Η ζήτηση ενός προϊόντος εξαρτάται από την τιμή του
|
|
- Σκύλλα Ηλιόπουλος
- 9 χρόνια πριν
- Προβολές:
Transcript
1 ΣΥΜΒΟΛΙΣΜΟΙ - ΕΝΝΟΙΕΣ Q ή q : Ποσότητα (Quantity) προϊόντος ρ, Ρ : τιμή (Price) προϊόντος ανά μονάδα προϊόντος. Συνάρτηση τηςζητησης; Η ζήτηση ενός προϊόντος εξαρτάται από την τιμή του. Δηλαδή Qd = f(p). Ρ=η τιμή του προϊόντος, η συνάρτηση της ζήτησης είναι μια γραμμική φθίνουσα συνάρτηση της τιμής της, Συνάρτηση προσφοράς Η συνάρτηση της προσφοράς είναι μία μαθηματική σχέση που παρουσιάζει τον τρόπο με τον οποίο η προσφερόμενη ποσότητα ενός αγαθού ή υπηρεσίας αντιδρά στις μεταβολές των παραγόντων που επηρεάζουν την προσφορά. δηλαδή Q s =f(p) ή ειδικότερα ως μία γραμμική αύξουσα συνάρτηση Είναι γενικά παραδεκτό ότι η συνάρτηση της προσφοράς είναι αύξουσα συνάρτηση, δηλαδή ότι όσο μεγαλύτερες τιμές απολαμβάνει ο προμηθευτής τόσο πιο πολύ αυξάνει την ποσότητα των προϊόντων του που φέρνει στην αγορά προς κατανάλωση Ισορροπία τηςαγοράς Συνδυάζοντας στην ίδια γραφική παράσταση τα διαγράμματα προσφοράς και ζήτησης έχουμε:
2 Εχουμε ισορροπια όταν Qd= Q s Σημείο ισορροπίας : η τιμή της μονάδας προϊόντος ρ όταν η ζήτηση είναι ίση με προσφορά Ορισμοί Βασικών οικονομικών μεγεθών Συνολικά έσοδα (total revenue, TR) Μπορούν να περιγραφούν ως συνάρτηση των μονάδων πώλησης: TR(Q)=P*Q όπου Ρ είναι η τιμή πώλησης μιας μονάδας προϊόντος και Q οι συνολικές μονάδες που πωλούνται. Τα έσοδα δίνονται από την σχέση R = p.q (τιμή ποσότητα) Παρατήρηση : Εάν δίνεται η συνάρτηση ζήτησης D(p), για να βρούμε την συνάρτηση εσόδων R(q), επιλύουμε την συνάρτηση ζήτησης D(p) ως προς την τιμή της μονάδας προϊόντος ρ και αντικαθιστούμε στη σχέση R=pq. Έτσι έχουμε τα έσοδα R συναρτήσει της ποσότητας παραγωγής q.
3 Π.χ. η συνάρτηση της ζήτησης εάν P=500-0,02Q, τότε TR=PQ=(500-0,02Q)Q=500Q-0,02Q 2 Μέσα έσοδα (average revenue AR) Προκύπτουν αν διαιρέσουμε τα συνολικά έσοδα με το πλήθος των μονάδων πώλησης AR = TR/Q = (500Q-0,02Q 2 )/Q= 500-0,02Q Συνολικό κόστος παραγωγής (totalcost, TC) Μπορεί να περιγραφεί ως συνάρτηση των μονάδων παραγωγής (Q) δηλαδή TC =f(q). Συνήθως το κόστος παραγωγής δίνεται ως άθροισμα του σταθερού κόστους παραγωγής (fixedcost, ανεξάρτητου από πόσες μονάδες παράγονται) και του μεταβλητού κόστους παραγωγής (variablecost, ανάλογου των μονάδων που παράγονται), δηλαδή: TC(Q)=FC+VC(Q) FC : Σταθερό κόστος (FixedCost) Προκύπτει για Q=0 από τη συνάρτηση συνολικού κόστους FC = TC(0) ή C(0) VC : Μεταβλητό κόστος το ολικό κόστος παραγωγής Q μονάδων προϊόντος στην περίπτωση που FC = 0. Κέρδος (profit) Μπορεί να περιγραφεί ως συνάρτηση των μονάδων παραγωγής (Θεωρούμε ότι οι μονάδες προϊόντος που παράγονται είναι ίδιες με αυτές που πωλούνται) και ισούται με την διαφορά των συνολικών εσόδων και συνολικού κόστους, δηλαδή: Π(Q)=TR(Q)-TC(Q) Μεσο (Αverage κέρδος, κόστος, έσοδο, κ.λπ Προκύπτουν αν διαιρέσουμε την συνάρτηση κέρδος, κόστος, έσοδο, κ.λπ Με την μεταβλητή της Οριακό (marginal, κέρδος, κόστος, έσοδο, κ.λπ) Είναι η παράγωγος της αντίστοιχης συνάρτησης ΟΡΙΑΚΑ ΜΕΓΕΘΗ - ΥΠΟΛΟΓΙΣΜΟΙ
4 Στις οικονομικές και επιχειρησιακές εφαρμογές η λέξη «οριακό» χρησιμοποιείται για να δοθεί έμφαση στην «παράγωγο». ΠΧ. Οριακό κόστος (MarginalCost): Η παράγωγος του κόστους MC(q) = C'(q) Συνάρτηση f( Παράγωγος f'( C(q) Κόστος παραγωγής q MC=C'(q)Το οριακό μονάδων προϊόντος R(q) Έσοδα από την πώληση q μονάδων προϊόντος Π(ς) Κέρδος από την παραγωγή και πώληση q μονάδων κοστος MR=R'(q)τα οριακα έσοδα ΜΠ=Π'(ς) Το οριακο κέρδος 8. Κανόνες παραγώγισης-από το τυπολογιο του εαπ Που βθα εχετε μαζι σας 8.1 f ( f ( g ( 8.2 f ( f ( f ( g ( 8.3 f ( f ( 2 f ( 8.4 Εάν y f (u) και u κανόνας). τότε dy dy du, (αλυσωτός dx du dx 8.5 Εάν η συνάρτηση g είναι αντίστροφη της f (δηλαδή g[ f ( ] x ) 1 τότε y) όπου y f (. f ( 9. Παραγώγιση γνωστών συναρτήσεων n n 6.1 f ( nf ( f 1 ( x x 6.2 e e ae a e 1 ln x x f ( ln f ( f (
5 ΠΡΟΣΟΧΗ Αν έχω το οριακό και θέλω το απλό τότε ολοκληρώνω 16. Ολοκλήρωση γνωστών συναρτήσεων Κανόνες παραγώγισης-από το τυπολογιο του εαπ Που θα εχετε μαζι σας 16.1 adx ax c 16.2 n 1 n1 x dx x c n x 1 dx ln x c 16.4 f ( dx ln f ( c f ( 16.5 n 1 1 n1 f ( dx f ( c n 1 f ( 16.6 x x e dx e c 16.7 f ( f ( f ( e dx e c ΟΡΙΣΜΟΣ ΕΛΑΣΤΙΚΟΤΗΤΑΣ Κανόνες παραγώγισης-από το τυπολογιο του εαπ 10. Ελαστικότητα συνάρτησης y f ( : dy y dx x dy dx x y η εναλλακτικά d(ln y) d(ln διαφορετικά ' (()) f x. 0 x0 ε= η ελαστiκότητα της f () x στο σημείο ( x 0, 0 ) f () x 0
6 ΤΥΠΟΣ ΕΛΑΣΤΙΚΟΤΗΤΑΣ Ζήτησης Qd(p) Η ζήτηση σε ορισμένα αγαθά και υπηρεσίες είναι ποιο ευαίσθητη στις μεταβολές της τιμής ενώ σε άλλα είναι λιγότερο ευαίσθητη. Αυτός ο βαθμόςτης ευαισθησίας της ζητούμενης ποσότητας ενός αγαθού Α στις μεταβολές της τιμής του ονομάζεται ελαστικότητα ζήτησης σε σχέση με την τιμή του αγαθού δίνεται από τον τύπο που δεν είναι άλλος παρά ο λόγος της ποσοστιαίας % μεταβολής της ζητούμενης ποσότητας προς την ποσοστιαία % μεταβολή της τιμής. ΤΥΠΟΣ ΕΛΑΣΤΙΚΟΤΗΤΑΣ Ζήτησης Όταν η ελαστικότητα αναφέρεται σε ένα συγκεκριμένο σημείο της καμπύλης Ζήτησης ' (Qd(p) 0 ). p0 E= Qd(p) 0 ΤΥΠΟΣ ΕΛΑΣΤΙΚΟΤΗΤΑΣ ME ΠΟΣΟΣΤΑ- Ότανηελαστικότητααναφέρεταισεένασυγκεκριμένοσημείοτηςκαμπύληςζήτη σης Τότε ε= %Δq Δq p = όπουδqμεταβολήποσότητας % Δp Δp q Δp μεταβολή τιμής p,qαρχικέςποσότητες Το πρόσημο της ελαστικότητας ζήτησης είναι αρνητικό εφόσον οι καμπύλες ζήτησης έχουν αρνητική κλίση. Στην πράξη όμως συνηθίζεται να παραλείπεται. Παράδειγμα : Aν η τιμή ενός αγαθού αυξηθεί κατά 15 % και η ζητούμενη ποσότητα μειωθεί κατά 5 % τότε η ελαστικότητα ζήτησης θα ισούται με %Δq 5 % E= = = O,33 % Δp 15 % ΑΝΕΛΑΣΤΙΚΗ ΚΑΙ ΕΛΑΣΤΙΚΗ ΖΗΤΗΣΗ Όταν ε > 1 τότε η ζήτηση είναι ελαστική και σε αυτή την περίπτωση μια ποσοστιαία αύξηση η μείωση της τιμής προκαλεί μεγαλύτερη ποσοστιαία μείωση η αύξηση αντίστοιχα της ζητούμενης ποσότητας. Όταν 0 < ε < 1 τότε η ζήτηση είναι ανελαστική και σε αυτή την περίπτωση μια
7 ποσοστιαία αύξηση η μείωση της τιμής προκαλεί μικρότερη ποσοστιαία Όταν ε =1τότε η ζήτηση έχει μοναδιαία ελαστικότητα και σε αυτή την περίπτωση μια ποσοστιαία αύξηση η μείωση της τιμής προκαλεί ισόποση ποσοστιαία μείωση η αύξηση αντίστοιχα της ζητούμενης ποσότητας.. Κριτήριο 2 η ' παραγώγου για Ακρότατα Εξετάσουμε αν στο χ 0 (ρίζα της f'(x o )=0) έχουμε τοπικό μέγιστο ή ελάχιστο με την 2 η παράγωγο στο χ 0 δηλαδή α) Όταν στη θέση χ 0 με f (χ ο )=0 προκύπτει F (χ ο )<0, τότε στο Χο έχουμε τοπικό μέγιστο την τιμή y=f(x 0 ). β) Όταν στη θέση χ 0 με f(x o )=0 προκύπτει F (χ ο )>0, τότε στο Χο έχουμε τοπικό ελάχιστο την τιμή y=f(x 0 ). ΜΕΓΙΣΤΟΠΟΙΗΣΗ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗ ΟΙΚΟΝΟΜΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ : Βήμα 1 Παραγωγίζω τη συνάρτηση δηλαδή θα βρω την πρώτη παράγωγο Βήμα 2 Θα βρώ πού η πρώτη παραγωγος μηδενίζεται Βήμα 3 Παραγωγίζω τη πρώτη παράγωγο δηλαδή θα βρω την δεύτερη παράγωγο Βήμα 3 αντικαθιστώ τις τιμές που μηδενίζουν την πρώτη παραγωγο στον τύπο της δευτερης και αν βγεί θετικο το αποτέλασμα τοτε εχω ελάχιστο για αυτή την τιμή Εαν βγεί αρνητικά θα εχω μέγιστο για αυτή την τιμή 11. Μέγιστα και ελάχιστα συνάρτησης μιας μεταβλητής y f ( από το τυπολογιο του εαπ Μέγιστο Συνθήκη Α dy τάξεως 0 dx Συνθήκη Β 2 d y τάξεως 0 2 d x Ελάχιστο dy 0 dx 2 d y 0 2 d x
8 Μονοτονία Συνάρτησης Ας είναι η συνάρτηση y = ί(χ) με Π.Ο. το AcR. Για την εύρεση και των διαστημάτων που είναι αύξουσα ή φθίνουσα κάνουμε τα εξής: 1 ) Βρίσκουμε την πρώτη παράγωγο και τα σημεία μηδενισμού της (ρίζες), από την λύση της εξίσωσης f (χ)=0. Θυμίζουμε ότι μια ρίζα χ 0 2 ) Στο διάστημα Δ του Π.Ο. που η f'(>0 η συνάρτηση f( είναι γνήσια αύξουσα. αποτέλεσμαf(. Στο διάστημα Δ του Π.Ο. που η f'(<0 η συνάρτηση f( είναι γνήσια φθίνουσα.
Επιχειρησιακά Μαθηματικά
Τηλ:10.93.4.450 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Α Επιχειρησιακά Μαθηματικά () ΑΘΗΝΑ ΝΟΕΜΒΡΙΟΣ 01 1 Τηλ:10.93.4.450 Πεδίο Ορισμού Οικονομικών Συναρτήσεων Οι οικονομικές συναρτήσεις (συνάρτηση Ζήτησης, συνάρτηση
Γενικά Μαθηματικά. , :: x, :: x. , :: x, :: x. , :: x, :: x
Γενικά Μαθηματικά Κεφάλαιο Εισαγωγή Αριθμοί Φυσικοί 0,,,3, Ακέραιοι 0,,, 3, Ρητοί,, 0 Πραγματικοί Αν, με, :: x, :: x, :: x, :: x, :: x, :: x, :: x, :: x Συνάρτηση Κάθε διαδικασία αντιστοίχησης η οποία
ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ
ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΤΥΠΟΛΟΓΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 2012 1 ΤΥΠΟΛΟΓΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗ ΔΕΟ 13 ΚΟΣΤΗ TC = FC + VC ή TC = AC* SOS TC ATC = Το μέσο κόστος ισούται με το
Η ακόλουθη συνάρτηση συνδέει συνολικό κόστος TC και παραγόμενη ποσότητα Q: TC = Q + 3Q 2
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΟ13 ΑΣΚΗΣΗ 1 [Μέρος Α] Η ακόλουθη συνάρτηση συνδέει συνολικό κόστος TC και παραγόμενη ποσότητα : TC = 000 +10 + 3 (A)Γράψτε τις συναρτήσεις του Οριακού Κόστους (Marginal Cost
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 22Νοεμβρίου 2015 ΑΥΞΟΥΣΕΣ ΦΘΙΝΟΥΣΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Αν μια συνάρτηση f ορίζεται σε ένα διάστημα
Παράγωγος συνάρτησης. Έννοια παραγώγου Υπολογισμός Χρήση παραγώγου. ελαστικότητα Οριακές συναρτήσεις
Παράγωγος συνάρτησης Έννοια παραγώγου Υπολογισμός Χρήση παραγώγου ελαστικότητα Οριακές συναρτήσεις Έννοια Στην οικονομική επιστήμη μας ενδιαφέρει πολλές φορές να προσδιορίσουμε την καλύτερη επιλογή, π.χ
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Διαφορικός Λογισμός Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 1 Σκοποί ενότητας 4
ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ
ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΧΩΡΙΣ ΠΕΡΙΟΡΙΣΜΟΥΣ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΚΑΛΟΓΗΡΑΤΟΥ Ζ. - ΜΟΝΟΒΑΣΙΛΗΣ Θ. Τυπικές Συναρτήσεις Μικροοικονομικής Ανάλυσης Συνάρτηση Παραγωγής Q (production function):
Παράγωγοι ανώτερης τάξης
Παράγωγοι ανώτερης τάξης Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Διαφορικά Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglks.gr 2 3 / 1 0 / 2 0 1 6 σε μερικές παραγώγους σε μέγιστα, ελάχιστα
E4. ΕΛΑΣΤΙΚΟΤΗΤΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ
E4. ΕΛΑΣΤΙΚΟΤΗΤΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ.Παραδείγματα αναλυτικά.παραδείγματα αριθμητικά 3.Ελαστικότητα ζήτησης 4.Ελαστικότητα προσφοράς 5. Έσοδο 6.Κέρδος μονοπωλίου. Παραδείγματα αναλυτικά Παράδειγμα. Σε μια οικονομία
Επιχειρησιακά Μαθηματικά
Τηλ:10.9.4.450 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 1 ΤΟΜΟΣ Α Επιχειρησιακά Μαθηματικά () ΑΘΗΝΑ ΝΟΕΜΒΡΙΟΣ 01 1 Τηλ:10.9.4.450 ΚΕΦΑΛΑΙΟ Ο Μελέτη μονοτονίας (αύξουσα φθίνουσα) συνάρτησης f i) Βρίσκουμε την παράγωγο f ii)
ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ
ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 Ν. ΠΑΝΤΕΛΗ ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ ΤΥΠΟΛΟΓΙΟ & ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 2012 1 ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 ΚΟΣΤΗ Ν.
Επιχειρησιακά Μαθηματικά (1)
Τηλ:10.93.4.450 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Α Επιχειρησιακά Μαθηματικά (1) ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 01 Τηλ:10.93.4.450 ΚΕΦΑΛΑΙΟ 1 Ο Συνάρτηση μιας πραγματικής μεταβλητής Ορισμός : Συνάρτηση f μιας πραγματικής
Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Μαθηματικά για Οικονομολόγους 4 ο Μάθημα: Οικονομικές Συναρτήσεις-Κατάσταση Ισορροπίας
Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Μαθηματικά για Οικονομολόγους 4 ο Μάθημα: Οικονομικές Συναρτήσεις-Κατάσταση Ισορροπίας Διδάσκουσα: Κοντογιάννη Αριστούλα Μοντέλα ζήτησης και προσφοράς
Μαθηματικά ΜΕΡΟΣ 6 ΠΑΡΑΓΩΓΟΙ
Μαθηματικά ΜΕΡΟΣ 6 ΠΑΡΑΓΩΓΟΙ Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ Έστω συνάρτηση y=f(x) Όριο L (limit) της συνάρτησης y=f(x) είναι ο αριθμός
Βελτιστοποίηση συναρτήσεων
Βελτιστοποίηση συναρτήσεων Παράγωγοι εκθετικών λογαριθμικών συναρτήσεων Ποσοστιαίος ρυθμός μεταβολής Παράγωγοι ανώτερης τάξης Εύρεση μεγίστων-ελαχίστων Οικονομικές συναρτήσεις Παράγωγοι εκθετικών λογαριθμικών
ΤΥΠΟΛΟΓΙΟ ΑΟΘ
ΤΥΠΟΛΟΓΙΟ 1 ου ΚΕΦΑΛΑΙΟΥ Κόστος ευκαιρίας ή εναλλακτικό κόστος Για μια οικονομία που παράγει δύο αγαθά, Χ και Ψ, το κόστος ευκαιρίας των αγαθών Χ και Ψ δίνεται από τους ακόλουθους τύπους: Χ σε όρους ή
Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών. Εισαγωγή στην Οικονομική Ανάλυση. Νίκος Θεοχαράκης Διάλεξη 5 Ιανουάριος 2014
Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Εισαγωγή στην Οικονομική Ανάλυση Νίκος Θεοχαράκης Διάλεξη 5 Ιανουάριος 2014 Ελαστικότητα Ελαστικότητα Γενικά η ελαστικότητα μας δείχνει πως αντιδρά μια εξαρτημένη
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 2 ο : Η Ζήτηση των Αγαθών ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Οι τιμές των αγαθών προσδιορίζονται στην αγορά από την αλληλεπίδραση της ζήτησης και της προσφοράς.
(α) Από τους κανόνες σύνθετης παραγώγισης δύναμης συναρτήσεως και λογαρίθμου συναρτήσεως:
http://elearn.maths.gr/, maths@maths.gr, Τηλ: 6979 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΔΕΟ -: Άσκηση I. (α) Από τους κανόνες σύνθετης παραγώγισης δύναμης συναρτήσεως και λογαρίθμου συναρτήσεως:
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 01-013 Δεύτερη Γραπτή Εργασία Επιχειρησιακά Μαθηματικά
ΚΕΦΑΛΑΙΟ 4. Προσφορά των Αγαθών
ΚΕΦΑΛΑΙΟ 4 Προσφορά των Αγαθών Καμπύλη Προσφοράς Υποθέσεις 1. Η επιχείρηση είναι αποδέκτης τιμών (price taker) και όχι διαμορφωτής τιμών (price maker). 2. H επιχείρηση στοχεύει στην μεγιστοποίηση του κέρδους.
Γενικά Μαθηματικά (Φυλλάδιο 1 ο )
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Περιλαμβάνει: ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΚΕΦΑΛΑΙΟ : ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ
από την ποσοστιαία μεταβολή της ζητούμενης ποσότητας προς την ποσοστιαία Σχέση ελαστικότητας ζήτησης και κλίση της καμπύλης ζήτησης.
ΕΛΑΣΤΙΚΟΤΗΤΑ ΖΗΤΗΣΗΣ Ορισμός: Η ελαστικότητα ζήτησης, ενός αγαθού ως προς την τιμή του δίνεται από την ποσοστιαία μεταβολή της ζητούμενης ποσότητας προς την ποσοστιαία μεταβολή της τιμής του. Δηλαδή %
ΕΡΓΑΣΙΕΣ 5 ου ΚΕΦΑΛΑΙΟΥ 1 η Ομάδα: Ερωτήσεις πολλαπλής επιλογής
ΕΡΓΑΣΙΕΣ 5 ου ΚΕΦΑΛΑΙΟΥ 1 η Ομάδα: Ερωτήσεις πολλαπλής επιλογής 1. Η επιβολή στην αγορά ενός αγαθού μιας τιμής που είναι μικρότερη της τιμής ισορροπίας θα προκαλέσει: α) Πλεόνασμα β) Έλλειμμα γ) Νέα ισορροπία
Παράγωγοι ανώτερης τάξης
Παράγωγοι ανώτερης τάξης Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Διαφορικά Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglks.gr 3 / 1 0 / 0 1 6 σε μερικές παραγώγους σε μέγιστα, ελάχιστα
Κεφάλαιο 3. x 300 = = = Άσκηση 3.1
Άσκηση. Κεφάλαιο Έστω χ η πόσοτητα ενός αγαθού που παράγει μια επιχείρηση. Η κάθε μονάδα αυτής της ποσότητας μπορεί να πουλήθει στην τιμή που δίνεται από τη συνάρτηση P = 00. Το συνολικό κόστος για την
ΟΜΑΔΑ Β Σχολικό βιβλίο σελ ως «μεταβλητούς συντελεστές μαζί με το αντίστοιχο διάγραμμα. TC Συνολικό κόστος. VC Μεταβλητό κόστος
ΛΥΣΕΙΣ ΑΟΘ 1 ΓΙΑ ΑΡΙΣΤΑ ΔΙΑΒΑΣΜΕΝΟΥΣ ΟΜΑΔΑ Α Α1 γ Α2 β Α3 δ Α4 Σ Α5 Σ Α6 Σ Α7 Σ Α8 Λ ΟΜΑΔΑ Β Σχολικό βιβλίο σελ. 57-59 ως «μεταβλητούς συντελεστές μαζί με το αντίστοιχο διάγραμμα. ΟΜΑΔΑ Γ Γ1. Είναι γνωστό
Εφαρμογές οικονομικών συναρτήσεων
Εφαρμογές οικονομικών συναρτήσεων Μεγιστοποίηση κερδών Διάθεση προϊόντος με δύο συναρτήσεις ζήτησης Οριακά έσοδα σε σχέση με ελαστικότητα Εύρεση πεδίου ορισμού Επιβολή φόρου Σημείο μεγιστοποίησης κερδών
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ολοκληρωτικός Λογισμός (μέρος ) Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα Σκοποί
ΟΙΚΟΝΟΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1. Συνολικά Έσοδα Συνολικά Έσοδα αποκαλούμε τη συνολική πρόσοδο (Total Revenue) που αποκομίζει μια επιχείρηση από την πώληση των προϊόντων της. TR = P * όπου Ρ είναι η συνάρτηση
Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής
Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 9: Αγοραία ζήτηση Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Ατομική και αγοραία συνάρτηση
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 8 ΝΟΕΜΒΡΙΟΥ 2016 ΜΕΣΟΣ ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ Έστω η συνάρτηση συνολικής ζήτησης: p = D(q) = 50 2q
2.0. , κ R, η γραφική παράσταση της οποίας διέρχεται από το σημείο Ρ=(1,1). Να βρεθεί η τιμή του αριθμού κ.
Άσκηση. α Να βρεθεί η εξίσωση της ευθείας που διέρχεται από τα σημεία (,y, Α=(, και Β=(0, β Να βρεθεί η εξίσωση της ευθείας που διέρχεται από το σημείο B(0, και έχει κλίση -0.. Να βρεθούν τα σημεία που
Ακαδημαϊκό Έτος [ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΕΠΙΣΤΗΜΗ Ι]
Ερώτηση: Γιατί το κόστος ευκαιρίας της επιλογής να σπουδάσει κάποιος Νομικά είναι μεγαλύτερο από το κόστος ευκαιρίας να σπουδάσει σε μια σχολή Κομμωτικής; Απάντηση: Το κόστος ευκαιρίας που αντιστοιχεί
ΔΙΑΓΩΝΙΣΜΑ 14. Μέρος Α
Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 14 1. (4 μονάδες) (α). Να δοθεί το γράφημα μιας συνάρτησης f() της οποίας η παράγωγος έχει το γράφημα του παραπλεύρως σχήματος, και αρχική τιμή f() =. (β). Να βρεθεί συνάρτηση f() σταθερής
ΔΙΑΓΩΝΙΣΜΑ 13. A παραπλεύρως σχήματος. Να βρεθούν τα πρόσημα των μερικών
Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 3. (4 μονάδες) (α). Να δοθεί το γράφημα μιας συνάρτησης f() f () της οποίας η παράγωγος έχει το γράφημα του παραπλεύρως σχήματος, και αρχική τιμή f() =. (β). Οι μεταβλητές {,} συνδέονται
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 0-0 Δεύτερη Γραπτή Εργασία Επιχειρησιακά Μαθηματικά Γενικές
ΕΚΠΑΙΔΕΥΤΙΚΟΣ ΟΜΙΛΟΣ ΑΛΦΑ ΓΡΑΠΤΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΥΡΙΑΚΗ 11 ΜΑΡΤΙΟΥ 2012
ΕΚΠΑΙΔΕΥΤΙΚΟΣ ΟΜΙΛΟΣ ΑΛΦΑ ΓΡΑΠΤΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΥΡΙΑΚΗ 11 ΜΑΡΤΙΟΥ 2012 ΟΜΑΔΑ Α Για τις προτάσεις Α.1 έως και Α.5, να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς και
Καμπύλη Προσφοράς. (α) Καμπύλη Προσφοράς. Σκοπός Επιχειρήσεων Μεγιστοποίηση Κέρδους
ΕΙΣΩΗ Καταναλωτής Παραγωγός-Επιχείρηση Χρησιμότητα Παραγωγή-Κόστος Σημεία ΠΙΝΚΣ ΠΡΟΣΦΟΡΣ Οριακό Κόστος (MC) Τιμή () Παραγόμενο Προϊόν (Q) Προσφερόμενη Ποσότητα () MC11 1 MC22 Q22 MC33 Q33 Καμπύλη Προσφοράς
Αγοραία ζήτηση. Ατοµική και αγοραία συνάρτηση. Διάλεξη 9. συνάρτηση. συνάρτηση
Ατοµική και αγοραία συνάρτηση Διάλεξη 9 Αγοραία ζήτηση Υποθέστε µιαν οικονοµία που έχει n καταναλωτές, και συµβολίζονται µε =,,n. Η συνάρτηση της κανονικής καµπύλης ζήτησης του καταναλωτή για το αγαθό
ΣΥΝΘΕΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ
ΣΥΝΘΕΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Α. Με ολοκληρωμένη λύση ΘΕΜΑ 1 ο Επιχείρηση χρησιμοποιεί την εργασία ως μοναδικό μεταβλητό παραγωγικό συντελεστή. Τα στοιχεία κόστους της επιχείρησης δίνονται στον επόμενο πίνακα:
ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ
ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ Έννοια συνάρτησης δύο μεταβλητών Ισουψείς καμπύλες Παραγώγιση Μερικές παράγωγοι πρώτου και δευτέρου βαθμού Ασκήσεις Βασικές έννοιες Στην Οικονομία, τα περισσότερα από τα μετρούμενα
ΑΠΑΝΤΗΣΕΙΣ. Επιμέλεια: Ομάδα Οικονομολόγων της Ώθησης
ΑΠΑΝΤΗΣΕΙΣ Επιμέλεια: Ομάδα Οικονομολόγων της Ώθησης 1 Τρίτη, 2 Ιουνίου 2015 ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ Γ ΛΥΚΕΙΟΥ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΘΕΜΑ Α ΟΜΑΔΑ ΠΡΩΤΗ Α1. Να χαρακτηρίσετε τις προτάσεις που
3 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ
1 2 3 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ 31 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΟΡΙΣΜΟΣ: Έστω δύο σύνολα Α και Β ΑΠΕΙΚΟΝΙΣΗ του συνόλου Α στο Β είναι η διμελής σχέση f A B για την οποία A αντιστοιχεί ένα και μόνο ένα y B δηλαδή
ΣΕΤ 2: ΟΙΚΟΝΟΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2017-18 ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟΥΣ ΦΟΙΤΗΤΕΣ ΤΟΥ Ε.Α.Π. ΕΠΙΧΕΙΡΗΣΙΑΚΑ
Απαντήσεις στο 2 ο Διαγώνισμα Α.Ο.Θ. Γ Λυκείου Θ Ε Μ Α Τ Α
Θέμα Α Α.1. Σωστό Α.2. Λάθος Α.3. Σωστό Α.4. Λάθος Α.5. Σωστό Α.6. Λάθος Α.7. Το Α Α.8. Το Β Α.9. Το Β Α.10.Το Δ Απαντήσεις στο 2 ο Διαγώνισμα Α.Ο.Θ. Γ Λυκείου Θ Ε Μ Α Τ Α Α Ο Θ Θέμα Β Β.1. ΣΕΛΙΔΑ 22 Β.2.
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΟΜΑΔΑ Α ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση
ΑΠΑΝΤΗΣΕΙΣ. Α.4. Αν αυξηθεί η αμοιβή της εργασίας η καμπύλη του οριακού κόστους μετατοπίζεται προς τα επάνω και αριστερά.
ΟΜΑΔΑ Α ΑΠΑΝΤΗΣΕΙΣ Στις παρακάτω προτάσεις, από Α.1 μέχρι και Α.5 να γράψετε τον αριθμό της καθεμιάς και δίπλα του την ένδειξη: Σωστό, αν η πρόταση είναι σωστή ή Λάθος, αν η πρόταση είναι λανθασμένη. Α.1.
Af(x) = και Mf(x) = f (x) x
ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι. Λύσεις 9 Διάρκεια εξέτασης: ώρες και 5' (4 μονάδες) (α). Η συνάρτηση f() έχει το παραπλεύρως γράφημα με πλάγια ασύμπτωτο. Να δοθούν, στο ίδιο σύστημα συντεταγμένων,
Ερωτήσεις πολλαπλών επιλογών
Ερωτήσεις πολλαπλών επιλογών 1. Έστω ότι μία οικονομία, που βρίσκεται πάνω στην καμπύλη των παραγωγικών της δυνατοτήτων, παράγει σε μία συγκεκριμένη χρονική στιγμή 10 τόνους υφάσματος και 00 τόνους τροφίμων.
ΕΝΟΤΗΤΑ ΔΕΟ 13 ΕΡΓΑΣΙΑ 2 Η
ΕΝΟΤΗΤΑ ΔΕΟ 1 ΕΡΓΑΣΙΑ Η 8 9 Η λύση της εργασίας είναι ενδεικτική και ο υποψήφιος θα πρέπει να βασιστεί σε αυτή και να επιφέρει τις δικές του αλλαγές. Ενημερωθείτε για τις προσφορές πακέτου για όλες τις
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ
ΜΑΘΗΜΑ / ΤΑΞΗ : ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Ομάδα Α Α1. Αύξηση της ζήτησης και μείωση της προσφοράς, είναι δυνατό να μη μεταβάλλει την τιμή ισορροπίας. Α2. Η αβεβαιότητα
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) 2011 ΟΜΑ Α ΠΡΩΤΗ
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) 2011 ΟΜΑ Α ΠΡΩΤΗ Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση
ΕΠΙΧΕΙΡΗΣΕΙΣ ΚΑΙ ΑΝΤΑΓΩΝΙΣΤΙΚΕΣ ΑΓΟΡΕΣ
ΕΠΙΧΕΙΡΗΣΕΙΣ ΚΑΙ ΑΝΤΑΓΩΝΙΣΤΙΚΕΣ ΑΓΟΡΕΣ Κεφάλαιο 11 Τα χαρακτηριστικά των ανταγωνιστικών αγορών! Τα κύρια χαρακτηριστικά των ανταγωνιστικών αγορών είναι: " Στην αγορά συµµετέχουν πολλοί αγοραστές και πωλητές
Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων
Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων - Στο υπόδειγμα ertrand, οι επιχειρήσεις, παράγουν ένα ομοιογενές αγαθό, οπότε η τιμή είναι η μοναδική μεταβλητή που ενδιαφέρει τους καταναλωτές και οι καταναλωτές
www.aoth.edu.gr / Απαντήσεις επαναληπτικών πανελλαδικών εξετάσεων ημερησίων λυκείων 2015
ΘΕΜΑ Α Α.1.α Α.1.β Α.1.γ Α.1.δ Α.1.ε Α.2 Α. Σωστό Σωστό Λάθος Σωστό Λάθος δ γ ΘΕΜΑ Β i. Να αναφέρετε τι είναι το μέσο κόστος (μονάδες ), ποια είναι τα τρία είδη του βραχυχρόνιου μέσου κόστους; Έκφραση
Πρώτο πακέτο ασκήσεων
ΕΚΠΑ Τμήμα Οικονομικών Επιστημών Μικροοικονομική Θεωρία ΙΙ Εαρινό εξάμηνο Ακαδ. έτους 08-09 Αν. Παπανδρέου, Φ. Κουραντή, Ηρ. Κόλλιας Πρώτο πακέτο ασκήσεων Προθεσμία παράδοσης Παρασκευή Απριλίου. Θα υπάρξει
Ανάλυση Νεκρού Σημείου Σημειώσεις
Ανάλυση Νεκρού Σημείου Σημειώσεις ΜΑΘΗΜΑ: ΣΥΣΤΗΜΑΤΑ ΔΙΟΙΚΗΣΗΣ Αν. Καθ. Δημήτρης Ασκούνης Εισαγωγή Η ανάλυση του Νεκρού Σημείου είναι ένα σπουδαίο χρηματοοικονομικό μέσο και αποτελεί βασικά μια αναλυτική
Η επιστήμη της επιλογής υπό περιορισμούς
ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΙΙ ΓΡΗΓΟΡΗ ΕΠΑΝΑΛΗΨΗ 26/2/2010 1 ΟΙΚΟΝΟΜΙΚΗ Η επιστήμη της επιλογής υπό περιορισμούς 26/2/2010 2 ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Η μελέτη των επιλογών τις οποίες κάνουν οι μικρο-μονάδες μιας οικονομίας
Προτεινόμενο διαγώνισμα στις Αρχές Οικονομικής Θεωρίας. Ομάδα Α ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ- ΛΑΘΟΥΣ
Προτεινόμενο διαγώνισμα στις Αρχές Οικονομικής Θεωρίας Ομάδα Α ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ- ΛΑΘΟΥΣ 1. Για ένα αγαθό όταν η σταθερά γ είναι ίση με το μηδέν τότε η καμπύλη προσφοράς διέρχεται από την αρχή των αξόνων.
ΑΣΚΗΣΗ [5 μονάδες (6+6+6+7)] www.onlineclassroom.gr Δίνεται η ακόλουθη συνάρτηση των οριακών εσόδων MR μιας μονοπωλιακής επιχείρησης: MR() = 100 + 16 όπου είναι η ποσότητα παραγωγής του προϊόντος. Επίσης,
ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ
ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ Έννοια συνάρτησης Παραγώγιση Ακρότατα Ασκήσεις Βασικές έννοιες Στην Οικονομία, τα περισσότερα από τα μετρούμενα μεγέθη, εξαρτώνται από άλλα μεγέθη. Π.χ η ζήτηση από την τιμή,
ΟΙΚΟΝΟΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ
ΟΙΚΟΝΟΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ Ακρότατα συναρτήσεων δύο μεταβλητών Συνάρτηση παραγωγής Ελαστικότητα Μακροοικονομικό μοντέλο Μεγιστοποίηση κερδών ακρότατα Για να βρούμε τα ακρότατα μίας συνάρτησης
Δεύτερο πακέτο ασκήσεων και λύσεων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 04-05 Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Δεύτερο πακέτο ασκήσεων και λύσεων Αντιστοιχούν τέσσερις μονάδες
Κ.Ε. Χ Ψ. A A (σταθερό) = Ρ. Q D = Σ.Δ. P Συνολικές δαπάνες καταναλωτών : Σ.Δ. = Ρ. Q D
ΚΕΦΑΛΑΙΟ 1 ο : ΒΑΣΙΚΕΣ ΟΙΚΟΝΟΜΙΚΕΣ ΕΝΝΟΙΕΣ ΠΡΟΣΦΟΡΑ Κ.Ε. Χ Ψ = Μονάδες του Ψ που θυσιάζονται = ΔΨ Μονάδες του Χ που παράγονται ΔΧ Κ.Ε. Ψ Χ = Μονάδες του Χ που θυσιάζονται = ΔΧ Μονάδες του Ψ που παράγονται
ΜΑΘΗΜΑ Α.Ο.Θ ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ ΟΜΑΔΑ ΠΡΩΤΗ
ΜΑΘΗΜΑ Α.Ο.Θ ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ ΤΑΞΗ Γ ΛΥΚΕΙΟΥ ΟΝΟΜ/ΜΟ: ΗΜΕΡ/ΝΙΑ 15/01/2017 ΚΑΘ/ΤΗΣ ΣΦΥΡΗΣ Π. ΒΑΘΜΟΣ: /100, /20 ΘΕΜΑ Α ΟΜΑΔΑ ΠΡΩΤΗ Α1. Στις προτάσεις α μέχρι και ε να γράψετε στο τετράδιο σας το γράμμα της
Ερωτήσεις πολλαπλών επιλογών
Ερωτήσεις πολλαπλών επιλογών Β1) Υποθέστε ότι στη θέση ισορροπίας της αγοράς ενός αγαθού η ζήτησή του ως προς την τιμή του είναι ελαστική. Μία μείωση της προσφοράς του αγαθού, με όλους τους άλλους παράγοντες
Αγοραία καμπύλη ζήτησης
Αγοραία καμπύλη ζήτησης Αγοραία καμπύλη ζήτησης: είναι το οριζόντιο άθροισμα των ατομικών καμπυλών ζήτησης. Μικροοικονομική Θεωρία Ι / Διάλεξη 9 / Φ. Κουραντή 1 Παράδειγμα 1: Αγοραία καμπύλη ζήτησης Determnng
ΑΠΑΝΤΗΣΕΙΣ. Α.3. Το μέσο μεταβλητό κόστος στην αρχή μειώνεται και μετά αυξάνεται.
ΟΜΑΔΑ Α ΑΠΑΝΤΗΣΕΙΣ Στις παρακάτω προτάσεις, από Α.1 μέχρι και Α.5 να γράψετε τον αριθμό της καθεμιάς και δίπλα του την ένδειξη:, αν η πρόταση είναι σωστή ή Λάθος, αν η πρόταση είναι λανθασμένη. Α.1. Αν
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ ΠΡΩΤΗ
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ ΠΡΩΤΗ ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι
(2B) Επιλογή Προϊόντος της Μονοπωλιακής Επιχείρησης
(2B) Επιλογή Προϊόντος της Μονοπωλιακής Επιχείρησης - Αν η αγορά του προϊόντος είναι µονοπωλιακή, η επιχείρηση επιλέγει την τιµή (p) του προϊόντος κατά τρόπο ώστε να µεγιστοποιεί τα κέρδη της θεωρώντας
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΟΜΑΔΑ ΠΡΩΤΗ
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΟΜΑΔΑ ΠΡΩΤΗ Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε
= δ P η ελαστικότητα ως προς την τιµή
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ ΙΑΓΩΝΙΣΜΑ 9 (για καλά διαβασµένους) ΟΜΑ Α Α Να απαντήσετε στις επόµενες ερωτήσεις πολλαπλής επιλογής Α1. Η τεχνολογία παραγωγής του αγαθού
Γ ΕΠΙΛΟΓΗΣ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΣΙΑΤΙΣΤΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΤΕΛΕΥΤΑΙΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΣΕ ΟΛΗ ΤΗΝ ΥΛΗ Διάρκεια Εξέτασης: 3 διδακτικές ώρες ΟΜΑΔΑ Α
Γ ΕΠΙΛΟΓΗΣ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΣΙΑΤΙΣΤΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΤΕΛΕΥΤΑΙΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΣΕ ΟΛΗ ΤΗΝ ΥΛΗ Διάρκεια Εξέτασης: 3 διδακτικές ώρες ΟΜΑΔΑ Α Α1 Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 013-014 Δεύτερη Γραπτή Εργασία Επιχειρησιακά Μαθηματικά
5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ
48 49 5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ 5 ΕΙΣΑΓΩΓΗ ΟΡΙΣΜΟΣ: Κάθε συνάρτηση : A B με Α R n και Β R ονομάζεται πραγματική συνάρτηση n μεταβλητών ΠΑΡΑΤΗΡΗΣΕΙΣ: Ι Αν Α R n και Β R n τότε έχουμε διανυσματική συνάρτηση
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 4 ΟΚΤΩΒΡΙΟΥ 2016 ΓΡΑΜΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ι Κεντρική έννοια το μέτρο ή ρυθμός μεταβολής:
Οι τιμές των αγαθών προσδιορίζονται στην αγορά από την αλληλεπίδραση των δυνάμεων της ζήτησης και της προσφοράς.
ΤΙΜΗ ΚΕΦΑΛΑΙΟ ΔΕΥΤΕΡΟ: Η ΖΗΤΗΣΗ Οι τιμές των αγαθών προσδιορίζονται στην αγορά από την αλληλεπίδραση των δυνάμεων της ζήτησης και της προσφοράς. Χρησιμότητα ενός αγαθού, για τον καταναλωτή, είναι η ικανοποίηση
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α.Ο.Θ. ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2017 Α.Ο.Θ. ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις Επιμέλεια: Ομάδα Οικονομολόγων http://www.othisi.gr 1 Τετάρτη, 14 Ιουνίου 2017 ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡ/ΚΗΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ
Η ΠΡΟΣΦΟΡΑ ΤΩΝ ΑΓΑΘΩΝ
ΚΕΦΑΛΑΙΟ ΤΕΤΑΡΤΟ Η ΠΡΟΣΦΟΡΑ ΤΩΝ ΑΓΑΘΩΝ 1. Εισαγωγή Όπως έχουμε τονίσει, η κατανόηση του τρόπου με τον οποίο προσδιορίζεται η τιμή ενός αγαθού απαιτεί κατανόηση των δύο δυνάμεων της αγοράς, δηλαδή της ζήτησης
Δεύτερο πακέτο ασκήσεων
ΕΚΠΑ Ακαδημαϊκό έτος 018-019 Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Θεωρία Ι Δεύτερο πακέτο ασκήσεων Προθεσμία παράδοσης Παρασκευή 7 Δεκεμβρίου (στο μάθημα της κ. Κουραντή, του κ. Παπανδρέου
Ο Νόµος της Ζήτησης και της Προσφοράς Ισορροπία Αγοράς. Τεχνικές αριστοποίησης και σύγχρονα εργαλεία
Ο Νόµος της Ζήτησης και της Προσφοράς Ισορροπία Αγοράς Τεχνικές αριστοποίησης και σύγχρονα εργαλεία µάνατζµεντ 1 Ο Νόµος της Ζήτησης Μια µείωση στην τιµή ενός αγαθού, ενώ όλα τα άλλα µεγέθη παραµένουν
Εισαγωγή στην Οικονομική Επιστήμη Ι. Επιχειρήσεις σε ανταγωνιστικές αγορές. Αρ. Διάλεξης: 09
Εισαγωγή στην Οικονομική Επιστήμη Ι Επιχειρήσεις σε ανταγωνιστικές αγορές Αρ. Διάλεξης: 09 Τι είναι ανταγωνιστική αγορά; Η ανταγωνιστική αγορά έχει πολλούς αγοραστές/καταναλωτές και πολλούς παραγωγούς/επιχειρήσεις
B6. OΜΟΓΕΝΕΙΑ-ΔΙΑΦΟΡΙΚΑ
B6. OΜΟΓΕΝΕΙΑ-ΔΙΑΦΟΡΙΚΑ 1.Διαφορικά.Σχετικά ή ποσοστιαία διαφορικά 3.Λογισμός Διαφορικών 4.Ομογενείς συναρτήσεις μιας μεταβλητής 5.Ελαστικότητα κλίμακας 6.Ομογενής μηδενικού βαθμού 7.Ομογενής βαθμού κ
Σχεδιασμός συγκοινωνιακών έργωνοικονομικά
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Αγρονό ων Το ογράφων Μηχανικών ΕΜΠ Εργαστήριο Συγκοινωνιακής Τεχνικής Σχεδιασμός συγκοινωνιακών έργωνοικονομικά στοιχεία Η ΖΗΤΗΣΗ Κωνσταντίνος Αντωνίου Ανα ληρωτής Καθηγητής
13 Το κόστος Παραγωγής Οι αγοραίες δυνάµεις της Προσφοράς και της Ζήτησης ΗΠροσφοράκαιηΖήτησηείναιοι οικονοµικοί όροι που χρησιµοποιούνται από τους οικονοµολόγους ευρέως. ΗΠροσφοράκαιηΖήτησηείναιοι κινητήριες
Εισαγωγή στην Οικονομική Ανάλυση
ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΠΟΛΙΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ Εισαγωγή στην Οικονομική Ανάλυση Εξετάσεις περιόδου Ιουνίου-Ιουλίου 011 1 Ιουλίου 011 Νίκος Θεοχαράκης
ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ / ΑΠΟΦΟΙΤΟΙ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 23/01/2012 ΑΠΑΝΤΗΣΕΙΣ
ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ / ΑΠΟΦΟΙΤΟΙ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 23/01/2012 ΑΠΑΝΤΗΣΕΙΣ ΟΜΑΔΑ Α Στις παρακάτω προτάσεις, από Α.1 μέχρι και Α.5 να γράψετε τον αριθμό της καθεμιάς και δίπλα του την
H Ελαστικότητα και οι Εφαρμογές της
H Ελαστικότητα και οι Εφαρμογές της ΕΛΑΣΤΙΚΟΤΗΤΑ... μας επιτρέπει να αναλύσουμε την προσφορά και ζήτηση με μεγαλύτερη ακρίβεια μετρά πως οι αγοραστές και πωλητές ανταποκρίνονται στις αλλαγές των συνθηκών
ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 8 ΝΟΕΜΒΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ. Όνομα/Επίθετο: ΟΜΑΔΑ Α
ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 8 ΝΟΕΜΒΡΙΟΥ 2015- ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Όνομα/Επίθετο: ΟΜΑΔΑ Α Για τις προτάσεις από Α1 μέχρι και Α5 να γράψετε στο τετράδιό σας τον αριθμό της
Α5. Όταν η ζήτηση για ένα αγαθό είναι ελαστική, τότε πιθανή αύξηση της τιµής του, θα οδηγήσει σε µείωση της καταναλωτικής δαπάνης για αυτό το αγαθό
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ ΙΑΓΩΝΙΣΜΑ 1 (για άριστα διαβασµένους) ΟΜΑ Α Α Να απαντήσετε στις επόµενες ερωτήσεις πολλαπλής επιλογής A1. Σε γραµµική ΚΠ της µορφής Y =
(2 µονάδες) Α2. Η αύξηση της τιµής ενός αγαθού σηµαίνει: β) Αύξηση της ζήτησης για τα αγαθά που είναι συµπληρωµατικά προς αυτό
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ ΙΑΓΩΝΙΣΜΑ 7 (για καλά διαβασµένους) ΟΜΑ Α Α Να απαντήσετε στις επόµενες ερωτήσεις πολλαπλής επιλογής: Α1. Η στενότητα του κεφαλαίου οφείλεται:
g= x + y 1}. Να βρεθεί γραφικά και αναλυτικά η MR Π(Q) = R(Q) C(Q). Στο παραπλεύρως σχήμα
ΔΙΑΓΩΝΙΣΜΑ 0 Μέρος Α. (.6 μονάδες) α). Οι μεταβλητές {,,} συνδέονται με τις εξισώσεις κανόνας αλυσωτής παραγώγισης. { = e +, = ln}. Να επαληθευτεί ο β). Οι μεταβλητές {, y} συνδέονται με μια εξίσωση. Για
τριώνυμο Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι:
κεφάλαιο 4 Α τριώνυμο επίλυση της εξίσωσης δευτέρου βαθμού Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι: αx + βx + γ
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α.Ο.Θ. ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις
Α.Ο.Θ. ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις Επιμέλεια: Ομάδα Οικονομολόγων http://www.othisi.gr 2 Παρασκευή, 14 Ιουνίου 2019 ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡ/ΚΗΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ ΠΡΩΤΗ
Απαντήσεις στο μάθημα: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ
Απαντήσεις στο μάθημα: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΘΕΜΑ Α Α1. α. Λάθος (δεν αποτελεί παραγωγικό συντελεστή το χρήμα. Μέσω του χρήματος αγοράζονται παραγωγικοί συντελεστές, πχ. αγορά ενός μηχανήματος ή ενός
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 010-011 Δεύτερη Γραπτή Εργασία Επιχειρησιακά Μαθηματικά
Q VC AVC MC , ,5 7, , ,
ΛΥΣΕΙΣ ΑΟΘ 4 (για καλά διαβασμένους) ΟΜΑΔΑ Α Α1. γ Α2. γ Α3. Λ Α4. Σ Α5. Σ Α6. Λ Α7. Λ ΟΜΑΔΑ Β Σχολικό βιβλίο σελ. 24 η παράγραφος 11 ΟΜΑΔΑ Γ Γ1. Ο πίνακας γίνεται: VC AVC MC 0 0 - - 10 100 10 10 180 9