτημένες συναρτήσεις 6.Επιμέρους ρυθμοί υποκατάστασης 7.Ιακωβιανές

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ Έννοια συνάρτησης Παραγώγιση Ακρότατα Ασκήσεις Βασικές έννοιες Στην Οικονομία, τα περισσότερα από τα μετρούμενα μεγέθη, εξαρτώνται από άλλα μεγέθη. Π.χ η ζήτηση από την τιμή,

Διαβάστε περισσότερα

1. ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ

1. ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ . ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ. Μέγιστα και Ελάχιστα Συναρτήσεων Χωρίς Περιορισμούς Συναρτήσεις μιας Μεταβλητής Εστω f ( x) είναι συνάρτηση μιας μόνο μεταβλητής. Εστω επίσης ότι x είναι ένα σημείο στο πεδίο ορισμού

Διαβάστε περισσότερα

I.1 ΣΥΝΑΡΤΗΣΕΙΣ-ΕΞΙΣΩΣΕΙΣ: {f(x), y= f(x), y= y(x), F(x, y) = c}

I.1 ΣΥΝΑΡΤΗΣΕΙΣ-ΕΞΙΣΩΣΕΙΣ: {f(x), y= f(x), y= y(x), F(x, y) = c} I. ΣΥΝΑΡΤΗΣΕΙΣ-ΕΞΙΣΩΣΕΙΣ: {f(), = f(), = (), F(, ) = c}.μηδενικά.μονοτονίες 3.Ασυνέχειες 4.Θετικές δυνάμεις 5.Αρνητικές δυνάμεις 6.Εκθετική 7.Λογαριθμική 8.Αλλαγή βάσης 9.Πολυωνυμικές.Ρητές.Σύνθεση.Πλεγμένες

Διαβάστε περισσότερα

E7 ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΤΗ ΚΑΤΑΝΑΛΩΣΗ

E7 ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΤΗ ΚΑΤΑΝΑΛΩΣΗ E7 ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΤΗ ΚΑΤΑΝΑΛΩΣΗ.Εισοδηματικός περιορισμός.μεγιστοποίηση χρησιμότητας 3.Γραμμική χρησιμότητα 4.Λογαριθμική χρησιμότητα τύπου -D 5.Χρησιμότητα τύπου Lontif-min 6.Μεγιστοποίηση χρησιμότητας-κανονικές

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 5. Μέρος Α

ΔΙΑΓΩΝΙΣΜΑ 5. Μέρος Α Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 5 1. (4 μονάδες) α). Θεωρούμε τη σχέση = 3. Να εκτιμηθεί η ποσοστιαία μεταβολή του που θα προκαλέσει μείωση του κατά 1% από την αρχική τιμή =. β). Να διαπιστωθεί ότι η συνάρτηση () =

Διαβάστε περισσότερα

Συναρτήσεις Παραγωγής-Συναρτήσεις Κόστους

Συναρτήσεις Παραγωγής-Συναρτήσεις Κόστους Συναρτήσεις Παραγωγής-Συναρτήσεις Κόστους Σε μια παραγωγική διαδικασία διακρίνουμε τις εισροές (inpts) που αφορούν τους συντελεστές παραγωγής (factors of prodction), και τις εκροές (otpts) που αφορούν

Διαβάστε περισσότερα

Συμπεριφορά συναρτήσεως σε κλειστές φραγμένες περιοχές. (x 0, y 0, f(x 0, y 0 ) z = L(x, y)

Συμπεριφορά συναρτήσεως σε κλειστές φραγμένες περιοχές. (x 0, y 0, f(x 0, y 0 ) z = L(x, y) 11.7. Aκρότατα και σαγματικά σημεία 903 39. Εκτίμηση μέγιστου σφάλματος Έστω ότι u e sin και ότι τα,, και μπορούν να μετρηθούν με μέγιστα δυνατά σφάλματα 0,, 0,6, και / 180, αντίστοιχα. Εκτιμήστε το μέγιστο

Διαβάστε περισσότερα

B1. ΜΕΡΙΚΗ ΠΑΡΑΓΩΓΟΣ-ΑΛΥΣΩΤΗ ΠΑΡΑΓΩΓΙΣΗ

B1. ΜΕΡΙΚΗ ΠΑΡΑΓΩΓΟΣ-ΑΛΥΣΩΤΗ ΠΑΡΑΓΩΓΙΣΗ B1. ΜΕΡΙΚΗ ΠΑΡΑΓΩΓΟΣ-ΑΛΥΣΩΤΗ ΠΑΡΑΓΩΓΙΣΗ 1.Συναρτήσεις δύο µεταβλητών.μερικές παράγωγοι 3.Γραφήµατα-Επιφάνειες 4.Ειδικές συναρτήσεις 5.Μερικές ελαστικότητες 6.Γραµµική προσέγγιση-εφαπτόµενο επίπεδο 7.Μονοτονία

Διαβάστε περισσότερα

C(Q) FC. } τα επίπεδα παραγωγής με ελάχιστο μέσο μεταβλητό κόστος p

C(Q) FC. } τα επίπεδα παραγωγής με ελάχιστο μέσο μεταβλητό κόστος p EI.. ΜΕΣΟ ΚΟΣΤΟΣ.Μέσο κόστος(α).ελάχιστο μέσο κόστος 3.Μέσο προιόν(a).μέγιστο μέσο προιόν 5.Κερδοφορία. Μέσο κόστος Θεωρούμε το κόστος παραγωγής ενός προιόντος ως συνάρτηση της ποσότητας παραγωγής, και

Διαβάστε περισσότερα

IV.13 ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1 ης ΤΑΞΕΩΣ

IV.13 ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1 ης ΤΑΞΕΩΣ IV.3 ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ης ΤΑΞΕΩΣ.Γενική λύση.χωριζόμενων μεταβλητών 3.Ρυθμοί 4.Γραμμικές 5.Γραμμική αυτόνομη 6.Bernoulli αυτόνομη 7.Aσυμπτωτικές ιδιότητες 8.Αυτόνομες 9.Σταθερές τιμές.διάγραμμα ροής.ασυμπτωτική

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ Έννοια συνάρτησης δύο μεταβλητών Ισουψείς καμπύλες Παραγώγιση Μερικές παράγωγοι πρώτου και δευτέρου βαθμού Ασκήσεις Βασικές έννοιες Στην Οικονομία, τα περισσότερα από τα μετρούμενα

Διαβάστε περισσότερα

E1. ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ Ι

E1. ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ Ι E. ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ Ι.Κόστος.Παραγωγή 3.Χρησιµότητα 4.Ζήτηση-Προσφορά 5.Φόρος. Κόστος Θεωρούµε ότι το κόστος παραγωγής (cost) ενός προιόντος είναι συνάρτηση της ποσότητας παραγωγής (production)

Διαβάστε περισσότερα

Κεφάλαιο 2. Τα μαθηματικά της αριστοποίησης ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΑΡΙΣΤΟΠΟΙΗΣΗΣ. Τιμή μιας παραγώγου σ ένα σημείο. Παράγωγοι

Κεφάλαιο 2. Τα μαθηματικά της αριστοποίησης ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΑΡΙΣΤΟΠΟΙΗΣΗΣ. Τιμή μιας παραγώγου σ ένα σημείο. Παράγωγοι Κεφάλαιο ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΑΡΙΣΤΟΠΟΙΗΣΗΣ Τα μαθηματικά της αριστοποίησης Πολλές οικονομικές θεωρίες ξεκινούν με την υπόθεση ότι ένα άτομο ή επιχείρηση επιδιώκουν να βρουν την άριστη τιμή μιας συνάρτησης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 22Νοεμβρίου 2015 ΑΥΞΟΥΣΕΣ ΦΘΙΝΟΥΣΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Αν μια συνάρτηση f ορίζεται σε ένα διάστημα

Διαβάστε περισσότερα

Παράγωγοι ανώτερης τάξης

Παράγωγοι ανώτερης τάξης Παράγωγοι ανώτερης τάξης Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Διαφορικά Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglks.gr 3 / 1 0 / 0 1 6 σε μερικές παραγώγους σε μέγιστα, ελάχιστα

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 6. 1}. Να βρεθούν οι τιμές της θετικής παραμέτρου p> 0, για τις οποίες η λύση είναι συνοριακή:

ΔΙΑΓΩΝΙΣΜΑ 6. 1}. Να βρεθούν οι τιμές της θετικής παραμέτρου p> 0, για τις οποίες η λύση είναι συνοριακή: Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 6 1. (3.9 μονάδες) (α). Η συνάρτηση f(x) έχει το γράφημα του παραπλεύρως σχήματος. Να βρεθεί γραφικά το σημείο ισοελαστικότητας: Ef(x) =± 1. Να γίνει το γράφημα της συνάρτησης Af(x)

Διαβάστε περισσότερα

Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17

Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 Περιεχόμενα Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 ΚΕΦΑΛΑΙΟ 1. Το σύνολο των πραγματικών αριθμών... 19 1.1 Σύνολα αριθμών... 19 1.2 Αλγεβρική δομή του R... 20 1.2.1 Ιδιότητες πρόσθεσης...

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) Παράγωγος-Κλίση-Μονοτονία ( ) ( ) β = Άσκηση 1 η : Να βρεθούν οι παράγωγοι των συναρτήσεων: log x. 2 x. ln(x, ( ) 2 x x. Έχουμε.

( ) ( ) ( ) ( ) Παράγωγος-Κλίση-Μονοτονία ( ) ( ) β = Άσκηση 1 η : Να βρεθούν οι παράγωγοι των συναρτήσεων: log x. 2 x. ln(x, ( ) 2 x x. Έχουμε. Παράγωγος-Κλίση-Μονοτονία Άσκηση η : Να βρεθούν οι παράγωγοι των συναρτήσεων:, log, ) ln(, e, Λύση: Έχουμε ln ln ( ), f = = e = e R ln ln f ( ) = ( e ) = e ( ln ) = ln = ln, R Γενικά ισχύει: ( a ) = ln

Διαβάστε περισσότερα

Προσφορά Εργασίας Προτιμήσεις και Συνάρτηση Χρησιμότητας ( Χ,Α συνάρτηση χρησιμότητας U(X,A)

Προσφορά Εργασίας Προτιμήσεις και Συνάρτηση Χρησιμότητας ( Χ,Α συνάρτηση χρησιμότητας U(X,A) Προσφορά Εργασίας - Έστω ότι υπάρχουν δύο αγαθά Α και Χ στην οικονομία. Το αγαθό Α παριστάνει τα διάφορα καταναλωτικά αγαθά. Το αγαθό Χ παριστάνει τον ελεύθερο χρόνο. Προτιμήσεις και Συνάρτηση Χρησιμότητας

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 4 ΟΚΤΩΒΡΙΟΥ 2016 ΓΡΑΜΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ι Κεντρική έννοια το μέτρο ή ρυθμός μεταβολής:

Διαβάστε περισσότερα

2 η ΕΡΓΑΣΙΑ Παράδοση

2 η ΕΡΓΑΣΙΑ Παράδοση η ΕΡΓΑΣΙΑ Παράδοση --8 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες Άσκηση η Υπολογίστε τα κάτωθι όρια: cos α) β) γ) δ) ε) sin 5 α) Εφαρμόζουμε τον κανόνα L Hospital μια φορά (απροσδιοριστία της μορφής /)

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 5 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση... Error! Bookmark not defned. Σκοποί Μαθήματος (Επικεφαλίδα

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Α

ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Α ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ Ερώτηση θεωρίας 1 ΘΕΜΑ Α Τι ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ 48 49 5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ 5 ΕΙΣΑΓΩΓΗ ΟΡΙΣΜΟΣ: Κάθε συνάρτηση : A B με Α R n και Β R ονομάζεται πραγματική συνάρτηση n μεταβλητών ΠΑΡΑΤΗΡΗΣΕΙΣ: Ι Αν Α R n και Β R n τότε έχουμε διανυσματική συνάρτηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΚΑΛΟΓΗΡΑΤΟΥ Ζ. - ΜΟΝΟΒΑΣΙΛΗΣ Θ. ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ Μεγιστοποίηση εμβαδού με τον περιορισμό της περιμέτρου

Διαβάστε περισσότερα

Λύσεις στο Επαναληπτικό Διαγώνισμα 2

Λύσεις στο Επαναληπτικό Διαγώνισμα 2 Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Λύσεις στο Επαναληπτικό Διαγώνισμα 2 Για τυχόν παρατηρήσεις, απορίες ή λάθη που θα βρείτε, στείλτε μου

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

Διάλεξη 5- Σημειώσεις

Διάλεξη 5- Σημειώσεις Διάλεξη 5- Σημειώσεις 1 Κοίλες (concave) και κυρτές (convex) συναρτήσεις Σημείωση: Μόνο για συναρτήσεις που είναι συνεχείς σε ένα (κυρτό) διάστημα R και παραγωγίσιμες τουλάχιστον δύο φορές στο εσωτερικό

Διαβάστε περισσότερα

Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων:

Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων: Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων: Φάμπιο Αντωνίου Στοιχεία Επικοινωνίας: email: fantoniou@cc.uoi.gr Τηλ:651005954 Προσωπική Ιστοσελίδα: fantoniou.wordpress.com Γραφείο: Κτίριο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙ

ΜΑΘΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙ ΜΑΘΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙ Ακρότατα Δρ. Ιωάννης Ε. Λιβιέρης Τμήμα Μηχανικών Πληροφορικής Τ.Ε. TEI Δυτικής Ελλάδας 2 Ακρότατα συνάρτησης Έστω συνάρτηση f A R 2 R και ένα σημείο P(x, y ) A. Η τιμή f(x, y )

Διαβάστε περισσότερα

Η ΘΕΩΡΙΑ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ

Η ΘΕΩΡΙΑ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΘΗΓΗΤΗΣ ΚΩΣΤΑΣ ΒΕΛΕΝΤΖΑΣ Η ΘΕΩΡΙΑ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ. Μερικές έννοιες Η συνάρτηση παραγωγής (, ), όπου είναι το συνολικό προϊόν και και οι συντελεστές

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 6 KΕΦΑΛΑΙΟ 3 ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ Η θεωρία μεγίστων και ελαχίστων μιας πραγματικής συνάρτησης με μια μεταβλητή είναι γνωστή Στο κεφάλαιο αυτό θα δούμε τη θεωρία μεγίστων και ελαχίστων

Διαβάστε περισσότερα

Notes. Notes. Notes. Notes. C = p x x 1 + p y y 1. pxx + pyy = 160

Notes. Notes. Notes. Notes. C = p x x 1 + p y y 1. pxx + pyy = 160 Ελαχιστοποίηση κόστους Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. 9 Οκτωβρίου 2012 Κώστας Ρουμανιάς (Δ.Ε.Ο.Σ.) Ελαχιστοποίηση κόστους 9 Οκτωβρίου 2012 1 / 36 Κόστος Το πρόβλημα εύρεσης ενός άριστου καλαθιού

Διαβάστε περισσότερα

Συνοπτική θεωρία - Τι να προσέχουμε Ασκήσεις Θέματα από Πανελλαδικές. γ) g( x) e 2. ln( x 1) 3. x x. ζ) ( x) ln(9 x2) ια) ( ) ln x 1

Συνοπτική θεωρία - Τι να προσέχουμε Ασκήσεις Θέματα από Πανελλαδικές. γ) g( x) e 2. ln( x 1) 3. x x. ζ) ( x) ln(9 x2) ια) ( ) ln x 1 Κεφ ο : Διαφορικός Λογισμός Συνοπτική θεωρία - Τι να προσέχουμε Θέματα από Πανελλαδικές Α Πεδίο ορισμού συνάρτησης (Περιορισμούς για το χ ) Όταν έχουμε κλάσμα πρέπει : παρονομαστής 0 Όταν έχουμε ρίζα πρέπει

Διαβάστε περισσότερα

1.2 Εξισώσεις 1 ου Βαθμού

1.2 Εξισώσεις 1 ου Βαθμού 1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ www.apodeiis.gr ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ 1 1. Να βρείτε το πεδίο ορισμού των συναρτήσεων: 1 i. ii. 1. Να βρείτε τα πεδία ορισμού των συναρτήσεων: i. 1 1 ii. ln. Δίνεται η συνάρτηση g, i. Να αποδείξετε

Διαβάστε περισσότερα

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ. i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( x )

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ. i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( x ) () Μονοτονία ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( ) και βρίσκω το πρόσηµό της ii) Αν προκύψει να είναι αύξουσα ή φθίνουσα,

Διαβάστε περισσότερα

Διαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση;

Διαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση; Κεφάλαιο 1 Διαφορικός Λογισμός 1.1 Συναρτήσεις Κατανόηση εννοιών - Θεωρία 1. Τι ονομάζουμε συνάρτηση; 2. Πως ορίζονται οι πράξεις της πρόσθεσης, της διαφοράς, του γινομένου και του πηλίκου μεταξύ δύο συναρτήσεων;

Διαβάστε περισσότερα

,, δηλαδή στο σημείο αυτό παρουσιάζει τη μέγιστη τιμή της αν α < 0 2α 4α και την ελάχιστη τιμή της αν α > 0. β Στο διάστημα,

,, δηλαδή στο σημείο αυτό παρουσιάζει τη μέγιστη τιμή της αν α < 0 2α 4α και την ελάχιστη τιμή της αν α > 0. β Στο διάστημα, Γενικής Παιδείας 1.4 Εφαρμογές των παραγώγων Το κριτήριο της πρώτης παραγώγου Στην Άλγεβρα της Α Λυκείου μελετήσαμε τη συνάρτηση f(x) = αx + βx + γ, α 0 και είδαμε ότι η γραφική της παράσταση είναι μία

Διαβάστε περισσότερα

3.7 Παραδείγματα Μεθόδου Simplex

3.7 Παραδείγματα Μεθόδου Simplex 3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x

Διαβάστε περισσότερα

Μαθηματικά Γενικής Παιδείας. iv) f(x)= v) f(x)= ln(x 2-4) vi) f(x) =, v) f(x) = 6 x 5. vi) vii) f(x) = ln(x 2-2) viii) f(x) = lnx 2.

Μαθηματικά Γενικής Παιδείας. iv) f(x)= v) f(x)= ln(x 2-4) vi) f(x) =, v) f(x) = 6 x 5. vi) vii) f(x) = ln(x 2-2) viii) f(x) = lnx 2. Ερωτήσεις ανάπτυξης Β. Να βρεθούν τα πεδία ορισμού των συναρτήσεων: 5 4 i) f() = ii) f()= iii) f()= iv) f()= ln( ) e v) f()= ln( -4) 4 4 vi) f() =, 5. Να βρείτε το πεδίο ορισμού των συναρτήσεων f με τύπο:

Διαβάστε περισσότερα

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/2017. Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης. dy dx = 2y + x 2 y 2 2x

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/2017. Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης. dy dx = 2y + x 2 y 2 2x Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/017 Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης dx y + x y. x Παρατηρούμε ότι η δ.ε. είναι ομογενής. Πράγματι, dx y x + 1 x y x y x + 1 (

Διαβάστε περισσότερα

Γενικά Μαθηματικά (Φυλλάδιο 1 ο )

Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Περιλαμβάνει: ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΚΕΦΑΛΑΙΟ : ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα

1. Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου Β είναι συνάρτηση.

1. Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου Β είναι συνάρτηση. Μαθηματικά Γενικής Παιδείας Ανάλυση o Κεφάλαιο ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου

Διαβάστε περισσότερα

Συνάρτηση χρησιμότητας (utility function): u(x)

Συνάρτηση χρησιμότητας (utility function): u(x) Συνάρτηση χρησιμότητας (utility function): u(x) είναι ένας τρόπος να δώσουμε έναν αριθμό σε κάθε δυνατό συνδυασμό κατανάλωσης, τέτοιο ώστε να δίνονται μεγαλύτεροι αριθμοί στους πλέον προτιμώμενους συνδυασμούς

Διαβάστε περισσότερα

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΦΥΕ10 (Γενικά Μαθηματικά Ι) ΠΕΡΙΕΧΕΙ ΤΙΣ

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ Α. ΟΜΑΔΑ Ι 1 α) Η ποσότητα ζήτησης Q ενός αγαθού εξαρτάται από την μοναδιαία τιμή του P και από το

ΕΦΑΡΜΟΓΕΣ Α. ΟΜΑΔΑ Ι 1 α) Η ποσότητα ζήτησης Q ενός αγαθού εξαρτάται από την μοναδιαία τιμή του P και από το ΕΦΑΡΜΟΓΕΣ Α. ΟΜΑΔΑ Ι 1 α) Η ποσότητα ζήτησης ενός αγαθού εξαρτάται από την μοναδιαία τιμή του P και από το εισόδημα Y, σύμφωνα με την σχέση: = P Y. Αν η τιμή αυξηθεί κατά %, να εκτιμηθεί πόσο πρέπει να

Διαβάστε περισσότερα

Μαθηματικά ΜΕΡΟΣ 3 ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

Μαθηματικά ΜΕΡΟΣ 3 ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Μαθηματικά ΜΕΡΟΣ 3 ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Αν έχουμε m εξισώσεις (ισότητες) που περιγράφουν μαθηματικά

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι ΚΕΦΑΛΑΙΟ 3 Ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ. Ποια είναι η μορφή ενός συστήματος δύο γραμμικών εξισώσεων, δύο αγνώστων; Να δοθεί παράδειγμα.

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ι. Δημόπουλος Τμήμα Διοίκησης Μονάδων Υγείας και Πρόνοιας -ΤΕΙ Καλαμάτας ΚΑΠΟΙΟΙ ΒΑΣΙΚΟΙ ΣΥΜΒΟΛΙΣΜΟΙ ΚΑΙ ΕΝΝΟΙΕΣ Ν = {1,2,3,...} το σύνολο των φυσικών αριθμών Ζ = {0, ±1, ±2, ±3,..

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ Χ. Τσιρώνης ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Αναλυτικές τεχνικές - Ειδικά θέματα θεωρίας - Λύση ασκήσεων πράξης ΑΝΑΛΥΤΙΚΕΣ ΤΕΧΝΙΚΕΣ Τι μάθαμε μέχρι τώρα: Να επιλύουμε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ 000 ΘΕΜΑ ο Α.α) Δίνεται η συνάρτηση F f g αποδείξετε ότι: F f g. cf,. Αν οι συναρτήσεις

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 11 ΟΚΤΩΒΡΙΟΥ 2016 ΜΗ ΓΡΑΜΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Οικονομικές Συναρτήσεις με μεταβλητούς ρυθμούς

Διαβάστε περισσότερα

1.1 ΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ

1.1 ΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ . ΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ Α. ΣΥΝΑΡΤΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΕΥΡΕΣΗ ΠΕΔΙΟΥ ΟΡΙΣΜΟΥ ΣΥΝΑΡΤΗΣΗΣ ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ ΣΥΝΑΡΤΗΣΗ ΠΕΡΙΟΡΙΣΜΟΣ P Q Q v P P ln P P P P, P P, Q P P Ποιο είναι το πεδίο ορισμού των

Διαβάστε περισσότερα

Επιχειρησιακά Μαθηματικά (1)

Επιχειρησιακά Μαθηματικά (1) Τηλ:10.93.4.450 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Α Επιχειρησιακά Μαθηματικά (1) ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 01 Τηλ:10.93.4.450 ΚΕΦΑΛΑΙΟ 1 Ο Συνάρτηση μιας πραγματικής μεταβλητής Ορισμός : Συνάρτηση f μιας πραγματικής

Διαβάστε περισσότερα

IV.11 ΕΛΑΣΤΙΚΟΤΗΤΑ-ΡΥΘΜΟΣ ΑΝΑΠΤΥΞΗΣ

IV.11 ΕΛΑΣΤΙΚΟΤΗΤΑ-ΡΥΘΜΟΣ ΑΝΑΠΤΥΞΗΣ IV. ΕΛΑΣΤΙΚΟΤΗΤΑ-ΡΥΘΜΟΣ ΑΝΑΠΤΥΞΗΣ.Ελαστικότητα.Χαρακτηρισμός ελαστικότητας 3.Σχετικά διαφορικά 4.Ελαστικότητα αντίστροφης 5.Ομογενείς συναρτήσεις 6.Λογισμός ρυθμών και διαφορικών 7.Λογαριθμική κλίμακα.

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ Α.ΛΥΣΕΙΣ ΟΜΑ Α Ι

ΕΦΑΡΜΟΓΕΣ Α.ΛΥΣΕΙΣ ΟΜΑ Α Ι ΕΦΑΡΜΟΓΕΣ Α.ΛΥΣΕΙΣ ΟΜΑ Α Ι α) Η ποσότητα ζήτησης ενός αγαθού εξαρτάται από την µοναδιαία τιµή του P και από το εισόδηµα Y, σύµφωνα µε την σχέση: = P Y. Αν η τιµή αυξηθεί κατά %, να εκτιµηθεί πόσο πρέπει

Διαβάστε περισσότερα

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες

Διαβάστε περισσότερα

f f 2 0 B f f 0 1 B 10.3 Ακρότατα υπό συνθήκες Πολλαπλασιαστές του Lagrange

f f 2 0 B f f 0 1 B 10.3 Ακρότατα υπό συνθήκες Πολλαπλασιαστές του Lagrange Μέγιστα και ελάχιστα 39 f f B f f yx y x xy Οι ιδιοτιμές του πίνακα Β είναι λ =-, λ =- και οι δυο αρνητικές, άρα το κρίσιμο σημείο (,) είναι σημείο τοπικού μεγίστου. Εφαρμογή 6: Στο παράδειγμα 3 ο αντίστοιχος

Διαβάστε περισσότερα

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Τσελεκούνης Μάρκος Επίκουρος Καθηγητής Τμήμα Οικονομικής Επιστήμης mtselek@unipi.gr http://www.unipi.gr/unipi/en/mtselek.html Γραφείο 516 Ώρες Γραφείου: Τετάρτη 12:00-14:00 ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α Ερώτηση θεωρίας Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c είναι μια πραγματική σταθερά, να δείξετε ότι: ( c f( )) = c f ( ),. Έστω F( )

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα