Kangourou Mathematics Competition Level 5 6

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Kangourou Mathematics Competition Level 5 6"

Transcript

1 Thales Foundation Cyprus 36 Stasinou street, Office 104, Strovolos 2003, Nicosia, Cyprus Kangourou Mathematics Competition 2017 Level 5 6 Date: 18 March 2017 Time: 10:00 11:15 Questions 1 10 = 3 points Questions = 4 points Questions = 5 points 1

2 KSF Benjamin Levels point problems (προβλήματα 3 μονάδων) 1. Four cards lie in a row. Which row of cards can you not obtain if you can only swap two cards? Τέσσερις κάρτες βρίσκονται σε μια σειρά. Ποια σειρά των καρτών δεν μπορείτε να πάρετε αν ανταλλάξετε μόνο δύο κάρτες; (A) (B) (C) (D) (E) 2. A fly has 6 legs, a spider has 8. Together, 3 flies and 2 spiders have as many legs as 9 chickens and... Μια μύγα έχει 6 πόδια, μια αράχνη έχει 8. Μαζί, 3 μύγες και 2 αράχνες έχουν τόσα πόδια όσα 9 κοτόπουλα και... (A) 2 cats (B) 3 cats (C) 4 cats (D) 5 cats (E) 6 cats (A) 2 γάτες (B) 3 γάτες (C) 4 γάτες (D) 5 γάτες (E) 6 γάτες 3. Alice has 4 pieces of this shape: Which picture can she not make from these 4 pieces? Η Alice έχει 4 κομμάτια από αυτό το σχήμα: Ποια εικόνα δεν μπορεί να κάνει με αυτά τα 4 κομμάτια; (A) (B) (C) (D) (E) 4. Kalle knows that = How much is ? Η Kalle γνωρίζει ότι = Πόσο κάνει ; (A) (B) (C) (D) (E)

3 5. On a planet there are 10 islands and 12 bridges. All bridges are open for traffic right now. What is the smallest number of bridges that must be closed in order to stop the traffic between A and B. Σε έναν πλανήτη υπάρχουν 10 νησιά και 12 γέφυρες. Όλες οι γέφυρες είναι ανοιχτές για την κυκλοφορία αυτή τη στιγμή. Ποιος είναι ο μικρότερος αριθμός γεφυρών που πρέπει να κλείσουν, ώστε να σταματήσει η κυκλοφορία μεταξύ Α και Β. (A) 1 (B) 2 (C) 3 (D) 4 (E) 5 6. Jane, Kate and Lynn go for a walk. Jane walks up front, Kate walks in the middle and Lynn walks behind. Jane weighs 500 kg more than Kate. Kate weighs 1000 kg less than Lynn. Which of the following pictures shows Jane, Kate and Lynn in the right order? Η Jane, η Kate και η Lynn πάνε για έναν περίπατο. Η Jane περπατά μπροστά, η Kate στη μέση και η Lynn περπατά πίσω. Η Jane ζυγίζει 500 κιλά περισσότερο από την Kate. Η Kate ζυγίζει 1000 κιλά λιγότερο από την Lynn. Ποια από τις παρακάτω εικόνες δείχνουν την Jane, την Kate και την Lynn με τη σωστή σειρά; (A) (B) (C) (D) (E) 7. A special dice has a number on each face. The sums of the numbers on opposite faces are all equal. Five of the numbers are 5, 6, 9, 11 and 14. What number is on the sixth face? Ένα ζάρι έχει ένα αριθμό σε κάθε έδρα. Το άθροισμα των αριθμών στις απέναντι πλευρές είναι ίσο. Πέντε από τους αριθμούς είναι 5, 6, 9, 11 και 14. Ποιος αριθμός βρίσκεται στην έκτη έδρα; (A) 4 (B) 7 (C) 8 (D) 13 (E) 15 3

4 8. Martin wants to colour the squares of the rectangle so that 1/3 of all squares are blue and half of all squares are yellow. The rest of the squares are to be coloured red. How many squares will he colour red? Ο Martin θέλει να βάψει τα τετραγωνάκια του ορθογωνίου έτσι ώστε το 1/3 του συνόλου των τετραγώνων να είναι μπλε και το ήμισυ του συνόλου των τετραγώνων να είναι κίτρινα. Το υπόλοιπο των τετραγώνων χρωματίζεται κόκκινο. Πόσα τετράγωνα θα έχουν κόκκινο χρώμα; (A) 1 (B) 2 (C) 3 (D) 4 (E) 5 9. While Peter is solving 2 problems on the "Kangaroo" contest, Nick manages to solve three problems. Totally the boys solved 30 problems. How many problems did Nick solve more than Peter? Ενώ ο Πέτρος λύνει 2 προβλήματα στον διαγωνισμό "Kangaroo", ο Νίκος καταφέρνει να λύσει τρία προβλήματα. Συνολικά, τα αγόρια έλυσαν 30 προβλήματα. Πόσα περισσότερα προβλήματα έλυσε ο Νίκος από τον Πέτρο; (A) 5 (B) 6 (C) 7 (D) 8 (E) Bob folded a piece of paper, used a hole puncher and punched exactly one whole in the paper. The unfolded the paper can be seen in the picture below. Which of the following pictures shows the lines along which Bob folded the piece of paper? Ο Bob δίπλωσε ένα κομμάτι χαρτί και έβγαλε ακριβώς μία τρύπα πάνω στο χαρτί. Όταν άνοιξε το χαρτί ήταν όπως στην πιο κάτω εικόνα. Ποια από τις παρακάτω εικόνες δείχνει τις γραμμές κατά μήκος των οποίων ο Bob δίπλωσε το χαρτί; (A) (B) (C) (D) (E) 4

5 4 point problems (προβλήματα 4 μονάδων) 11. The Modern Furniture store is selling sofas, loveseats(lovecat), and chairs made from identical modular pieces as shown in the picture. Including the armrests, the width of the sofa is 220 cm and the width of the loveseat is 160 cm. What is the width of the chair? Ένα κατάστημα επίπλων πουλάει τριθέσιους καναπέδες, διθέσιους καναπέδες, και καρέκλες από πανομοιότυπα κομμάτια, όπως φαίνονται στην εικόνα. Συμπεριλαμβανομένων των χερουλιών, το πλάτος του τριθέσιου καναπέ είναι 220 cm και το πλάτος του διθέσιου καναπέ είναι 160 cm. Ποιο είναι το πλάτος της καρέκλας; τριθέσιος διθέσιος καρέκλα (A) 60 cm (B) 80 cm (C) 90 cm (D) 100 cm (E) 120 cm 12. The 5 keys fit the 5 padlocks. The numbers on the keys refer to the letters on the padlocks. What is written on the last key? Τα 5 κλειδιά ταιριάζουν στις 5 κλειδωνιές. Οι αριθμοί στα κλειδιά αντιστοιχούν στα γράμματα πάνω στις κλειδωνιές. Τι γράφει στο τελευταίο κλειδί με το? A) 382 (B) 282 (C) 284 (D) 823 (E) Tom writes all the numbers from 1 to 20 in a row and obtains the 31-digit number Then he deletes 24 of the 31 digits such that the remaining number is as large as possible. Which number does he get? Ο Τομ γράφει όλους τους αριθμούς από το 1 έως το 20 στη σειρά και δημιουργεί τον 31- ψήφιο αριθμό , με 3 ψηφία. Στη συνέχεια διαγράφει 24 από τα 31 ψηφία έτσι ώστε ο υπόλοιπος αριθμός που μένει να είναι ο μεγαλύτερος. Ποιος είναι αυτός ο αριθμός; (A) (B) (C) (D) (E)

6 14. Morten wants to put the construction into a regular box. Which of the following boxes is the smallest he can use? Ο Morten θέλει να τοποθετήσει την κατασκευή σε ένα κανονικό κουτί. Ποιο από τα παρακάτω κουτιά είναι το μικρότερο που μπορεί να χρησιμοποιήσει; (A) (B) (C) (D) (E) When we add the numbers in each row and along the columns we get the results shown. Which statement is true? Όταν προσθέσουμε τους αριθμούς σε κάθε γραμμή και κάθε στήλη παίρνουμε τα αποτελέσματα που παρουσιάζονται. Ποια δήλωση είναι σωστή; (A) a is equal to d (B) b is equal to c (C) a is greater than d (D) a is less than d (E) c is greater than b (Α) a είναι ίσο με d (Β) b είναι ίσο με c (C) a είναι μεγαλύτερο από d (D) a είναι μικρότερο από d (Ε) c είναι μεγαλύτερο από b 16. Peter went hiking in the mountains for 5 days. He started on Monday and his last trip was on Friday. Each day he walked 2 km more than the day before. When the tour was over, his total distance was 70 km. What distance did Peter walk on Thursday? Ο Πέτρος πήγε πεζοπορία στα βουνά για 5 ημέρες. Ξεκίνησε τη Δευτέρα και το τελευταίο του ταξίδι ήταν την Παρασκευή. Κάθε μέρα περπατούσε 2 χιλιόμετρα(km) περισσότερα από την προηγούμενη ημέρα. Όταν τελείωσε το ταξίδι του, η συνολική απόσταση που περπάτησε ήταν 70 χιλιόμετρα(km). Τι απόσταση περπάτησε ο Πέτρος την Πέμπτη; (A) 12 km (B) 13 km (C) 14 km (D) 15 km (E) 16 km 6

7 17. There is a picture of a kangaroo in the first triangle. Dotted lines act as mirrors. The first 2 reflections are shown. What does the reflection look like in the shaded triangle? Υπάρχει μια εικόνα ενός καγκουρό στο πρώτο τρίγωνο. Οι διακεκομμένες γραμμές δρουν ως καθρέφτες. Οι πρώτες 2 αντανακλάσεις εμφανίζονται. Πώς θα μοιάζει η αντανάκλαση στο σκιασμένο τρίγωνο; (A) (B) (C) (D) (E) 18. Numbers are placed in the cells of the 4 4 square shown in the picture. Mary finds the 2 2 square where the sum of the numbers in the four cells is the largest. What is that sum? Υπάρχουν τοποθετημένοι αριθμοί στο 4 Χ 4 τετράγωνο όπως φαίνεται στην εικόνα. Η Μαίρη βρίσκει το τετράγωνο 2 2, όπου το άθροισμα των αριθμών είναι το μεγαλύτερο. Ποιο είναι αυτό το άθροισμα; (A) 11 (B) 12 (C) 13 (D) 14 (E) Rafael has three squares. The first one has side length 2 cm. The second one has side length 4 cm and a vertex is placed in the centre of the first square. The last one has side length 6 cm and a vertex is placed in the centre of the second square, as shown in the picture. What is the area of the figure? Ο Rafael έχει τρία τετράγωνα. Το πρώτο έχει 2 cm μήκος. Το δεύτερο έχει 4 cm μήκος και στο κέντρο του πρώτου τετραγώνου βρίσκεται μία κορυφή του. Το τελευταίο τετράγωνο έχει μήκος πλευράς 6 cm και στο κέντρο του δεύτερου τετραγώνου βρίσκεται κορυφή του, όπως φαίνεται στην εικόνα. Ποιο είναι το εμβαδό του σχήματος; (A) 32 cm 2 (B) 51 cm 2 (C) 27 cm 2 (D) 16 cm 2 (E) 6 cm 2 7

8 20. Four players scored goals in a handball match. All of them scored a different number of goals. Among the four Mike was the one who scored the least number of goals. The other three have scored 20 goals in total. What is the largest number of goals Mike could have scored? Τέσσερις παίκτες σκόραραν σε έναν αγώνα χάντμπολ. Όλοι τους σκόραραν διαφορετικό αριθμό τερμάτων. Μεταξύ των τεσσάρων, ο Mike ήταν αυτός που σκόραρε το λιγότερο αριθμό τερμάτων. Οι άλλοι τρεις έχουν σκοράρει 20 τέρματα συνολικά. Ποιος είναι ο μεγαλύτερος αριθμός των τερμάτων που θα μπορούσε ο Mike να σκοράρει; (A) 2 (B) 3 (C) 4 (D) 5 (E) 6 5 point problems (Προβλήματα 5 μονάδων) 21. A bar consists of 2 grey cubes and 1 white cube glued together as shown in the figure. Which figure can be built from 9 such bars? Μια ράβδος αποτελείται από 2 γκρίζους κύβους και 1 λευκό κύβο κολλημένοι μεταξύ τους, όπως φαίνεται στο σχήμα. Ποια εικόνα μπορεί να κατασκευαστεί από 9 τέτοιες ράβδους; (A) (B) (C) (D) (E) 22. The numbers 1, 2, 3, 4, and 5 have to be written in the five cells in the figure in the following way: if a number is just below another number, it has to be greater. If a number is just to the right of another number, it has to be greater. In how many ways can this be done? Οι αριθμοί 1, 2, 3, 4, και 5 θα πρέπει να γραφτούν στα πέντε κενά στο σχήμα με τον ακόλουθο τρόπο: εάν ένας αριθμός είναι ακριβώς κάτω από έναν άλλο αριθμό, θα πρέπει να είναι μεγαλύτερος. Εάν ένας αριθμός είναι ακριβώς στα δεξιά ενός άλλου αριθμού, θα πρέπει να είναι μεγαλύτερος. Με πόσους τρόπους μπορεί να γίνει αυτό; (A) 3 (B) 4 (C) 5 (D) 6 (E) 8 8

9 23. 8 kangaroos stood in a line as shown in the diagram. At some point, two kangaroos standing side by side and facing each other exchanged places by jumping past each other. This was repeated until no further jumps were possible. How many exchanges were made? 8 καγκουρό στάθηκαν σε μια γραμμή, όπως φαίνεται στο διάγραμμα. Σε κάποιο σημείο, δύο καγκουρό που στέκονται δίπλα-δίπλα και το ένα βλέπει το άλλο ανταλλάζουν θέσεις προσπερνώντας με άλματα. Αυτό επαναλήφθηκε μέχρι που δεν υπήρχαν άλλες δυνατότητες για άλματα. Πόσες ανταλλαγές έγιναν; (A) 2 (B) 10 (C) 12 (D) 13 (E) What number must be subtracted from 17 to obtain 33? Ποιος αριθμός πρέπει να αφαιρεθεί από το -17 για να μας δώσει αποτέλεσμα -33; (A) 50 (B) 16 (C) 16 (D) 40 (E) The square floor in the picture is covered by triangular and square tiles in grey and white. At least how many tiles must be swapped such that the pattern looks the same from each of the four directions shown? Το τετραγωνικό πάτωμα στην εικόνα καλύπτεται από τριγωνικά και τετράγωνα πλακάκια σε γκρίζο και λευκό. Τουλάχιστον πόσα πλακάκια θα πρέπει να ανταλλαχθούν, έτσι ώστε το μοτίβο να φαίνεται το ίδιο από κάθε μία από τις τέσσερις κατευθύνσεις που απεικονίζονται; (A) Three triangles, one square (C) One triangle, one square (E) Three triangles, two squares (Α) Τρία τρίγωνα, ένα τετράγωνο (C) Ένα τρίγωνο, ένα τετράγωνο (Ε) Τρία τρίγωνα, δύο τετράγωνα (B) One triangle, three squares (D) Three triangles, three squares (Β) Ένα τρίγωνο, τρία τετράγωνα (D) τρία τρίγωνα, τρία τετράγωνα 26. A bag contains only red marbles and green marbles. For any 5 marbles we pick, at least one is red; for any 6 marbles we pick, at least one is green. What is the largest number of marbles that the bag can contain? Μια τσάντα περιέχει μόνο κόκκινες μπίλιες και πράσινες μπίλιες. Για κάθε 5 μπίλιες που παίρνουμε, τουλάχιστον η μία είναι κόκκινη και για κάθε 6 μπίλιες που παίρνουμε, τουλάχιστον η μία είναι πράσινη. Ποιος είναι ο μεγαλύτερος αριθμός από μπίλιες που μπορεί να περιέχει η τσάντα; (A) 11 (B) 10 (C) 9 (D) 8 (E) 7 9

10 27. Ala likes even numbers, Beata likes numbers divisible by 3, Celina likes numbers divisible by 5. Each of these three girls went separately to a basket containing 8 balls with numbers written on them, and took all the balls with numbers she likes. It turned out that Ala collected balls with numbers 32 and 52, Beata 24, 33 and 45, Celina 20, 25 and 35. In what order did the girls approach the basket? Της Ala της αρέσουν οι ζυγοί αριθμοί, της Beata της αρέσουν οι αριθμοί που διαιρούνται με το 3, της Celina της αρέσουν οι αριθμοί που διαιρούνται με το 5. Κάθε ένα από αυτά τα τρία κορίτσια πήγαν χωριστά σε ένα καλάθι που περιείχε 8 μπάλες με αριθμούς γραμμένους πάνω τους, και πήραν όλες τις μπάλες με αριθμούς που αρέσουν στην κάθε μία. Αποδείχθηκε ότι η Ala μάζεψε τις μπάλες με τους αριθμούς 32 και 52, η Beata 24, 33 και 45, η Celina 20, 25 και 35. Με ποια σειρά είχαν τα κορίτσια πλησιάσει προς το καλάθι; (A) Ala, Celina, Beata (B) Celina, Beata, Ala (C) Beata, Ala, Celina (D) Beata, Celina, Ala (E) Celina, Ala, Beata 28. John wants to write a natural number in each box in the diagram such that each number above the bottom row is the sum of the two numbers in the boxes immediately underneath. What is the largest number of odd numbers that John can write? Ο John θέλει να γράψει ένα φυσικό αριθμό σε κάθε κουτί στο διάγραμμα έτσι ώστε κάθε αριθμός πάνω από την κάτω σειρά να είναι το άθροισμα των δύο αριθμών στα κουτιά αμέσως από κάτω. Ποιος είναι ο μεγαλύτερος αριθμός των μονών αριθμών που μπορεί να γράψει ο John; (A) 4 (B) 5 (C) 6 (D) 7 (E) Julia has four different coloured pencils and wants to use some or all of them to paint the map of an island divided into four nations, as in the picture. If the map of two nations with a common border cannot have the same colour, in how many ways can she colour the map of the island? Η Τζούλια έχει τέσσερα διαφορετικά χρωματιστά μολύβια και θέλει να χρησιμοποιήσει κάποια ή όλα για να ζωγραφίσει το χάρτη του νησιού που χωρίζεται σε τέσσερα έθνη, όπως στην εικόνα. Εάν ο χάρτης των δύο εθνών που έχουν κοινά σύνορα δεν μπορεί να έχει το ίδιο χρώμα, με πόσους τρόπους μπορεί η Τζούλια να χρωματίσει το χάρτη του νησιού; 10

11 (A) 12 (B) 18 (C) 24 (D) 36 (E) In each cell of a 6 6 board there is a lamp. We say that two lamps in this board are neighbours if they lie in cells with a common side. Initially some lamps are lit and, each minute, every lamp having at least two lit neighbouring lamps is lit. What is the minimum number of lamps that need to be lit initially, in order to ensure that, at some time, all lamps will be lit? Σε κάθε κελί ενός 6 6 πίνακα υπάρχει μια λάμπα. Δύο λάμπες σε αυτόν τον πίνακα είναι γειτονικές εάν βρίσκονται σε κελιά με μια κοινή πλευρά. Αρχικά κάποιες λάμπες ανάβουν και, κάθε λεπτό, κάθε λάμπα που έχει τουλάχιστον δύο αναμμένες γειτονικές λάμπες, ανάβει. Ποιος είναι ο ελάχιστος αριθμός από λάμπες που πρέπει να είναι αρχικά αναμμένες, ώστε να εξασφαλιστεί ότι, κάποια στιγμή, όλες οι λάμπες θα είναι αναμμένες; (A) 4 (B) 5 (C) 6 (D) 7 (E) 8 11

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

1. Ladybird will sit on a flower that has five petals and three leaves. On which of the following flowers will ladybird sit?

1. Ladybird will sit on a flower that has five petals and three leaves. On which of the following flowers will ladybird sit? 3 point problems - θέματα 3 μονάδων 1. Ladybird will sit on a flower that has five petals and three leaves. On which of the following flowers will ladybird sit? Η παπαρούνα θα καθίσει σε λουλούδι το οποίο

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

Ποιο σχέδιο αποτελεί το κεντρικό μέρος της εικόνας με το αστέρι; (A) (B) (C) (D) (E)

Ποιο σχέδιο αποτελεί το κεντρικό μέρος της εικόνας με το αστέρι; (A) (B) (C) (D) (E) 3 point problems - θέματα 3 μονάδων 1. Which drawing is the central part of the picture with the star? Ποιο σχέδιο αποτελεί το κεντρικό μέρος της εικόνας με το αστέρι; 2. Jacky wants to insert the digit

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

KANGOUROU MATHEMATICS

KANGOUROU MATHEMATICS KANGOUROU MATHEMATICS LEVEL 1 2 Α - Β ΔΗΜΟΤΙΚΟΥ 23 ΜΑΡΤΙΟΥ / MARCH 2013 10:00-11:15 Questions 1-9: 3 points Questions 10-16: 4 points Questions 17-24: 5 points 1 3 points problems (προβλήματα 3 μονάδων)

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

KANGOUROU Mathematics Competition 2016 Level 5-6

KANGOUROU Mathematics Competition 2016 Level 5-6 Thales Foundation Cyprus P.O. Box 28959, CY2084 Acropolis, Nicosia, Cyprus KANGOUROU Mathematics Competition 2016 Level 5-6 (Ε - Στ Δημοτικού) 19 Μαρτίου/March 2016 10:00 11:15 Ερωτήσεις 1 10 = 3 βαθμοί

Διαβάστε περισσότερα

1. Πόσοι αριθμοί μικρότεροι του διαιρούνται με όλους τους μονοψήφιους αριθμούς;

1. Πόσοι αριθμοί μικρότεροι του διαιρούνται με όλους τους μονοψήφιους αριθμούς; ΚΥΠΡΙΚΗ ΜΘΗΜΤΙΚΗ ΤΙΡΙ ΠΡΧΙΚΟΣ ΙΩΝΙΣΜΟΣ 7//2009 ΩΡ 0:00-2:00 ΟΗΙΣ. Να λύσετε όλα τα θέματα. Κάθε θέμα βαθμολογείται με 0 μονάδες. 2. Να γράφετε με μπλε ή μαύρο μελάνι (επιτρέπεται η χρήση μολυβιού για τα

Διαβάστε περισσότερα

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³

Διαβάστε περισσότερα

KANGOUROU Mathematics Competition 2016 Level 3-4

KANGOUROU Mathematics Competition 2016 Level 3-4 Thales Foundation Cyprus P.O. Box 28959, CY2084 Acropolis, Nicosia, Cyprus KANGOUROU Mathematics Competition 2016 Level 3-4 (Γ - Δ Δημοτικού) 19 Μαρτίου/March 2016 10:00 11:15 Ερωτήσεις 1 8 = 3 βαθμοί

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2016 Α & Β ΓΥΜΝΑΣΙΟΥ.

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2016 Α & Β ΓΥΜΝΑΣΙΟΥ. ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2016 17 ΑΠΡΙΛΙΟΥ 2016 Α & Β ΓΥΜΝΑΣΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2016 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ.

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2016 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ. ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2016 17 ΑΠΡΙΛΙΟΥ 2016 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

KANGOUROU Mathematics Competition 2016 Level 1-2

KANGOUROU Mathematics Competition 2016 Level 1-2 Thales Foundation Cyprus P.O. Box 28959, CY2084 Acropolis, Nicosia, Cyprus KANGOUROU Mathematics Competition 2016 Level 1-2 (A - Β Δημοτικού) 19 Μαρτίου/March 2016 10:00 11:15 Ερωτήσεις 1 8 = 3 βαθμοί

Διαβάστε περισσότερα

1. Αφετηρία από στάση χωρίς κριτή (self start όπου πινακίδα εκκίνησης) 5 λεπτά µετά την αφετηρία σας από το TC1B KALO LIVADI OUT

1. Αφετηρία από στάση χωρίς κριτή (self start όπου πινακίδα εκκίνησης) 5 λεπτά µετά την αφετηρία σας από το TC1B KALO LIVADI OUT Date: 21 October 2016 Time: 14:00 hrs Subject: BULLETIN No 3 Document No: 1.3 --------------------------------------------------------------------------------------------------------------------------------------

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

Advanced Subsidiary Unit 1: Understanding and Written Response

Advanced Subsidiary Unit 1: Understanding and Written Response Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes

Διαβάστε περισσότερα

MATHEMATIC KANGOUROU 2016 Student-Levels 11-12

MATHEMATIC KANGOUROU 2016 Student-Levels 11-12 MATHEMATIC KANGOUROU 2016 Student-Levels 11-12 3 point problems (προβλήματα 3 μονάδων) 1. The sum of the ages of Tom and John is 23, the sum of the ages of John and Alex is 24 and the sum of the ages of

Διαβάστε περισσότερα

Paper Reference. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing. Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes

Paper Reference. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing. Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes Centre No. Candidate No. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes Materials required for examination Nil Paper Reference

Διαβάστε περισσότερα

LESSON 9 (ΜΑΘΗΜΑ ΕΝΝΙΑ) REF : 101/011/9-BEG. 14 January 2013

LESSON 9 (ΜΑΘΗΜΑ ΕΝΝΙΑ) REF : 101/011/9-BEG. 14 January 2013 LESSON 9 (ΜΑΘΗΜΑ ΕΝΝΙΑ) REF : 101/011/9-BEG 14 January 2013 Up πάνω Down κάτω In μέσα Out/outside έξω (exo) In front μπροστά (brosta) Behind πίσω (piso) Put! Βάλε! (vale) From *** από Few λίγα (liga) Many

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2016 Γ & Δ ΔΗΜΟΤΙΚΟΥ.

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2016 Γ & Δ ΔΗΜΟΤΙΚΟΥ. ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2016 17 ΑΠΡΙΛΙΟΥ 2016 Γ & Δ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

Kangourou Mathematics Competition 2015

Kangourou Mathematics Competition 2015 Thales Foundation Cyprus P.O. Box 28959, CY2084 Acropolis, Nicosia, Cyprus Kangourou Mathematics Competition 2015 Benjamin (Ε - Στ Δημοτικού) 21 Μαρτίου/March 2015 10:00 11:15 Ερωτήσεις 1 10 = 3 βαθμοί

Διαβάστε περισσότερα

KANGOUROU MATHEMATICS

KANGOUROU MATHEMATICS KANGOUROU MATHEMATICS LEVEL 11 12 Β - Γ ΛΥΚΕΙΟΥ 23 ΜΑΡΤΙΟΥ / MARCH 2013 10:00-11:15 Questions 1-10: 3 points Questions 11-20: 4 points Questions 21-30: 5 points 1 3 point problems(προβλήματα 3 μονάδων)

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΕ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2014 6 ΑΠΡΙΛΙΟΥ 2014 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΕ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2014 6 ΑΠΡΙΛΙΟΥ 2014 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΕ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2014 6 ΑΠΡΙΛΙΟΥ 2014 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

KANGOUROU Mathematics Competition 2016 Level 7-8

KANGOUROU Mathematics Competition 2016 Level 7-8 Thales Foundation Cyprus P.O. Box 28959, CY2084 Acropolis, Nicosia, Cyprus KANGOUROU Mathematics Competition 2016 Level 7-8 (Α Β Γυμνασίου) 19 Μαρτίου/March 2016 10:00 11:15 Ερωτήσεις 1 10 = 3 βαθμοί η

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΤΙΚΗ. Πείραμα: Μία φυσική διαδικασία με ένα αριθμό παρατηρήσιμων αποτελεσμάτων.

ΣΥΝΔΥΑΣΤΙΚΗ. Πείραμα: Μία φυσική διαδικασία με ένα αριθμό παρατηρήσιμων αποτελεσμάτων. ΣΥΝΔΥΑΣΤΙΚΗ Πείραμα: Μία φυσική διαδικασία με ένα αριθμό παρατηρήσιμων αποτελεσμάτων. Παραδείγματα πειραμάτων και αντίστοιχα πιθανά αποτελέσματα: Πιθανά αποτελέσματα ρίψης νομίσματος={κ, Γ} Πιθανά αποτελέσματα

Διαβάστε περισσότερα

(A) 56 (B) 60 (C) 64 (D) 68 (E) 80

(A) 56 (B) 60 (C) 64 (D) 68 (E) 80 3 point problems - θέματα 3 μονάδων 1. If you take a number of cubes out of a cube, you end up with a solid figure consisting of columns of the same height, which stand on the same ground plate (see figure).

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006 ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/26 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι το 1 εκτός αν ορίζεται διαφορετικά στη διατύπωση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ342: Βάσεις Δεδομένων Χειμερινό Εξάμηνο 2013 Φροντιστήριο 10 ΛΥΣΕΙΣ Επερωτήσεις SQL Άσκηση 1 Για το ακόλουθο σχήμα Suppliers(sid, sname, address) Parts(pid, pname,

Διαβάστε περισσότερα

KANGOUROU MATHEMATICS

KANGOUROU MATHEMATICS KANGOUROU MATHEMATICS LEVEL 9 10 Γ ΓΥΜΝΑΣΙΟΥ - Α ΛΥΚΕΙΟΥ 23 ΜΑΡΤΙΟΥ / MARCH 2013 10:00-11:15 Questions 1-10: 3 points Questions 11-20: 4 points Questions 21-30: 5 points 1 3 point problems (προβλήματα

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Οι αδελφοί Montgolfier: Ψηφιακή αφήγηση The Montgolfier Βrothers Digital Story (προτείνεται να διδαχθεί στο Unit 4, Lesson 3, Αγγλικά Στ Δημοτικού)

Οι αδελφοί Montgolfier: Ψηφιακή αφήγηση The Montgolfier Βrothers Digital Story (προτείνεται να διδαχθεί στο Unit 4, Lesson 3, Αγγλικά Στ Δημοτικού) Οι αδελφοί Montgolfier: Ψηφιακή αφήγηση The Montgolfier Βrothers Digital Story (προτείνεται να διδαχθεί στο Unit 4, Lesson 3, Αγγλικά Στ Δημοτικού) Προσδοκώμενα αποτελέσματα Περιεχόμενο Ενδεικτικές δραστηριότητες

Διαβάστε περισσότερα

LESSON 28 (ΜΑΘΗΜΑ ΕΙΚΟΣΙ ΟΚΤΩ) REF : 201/033/28. 2 December 2014

LESSON 28 (ΜΑΘΗΜΑ ΕΙΚΟΣΙ ΟΚΤΩ) REF : 201/033/28. 2 December 2014 LESSON 28 (ΜΑΘΗΜΑ ΕΙΚΟΣΙ ΟΚΤΩ) REF : 201/033/28 2 December 2014 Place/Seat Right (noun) I am right I am not right It matters It does not matter The same (singular) The same (Plural) Η θέση Το δίκιο Έχω

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΕ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2014 6 ΑΠΡΙΛΙΟΥ 2014 Γ & Δ ΔΗΜΟΤΙΚΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΕ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2014 6 ΑΠΡΙΛΙΟΥ 2014 Γ & Δ ΔΗΜΟΤΙΚΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΕ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2014 6 ΑΠΡΙΛΙΟΥ 2014 Γ & Δ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

LESSON 12 (ΜΑΘΗΜΑ ΔΩΔΕΚΑ) REF : 202/055/32-ADV. 4 February 2014

LESSON 12 (ΜΑΘΗΜΑ ΔΩΔΕΚΑ) REF : 202/055/32-ADV. 4 February 2014 LESSON 12 (ΜΑΘΗΜΑ ΔΩΔΕΚΑ) REF : 202/055/32-ADV 4 February 2014 Somewhere κάπου (kapoo) Nowhere πουθενά (poothena) Elsewhere αλλού (aloo) Drawer το συρτάρι (sirtari) Page η σελίδα (selida) News τα νέα (nea)

Διαβάστε περισσότερα

Kangourou Mathematics Competition 2015

Kangourou Mathematics Competition 2015 Thales Foundation Cyprus P.O. Box 28959, CY2084 Acropolis, Nicosia, Cyprus Kangourou Mathematics Competition 2015 Pre-Ecolier (A - Β Δημοτικού) 21 Μαρτίου/March 2015 10:00 11:15 Ερωτήσεις 1 8 = 3 μονάδες

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

Kangourou Mathematics Competition 2015

Kangourou Mathematics Competition 2015 Thales Foundation Cyprus P.O. Box 28959, CY2084 Acropolis, Nicosia, Cyprus Kangourou Mathematics Competition 2015 Student (Β Γ Λυκείου) 21 Μαρτίου/March 2015 10:00 11:15 Ερωτήσεις 1 10 = 3 βαθμοί η καθεμιά

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door. Let's now finish the door hinge saga with the right rear door Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ

Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΕ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2014 6 ΑΠΡΙΛΙΟΥ 2014 Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

STARTING STEPS IN GRAMMAR, FINAL TEST C TERM 2012 UNITS 1-18

STARTING STEPS IN GRAMMAR, FINAL TEST C TERM 2012 UNITS 1-18 STARTING STEPS IN GRAMMAR, FINAL TEST C TERM 2012 UNITS 1-18 Name.. Class. Date. EXERCISE 1 Answer the question. Use: Yes, it is or No, it isn t. Απάντηςε ςτισ ερωτήςεισ. Βάλε: Yes, it is ή No, it isn

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

KANGOUROU MATHEMATICS

KANGOUROU MATHEMATICS KANGOUROU MATHEMATICS LEVEL 5 6 Ε - Στ ΔΗΜΟΤΙΚΟΥ 23 ΜΑΡΤΙΟΥ / MARCH 2013 10:00-11:15 Questions 1-10: 3 points Questions 11-20: 4 points Questions 21-30: 5 points 1 3 point problems (προβλήματα 3 μονάδων)

Διαβάστε περισσότερα

KANGOUROU MATHEMATICS

KANGOUROU MATHEMATICS KANGOUROU MATHEMATICS LEVEL 3 4 Γ - Δ ΔΗΜΟΤΙΚΟΥ 23 ΜΑΡΤΙΟΥ / MARCH 2013 10:00-11:15 Questions 1-8: 3 points Questions 9-16: 4 points Questions 17-24: 5 points 1 3 points problems (προβλήματα 3 μονάδων)

Διαβάστε περισσότερα

Kangourou Mathematics Competition 2015

Kangourou Mathematics Competition 2015 Thales Foundation Cyprus P.O. Box 28959, CY2084 Acropolis, Nicosia, Cyprus Kangourou Mathematics Competition 2015 Kadet (Α - Β Γυμνασίου) 21 Μαρτίου/March 2015 10:00 11:15 Ερωτήσεις 1 10 = 3 βαθμοί η καθεμιά

Διαβάστε περισσότερα

1. The date of a competition is the third Thursday in March in each year. What is the first possible date of the competition?

1. The date of a competition is the third Thursday in March in each year. What is the first possible date of the competition? 3 point problems - θέματα 3 μονάδων 1. The date of a competition is the third Thursday in March in each year. What is the first possible date of the competition? Η ημερομηνία ενός διαγωνισμού είναι η 3

Διαβάστε περισσότερα

Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ

Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee

Διαβάστε περισσότερα

LESSON 6 (ΜΑΘΗΜΑ ΕΞΙ) REF : 201/045/26-ADV. 10 December 2013

LESSON 6 (ΜΑΘΗΜΑ ΕΞΙ) REF : 201/045/26-ADV. 10 December 2013 LESSON 6 (ΜΑΘΗΜΑ ΕΞΙ) REF : 201/045/26-ADV 10 December 2013 I get up/i stand up I wash myself I shave myself I comb myself I dress myself Once (one time) Twice (two times) Three times Salary/wage/pay Alone/only

Διαβάστε περισσότερα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3) Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

1. Each year, the date of the Kangaroo competition is the third Thursday of March. What is the latest possible date of the competition in any year?

1. Each year, the date of the Kangaroo competition is the third Thursday of March. What is the latest possible date of the competition in any year? 3 point problems - θέματα 3 μονάδων 1. Each year, the date of the Kangaroo competition is the third Thursday of March. What is the latest possible date of the competition in any year? Κάθε χρόνο, η ημερομηνία

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Kangourou Maths 2012 Student Level 11-12

Kangourou Maths 2012 Student Level 11-12 Kangourou Maths 2012 Student Level 11-12 Προβλήματα 3 μονάδων - 3 point problems 1. Το επίπεδο του νερού σε μια παραλιακή πόλη αυξάνεται και μειώνεται σε συγκεκριμένη μέρα όπως φαίνεται στο διάγραμμα.

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Α & Β ΓΥΜΝΑΣΙΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Α & Β ΓΥΜΝΑΣΙΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Α & Β ΓΥΜΝΑΣΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

MATHEMATICS COMPETITION LEVEL 3-4 Γ -Δ ΔΗΜΟΤΙΚΟΥ

MATHEMATICS COMPETITION LEVEL 3-4 Γ -Δ ΔΗΜΟΤΙΚΟΥ MATHEMATICS COMPETITION LEVEL 3-4 Γ -Δ ΔΗΜΟΤΙΚΟΥ 17 Μαρτίου2012 17 March 2012 10:00-11:15 Questions 1-8: 3 points Questions 9-16: 4 points Questions 17-24: 5 points 1. Ο Βασίλης θέλει να γράψει τη λέξη

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Code Breaker. TEACHER s NOTES

Code Breaker. TEACHER s NOTES TEACHER s NOTES Time: 50 minutes Learning Outcomes: To relate the genetic code to the assembly of proteins To summarize factors that lead to different types of mutations To distinguish among positive,

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Γ & Δ ΔΗΜΟΤΙΚΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Γ & Δ ΔΗΜΟΤΙΚΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Γ & Δ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

FINAL TEST B TERM-JUNIOR B STARTING STEPS IN GRAMMAR UNITS 8-17

FINAL TEST B TERM-JUNIOR B STARTING STEPS IN GRAMMAR UNITS 8-17 FINAL TEST B TERM-JUNIOR B STARTING STEPS IN GRAMMAR UNITS 8-17 Name: Surname: Date: Class: 1. Write these words in the correct order. /Γράψε αυτέσ τισ λέξεισ ςτη ςωςτή ςειρά. 1) playing / his / not /

Διαβάστε περισσότερα

KANGOUROU MATHEMATICS

KANGOUROU MATHEMATICS KANGOUROU MATHEMATICS LEVEL 7 8 Α - Β ΓΥΜΝΑΣΙΟΥ 23 ΜΑΡΤΙΟΥ / MARCH 2013 10:00-11:15 Questions 1-10: 3 points Questions 11-20: 4 points Questions 21-30: 5 points 1 3 point problems (προβλήματα 3 μονάδων)

Διαβάστε περισσότερα

@ BY AVENUES PRIVATE INSTITUTE JUNE 2014

@ BY AVENUES PRIVATE INSTITUTE JUNE 2014 1 Εκεί που η ποιότητα συναντά την επιτυχία Λεωφ. Αρχ. Μακαρίου 7, Αρεδιού Τηλ. 22874368/9 2 ENGLISH INSTITUTE A Place where quality meets success 7, Makarios Avenue, Arediou, Tel. 22874368/9 99606442 Anglia

Διαβάστε περισσότερα

cybet 2012 EVENT ΕΠΙΛΟΓΕΣ SELECTIONS ΠΕΡΙΓΡΑΦΗ

cybet 2012 EVENT ΕΠΙΛΟΓΕΣ SELECTIONS ΠΕΡΙΓΡΑΦΗ Παράρτημα Α Περιγραφή στοιχημάτων και κανονισμοί - Description of bets and regulati Ισχύει από 27/8/2013 - Valid from 27/8/2013 Οι τύποι στοιχημάτων υπόκεινται σε αλλαγές - Bet types are subject to changes

Διαβάστε περισσότερα

Kangourou Maths 2012 Cadet Level 7-8

Kangourou Maths 2012 Cadet Level 7-8 Kangourou Maths 2012 Cadet Level 7-8 Προβλήματα 3 μονάδων / 3 point problems 1. Τέσσερεις σοκολάτες κοστίζουν 6 ευρώ περισσότερα από μία σοκολάτα. Ποιο είναι το κόστος μιας σοκολάτας; Four chocolate bars

Διαβάστε περισσότερα

LESSON 16 (ΜΑΘΗΜΑ ΔΕΚΑΕΞΙ) REF : 102/018/16-BEG. 4 March 2014

LESSON 16 (ΜΑΘΗΜΑ ΔΕΚΑΕΞΙ) REF : 102/018/16-BEG. 4 March 2014 LESSON 16 (ΜΑΘΗΜΑ ΔΕΚΑΕΞΙ) REF : 102/018/16-BEG 4 March 2014 Family η οικογένεια a/one(fem.) μία a/one(masc.) ένας father ο πατέρας mother η μητέρα man/male/husband ο άντρας letter το γράμμα brother ο

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

(C) 2010 Pearson Education, Inc. All rights reserved.

(C) 2010 Pearson Education, Inc. All rights reserved. Connectionless transmission with datagrams. Connection-oriented transmission is like the telephone system You dial and are given a connection to the telephone of fthe person with whom you wish to communicate.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS LEVEL: 5 6 (E - Στ Δημοτικού) 10:00 11:00, 20 March 2010 THALES FOUNDATION 1 3 βαθμοί 1. Γνωρίζοντας ότι + + 6 = + + +, ποιόν αριθμό αντιπροσωπεύει το ; A) 2 B) 3 C) 4 D) 5 E) 6

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

Kangourou Cyprus 2012 Benjamin Level 5-6

Kangourou Cyprus 2012 Benjamin Level 5-6 Kangourou Cyprus 2012 Benjamin Level 5-6 Προβλήματα 3 μονάδων / 3 point problems 1. Ο Βασίλης βάφει το σύνθημα VIVAT KANGAROO σε ένα τοίχο. Θέλει τα διαφορετικά γράμματα να τα βάψει με διαφορετικό χρώμα,

Διαβάστε περισσότερα

Kangourou Maths 2012 Junior Level 9-10

Kangourou Maths 2012 Junior Level 9-10 Kangourou Maths 2012 Junior Level 9-10 Προβλήματα 3 μονάδων/3 point problems 1. Μ και Ν είναι τα μέσα των ίσων πλευρών ενός ισοσκελούς τριγώνου. M and N are the midpoints of the equal sides of an isosceles

Διαβάστε περισσότερα

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Συστήματα Διαχείρισης Βάσεων Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

Section 1: Listening and responding. Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016

Section 1: Listening and responding. Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016 Section 1: Listening and responding Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016 Section 1: Listening and responding Section 1: Listening and Responding/ Aκουστική εξέταση Στο πρώτο μέρος της

Διαβάστε περισσότερα

LESSON 26 (ΜΑΘΗΜΑ ΕΙΚΟΣΙ ΕΞΙ) REF : 102/030/26. 18 November 2014

LESSON 26 (ΜΑΘΗΜΑ ΕΙΚΟΣΙ ΕΞΙ) REF : 102/030/26. 18 November 2014 LESSON 26 (ΜΑΘΗΜΑ ΕΙΚΟΣΙ ΕΞΙ) REF : 102/030/26 18 November 2014 But Weekend I love The song I sing I smile I laugh Greek (thing) Greek(people) Greek (man) αλλά (το) Σαββατοκύριακο αγαπώ (το) τραγούδι τραγουδώ

Διαβάστε περισσότερα

Μορφοποίηση υπό όρους : Μορφή > Μορφοποίηση υπό όρους/γραμμές δεδομένων/μορφοποίηση μόο των κελιών που περιέχουν/

Μορφοποίηση υπό όρους : Μορφή > Μορφοποίηση υπό όρους/γραμμές δεδομένων/μορφοποίηση μόο των κελιών που περιέχουν/ Μορφοποίηση υπό όρους : Μορφή > Μορφοποίηση υπό όρους/γραμμές δεδομένων/μορφοποίηση μόο των κελιών που περιέχουν/ Συνάρτηση round() Περιγραφή Η συνάρτηση ROUND στρογγυλοποιεί έναν αριθμό στον δεδομένο

Διαβάστε περισσότερα

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας» ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΟΥ ΕΚΠΑΙ ΕΥΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ «ΠΑΙ ΙΚΟ ΒΙΒΛΙΟ ΚΑΙ ΠΑΙ ΑΓΩΓΙΚΟ ΥΛΙΚΟ» ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που εκπονήθηκε για τη

Διαβάστε περισσότερα

KANGOUROU Mathematics Competition 2016 Level 9-10

KANGOUROU Mathematics Competition 2016 Level 9-10 Thales Foundation Cyprus P.O. Box 28959, CY2084 Acropolis, Nicosia, Cyprus KANGOUROU Mathematics Competition 2016 Level 9-10 (Γ Γυμνασίου Α Λυκείου) 19 Μαρτίου/March 2016 10:00 11:15 Ερωτήσεις 1 10 = 3

Διαβάστε περισσότερα

Paper Reference. Paper Reference(s) 1776/01 Edexcel GCSE Modern Greek Paper 1 Listening and Responding

Paper Reference. Paper Reference(s) 1776/01 Edexcel GCSE Modern Greek Paper 1 Listening and Responding Centre No. Candidate No. Paper Reference 1 7 7 6 0 1 Surname Signature Paper Reference(s) 1776/01 Edexcel GCSE Modern Greek Paper 1 Listening and Responding Friday 18 June 2010 Morning Time: 45 minutes

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 0 ΑΠΡΙΛΙΟΥ 0 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education www.xtremepapers.com UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *6301456813* GREEK 0543/03 Paper 3 Speaking Role Play Card One 1 March 30

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Πτυχιακή εργασία ΑΝΑΛΥΣΗ ΚΟΣΤΟΥΣ-ΟΦΕΛΟΥΣ ΓΙΑ ΤΗ ΔΙΕΙΣΔΥΣΗ ΤΩΝ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΚΥΠΡΟ ΜΕΧΡΙ ΤΟ 2030

Διαβάστε περισσότερα

Final Test Grammar. Term C'

Final Test Grammar. Term C' Final Test Grammar Term C' Book: Starting Steps 1 & Extra and Friends Vocabulary and Grammar Practice Class: Junior AB Name: /43 Date: E xercise 1 L ook at the example and do the same. ( Κξίηα ηξ παοάδειγμα

Διαβάστε περισσότερα

Δημιουργία Λογαριασμού Διαχείρισης Business Telephony Create a Management Account for Business Telephony

Δημιουργία Λογαριασμού Διαχείρισης Business Telephony Create a Management Account for Business Telephony Δημιουργία Λογαριασμού Διαχείρισης Business Telephony Create a Management Account for Business Telephony Ελληνικά Ι English 1/7 Δημιουργία Λογαριασμού Διαχείρισης Επιχειρηματικής Τηλεφωνίας μέσω της ιστοσελίδας

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ενότητα 1: Elements of Syntactic Structure Το περιεχόμενο του μαθήματος διατίθεται με άδεια

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Α. Διαβάστε τις ειδήσεις και εν συνεχεία σημειώστε. Οπτική γωνία είδησης 1:.

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Α.  Διαβάστε τις ειδήσεις και εν συνεχεία σημειώστε. Οπτική γωνία είδησης 1:. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Α 2 ειδήσεις από ελληνικές εφημερίδες: 1. Τα Νέα, 13-4-2010, Σε ανθρώπινο λάθος αποδίδουν τη συντριβή του αεροσκάφους, http://www.tanea.gr/default.asp?pid=2&artid=4569526&ct=2 2. Τα Νέα,

Διαβάστε περισσότερα

LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014

LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014 LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV 18 February 2014 Slowly/quietly Clear/clearly Clean Quickly/quick/fast Hurry (in a hurry) Driver Attention/caution/notice/care Dance Σιγά Καθαρά Καθαρός/η/ο

Διαβάστε περισσότερα

Nuclear Physics 5. Name: Date: 8 (1)

Nuclear Physics 5. Name: Date: 8 (1) Name: Date: Nuclear Physics 5. A sample of radioactive carbon-4 decays into a stable isotope of nitrogen. As the carbon-4 decays, the rate at which the amount of nitrogen is produced A. decreases linearly

Διαβάστε περισσότερα

1999 MODERN GREEK 2 UNIT Z

1999 MODERN GREEK 2 UNIT Z STUDENT NUMBER CENTRE NUMBER HIGHER SCHOOL CERTIFICATE EXAMINATION 1999 MODERN GREEK 2 UNIT Z (55 Marks) Time allowed Two hours (Plus 5 minutes reading time) DIRECTIONS TO CANDIDATES Write your Student

Διαβάστε περισσότερα

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram?

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram? HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? The point on the horizontal axis such that of the area under the histogram lies to the left of that point (and to the right) What

Διαβάστε περισσότερα

Αναερόβια Φυσική Κατάσταση

Αναερόβια Φυσική Κατάσταση Αναερόβια Φυσική Κατάσταση Γιάννης Κουτεντάκης, BSc, MA. PhD Αναπληρωτής Καθηγητής ΤΕΦΑΑ, Πανεπιστήµιο Θεσσαλίας Περιεχόµενο Μαθήµατος Ορισµός της αναερόβιας φυσικής κατάστασης Σχέσης µε µηχανισµούς παραγωγής

Διαβάστε περισσότερα