Kangourou Mathematics Competition 2015

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Kangourou Mathematics Competition 2015"

Transcript

1 Thales Foundation Cyprus P.O. Box 28959, CY2084 Acropolis, Nicosia, Cyprus Kangourou Mathematics Competition 2015 Benjamin (Ε - Στ Δημοτικού) 21 Μαρτίου/March :00 11:15 Ερωτήσεις 1 10 = 3 βαθμοί η καθεμιά Ερωτήσεις = 4 βαθμοί η καθεμιά Ερωτήσεις = 5 βαθμοί η καθεμιά Questions 1 10 = 3 points each Questions = 4 points each Questions = 5 points each

2

3 Απαντήστε τις πιο κάτω ερωτήσεις επιλέγοντας μία από τις πέντε επιλογές. Μεταφέρετε τις σωστές απαντήσεις στο φύλλο απαντήσεων σας. Answer the following questions by choosing one of the 5 choices. Transfer the correct answers into your answer sheet. 3 μονάδες 3 points # 1. Ποιο σχήμα έχει το μισό σκιασμένο; Which figure has one half shaded? (A) (B) (C) (D) (E) # 2. Η ομπρέλα μου έχει το KANGAROO γραμμένο στο πάνω μέρος της, όπως φαίνεται στην εικόνα. Ποια από τις πιο κάτω εικόνες δεν δείχνει την ομπρέλα μου; My umbrella has KANGAROO written on top. It is shown in the picture. Which of the following pictures does not show my umbrella? (A) (B) (C) (D) (E) # 3. Ο Sam χρωμάτισε τα 9 τετράγωνα με τα χρώματα μαύρο, άσπρο και γκρίζο, όπως φαίνεται. Τουλάχιστο πόσα τετράγωνα χρειάζεται να χρωματίσει ξανά ώστε να μην υπάρχουν δύο τετράγωνα με κοινή πλευρά που να έχουν το ίδιο χρώμα ; Sam painted the 9 squares with the colours black, white and grey as shown. At least how many squares does he need to repaint so that no two squares with a common side have the same colour? (A) 2 (B) 3 (C) 4 (D) 5 (E) 6 # 4. Υπάρχουν 10 πάπιες. Οι 5 από αυτές γεννούν ένα αυγό κάθε μέρα. Οι άλλες πέντε γεννούν ένα αυγό κάθε δεύτερη μέρα. Πόσα αυγά γεννούν οι 10 πάπιες σε περίοδο 10 ημερών; There are 10 ducks. 5 of these ducks lay an egg every day. The other 5 lay an egg every second day. How many eggs do the 10 ducks lay in a period of 10 days? (A) 75 (B) 60 (C) 50 (D) 25 (E) 10 1

4 # 5. Στο σχήμα φαίνεται ένας πίνακας όπου κάθε μικρό τετράγωνο έχει εμβαδό 4 cm 2. Ποιο είναι το μήκος της μαύρης χοντρής γραμμής; The figure shows a board where each small square has an area of 4 cm 2. What is the length of the thick black line? (A) 16 cm (B) 18 cm (C) 20 cm (D) 21 cm (E) 23 cm # 6. Ποιο από τα πιο κάτω κλάσματα είναι μικρότερο του 2; Which of the following fractions is smaller than 2? (A) 19/8 (B) 20/9 (C) 21/10 (D) 22/11 (E) 23/12 # 7. Πόσο είναι το βάρος της Dita; How much does Dita weigh? (A) 2 kg (B) 3 kg (C) 4 kg (D) 5 kg (E) 6 kg # 8. Ο Πέτρος κοιτάζει με μεγεθυντικό φακό σε διαφορετικά μέρη ενός σχεδίου στο τοίχο. Ποια είναι η εικόνα που δεν μπορεί να δει; Peter looks through a magnifying glass at different parts of a drawing on a wall. Which is the picture that he cannot see? (A) (B) (C) (D) (E) # 9. Το κάθε φυτό στον κήπο του Γιάννη έχει είτε 5 φύλλα, ή 2 φύλλα και ένα λουλούδι. Στο σύνολό τους τα φυτά έχουν 6 λουλούδια και 32 φύλλα. Πόσα φυτά υπάρχουν; Each plant in John s garden has either 5 leaves, or 2 leaves and 1 flower. In total, the plants have 6 flowers and 32 leaves. How many plants are there? (A) 10 (B) 12 (C) 13 (D) 15 (E) 16 2

5 # 10. Ο Αντρέας έχει 4 λωρίδες από χαρτί του ιδίου μήκους. Κολλά δύο από αυτές μαζί με 10cm επικάλυψη και παίρνει μια λωρίδα μήκους 50 cm. Με τις άλλες δύο λωρίδες θέλει να κατασκευάσει λωρίδα μήκους 56 cm. Πόσο μήκος θα πρέπει να έχει η επικάλυψη; Alva has 4 paper strips of the same length. She glues 2 of them together with a 10 cm overlap, and gets a strip 50 cm long. With the other two paper strips, she wants to make a strip 56 cm long. How long should the overlap be? (A) 4 cm (B) 6 cm (C) 8 cm (D) 10 cm (E) 12 cm 4 μονάδες 4 points # 11. Ο Θανάσης χρησιμοποίησε 6 τετράγωνα πλευράς 1 μονάδας για να κατασκευάσει το σχήμα που φαίνεται στη εικόνα πιο κάτω. Ποιά είναι η περίμετρος του σχήματος; Tom used 6 squares with side 1 to form the shape in the picture. What is the perimeter of the shape? (A) 9 (B) 10 (C) 11 (D) 12 (E) 13 # 12. Κάθε μέρα η Μαρία γράφει την ημερομηνία και υπολογίζει το άθροισμα των ψηφίων που γράφονται. Για παράδειγμα, στις 19 Μαρτίου γράφει και υπολογίζει = 13. Ποιο είναι το μεγαλύτερο άθροισμα που υπολόγισε στη διάρκεια ενός έτους; Every day Mary writes down the date and calculates the sum of the digits written. For example, on March 19 she writes and calculates = 13. What is the largest sum that she calculates during a year? (A) 7 (B) 13 (C) 14 (D) 16 (E) 20 # 13. Το ορθογώνιο ABCD στην εικόνα αποτελείται από 4 ίσα ορθογώνια. Αν η BC έχει μήκος 1 cm, ποιο είναι το μήκος της ΑΒ; The rectangle ABCD in the picture consists of 4 equal rectangles. If BC has length 10 cm, what is the length of AB? A B D C (A) 40 cm (B) 30 cm (C) 20 cm (D) 10 cm (E) 5 cm 3

6 # 14. Ποιο από τα πιο κάτω 5 αναπτύγματα δεν μπορεί να είναι το ανάπτυγμα μιας πυραμίδας; Which of these five nets cannot be the net of a pyramid? (A) (B) (C) (D) (E) # 15. Στη οδό Ελευθερίας υπάρχουν 9 σπίτια στη γραμμή. Τουλάχιστο ένα άτομο ζει σε κάθε σπίτι. Σε οποιαδήποτε δύο γειτονικά σπίτια κατοικούν μαζί το πολύ έξι άτομα. Ποιος είναι ο μεγαλύτερος αριθμός ατόμων που θα μπορούσαν να ζουν στη οδό Ελευθερίας. On Jump Street, there are 9 houses in a row. At least one person lives in each house. Any two neighboring houses together are inhabited by at most six people. What is the largest number of people that could be living on Jump Street? (A) 23 (B) 25 (C) 27 (D) 29 (E) 31 # 16. Η Λουκία και η μητέρα της γεννήθηκαν και οι δύο τον Ιανουάριο. Αν σήμερα ήταν 21 Μαρτίου, 2015, η Λουκία προσθέτει το έτος της ημερομηνίας γέννησης της, το έτος της ημερομηνίας γέννησης της μητέρας της, την ηλικία της και την ηλικία της μητέρας της. Ποιο αποτέλεσμα παίρνει; Lucy and her mother were both born in January. If today was March 21, 2015, Lucy adds the year of her birth, the year of her mother s birth, her age, and her mother s age. What result does she get? (A) 4028 (B) 4029 (C) 4030 (D) 4031 (E) 4032 # 17. Το εμβαδό ενός ορθογωνίου είναι 12 cm 2. Τα μήκη των πλευρών του είναι φυσικοί αριθμοί. Τότε η περίμετρος αυτού του ορθογωνίου θα μπορούσε να είναι: The area of a rectangle is 12 cm 2. The lengths of its sides are natural numbers. Then, the perimeter of this rectangle could be: (A) 20 cm (B) 26 cm (C) 28 cm (D) 32 cm (E) 48 cm # 18. Έχουμε τρία διαφανή φύλλα χαρτιού όπως φαίνονται ποιο κάτω. Μπορούμε μόνο να στρίψουμε τα τρία κομμάτια χωρίς να τα διπλώσουμε. Μετά τα βάζουμε ακριβώς το ένα πάνω στο άλλο. Ποιος είναι ο μέγιστος δυνατός αριθμός μαύρων τετραγώνων τα οποία μπορούν να φαίνονται στο σχηματιζόμενο τετράγωνο, αν το βλέπουμε από πάνω; We have three transparent sheets with the following patterns. We can only rotate the three sheets without turning over. Then we put them exactly on top of each other. What is the maximum possible number of black squares seen in the obtained square if looked at from above? (A) 5 (B) 6 (C) 7 (D) 8 (E) 9 4

7 # 19. Σε μια σακούλα υπάρχουν 3 πράσινα μήλα, 5 κίτρινα μήλα, 7 πράσινα αχλάδια και 2 κίτρινα αχλάδια. Ο Σίμος παίρνει στην τύχη φρούτα από τη σακούλα κάθε φορά ένα. Πόσα φρούτα πρέπει να πάρει από τη σακούλα ώστε να έχει τουλάχιστο ένα μήλο και ένα αχλάδι του ιδίου χρώματος; In a bag there are 3 green apples, 5 yellow apples, 7 green pears and 2 yellow pears. Simon randomly takes fruits out of the bag one by one. How many fruits must he take out in order to be sure that he has at least one apple and one pear of the same colour? (A) 9 (B) 10 (C) 11 (D) 12 (E) 13 # 20. Ένα νέο παιχνίδι σκάκι με πιόνι Κανγκουρού έχει δημιουργηθεί. Σε κάθε κίνηση, μετακινείται 3 τετράγωνα κατακόρυφα και 1 οριζόντια, ή 3 τετράγωνα οριζόντια και 1 κατακόρυφο, όπως φαίνεται στο σχήμα. Ποιος είναι ο ελάχιστος αριθμός κινήσεων του Κανγκουρού ώστε να μετακινηθεί από την αρχική του θέση στη θέση Α. A new chess piece kangaroo has been introduced. In each move, it jumps either 3 squares vertically and 1 horizontally, or 3 squares horizontally and 1 vertically, as shown in the picture. What is the minimum number of moves the kangaroo needs in order to go from its current position to the square marked with A? 5 μονάδες 5 points (A) 2 (B) 3 (C) 4 (D) 5 (E) 6 # 21. Σε αυτό το άθροισμα τα ίδια γράμματα αντιπροσωπεύουν τα ίδια ψηφία και διαφορετικά γράμματα αντιπροσωπεύουν διαφορετικά ψηφία. Ποιό ψηφίο είναι το γράμμα Χ; In this sum, equal letters represent equal digits, and different letters represent different digits. Which digit is represented by the letter X? (A) 2 (B) 3 (C) 4 (D) 5 (E) 6 # 22. Η Γιάννα αγόρασε 3 παιχνίδια. Για το πρώτο παιχνίδι πλήρωσε μισά από τα χρήματα της συν 1 ευρώ. Για το δεύτερο παιχνίδι πλήρωσε μισά από τα υπόλοιπα χρήματα συν 2 ευρώ. Τέλος, για το τρίτο παιχνίδι πλήρωσε τα μισά από τα υπόλοιπα χρήματα συν 3 ευρώ, έτσι ξόδεψε όλα τα χρήματα της. Πόσα χρήματα είχε αρχικά σε ευρώ; Jane bought 3 toys. For the first toy she paid half of her money and EUR1 more. For the second toy she paid half of the remaining money and EUR2 more. Finally, for the third toy she paid half of the remaining money and EUR3 more, thus spending all of her money. How much money did she have initially in euro? (A) 36 (B) 45 (C) 34 (D) 65 (E) 100 5

8 # 23. Η Κάρλα θέλει να δημιουργήσει ένα κύβο από το ανάπτυγμα του σε χαρτί. Κατά λάθος σχεδίασε 7 τετράγωνα στο χαρτί αντί για 6 τετράγωνα. Ποιο τετράγωνο πρέπει να κοπεί ώστε το χαρτί να μείνει ενωμένο και η Κάρλα να μπορεί να διπλώσει το χαρτί για να δημιουργήσει ένα κύβο; Carla wants to fold a cube from a paper net. By mistake she drew 7 squares on her sheet instead of 6 squares. Which square can she remove so that the figure remains connected and Carla can fold a cube from it? (A) 4 μόνο/only 4 (B) 7 μόνο/only 7 (C) 3 ή 4 μόνο/only 3 or 4 (D) 3ή 7 μόνο/only 3 or 7 (E) 3,4 ή 7 μόνο/only 3, 4 or 7 # 24. Ο αριθμός 100 πολλαπλασιάζεται με το 2 ή με το 3, μετά το αποτέλεσμα αυξάνεται με το 1 ή με το 2 και μετά το νέο αποτέλεσμα διαιρείται με το 3 ή το 4. Το τελικό αποτέλεσμα είναι φυσικός αριθμός. Ποιο είναι το τελικό αποτέλεσμα; The number 100 is multiplied either by 2 or by 3, then the result is increased either by 1 or by 2, and then the new result is divided either by 3 or by 4. The final result is a natural number. What is this final result? (A) 50 (B) 51 (C) 67 (D) 68 (E) Υπάρχουν περισσότερα από ένα αποτέλεσμα/there is more than one possible final result # 25. Σε ένα τερταψήφιο αριθμό ABCD, τα ψηφία A,B, C, και D βρίσκονται σε αύξουσα διάταξη από αριστερά προς τα δεξιά. Ποιά είναι η μεγαλύτερη δυνατή διαφορά BD AC των διψήφιων αριθμών BD και AC; In a 4-digit number ABCD, the digits A, B, C, and D are in increasing order from left to right. What is the largest possible difference BD AC of the 2-digit numbers BD and AC? (A) 86 (B) 61 (C) 56 (D) 50 (E) 16 # 26. Η Μαρία γράφει ένα αριθμό σε κάθε έδρα ενός κύβου. Μετά, για κάθε κορυφή, προσθέτει τους αριθμούς των τριών εδρών οι οποίες μοιράζονται την κορυφή (για παράδειγμα, για την κορυφή B προσθέτει τους αριθμούς των εδρών BCDA, BAEF και BFGC). Οι αριθμοί που υπολογίζονται από την Μαρία για τις κορυφές C, D και Ε είναι 14,16 και 24, αντίστοιχα. Ποιόν αριθμό υπολογίζει για την κορυφή F; Mary writes a number on each face of a cube. Then, for each vertex, she adds the numbers on the three faces which share that vertex (for example, for vertex B she adds the numbers on faces BCDA, BAEF and BFGC). The numbers computed by Mary for vertices C, D and E are 14, 16 and 24, respectively. What number does she compute for vertex F? (A) 15 (B) 19 (C) 22 (D) 24 (E) 26 6

9 # 27. Ένα τραίνο έχει 12 βαγόνια. Το κάθε βαγόνι έχει τον ίδιο αριθμό διαμερισμάτων. Ο Μιχάλης ταξιδεύει στο τρίτο βαγόνι και στο 18 ο διαμέρισμα από τη μηχανή του τραίνου. Η Γιάννα κάθισε στο 7 βαγόνι και στο διαμέρισμα 50 ο από την μηχανή του τραίνου. Πόσα διαμερίσματα υπάρχουν σε κάθε βαγόνι; A train has 12 coaches. Each coach has the same number of compartments. Mike is travelling in the third coach and in the 18th compartment from the train engine. Jane sat in the 7th coach in the 50th compartment from the engine. How many compartments are there in each coach? (A) 7 (B) 8 (C) 9 (D) 10 (E) 12 # 28. Με πόσους τρόπους μπορείς να τοποθετήσεις 3 Κανγκουρού σε τρία διαφορετικά κουτιά ώστε να μην γειτονεύουν οποιαδήποτε δύο Καγκουρού; In how many ways can you place the 3 kangaroos in 3 different cells so that no 2 kangaroos are neighbors? (A) 7 (B) 8 (C) 9 (D) 10 (E) 11 # 29. Τέσσερα σημεία βρίσκονται σε μια ευθεία γραμμή. Οι αποστάσεις μεταξύ τους, σε αύξουσα διάταξη είναι: 2, 3, k, 11, 12, 14. Ποια η τιμή του k? Four points lie on a line. The distances between them are, in increasing order: 2, 3, k, 11, 12, 14. What is k? (A) 5 (B) 6 (C) 7 (D) 8 (E) 9 # 30. Ο Βασίλης χρησιμοποίησε μικρούς κύβους πλευράς 1 για να κατασκευάσει ένα κύβο με πλευρά 4. Μετά έβαψε 3 έδρες του μεγάλου κύβου με κόκκινο χρώμα και τις άλλες τρεις έδρες με χρώμα μπλέ. Πόσοι μικροί κύβοι έχουν ταυτόχρονα κόκκινες και μπλε έδρες; Basil used small cubes with side 1 to construct a cube with side 4. After that, he painted 3 faces of the big cube red and the other 3 faces blue. After he finished, there was no small cube with 3 red faces. How many small cubes have both red and blue faces? (A) 0 (B) 8 (C) 12 (D) 24 (E) 32 7

10 KANGOUROU SUMMER MATHEMATICS CAMP July / Ιουλίου 2015 Rodon Mount Resort, Agros Ξενοδοχείο Ρόδον, Αγρός For students of age 9-14 (4 th 9 th grade) Για μαθητές ηλικίας 9-14 ετών (Δ Δημοτικού Γ Γυμνασίου) PROGRAMME / ΠΡΟΓΡΑΜΜA DAY / ΜΕΡΑ 1 Arrivals / Αφίξεις DAY / ΜΕΡΑ 2-5 Math lessons / Μαθήματα μαθηματικών Games / Παιχνίδια Sports / Αθλοπαιδιές Communication in Science and Mathematics Επικοινωνία στην επιστήμη και τα μαθηματικά Swimming / Κολύμπι Competitions / Διαγωνισμοί Village Tour / Ξενάγηση στο χωριό DAY / ΜΕΡΑ 6 Departures / Αναχωρήσεις For more information, please visit our website or contact us at Deadline to submit the application form: 15 June 2015 Για περισσότερες πληροφορίες, επισκεφτείτε την ιστοσελίδα μας ή επικοινωνήστε μαζί μας στο Τελευταία ημερομηνία υποβολής αιτήσεων: 15 Ιουνίου 2015

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Kangourou Mathematics Competition 2015

Kangourou Mathematics Competition 2015 Thales Foundation Cyprus P.O. Box 28959, CY2084 Acropolis, Nicosia, Cyprus Kangourou Mathematics Competition 2015 Pre-Ecolier (A - Β Δημοτικού) 21 Μαρτίου/March 2015 10:00 11:15 Ερωτήσεις 1 8 = 3 μονάδες

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

1. Ladybird will sit on a flower that has five petals and three leaves. On which of the following flowers will ladybird sit?

1. Ladybird will sit on a flower that has five petals and three leaves. On which of the following flowers will ladybird sit? 3 point problems - θέματα 3 μονάδων 1. Ladybird will sit on a flower that has five petals and three leaves. On which of the following flowers will ladybird sit? Η παπαρούνα θα καθίσει σε λουλούδι το οποίο

Διαβάστε περισσότερα

Kangourou Mathematics Competition 2015

Kangourou Mathematics Competition 2015 Thales Foundation Cyprus P.O. Box 28959, CY2084 Acropolis, Nicosia, Cyprus Kangourou Mathematics Competition 2015 Ecolier (Γ - Δ Δημοτικού) 21 Μαρτίου/March 2015 10:00 11:15 Ερωτήσεις 1 8 = 3 μονάδες η

Διαβάστε περισσότερα

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2016 Α & Β ΓΥΜΝΑΣΙΟΥ.

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2016 Α & Β ΓΥΜΝΑΣΙΟΥ. ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2016 17 ΑΠΡΙΛΙΟΥ 2016 Α & Β ΓΥΜΝΑΣΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

KANGOUROU MATHEMATICS

KANGOUROU MATHEMATICS KANGOUROU MATHEMATICS LEVEL 1 2 Α - Β ΔΗΜΟΤΙΚΟΥ 23 ΜΑΡΤΙΟΥ / MARCH 2013 10:00-11:15 Questions 1-9: 3 points Questions 10-16: 4 points Questions 17-24: 5 points 1 3 points problems (προβλήματα 3 μονάδων)

Διαβάστε περισσότερα

Kangourou Mathematics Competition 2015

Kangourou Mathematics Competition 2015 Thales Foundation Cyprus P.O. Box 28959, CY2084 Acropolis, Nicosia, Cyprus Kangourou Mathematics Competition 2015 Kadet (Α - Β Γυμνασίου) 21 Μαρτίου/March 2015 10:00 11:15 Ερωτήσεις 1 10 = 3 βαθμοί η καθεμιά

Διαβάστε περισσότερα

KANGOUROU Mathematics Competition 2016 Level 1-2

KANGOUROU Mathematics Competition 2016 Level 1-2 Thales Foundation Cyprus P.O. Box 28959, CY2084 Acropolis, Nicosia, Cyprus KANGOUROU Mathematics Competition 2016 Level 1-2 (A - Β Δημοτικού) 19 Μαρτίου/March 2016 10:00 11:15 Ερωτήσεις 1 8 = 3 βαθμοί

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2016 Γ & Δ ΔΗΜΟΤΙΚΟΥ.

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2016 Γ & Δ ΔΗΜΟΤΙΚΟΥ. ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2016 17 ΑΠΡΙΛΙΟΥ 2016 Γ & Δ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

@ BY AVENUES PRIVATE INSTITUTE JUNE 2014

@ BY AVENUES PRIVATE INSTITUTE JUNE 2014 1 Εκεί που η ποιότητα συναντά την επιτυχία Λεωφ. Αρχ. Μακαρίου 7, Αρεδιού Τηλ. 22874368/9 2 ENGLISH INSTITUTE A Place where quality meets success 7, Makarios Avenue, Arediou, Tel. 22874368/9 99606442 Anglia

Διαβάστε περισσότερα

LESSON 9 (ΜΑΘΗΜΑ ΕΝΝΙΑ) REF : 101/011/9-BEG. 14 January 2013

LESSON 9 (ΜΑΘΗΜΑ ΕΝΝΙΑ) REF : 101/011/9-BEG. 14 January 2013 LESSON 9 (ΜΑΘΗΜΑ ΕΝΝΙΑ) REF : 101/011/9-BEG 14 January 2013 Up πάνω Down κάτω In μέσα Out/outside έξω (exo) In front μπροστά (brosta) Behind πίσω (piso) Put! Βάλε! (vale) From *** από Few λίγα (liga) Many

Διαβάστε περισσότερα

LESSON 16 (ΜΑΘΗΜΑ ΔΕΚΑΕΞΙ) REF : 102/018/16-BEG. 4 March 2014

LESSON 16 (ΜΑΘΗΜΑ ΔΕΚΑΕΞΙ) REF : 102/018/16-BEG. 4 March 2014 LESSON 16 (ΜΑΘΗΜΑ ΔΕΚΑΕΞΙ) REF : 102/018/16-BEG 4 March 2014 Family η οικογένεια a/one(fem.) μία a/one(masc.) ένας father ο πατέρας mother η μητέρα man/male/husband ο άντρας letter το γράμμα brother ο

Διαβάστε περισσότερα

Kangourou Mathematics Competition 2015

Kangourou Mathematics Competition 2015 Thales Foundation Cyprus P.O. Box 28959, CY2084 Acropolis, Nicosia, Cyprus Kangourou Mathematics Competition 2015 Student (Β Γ Λυκείου) 21 Μαρτίου/March 2015 10:00 11:15 Ερωτήσεις 1 10 = 3 βαθμοί η καθεμιά

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2016 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ.

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2016 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ. ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2016 17 ΑΠΡΙΛΙΟΥ 2016 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

Ποιο σχέδιο αποτελεί το κεντρικό μέρος της εικόνας με το αστέρι; (A) (B) (C) (D) (E)

Ποιο σχέδιο αποτελεί το κεντρικό μέρος της εικόνας με το αστέρι; (A) (B) (C) (D) (E) 3 point problems - θέματα 3 μονάδων 1. Which drawing is the central part of the picture with the star? Ποιο σχέδιο αποτελεί το κεντρικό μέρος της εικόνας με το αστέρι; 2. Jacky wants to insert the digit

Διαβάστε περισσότερα

How to register an account with the Hellenic Community of Sheffield.

How to register an account with the Hellenic Community of Sheffield. How to register an account with the Hellenic Community of Sheffield. (1) EN: Go to address GR: Πηγαίνετε στη διεύθυνση: http://www.helleniccommunityofsheffield.com (2) EN: At the bottom of the page, click

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

MATHEMATIC KANGOUROU 2016 Student-Levels 11-12

MATHEMATIC KANGOUROU 2016 Student-Levels 11-12 MATHEMATIC KANGOUROU 2016 Student-Levels 11-12 3 point problems (προβλήματα 3 μονάδων) 1. The sum of the ages of Tom and John is 23, the sum of the ages of John and Alex is 24 and the sum of the ages of

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

1. Πόσοι αριθμοί μικρότεροι του διαιρούνται με όλους τους μονοψήφιους αριθμούς;

1. Πόσοι αριθμοί μικρότεροι του διαιρούνται με όλους τους μονοψήφιους αριθμούς; ΚΥΠΡΙΚΗ ΜΘΗΜΤΙΚΗ ΤΙΡΙ ΠΡΧΙΚΟΣ ΙΩΝΙΣΜΟΣ 7//2009 ΩΡ 0:00-2:00 ΟΗΙΣ. Να λύσετε όλα τα θέματα. Κάθε θέμα βαθμολογείται με 0 μονάδες. 2. Να γράφετε με μπλε ή μαύρο μελάνι (επιτρέπεται η χρήση μολυβιού για τα

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ

Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

Advanced Subsidiary Unit 1: Understanding and Written Response

Advanced Subsidiary Unit 1: Understanding and Written Response Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ

Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΗ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2017 30 ΑΠΡΙΛΙΟΥ 2017 Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

Writing for A class. Describe yourself Topic 1: Write your name, your nationality, your hobby, your pet. Write where you live.

Writing for A class. Describe yourself Topic 1: Write your name, your nationality, your hobby, your pet. Write where you live. Topic 1: Describe yourself Write your name, your nationality, your hobby, your pet. Write where you live. Χρησιμοποίησε το and. WRITE your paragraph in 40-60 words... 1 Topic 2: Describe your room Χρησιμοποίησε

Διαβάστε περισσότερα

Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ

Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΕ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2014 6 ΑΠΡΙΛΙΟΥ 2014 Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door. Let's now finish the door hinge saga with the right rear door Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

Door Hinge replacement (Rear Left Door)

Door Hinge replacement (Rear Left Door) Door Hinge replacement (Rear Left Door) We will continue the previous article by replacing the hinges of the rear left hand side door. I will use again the same procedure and means I employed during the

Διαβάστε περισσότερα

KANGOUROU Mathematics Competition 2016 Level 5-6

KANGOUROU Mathematics Competition 2016 Level 5-6 Thales Foundation Cyprus P.O. Box 28959, CY2084 Acropolis, Nicosia, Cyprus KANGOUROU Mathematics Competition 2016 Level 5-6 (Ε - Στ Δημοτικού) 19 Μαρτίου/March 2016 10:00 11:15 Ερωτήσεις 1 10 = 3 βαθμοί

Διαβάστε περισσότερα

Paper Reference. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing. Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes

Paper Reference. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing. Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes Centre No. Candidate No. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes Materials required for examination Nil Paper Reference

Διαβάστε περισσότερα

Kangourou Mathematics Competition 2015

Kangourou Mathematics Competition 2015 Thales Foundation Cyprus P.O. Box 28959, CY2084 Acropolis, Nicosia, Cyprus Kangourou Mathematics Competition 2015 Junior (Γ Γυμνασίου Α Λυκείου) 21 Μαρτίου/March 2015 10:00 11:15 Ερωτήσεις 1 10 = 3 βαθμοί

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

KANGOUROU Mathematics Competition 2016 Level 3-4

KANGOUROU Mathematics Competition 2016 Level 3-4 Thales Foundation Cyprus P.O. Box 28959, CY2084 Acropolis, Nicosia, Cyprus KANGOUROU Mathematics Competition 2016 Level 3-4 (Γ - Δ Δημοτικού) 19 Μαρτίου/March 2016 10:00 11:15 Ερωτήσεις 1 8 = 3 βαθμοί

Διαβάστε περισσότερα

Kangourou Mathematics Competition Level 5 6

Kangourou Mathematics Competition Level 5 6 Thales Foundation Cyprus 36 Stasinou street, Office 104, Strovolos 2003, Nicosia, Cyprus Kangourou Mathematics Competition 2017 Level 5 6 Date: 18 March 2017 Time: 10:00 11:15 Questions 1 10 = 3 points

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Code Breaker. TEACHER s NOTES

Code Breaker. TEACHER s NOTES TEACHER s NOTES Time: 50 minutes Learning Outcomes: To relate the genetic code to the assembly of proteins To summarize factors that lead to different types of mutations To distinguish among positive,

Διαβάστε περισσότερα

Kangourou Mathematics Competition Level 3 4

Kangourou Mathematics Competition Level 3 4 Thales Foundation Cyprus 36 Stasinou street, Office 104, Strovolos 2003, Nicosia, Cyprus Kangourou Mathematics Competition 2017 Level 3 4 Date: 18 March 2017 Time: 10:00 11:15 Questions 1 8 = 3 points

Διαβάστε περισσότερα

ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ. 7. How much money do you plan to spend on Kos per person? (Excluding tickets)

ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ. 7. How much money do you plan to spend on Kos per person? (Excluding tickets) ΤΟΥΡΙΣΜΟΣ Στο συγκεκριμένο project μελετήσαμε τον τουρισμό και κυρίως αυτόν στο νησί μας. Πιο συγκεκριμένα, κατά πόσο αυτός είναι σωστά ανεπτυγμένος και οργανωμένος. Για την ουσιαστικότερη προσέγγιση του

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Γ & Δ ΔΗΜΟΤΙΚΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Γ & Δ ΔΗΜΟΤΙΚΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Γ & Δ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

Living and Nonliving Created by: Maria Okraska

Living and Nonliving Created by: Maria Okraska Living and Nonliving Created by: Maria Okraska http://enchantingclassroom.blogspot.com Living Living things grow, change, and reproduce. They need air, water, food, and a place to live in order to survive.

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

LESSON 28 (ΜΑΘΗΜΑ ΕΙΚΟΣΙ ΟΚΤΩ) REF : 201/033/28. 2 December 2014

LESSON 28 (ΜΑΘΗΜΑ ΕΙΚΟΣΙ ΟΚΤΩ) REF : 201/033/28. 2 December 2014 LESSON 28 (ΜΑΘΗΜΑ ΕΙΚΟΣΙ ΟΚΤΩ) REF : 201/033/28 2 December 2014 Place/Seat Right (noun) I am right I am not right It matters It does not matter The same (singular) The same (Plural) Η θέση Το δίκιο Έχω

Διαβάστε περισσότερα

KANGOUROU MATHEMATICS

KANGOUROU MATHEMATICS KANGOUROU MATHEMATICS LEVEL 9 10 Γ ΓΥΜΝΑΣΙΟΥ - Α ΛΥΚΕΙΟΥ 23 ΜΑΡΤΙΟΥ / MARCH 2013 10:00-11:15 Questions 1-10: 3 points Questions 11-20: 4 points Questions 21-30: 5 points 1 3 point problems (προβλήματα

Διαβάστε περισσότερα

LESSON 12 (ΜΑΘΗΜΑ ΔΩΔΕΚΑ) REF : 202/055/32-ADV. 4 February 2014

LESSON 12 (ΜΑΘΗΜΑ ΔΩΔΕΚΑ) REF : 202/055/32-ADV. 4 February 2014 LESSON 12 (ΜΑΘΗΜΑ ΔΩΔΕΚΑ) REF : 202/055/32-ADV 4 February 2014 Somewhere κάπου (kapoo) Nowhere πουθενά (poothena) Elsewhere αλλού (aloo) Drawer το συρτάρι (sirtari) Page η σελίδα (selida) News τα νέα (nea)

Διαβάστε περισσότερα

Thales Foundation Cyprus 36 Stasinou street, Office 104, Strovolos 2003, Nicosia, Cyprus. Level 7 8

Thales Foundation Cyprus 36 Stasinou street, Office 104, Strovolos 2003, Nicosia, Cyprus. Level 7 8 Thales Foundation Cyprus 36 Stasinou street, Office 104, Strovolos 2003, Nicosia, Cyprus Kangourou Mathematics Competition 2017 Level 7 8 Date: 18 March 2017 Time: 10:00 11:15 Questions 1 10 = 3 points

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΕ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2014 6 ΑΠΡΙΛΙΟΥ 2014 Γ & Δ ΔΗΜΟΤΙΚΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΕ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2014 6 ΑΠΡΙΛΙΟΥ 2014 Γ & Δ ΔΗΜΟΤΙΚΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΕ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2014 6 ΑΠΡΙΛΙΟΥ 2014 Γ & Δ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΗ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2017 Β & Γ ΛΥΚΕΙΟΥ.

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΗ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2017 Β & Γ ΛΥΚΕΙΟΥ. ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΗ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2017 30 ΑΠΡΙΛΙΟΥ 2017 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

KANGOUROU MATHEMATICS

KANGOUROU MATHEMATICS KANGOUROU MATHEMATICS LEVEL 11 12 Β - Γ ΛΥΚΕΙΟΥ 23 ΜΑΡΤΙΟΥ / MARCH 2013 10:00-11:15 Questions 1-10: 3 points Questions 11-20: 4 points Questions 21-30: 5 points 1 3 point problems(προβλήματα 3 μονάδων)

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006 ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/26 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι το 1 εκτός αν ορίζεται διαφορετικά στη διατύπωση

Διαβάστε περισσότερα

STARTING STEPS IN GRAMMAR, FINAL TEST C TERM 2012 UNITS 1-18

STARTING STEPS IN GRAMMAR, FINAL TEST C TERM 2012 UNITS 1-18 STARTING STEPS IN GRAMMAR, FINAL TEST C TERM 2012 UNITS 1-18 Name.. Class. Date. EXERCISE 1 Answer the question. Use: Yes, it is or No, it isn t. Απάντηςε ςτισ ερωτήςεισ. Βάλε: Yes, it is ή No, it isn

Διαβάστε περισσότερα

LESSON 6 (ΜΑΘΗΜΑ ΕΞΙ) REF : 201/045/26-ADV. 10 December 2013

LESSON 6 (ΜΑΘΗΜΑ ΕΞΙ) REF : 201/045/26-ADV. 10 December 2013 LESSON 6 (ΜΑΘΗΜΑ ΕΞΙ) REF : 201/045/26-ADV 10 December 2013 I get up/i stand up I wash myself I shave myself I comb myself I dress myself Once (one time) Twice (two times) Three times Salary/wage/pay Alone/only

Διαβάστε περισσότερα

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ342: Βάσεις Δεδομένων Χειμερινό Εξάμηνο 2013 Φροντιστήριο 10 ΛΥΣΕΙΣ Επερωτήσεις SQL Άσκηση 1 Για το ακόλουθο σχήμα Suppliers(sid, sname, address) Parts(pid, pname,

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2017 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ.

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2017 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ. ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2017 30 ΑΠΡΙΛΙΟΥ 2017 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Δημιουργία Λογαριασμού Διαχείρισης Business Telephony Create a Management Account for Business Telephony

Δημιουργία Λογαριασμού Διαχείρισης Business Telephony Create a Management Account for Business Telephony Δημιουργία Λογαριασμού Διαχείρισης Business Telephony Create a Management Account for Business Telephony Ελληνικά Ι English 1/7 Δημιουργία Λογαριασμού Διαχείρισης Επιχειρηματικής Τηλεφωνίας μέσω της ιστοσελίδας

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

14 Lesson 2: The Omega Verb - Present Tense

14 Lesson 2: The Omega Verb - Present Tense Lesson 2: The Omega Verb - Present Tense Day one I. Word Study and Grammar 1. Most Greek verbs end in in the first person singular. 2. The present tense is formed by adding endings to the present stem.

Διαβάστε περισσότερα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3) Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

Section 1: Listening and responding. Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016

Section 1: Listening and responding. Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016 Section 1: Listening and responding Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016 Section 1: Listening and responding Section 1: Listening and Responding/ Aκουστική εξέταση Στο πρώτο μέρος της

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games

Διαβάστε περισσότερα

Kangourou Mathematics Competition Level 11 12

Kangourou Mathematics Competition Level 11 12 Thales Foundation Cyprus 36 Stasinou street, Office 104, Strovolos 2003, Nicosia, Cyprus Kangourou Mathematics Competition 2017 Level 11 12 Date: 18 March 2017 Time: 10:00 11:15 Questions 1 10 = 3 points

Διαβάστε περισσότερα

KANGOUROU Mathematics Competition 2016 Level 9-10

KANGOUROU Mathematics Competition 2016 Level 9-10 Thales Foundation Cyprus P.O. Box 28959, CY2084 Acropolis, Nicosia, Cyprus KANGOUROU Mathematics Competition 2016 Level 9-10 (Γ Γυμνασίου Α Λυκείου) 19 Μαρτίου/March 2016 10:00 11:15 Ερωτήσεις 1 10 = 3

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Α & Β ΓΥΜΝΑΣΙΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Α & Β ΓΥΜΝΑΣΙΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Α & Β ΓΥΜΝΑΣΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

MATHEMATICS COMPETITION LEVEL 3-4 Γ -Δ ΔΗΜΟΤΙΚΟΥ

MATHEMATICS COMPETITION LEVEL 3-4 Γ -Δ ΔΗΜΟΤΙΚΟΥ MATHEMATICS COMPETITION LEVEL 3-4 Γ -Δ ΔΗΜΟΤΙΚΟΥ 17 Μαρτίου2012 17 March 2012 10:00-11:15 Questions 1-8: 3 points Questions 9-16: 4 points Questions 17-24: 5 points 1. Ο Βασίλης θέλει να γράψει τη λέξη

Διαβάστε περισσότερα

Kangourou Mathematics Competition Level 1 2

Kangourou Mathematics Competition Level 1 2 Thales Foundation Cyprus 36 Stasinou street, Office 104, Strovolos 2003, Nicosia, Cyprus Kangourou Mathematics Competition 2017 Level 1 2 Date: 18 March 2017 Time: 10:00 11:15 Questions 1 8 = 3 points

Διαβάστε περισσότερα

KANGOUROU Mathematics Competition 2016 Level 7-8

KANGOUROU Mathematics Competition 2016 Level 7-8 Thales Foundation Cyprus P.O. Box 28959, CY2084 Acropolis, Nicosia, Cyprus KANGOUROU Mathematics Competition 2016 Level 7-8 (Α Β Γυμνασίου) 19 Μαρτίου/March 2016 10:00 11:15 Ερωτήσεις 1 10 = 3 βαθμοί η

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS LEVEL: 5 6 (E - Στ Δημοτικού) 10:00 11:00, 20 March 2010 THALES FOUNDATION 1 3 βαθμοί 1. Γνωρίζοντας ότι + + 6 = + + +, ποιόν αριθμό αντιπροσωπεύει το ; A) 2 B) 3 C) 4 D) 5 E) 6

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS LEVEL: 11 12 (B - Γ Λυκείου) 10:00 11:00, 20 March 2010 THALES FOUNDATION 1 3 βαθμοί 1. Από την εικόνα μπορούμε να δούμε ότι: 1 + 3 + 5 + 7 = 4 4. Ποια είναι η τιμή του: 1 + 3 +

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Α. Διαβάστε τις ειδήσεις και εν συνεχεία σημειώστε. Οπτική γωνία είδησης 1:.

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Α.  Διαβάστε τις ειδήσεις και εν συνεχεία σημειώστε. Οπτική γωνία είδησης 1:. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Α 2 ειδήσεις από ελληνικές εφημερίδες: 1. Τα Νέα, 13-4-2010, Σε ανθρώπινο λάθος αποδίδουν τη συντριβή του αεροσκάφους, http://www.tanea.gr/default.asp?pid=2&artid=4569526&ct=2 2. Τα Νέα,

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Newborn Upfront Payment & Newborn Supplement

Newborn Upfront Payment & Newborn Supplement GREEK Newborn Upfront Payment & Newborn Supplement Female 1: Το μωρό μου θα ρθει σύντομα, θα πρέπει να κανονίσω τα οικονομικά μου. Άκουσα ότι η κυβέρνηση δεν δίνει πλέον το Baby Bonus. Ξέρεις τίποτα γι

Διαβάστε περισσότερα

John Mavrikakis ENGLISH MULTIBOOK

John Mavrikakis ENGLISH MULTIBOOK units 201 John Mavrikakis ENGLISH MULTIBOOK e-learning for language students (grammar, vocabulary, reading) level 2 (Junior A) DEMO STUDENT S UNIT 10 The alphabet, a, b, c, d, e, f, g, h, i, j, k, l, A,

Διαβάστε περισσότερα

KANGOUROU MATHEMATICS

KANGOUROU MATHEMATICS KANGOUROU MATHEMATICS LEVEL 5 6 Ε - Στ ΔΗΜΟΤΙΚΟΥ 23 ΜΑΡΤΙΟΥ / MARCH 2013 10:00-11:15 Questions 1-10: 3 points Questions 11-20: 4 points Questions 21-30: 5 points 1 3 point problems (προβλήματα 3 μονάδων)

Διαβάστε περισσότερα

LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014

LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014 LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV 18 February 2014 Slowly/quietly Clear/clearly Clean Quickly/quick/fast Hurry (in a hurry) Driver Attention/caution/notice/care Dance Σιγά Καθαρά Καθαρός/η/ο

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ενότητα 11: The Unreal Past Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΤΙΚΗ. Πείραμα: Μία φυσική διαδικασία με ένα αριθμό παρατηρήσιμων αποτελεσμάτων.

ΣΥΝΔΥΑΣΤΙΚΗ. Πείραμα: Μία φυσική διαδικασία με ένα αριθμό παρατηρήσιμων αποτελεσμάτων. ΣΥΝΔΥΑΣΤΙΚΗ Πείραμα: Μία φυσική διαδικασία με ένα αριθμό παρατηρήσιμων αποτελεσμάτων. Παραδείγματα πειραμάτων και αντίστοιχα πιθανά αποτελέσματα: Πιθανά αποτελέσματα ρίψης νομίσματος={κ, Γ} Πιθανά αποτελέσματα

Διαβάστε περισσότερα

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ Γηπισκαηηθή Δξγαζία ηνπ Φνηηεηή ηνπ ηκήκαηνο Ζιεθηξνιόγσλ Μεραληθώλ θαη Σερλνινγίαο Ζιεθηξνληθώλ

Διαβάστε περισσότερα

ΟΙ ΑΞΙΕΣ ΤΗΣ ΖΩΗΣ THE VALUES OF LIFE Η ΥΠΕΥΘΥΝΟΤΗΤΑ..THE RESPONSIBILITY ΔΗΜΗΤΡΑ ΚΩΝΣΤΑΝΤΙΝΟΥ

ΟΙ ΑΞΙΕΣ ΤΗΣ ΖΩΗΣ THE VALUES OF LIFE Η ΥΠΕΥΘΥΝΟΤΗΤΑ..THE RESPONSIBILITY ΔΗΜΗΤΡΑ ΚΩΝΣΤΑΝΤΙΝΟΥ ΟΙ ΑΞΙΕΣ ΤΗΣ ΖΩΗΣ THE VALUES OF LIFE Η ΥΠΕΥΘΥΝΟΤΗΤΑ..THE RESPONSIBILITY ΔΗΜΗΤΡΑ ΚΩΝΣΤΑΝΤΙΝΟΥ ΜΑΘΗΜΑΤΑ ΥΠΕΥΘΥΝΟΤΗΤΑΣ/ LESSONS ABOUT RESPONSIBILITY Μάθημα 1: Νιώθω υπερήφανος όταν.../ I feel proud when.

Διαβάστε περισσότερα

1. Αφετηρία από στάση χωρίς κριτή (self start όπου πινακίδα εκκίνησης) 5 λεπτά µετά την αφετηρία σας από το TC1B KALO LIVADI OUT

1. Αφετηρία από στάση χωρίς κριτή (self start όπου πινακίδα εκκίνησης) 5 λεπτά µετά την αφετηρία σας από το TC1B KALO LIVADI OUT Date: 21 October 2016 Time: 14:00 hrs Subject: BULLETIN No 3 Document No: 1.3 --------------------------------------------------------------------------------------------------------------------------------------

Διαβάστε περισσότερα

Διάρκεια μιας Ομολογίας (Duration) Ανοσοποίηση (Immunization)

Διάρκεια μιας Ομολογίας (Duration) Ανοσοποίηση (Immunization) Διάρκεια μιας Ομολογίας (Duration) Ανοσοποίηση (Immunization) Προσδιορισμός της Τιμής όταν η Ομολογία Αγοράζεται μεταξύ δύο Τοκοφόρων Περιόδων Για να υπολογίσουμε την τιμή της ομολογίας πρέπει: Υπολογίζουμε

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Στεγαστική δήλωση: Σχετικά με τις στεγαστικές υπηρεσίες που λαμβάνετε (Residential statement: About the residential services you get)

Στεγαστική δήλωση: Σχετικά με τις στεγαστικές υπηρεσίες που λαμβάνετε (Residential statement: About the residential services you get) Νόμος περί Αναπηριών 2006 (Disability Act 2006) Στεγαστική δήλωση: Σχετικά με τις στεγαστικές υπηρεσίες που λαμβάνετε (Residential statement: About the residential services you get) Greek Νόμος περί Αναπηριών

Διαβάστε περισσότερα