ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι ΒΑΘΜΟΛΟΓΙΑ ΘΕΜΑΤΩΝ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι ΒΑΘΜΟΛΟΓΙΑ ΘΕΜΑΤΩΝ"

Transcript

1 ΣΕΛΙ Α 1 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι ΣΕΠΤΕΜΒΡΙΟΣ 2009 ΠΑΡΑΚΑΛΕΙΣΘΕ ΝΑ ΣΥΜΠΛΗΡΩΣΕΤΕ ΤΑ ΚΑΤΩΤΕΡΩ ΜΕ ΚΕΦΑΛΑΙΑ ΓΡΑΜΜΑΤΑ ΕΠΩΝΥΜΟ ΟΝΟΜΑ... ΟΝΟΜΑ ΠΑΤΡΟΣ.. ΑΡΙΘΜΟΣ ΜΗΤΡΩΟΥ: ΟΜΑ Α ΘΕΜΑΤΩΝ Β ΠΑΡΑΚΑΛΕΙΣΘΕ ΝΑ ΜΕΛΕΤΗΣΕΤΕ ΜΕ ΠΡΟΣΟΧΗ ΤΑ ΠΑΡΑΚΑΤΩ: ΙΑ ΙΚΑΣΤΙΚΑ ΖΗΤΗΜΑΤΑ Α) Το ονοµατεπώνυµο σας να γραφτεί καθαρά ανωτέρω, καθώς και ο 13-ψηφιος ΑΜ. Β) Στο θρανίο σας πλην ΓΡΑΦΙΚΗΣ ΥΛΗΣ, της κόλλας της θεµάτων-εξέτασης, και της ταυτότητας, ΕΝ ΘΑ ΥΠΑΡΧΕΙ ΤΙΠΟΤΑ ΑΛΛΟ. ΕΙ ΙΚΟΤΕΡΑ, Τα κινητά τηλέφωνα θα είναι απολύτως ΚΛΕΙΣΤΑ σε τσάντες και τσέπες. Γ) Πρέπει να λυθούν και τα 3 θέµατα, τα οποία είναι βαθµολογικώς ισοδύναµα. Κάθε θέµα θα γραφτεί αποκλειστικά στις δύο σελίδες του φύλλου όπου έχει γραφτεί η εκφώνηση του και ΜΟΝΟΝ ΕΚΕΙ. Για πρόχειρο θα χρησιµοποιηθούν οι σελίδες 2, 11, 12. ) Εάν τυχόν κάποιος ενδιαφερθεί ενδεχοµένως µετά την ανακοίνωση των αποτελεσµάτων να ζητήσει επανεξέταση του γραπτού, θα πρέπει οπωσδήποτε να θυµάται την ΑΙΘΟΥΣΑ και την ΟΜΑ Α ΘΕΜΑΤΩΝ στα οποία εξετάστηκε. Ε) Η διάρκεια της εξέτασης είναι 2.30 ώρες µετά την διανοµή των θεµάτων. ΠΛΗΡΟΦΟΡΙΕΣ ίδονται οι παρακάτω πληροφορίες, τις οποίες δύνασθε, εφ όσον το επιθυµείτε κατά την απόλυτη επιλογή σας, να χρησιµοποιήσετε για την λύση των θεµάτων. 1) ίνεται ο εξής τύπος του βιβλίου, προς προαιρετική χρήση κατά την απόλυτη κρίση σας: [f(x)] b =(f: a, b)[x] a, όπου τα σύµβολα a, b, είναι διατεταγµένες βάσεις, η f είναι γραµµική απεικόνιση και x είναι διάνυσµα στο πεδίο ορισµού της. Επιπλέον [x] a είναι η ΣΤΗΛΗ των συντελεστών του γραµµικού συνδυασµού τoυ x, όταν ο x γραφτεί σαν γραµµικός συνδυασµός των στοιχείων της διατεταγµένη βάσης a. 2) Ένα γραµµικό σύστηµα νxν, έχει ΑΚΡΙΒΩΣ ΜΙΑ ΛΥΣΗ, αν και µόνον αν η ορίζουσα των συντελεστών του είναι διάφορος του 0. ΟΙ Ι ΑΣΚΟΝΤΕΣ ΣΑΣ ΕΥΧΟΝΤΑΙ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΒΑΘΜΟΛΟΓΙΑ ΘΕΜΑΤΩΝ Για τους Βαθµολογητές: Κάθε θέµα βαθµολογείται µε ένα δεκαδικό ψηφίο µε άριστα 3,4 ΘΕΜΑ 1 ΘΕΜΑ 2 ΘΕΜΑ 3 ΑΘΡΟΙΣΜΑ

2 ΣΕΛΙ Α 3 ΘΕΜΑ 1. Α) Έστω Β διανυσµατικός χώρος, Υ ένα µη κενό υποσύνολο του που είναι γραµµικώς ανεξάρτητο και α ένα στοιχείο του Β που δεν ανήκει στο Υ. Έστω ότι το α ΕΝ είναι γραµµικός συνδυασµός στοιχείων του Υ Α). Ερωτάται: έπεται εξ αυτών ότι το σύνολο Υ {α} είναι γραµµικώς ανεξάρτητο? Β) Θεωρούµε τα 4 στοιχεία του R 4, τα Ρ=(1, 1, 0, 118), Σ=(0, -1, 1, 118), Τ=(-1, 0, 1, 118), Ψ=(0, 0, 2, 354). Να βρεθεί µία βάση του υπόχωρου <Ρ, Σ, Τ, Ψ>. Γ) Υπάρχει στοιχείο Φ του R 4 ώστε το σύνολο {Ρ, Σ, Τ, Φ}να είναι βάση του R 4?.

3 ΣΕΛΙ Α 5 ΘΕΜΑ 2. Α) Έστω f: S W είναι µία γραµµική απεικόνηση όπου S, W είναι γραµµικοί χώροι στους πραγµατικούς. Εστω ότι δ 1, δ 2,, δ κ είναι βάση του kerf που αποτελείται από λ στοιχεία, όπου λ θετικός ακέραιος και ε 1, ε 2,, ε ν είναι βάση του imf που αποτελείται από ν στοιχεία, όπου ν θετικός ακέραιος. Εστω ότι γ 1, γ 2,, γ ν είναι στοιχεία του S, τέτοια ώστε f(γ 1 )=ε 1, f(γ 2 )=ε 2, f(γ ν )=ε ν,. Εστω z είναι στοιχείο του S, r 1, r 2,, r ν είναι πραγµατικοί και f(z)= r 1 ε 1 +r 2 ε r ν ε ν. Να αποδειχθεί ότι το στοιχείο (z- r 1 γ 1 +r 2 γ r ν γ ν ), είναι γραµµικός συνδυασµός των δ 1, δ 2,, δ κ. Β) Χρησιµοποιούµε τα σύµβολα του µέρους Α) µε τις εξής εξειδικεύσεις: κ=ν=4, S=W=R 4. Έστω ότι ε 1 =(1, 0, 0, 0) ε 2 =(0, 1, 0, 0), ε 3 =(0, 0, 1, 0), ε 4 = (0, 0, 0, 1) και ισχύει f(ε 1 )= ε 2, f(ε 2 )= ε 1, f(ε 3 )= ε 1 + ε 2, f(ε 4 )= - ε 1 + ε 2. α) Να αποδειχθεί ότι η διάσταση του kerf είναι 2 και να βρεθεί µία βάση του. β) Να αποδειχθεί ότι η διάσταση του Imf είναι 2 και να βρεθεί µία βάση του. Γ) Με βάση τις συµβάσεις του µέρους Β) της άσκησης αυτής, να βρεθεί ο πίνακας της f ως προς τις διατεταγµένες βάσεις ( ε 1, ε 2, ε 1 ε 2 +ε 3, -ε 1 +ε 2 +ε 4 ) και (ε 2, ε 1, ε 3, ε 4 ). (ΕΠΙΣΗΜΑΝΣΗ. εν χρειάζεται να αποδειχθεί ότι είναι βάσεις). γ) ( ε 1, ε 2, ε 1 ε 2 +ε 3, -ε 1 +ε 2 +ε 4 ) και (ε 2, ε 1, ε 3, ε 4 )

4 ΣΕΛΙ Α 7 ΘΕΜΑ 3. Α) Εστω Λ είναι ένας µxµ πίνακας µε πραγµατικούς συντελεστές. Έστω ότι για κάθε ζ πραγµατικό, η ορίζουσα του πίνακα (Λ-ζΙ µ ) είναι διάφορη του 0. Έστω ότι υπάρχει Υ R µx1 και τ πραγµατικός έτσι ώστε Λ Υ=τΥ. Να αποδειυθεί ότι Υ=0. Β) Εστω ζ πραγµατικός και Μ είναι ο 4x4 πίνακας ζ ζ + 5 ζ + 7 ζ + 9 ζ 2ζ + 10 ζ + 7 ζ + 9 ζ ζ + 5 2ζ + 14 ζ + 9 ζ ζ + 5 ζ + 7 2ζ + 18 α) Να ευρεθούν οι πραγµατικές τιµές του ζ, για τις οποίες η τιµή της ορίζουσας του Μ είναι 0. β) Ερωτάται, υπάρχουν πραγµατικές τιµές του ζ τέτοιες ώστε το 4x4 σύστηµα ΜΥ= να έχει µία και µοναδική λύση?. (ΕΠΙΣΗΜΑΝΣΗ. Υ είναι η στήλη των 4 αγνώστων του συστήµατος).

5 ΣΕΛΙ Α 11 ΠΡΟΧΕΙΡΟ

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C Κεφάλαιο 1 Εισαγωγικές έννοιες Στο κεφάλαιο αυτό θα αναφερθούμε σε ορισμένες έννοιες, οι οποίες ίσως δεν έχουν άμεση σχέση με τους διανυσματικούς χώρους, όμως θα χρησιμοποιηθούν αρκετά κατά τη μελέτη τόσο

Διαβάστε περισσότερα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα Σελίδα από 58 Κεφάλαιο 9 Ιδιοτιμές και Ιδιοδιανύσματα 9. Ορισμοί... 9. Ιδιότητες... 9. Θεώρημα Cayley-Hamlto...9 9.. Εφαρμογές του Θεωρήματος Cayley-Hamlto... 9.4 Ελάχιστο Πολυώνυμο...40 Ασκήσεις του Κεφαλαίου

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή

Διαβάστε περισσότερα

Κεφάλαιο 8 1. Γραµµικές Απεικονίσεις

Κεφάλαιο 8 1. Γραµµικές Απεικονίσεις Σελίδα 1 από 9 Κεφάλαιο 8 1 Γραµµικές Απεικονίσεις Τα αντικείµενα µελέτης της γραµµικής άλγεβρας είναι σύνολα διανυσµάτων που χαρακτηρίζονται µε την αλγεβρική δοµή των διανυσµατικών χώρων. Όπως λοιπόν

Διαβάστε περισσότερα

ΑΓΟΡΑ ΕΡΓΑΣΙΑΣ ΑΠΟΛΥΤΗΡΙΟ (ΕΝ ΟΣΧΟΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ) Γ' ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Β' ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ. Μαθήµατα Γενικής Παιδείας + Μαθήµατα Οµάδων Προσανατολισµού

ΑΓΟΡΑ ΕΡΓΑΣΙΑΣ ΑΠΟΛΥΤΗΡΙΟ (ΕΝ ΟΣΧΟΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ) Γ' ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Β' ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ. Μαθήµατα Γενικής Παιδείας + Μαθήµατα Οµάδων Προσανατολισµού ΑΓΟΡΑ ΕΡΓΑΣΙΑΣ ΙΕΚ ΙΠΛΩΜΑ ΕΠΙΠΕ ΟΥ 4 ΤΡΙΤΟΒΑΘΜΙΑ ΕΚΠΑΙ ΕΥΣΗ (ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ) ΑΠΟΛΥΤΗΡΙΟ (ΕΝ ΟΣΧΟΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ) Γ' ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Μαθήµατα Γενικής Παιδείας + Μαθήµατα Οµάδων Προσανατολισµού ΠΡΟΑΚΤΕΟΙ

Διαβάστε περισσότερα

ετικέτα θα πρέπει να κολληθεί ακριβώς πάνω στο κόκκινο Π µε την αυτοκόλλητη στενή πλευρά της στο πάνω µέρος του Π.

ετικέτα θα πρέπει να κολληθεί ακριβώς πάνω στο κόκκινο Π µε την αυτοκόλλητη στενή πλευρά της στο πάνω µέρος του Π. ΑΣΕΠ ΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ (προκ. 10Π/2006) ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΟΥ ΓΕΝΙΚΕΣ Ο ΗΓΙΕΣ ΓΙΑ ΕΠΟΠΤΕΣ ΕΠΙΤΗΡΗΤΕΣ ΤΡΟΠΟΣ ΧΡΗΣΗΣ ΚΑΙ ΕΙ Η ΤΕΤΡΑ ΙΩΝ Θα χρησιµοποιηθούν δύο είδη τετραδίων : Ι. Τα δεκάφυλλα

Διαβάστε περισσότερα

4.2 Μέθοδος Απαλοιφής του Gauss

4.2 Μέθοδος Απαλοιφής του Gauss 4.2 Μέθοδος Απαλοιφής του Gauss Θεωρούµε το γραµµικό σύστηµα α 11χ 1 + α 12χ 2 +... + α 1νχ ν = β 1 α 21χ 1 + α 22χ2 +... + α 2νχ ν = β 2... α ν1χ 1 + α ν2χ 2 +... + α ννχ ν = β ν Το οποίο µπορεί να γραφεί

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014 Τηλ. 6165-617784 - Fax: 64105 Tel. 6165-617784 - Fax: 64105 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούμε να διαβάσετε προσεκτικά

Διαβάστε περισσότερα

Νέο γενικό λύκειο. Σύνολο διακριτών μαθημάτων 15. Σύνολο διδακτικών ωρών 35. Ομάδες μαθημάτων 3. Μεμονωμένα μαθήματα 7

Νέο γενικό λύκειο. Σύνολο διακριτών μαθημάτων 15. Σύνολο διδακτικών ωρών 35. Ομάδες μαθημάτων 3. Μεμονωμένα μαθήματα 7 ΤΑΞΗ Α Σύνολο διακριτών μαθημάτων 15. Σύνολο διδακτικών ωρών 35. Ομάδες μαθημάτων 3. Μεμονωμένα μαθήματα 7 Α ομάδα μαθημάτων Ελληνική Γλώσσα Β ομάδα μαθημάτων Μαθηματικά Γ ομάδα μαθημάτων Φυσικές Επιστήμες

Διαβάστε περισσότερα

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και 1. ΕΙΣΑΓΩΓΗ Όλα τα είδη ερωτήσεων που αναφέρονται στο «Γενικό Οδηγό για την Αξιολόγηση των µαθητών στην Α Λυκείου» µπορούν να χρησιµοποιηθούν στα Μαθηµατικά, τόσο στην προφορική διδασκαλία/εξέταση, όσο

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 013-014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου Χρόνος: ώρες Βαθμός: Ημερομηνία: Παρασκευή, 13 Ιουνίου 014 Υπογραφή καθηγητή: Ονοματεπώνυμο:

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 10 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 10 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΣΑΒΒΑΤΟ 14 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

= (1, 0,1, 0) είναι γραµµικά ανεξάρτητα

= (1, 0,1, 0) είναι γραµµικά ανεξάρτητα ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θέµα α) (µ) Θεωρούµε ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΗΣ 7 Ιουλίου 3 (διάρκεια: 3 ώρες

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

ΘΕΜΑ 1ο 1.1 Να γράψετε στο τετράδιό σας τα φυσικά µεγέθη από τη Στήλη Ι και, δίπλα σε καθένα, τη µονάδα της Στήλης ΙΙ που αντιστοιχεί σ' αυτό.

ΘΕΜΑ 1ο 1.1 Να γράψετε στο τετράδιό σας τα φυσικά µεγέθη από τη Στήλη Ι και, δίπλα σε καθένα, τη µονάδα της Στήλης ΙΙ που αντιστοιχεί σ' αυτό. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 5 ΙΟΥΝΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΠΤΑ (7) ΘΕΜΑ 1ο 1.1 Να γράψετε στο τετράδιό σας τα

Διαβάστε περισσότερα

ΘΕΜΑ : Προκήρυξη Πρόχειρου ιαγωνισµού για την επιλογή αναδόχου για την Γραµµατειακή και τεχνική Υποστήριξη του Κοινωνικού Φροντιστηρίου στο πλαίσιο

ΘΕΜΑ : Προκήρυξη Πρόχειρου ιαγωνισµού για την επιλογή αναδόχου για την Γραµµατειακή και τεχνική Υποστήριξη του Κοινωνικού Φροντιστηρίου στο πλαίσιο ΚΕΝΤΡΟ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΚΑΤΑΡΤΙΣΗΣ Αθήνα 11 Μαίου 2015 ΗΜΟΥ ΑΘΗΝΑΙΩΝ ΑΕ ΟΤΑ (δ.τ.: ΚΕΚ Α) Αρ. Πρωτ.: 2328/ΜΓ Πληροφορίες : ΜΙΧΑΛΗΣ ΓΙΑΚΟΥΜΗΣ Email: kekda@otenet.gr Τηλέφωνο : 210 5221047 Φαξ : 210 5221140

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. Óõíåéñìüò ΕΚΦΩΝΗΣΕΙΣ

Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. Óõíåéñìüò ΕΚΦΩΝΗΣΕΙΣ 1 ΘΕΜΑ 1 o Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΚΦΩΝΗΣΕΙΣ Α. Να γράψετε στην κόλλα σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1 5 και δίπλα τη λέξη

Διαβάστε περισσότερα

Θέµατα Καγκουρό 2007 Επίπεδο: 5 (για µαθητές της Β' και Γ' τάξης Λυκείου)

Θέµατα Καγκουρό 2007 Επίπεδο: 5 (για µαθητές της Β' και Γ' τάξης Λυκείου) Kangourou Sans Frontières Καγκουρό Ελλάς Επώνυµο: Όνοµα: Όνοµα πατέρα: e-mail: ιεύθυνση: Τηλέφωνο: Εξεταστικό Κέντρο: Σχολείο προέλευσης: Τάξη: Θέµατα Καγκουρό 007 Επίπεδο: (για µαθητές της ' και ' τάξης

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙ ΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 16 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

Το Νέο Λύκειο. Οι αλλαγές στο Γενικό Λύκειο Μαθήματα Προαγωγικές & Απολυτήριες Εξετάσεις Πανελλαδικές Εξετάσεις Βαθμολογία

Το Νέο Λύκειο. Οι αλλαγές στο Γενικό Λύκειο Μαθήματα Προαγωγικές & Απολυτήριες Εξετάσεις Πανελλαδικές Εξετάσεις Βαθμολογία Το Νέο Λύκειο Οι αλλαγές στο Γενικό Λύκειο Μαθήματα Προαγωγικές & Απολυτήριες Εξετάσεις Πανελλαδικές Εξετάσεις Βαθμολογία Α' Λυκείου Μαθήματα Γενικής Παιδείας Ελληνική Γλώσσα (Αρχαία, Νέα, Λογοτεχνία)

Διαβάστε περισσότερα

ΤΟ ΠΡΟΓΡΑΜΜΑ ΓΙΑ ΤΟ ΝΕΟ ΛΥΚΕΙΟ

ΤΟ ΠΡΟΓΡΑΜΜΑ ΓΙΑ ΤΟ ΝΕΟ ΛΥΚΕΙΟ ΛΥΚΕΙΟ ΤΟ ΠΡΟΓΡΑΜΜΑ ΓΙΑ ΤΟ ΝΕΟ ΛΥΚΕΙΟ ΜΑΣΙΑ ΥΠΟΨΗΦΙΩΝ 015 Ισχύει για τους μαθητές και τις μαθήτριες που φοιτούν στην Α Λυκείου από το σχολικό έτος 013-14. (ΦΕΚ Α 193/17-9-013) Τα κύρια σημεία του νέου

Διαβάστε περισσότερα

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Σχέσεις Αναδρομής Γραμμικές Σχέσεις Αναδρομής με σταθερούς συντελεστές

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΔΟΜΕΤΙΟΥ ΣΧΟΛ. ΧΡΟΝΙΑ: 2014-2015

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΔΟΜΕΤΙΟΥ ΣΧΟΛ. ΧΡΟΝΙΑ: 2014-2015 ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΔΟΜΕΤΙΟΥ ΣΧΟΛ. ΧΡΟΝΙΑ: 201-2015 ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2015 ΜΑΘΗΜΑ: Μαθηματικά ΤΑΞΗ: Α ΗΜΕΡΟΜΗΝΙΑ: 05 / 06 / 2015 ΧΡΟΝΟΣ: 2 Ώρες Βαθμός:. Ολογρ.:.. Υπογραφή: Ονοματεπώνυμο:

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ. Να σηµειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισµούς:. Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α = β, τότε

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΜΑΘΗΜΑ 4. ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονία συνάρτησης Ακρότατα συνάρτησης Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Ορισµός Συνάρτηση f λέγεται γνησίως αύξουσα σε διάστηµα, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50]

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Η καταληκτική ημερομηνία για την παραλαβή

Διαβάστε περισσότερα

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( )

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( ) ΑΣΚΗΣΗ ίνονται οι µιγαδικοί αριθµοί z + 0i για τους οποίους ισχύει: z 4 =. z i. Να δείξετε ότι z =. ii. Αν επιπλέον ισχύει Re( z) Im( z) iii. = να υπολογίσετε τους παραπάνω µιγαδικούς αριθµούς. Για τους

Διαβάστε περισσότερα

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα; ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ 1. Τι ονοµάζουµε µονώνυµο Μονώνυµο ονοµάζεται κάθε γινόµενο το οποίο αποτελείται από γνωστούς και αγνώστους (µεταβλητές ) πραγµατικούς αριθµούς. Ο γνωστός πραγµατικός αριθµός ονοµάζεται

Διαβάστε περισσότερα

Το µάθηµα Ηλεκτρονική ηµοσίευση

Το µάθηµα Ηλεκτρονική ηµοσίευση Τµήµα Αρχειονοµίας Βιβλιοθηκονοµίας Ιόνιο Πανεπιστήµιο Το µάθηµα Ηλεκτρονική ηµοσίευση Σαράντος Καπιδάκης Επικοινωνία Σαράντος Καπιδάκης Εργαστήριο Ψηφιακών Βιβλιοθηκών και Ηλεκτρονικής ηµοσίευσης sarantos@ionio.gr

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ' ΛΥΚΕΙΟΥ ΤΕΧΝ/ΚΗΣ ΚΑΤ/ΝΣΗΣ (Πλ. & Υπ.) 2006 ΕΚΦΩΝΗΣΕΙΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ' ΛΥΚΕΙΟΥ ΤΕΧΝ/ΚΗΣ ΚΑΤ/ΝΣΗΣ (Πλ. & Υπ.) 2006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1 ο ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ' ΛΥΚΕΙΟΥ ΤΕΧΝ/ΚΗΣ ΚΑΤ/ΝΣΗΣ (Πλ. & Υπ.) 2006 ΕΚΦΩΝΗΣΕΙΣ Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-5 και

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 27 ΜΑΪΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

Α Λυκείου. Πρόγραμμα μαθημάτων Α τάξης

Α Λυκείου. Πρόγραμμα μαθημάτων Α τάξης Α Λυκείου Η Α Λυκείου είναι τάξη γενικής παιδείας και, συνεπώς, τα μαθήματα είναι κοινά για όλους τους μαθητές. Το εβδομαδιαίο πρόγραμμα είναι 35 ωρών και περιλαμβάνει τα μαθήματα που μέχρι τώρα υπήρχαν

Διαβάστε περισσότερα

Α Τάξη Μαθήματα Κλάδοι Ώρες Εξεταζόμενο Γενική Παιδεία Αρχαία Ελληνική Γλώσσα και Γραμματεία 5 ΝΑΙ Ελληνική Γλώσσα

Α Τάξη Μαθήματα Κλάδοι Ώρες Εξεταζόμενο Γενική Παιδεία Αρχαία Ελληνική Γλώσσα και Γραμματεία 5 ΝΑΙ Ελληνική Γλώσσα Α Τάξη Μαθήματα Κλάδοι Ώρες Εξεταζόμενο Γενική Παιδεία Αρχαία Ελληνική Γλώσσα και Γραμματεία 5 ΝΑΙ Ελληνική Γλώσσα Νέα Ελληνική Γλώσσα 2 ΝΑΙ Λογοτεχνία 2 ΝΑΙ Μαθηματικά Άλγεβρα 3 ΝΑΙ Γεωμετρία 2 ΝΑΙ Φυσική

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 26-01-2014

ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 26-01-2014 ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 26-01-2014 ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη Σωστό, αν είναι

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Ζ ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝ ΥΤΙΚΩΝ ΠΡΟΤΑΣΕΩΝ

ΠΑΡΑΡΤΗΜΑ Ζ ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝ ΥΤΙΚΩΝ ΠΡΟΤΑΣΕΩΝ ΠΑΡΑΡΤΗΜΑ Ζ ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝ ΥΤΙΚΩΝ ΠΡΟΤΑΣΕΩΝ. ΠΙΝΑΚΑΣ ΣΥΝΤΕΛΕΣΤΩΝ ΣΤΑΘΜΙΣΗΣ ΚΡΙΤΗΡΙΩΝ ΚΑΙ ΥΠΟΚΡΙΤΗΡΙΩΝ 2. ΤΡΟΠΟΣ ΥΠΟΛΟΓΙΣΜΟΥ ΚΑΙ ΒΑΘΜΟΛΟΓΗΣΗΣ ΤΩΝ ΚΡΙΤΗΡΙΩΝ ΚΑΙ ΥΠΟΚΡΙΤΗΡΙΩΝ ΚΩ. ΚΡΙΤΗΡΙΑ ΥΠΟΚΡΙΤΗΡΙΑ Επιχειρήσεις

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 5 ΙΟΥΝΙΟΥ 203 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΤΕΧΝΙΑ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Α Να αποδείξετε ότι η παράγωγος της συνάρτησης f(x) x είναι f (x) Β Πότε µια συνάρτηση f σε ένα διάστηµα

Διαβάστε περισσότερα

ΕΚΠΟΝΗΣΗ ΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ ΦΟΙΤΗΤΩΝ Π.Ε.ΣΥ.Π. ΒΑΣΙΚΕΣ Ο ΗΓΙΕΣ

ΕΚΠΟΝΗΣΗ ΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ ΦΟΙΤΗΤΩΝ Π.Ε.ΣΥ.Π. ΒΑΣΙΚΕΣ Ο ΗΓΙΕΣ 1 ΠΡΟΓΡΑΜΜΑ ΕΙ ΙΚΕΥΣΗΣ ΣΤΗ ΣΥΜΒΟΥΛΕΥΤΙΚΗ ΚΑΙ ΤΟΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟ (Π.Ε.ΣΥ.Π.) Ακαδηµαϊκό Έτος 2014-15 ΕΚΠΟΝΗΣΗ ΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ ΦΟΙΤΗΤΩΝ Π.Ε.ΣΥ.Π. ΒΑΣΙΚΕΣ Ο ΗΓΙΕΣ Σύµφωνα µε τον Κανονισµό Σπουδών του

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ. (2 μονάδες) Δίνονται τα σημεία (-2, -16), (-1, -3), (0, 0), (1, -1) και (2, 0). Υπολογίστε το πολυώνυμο παρεμβολής Newton.

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ. (2 μονάδες) Δίνονται τα σημεία (-2, -16), (-1, -3), (0, 0), (1, -1) και (2, 0). Υπολογίστε το πολυώνυμο παρεμβολής Newton. ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΑΚΑΔ. ΕΤΟΣ - Τ. Ε. Ι. Σ Ε Ρ Ρ Ω Ν Σέρρες, 9 Ιανουαρίου ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ Ομάδα Α ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΘΕΜΑ ον (+ μονάδες) Δίνεται ο πρόβολος, με μήκος = m, με κατανεμημένο φορτίο που

Διαβάστε περισσότερα

Ιατρική Πληροφορική. Δρ. Π. ΑΣΒΕΣΤΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΪΑΤΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Τ. Ε. Χρήσιμοι Σύνδεσμοι

Ιατρική Πληροφορική. Δρ. Π. ΑΣΒΕΣΤΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΪΑΤΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Τ. Ε. Χρήσιμοι Σύνδεσμοι Ιατρική Πληροφορική Δρ. Π. ΑΣΒΕΣΤΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΪΑΤΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Τ. Ε. Χρήσιμοι Σύνδεσμοι Σημειώσεις μαθήματος: http://medisp.bme.teiath.gr/eclass/courses/tio103/ https://eclass.teiath.gr/courses/tio100/

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΤΡΙΤΗ 9 ΙΟΥΝΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΤΕΧΝΙΑ

Διαβάστε περισσότερα

Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 2000-2015

Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 2000-2015 Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 000-05 Περιεχόµενα Θέµατα Επαναληπτικών 05............................................. 3 Θέµατα 05......................................................

Διαβάστε περισσότερα

Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών

Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών Μαρίνα Χαραλαµπίδου Τµήµα Μαθηµατικών Τοµέας Αλγεβρας και Γεωµετρίας Πανεπιστηµίο Αθηνών Σεµινάριο Τοµέα Αλγεβρας και Γεωµετρίας 11/12/2012 1 / 47 Περιεχόµενα

Διαβάστε περισσότερα

0 1 0 0 0 1 p q 0 P =

0 1 0 0 0 1 p q 0 P = Στοχαστικές Ανελίξεις - Σεπτέμβριος 2015 ΟΔΗΓΙΕΣ (1) Απαντήστε σε όλα τα θέματα. Τα θέματα είναι ισοδύναμα. (2) Οι απαντήσεις να είναι αιτιολογημένες. Απαντήσεις χωρίς να φαίνεται η απαιτούμενη εργασία

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ OXHMATΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ OXHMATΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ OXHMATΩΝ ΦΟΡΕΑΣ ΕΞΕΤΑΣΗΣ ΕΛΕΓΚΤΩΝ ΔΗΜΟΣΙΩΝ ΚΑΙ ΙΔΙΩΤΙΚΩΝ ΚΤΕΟ ΒΑΡΕΩΝ ΟΧΗΜΑΤΩΝ ΓΙΑ ΕΛΕΓΧΟ ΟΧΗΜΑΤΩΝ ΜΕΤΑΦΟΡΑΣ ΕΠΙΚΙΝΔΥΝΩΝ ΕΜΠΟΡΕΥΜΑΤΩΝ (ADR)

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΕΣ Ο ΗΓΙΕΣ ΕΞΕΤΑΣΗΣ ΤΗΣ ΕΝΣΤΑΣΗΣ ΕΠΙ ΤΗΣ ΒΑΘΜΟΛΟΓΙΑΣ ΓΙΑ ΤΑ ΓΕΝΙΚΑ ΕΠΕΝ ΥΤΙΚΑ ΣΧΕ ΙΑ ΚΑΙ ΜΕΓΑΛΑ ΕΠΕΝ ΥΤΙΚΑ ΣΧΕ ΙΑ ΤΟΥ Ν.

ΑΝΑΛΥΤΙΚΕΣ Ο ΗΓΙΕΣ ΕΞΕΤΑΣΗΣ ΤΗΣ ΕΝΣΤΑΣΗΣ ΕΠΙ ΤΗΣ ΒΑΘΜΟΛΟΓΙΑΣ ΓΙΑ ΤΑ ΓΕΝΙΚΑ ΕΠΕΝ ΥΤΙΚΑ ΣΧΕ ΙΑ ΚΑΙ ΜΕΓΑΛΑ ΕΠΕΝ ΥΤΙΚΑ ΣΧΕ ΙΑ ΤΟΥ Ν. ΑΝΑΛΥΤΙΚΕΣ Ο ΗΓΙΕΣ ΕΞΕΤΑΣΗΣ ΤΗΣ ΕΝΣΤΑΣΗΣ ΕΠΙ ΤΗΣ ΒΑΘΜΟΛΟΓΙΑΣ ΓΙΑ ΤΑ ΓΕΝΙΚΑ ΕΠΕΝ ΥΤΙΚΑ ΣΧΕ ΙΑ ΚΑΙ ΜΕΓΑΛΑ ΕΠΕΝ ΥΤΙΚΑ ΣΧΕ ΙΑ ΤΟΥ Ν. 3908/2011 ΕΙΚΤΗΣ ΓΙΑ ΤΗ ΒΑΘΜΟΛΟΓΙΑ ΤΟΥ ΟΠΟΙΟΥ ΥΠΟΒΑΛΛΕΤΑΙ ΕΝΣΤΑΣΗ είκτης

Διαβάστε περισσότερα

Οδηγίες προς Υποψηφίους. Α. Γενικές Οδηγίες

Οδηγίες προς Υποψηφίους. Α. Γενικές Οδηγίες ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ, ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Λεωφόρος Εθνικής Αντιστάσεως 41, 142 34 Νέα Ιωνία www.eoppep.gr Εξετάσεις Πιστοποίησης Εκπαιδευτικής Επάρκειας Εκπαιδευτών Ενηλίκων της μη Τυπικής Εκπαίδευσης,

Διαβάστε περισσότερα

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης τόμος Καγκουρό Ελλάς 0 007 (ο πρώτος αριθµός σε µια γραµµή αναφέρεται στη σελίδα που αρχίζει το άρθρο και ο δεύτερος στη σελίδα που περιέχει τις απαντήσεις) Πρόλογος

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΔΙΕΞΑΓΩΓΗΣ ΤΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΟΔΗΓΙΕΣ ΔΙΕΞΑΓΩΓΗΣ ΤΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΟΔΗΓΙΕΣ ΔΙΕΞΑΓΩΓΗΣ ΤΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Α. Οργάνωση των επαγγελματικών εξετάσεων 1. Οι επαγγελματικές εξετάσεις του Σώματος Ορκωτών Ελεγκτών Λογιστών διενεργούνται από πενταμελή Εξεταστική Επιτροπή,

Διαβάστε περισσότερα

Όροι Χρήσης της Ηλεκτρονικής Υπηρεσίας ιάχείρισης Μετεγγραφών σε Πανεπιστήµια/Τ.Ε.Ι.

Όροι Χρήσης της Ηλεκτρονικής Υπηρεσίας ιάχείρισης Μετεγγραφών σε Πανεπιστήµια/Τ.Ε.Ι. Όροι Χρήσης της Ηλεκτρονικής Υπηρεσίας ιάχείρισης Μετεγγραφών σε Πανεπιστήµια/Τ.Ε.Ι. Η χρήση της διαδικτυακής υπηρεσίας διαχείρισης µετεγγραφών υπόκειται στους όρους που παρατίθενται στη συνέχεια. Η χρήση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 04 Λύσεις των θεµάτων

Διαβάστε περισσότερα

Νέο Λύκειο 2014-2015. Οι Βασικές αλλαγές από Σεπτέμβριο του 2013 στο Ενιαίο Λύκειο

Νέο Λύκειο 2014-2015. Οι Βασικές αλλαγές από Σεπτέμβριο του 2013 στο Ενιαίο Λύκειο Νέο Λύκειο 2014-2015 Οι Βασικές αλλαγές από Σεπτέμβριο του 2013 στο Ενιαίο Λύκειο Α Λυκείου: Μαθήματα Α Λυκείου: Εξετάσεις Στις προαγωγικές εξετάσεις Α' Λυκείου που διεξάγονται ενδοσχολικά, τα θέματα:

Διαβάστε περισσότερα

ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΓΙΑ ΤΗ ΧΟΡΗΓΗΣΗ ΠΙΣΤΟΠΟΙΗΤΙΚΟΥ ΠΑΡΑΓΩΓΗΣ ΠΡΟΪΟΝΤΩΝ ΕΙ ΙΚΩΝ ΠΤΗΝΟΤΡΟΦΙΚΩΝ ΕΚΤΡΟΦΩΝ

ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΓΙΑ ΤΗ ΧΟΡΗΓΗΣΗ ΠΙΣΤΟΠΟΙΗΤΙΚΟΥ ΠΑΡΑΓΩΓΗΣ ΠΡΟΪΟΝΤΩΝ ΕΙ ΙΚΩΝ ΠΤΗΝΟΤΡΟΦΙΚΩΝ ΕΚΤΡΟΦΩΝ Οργανισµός Πιστοποίησης & Επίβλεψης Γεωργικών Προϊόντων - Ο.Π.Ε.ΓΕ.Π. - ΝΠΙ Ιθάκης 45-47, 112 51 Αθήνα Τηλ.:8231 277, Fax: 8231 438, e-mail : agrocert@otenet.gr, website: www.agrocert.gr ΓΙΑ ΤΗ ΧΟΡΗΓΗΣΗ

Διαβάστε περισσότερα

Αρχές Γλωσσών Προγραμματισμού και Μεταφραστών: Εργαστηριακή Άσκηση 2012-2013

Αρχές Γλωσσών Προγραμματισμού και Μεταφραστών: Εργαστηριακή Άσκηση 2012-2013 Αρχές Γλωσσών Προγραμματισμού και Μεταφραστών: Εργαστηριακή Άσκηση 2012-2013 27 Μαρτίου 2013 Περίληψη Σκοπός της παρούσας εργασίας είναι η εξοικείωσή σας με τις θεμελιώδεις θεωρητικές και πρακτικές πτυχές

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6.

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6. ΜΙΓΑ ΙΚΟΙ 1 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 1 2 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 3 Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2 4 Για κάθε z C ισχύει z z 2 z 5 Για κάθε µιγαδικό z ισχύει:

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

Διαγνωστικά δοκίμια ελληνομάθειας για Γυμνάσια & Λύκεια /Τεχνικές Σχολές

Διαγνωστικά δοκίμια ελληνομάθειας για Γυμνάσια & Λύκεια /Τεχνικές Σχολές Πρόγραμμα Εκμάθησης της Ελληνικής ως δεύτερης /ξένης γλώσσας στη Μέση Εκπαίδευση Διαγνωστικά δοκίμια ελληνομάθειας για Γυμνάσια & Λύκεια /Τεχνικές Σχολές Σεπτέμβριος 2011 {επιμ. παρουσίασης: Μαρία Παπαλεοντίου,

Διαβάστε περισσότερα

Μαθηματικά Γ Λυκείου. Έκδοση Α. 120 Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων. Αθήνα 2012 (λίγο πριν τις εκλογές) 5/5/2012

Μαθηματικά Γ Λυκείου. Έκδοση Α. 120 Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων. Αθήνα 2012 (λίγο πριν τις εκλογές) 5/5/2012 Μαθηματικά Γ Λυκείου Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων 5/5/ Έκδοση Α Θετική και Τεχνολογική Κατεύθυνση ( mac964@gmail.com) Αθήνα (λίγο πριν τις εκλογές) Επαναληπτικές ασκήσεις που φιλοδοξούν

Διαβάστε περισσότερα

Μεθοδολογία για την Πιστοποίηση της Εκπαιδευτικής Επάρκειας Εκπαιδευτών Ενηλίκων της Mη Τυπικής Εκπαίδευσης

Μεθοδολογία για την Πιστοποίηση της Εκπαιδευτικής Επάρκειας Εκπαιδευτών Ενηλίκων της Mη Τυπικής Εκπαίδευσης ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Λεωφόρος Εθνικής Αντιστάσεως 41, 142 34 Νέα Ιωνία Μεθοδολογία για την Πιστοποίηση της Εκπαιδευτικής Επάρκειας Εκπαιδευτών Ενηλίκων της Mη

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 8 ο 8.1 Συντελεστές συσχέτισης: 8.1.1 Συσχέτιση Pearson, και ρ του Spearman 8.1.2 Υπολογισµός του συντελεστή

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙ- ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙ- ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙ- ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΟΜΑΔΑ Α Α1. Για τις ημιτελείς προτάσεις Α1.1 και Α1. να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης ενός συστήματος συντεταγμένων για τον προσδιορισμό της θέσης ενός σημείου πάνω σε μια επιφάνεια προέρχεται από την Γεωγραφία και ήταν γνωστή στους

Διαβάστε περισσότερα

AΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙ ΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΤΡΙΤΗ 14 ΙΟΥΝΙΟΥ 2011 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΕΛΕΥΘΕΡΟ ΣΧΕ ΙΟ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ ΥΟ (2)

AΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙ ΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΤΡΙΤΗ 14 ΙΟΥΝΙΟΥ 2011 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΕΛΕΥΘΕΡΟ ΣΧΕ ΙΟ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ ΥΟ (2) AΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙ ΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΤΡΙΤΗ 14 ΙΟΥΝΙΟΥ 2011 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΕΛΕΥΘΕΡΟ ΣΧΕ ΙΟ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ ΥΟ (2) ΖΗΤΟΥΝΤΑΙ: 1. Αρμονική απεικόνιση του θέματος στον

Διαβάστε περισσότερα

15 ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

15 ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 18 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΟ φροντιστήριο ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Θέµα ο κ ΙΑΓΩΝΙΣΜΑ Α Α. ώστε τον ορισµό της υπερβολής και γράψτε τις εξισώσεις των ασύµπτωτων της ( C ): (Μονάδες 9) α β Β. Να διατυπώσετε τέσσερις

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΟΜΑ Α Α

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΟΜΑ Α Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γʹ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 7 ΜΑÏΟΥ 009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : Εφαρμοσμένη Ηλεκτρολογία

Διαβάστε περισσότερα

Α3. Ποια είναι τα πλεονεκτήματα του Δομημένου προγραμματισμού; (Μονάδες 10)

Α3. Ποια είναι τα πλεονεκτήματα του Δομημένου προγραμματισμού; (Μονάδες 10) ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 08 / 02 / 2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Ι. ΜΙΧΑΛΕΑΚΟΣ Γ.ΝΙΤΟΔΑΣ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις

Διαβάστε περισσότερα

Downloaded by eduguide.gr- Όλα τα μεταπτυχιακά στην Ελλάδα

Downloaded by eduguide.gr- Όλα τα μεταπτυχιακά στην Ελλάδα Ρέθυµνο, 25 Ιουνίου 2015 Α.Π.: 376 Πρόσκληση υποβολής αιτήσεων υποψήφιων Μεταπτυχιακών Φοιτητών στο Πρόγραµµα Μεταπτυχιακών µε αντικείµενο «Πολιτισµός, Παιδεία και Ανθρώπινη Ανάπτυξη» Από το έτος 2014

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

ΑΔΑ: ΒΙΡ2469Β7Γ-ΠΜ0 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΙ ΙΚΟΣ ΛΟΓΑΡΙΑΣΜΟΣ ΓΡΑΜΜΑΤΕΙΑ ΑΝΑΡΤΗΤΕΑ ΣΤΟ ΙΑ ΙΚΤΥΟ

ΑΔΑ: ΒΙΡ2469Β7Γ-ΠΜ0 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΙ ΙΚΟΣ ΛΟΓΑΡΙΑΣΜΟΣ ΓΡΑΜΜΑΤΕΙΑ ΑΝΑΡΤΗΤΕΑ ΣΤΟ ΙΑ ΙΚΤΥΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΙ ΙΚΟΣ ΛΟΓΑΡΙΑΣΜΟΣ ΓΡΑΜΜΑΤΕΙΑ ΑΝΑΡΤΗΤΕΑ ΣΤΟ ΙΑ ΙΚΤΥΟ Ρέθυµνο 07-02-2014 Αριθµ.Πρωτ.: 1242 ΠΡΟΣΚΛΗΣΗ ΕΚ ΗΛΩΣΗΣ ΕΝ ΙΑΦΕΡΟΝΤΟΣ ΓΙΑ ΥΠΟΒΟΛΗ ΠΡΟΤΑΣΗΣ ΠΡΟΣ ΣΥΝΑΨΗ ΣΥΜΒΑΣΕΩΝ ΜΙΣΘΩΣΗΣ ΕΡΓΟΥ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50]

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Θέµα 1 ο Α. Να απαντήσετε τις παρακάτω ερωτήσεις τύπου Σωστό Λάθος (Σ Λ) 1. Σκοπός της συγχώνευσης 2 ή περισσοτέρων ταξινοµηµένων πινάκων είναι η δηµιουργία

Διαβάστε περισσότερα

Πρακτικό Αξιολόγησης και Επιλογής

Πρακτικό Αξιολόγησης και Επιλογής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΒΟΙΩΤΙΑΣ Αλίαρτος 30/12/2014 ΔΗΜΟΣ ΑΛΙΑΡΤΟΥ ΘΕΣΠΙΕΩΝ Αριθμ. Πρωτ. : 13.676 Γραφείο Δημάρχου Tαχ. Δ/νση : Λεωφόρος Αθηνών Πληροφορίες : Λέτη Μαρίνα Τηλέφωνο : 22683 50225 Fax :

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2008 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ: Εφαρμοσμένη Ηλεκτρολογία

Διαβάστε περισσότερα

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι.

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι. 1 E. ΣΥΝΟΛΑ ΘΕΩΡΙΑ 1. Ορισµός του συνόλου Σύνολο λέγεται κάθε συλλογή πραγµατικών ή φανταστικών αντικειµένων, που είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο. Τα παραπάνω αντικείµενα λέγονται

Διαβάστε περισσότερα

Εγχειρίδιο χρήσης. ΜΗΤΡΩΟ ΕΠΙΜΟΡΦΩΤΩΝ ΕΚΠΑΙΔΕΥΤΩΝ ΕΝΗΛΙΚΩΝ του ΚΑΝΕΠ ΓΣΕΕ

Εγχειρίδιο χρήσης. ΜΗΤΡΩΟ ΕΠΙΜΟΡΦΩΤΩΝ ΕΚΠΑΙΔΕΥΤΩΝ ΕΝΗΛΙΚΩΝ του ΚΑΝΕΠ ΓΣΕΕ Εγχειρίδιο χρήσης ΜΗΤΡΩΟ ΕΠΙΜΟΡΦΩΤΩΝ ΕΚΠΑΙΔΕΥΤΩΝ ΕΝΗΛΙΚΩΝ του ΚΑΝΕΠ ΓΣΕΕ Εισαγωγή στο Μητρώο Επιμορφωτών Εκπαιδευτών Ενηλίκων Εφόσον είστε συνδεδεμένοι στο διαδίκτυο, ανοίξτε το φυλλομετρητή Microsoft

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ. Διδάσκουσα Δρ Β.

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ. Διδάσκουσα Δρ Β. ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ Διδάσκουσα Δρ Β. Καβακλή Χειμερινό Εξάμηνο 2001 1 Σύνολο χαρακτήρων της Pascal Για

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

Ε Γ Κ Υ Κ Λ Ι Ο Σ. Σύνταξη ιαχειριστικών Σχεδίων Αποβλήτων

Ε Γ Κ Υ Κ Λ Ι Ο Σ. Σύνταξη ιαχειριστικών Σχεδίων Αποβλήτων ΕΞ. ΕΠΕΙΓΟΝ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Αθήνα, 2 10-2007 ΥΠΟΥΡΓΕΙΟ ΠΕΧΩ Ε Αρ. Πρ.: οικ.172509 /4266 ΓΕΝΙΚΗ /ΝΣΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ /ΝΣΗ ΠΕΡΙΒΑΛΛΟΝΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ ΤΜΗΜΑ ΙΑΧ. ΣΤΕΡΕΩΝ ΑΠΟΒΛΗΤΩΝ ΠΡΟΣ: ΠΙΝΑΚΑ ΑΠΟ ΕΚΤΩΝ

Διαβάστε περισσότερα

ΑΠΟΦΑΣΗ ΡΑΕ ΥΠ. ΑΡΙΘΜ. 104/2007. Μεθοδολογία αξιολόγησης αιτήσεων για χορήγηση άδειας παραγωγής από φωτοβολταϊκούς σταθµούς

ΑΠΟΦΑΣΗ ΡΑΕ ΥΠ. ΑΡΙΘΜ. 104/2007. Μεθοδολογία αξιολόγησης αιτήσεων για χορήγηση άδειας παραγωγής από φωτοβολταϊκούς σταθµούς Πανεπιστηµίου 69 & Αιόλου, 105 64 Αθήνα Τηλ.: 210-3727400 Fax: 210-3255460 E-mail: info@rae.gr Web: www.rae.gr ΑΠΟΦΑΣΗ ΡΑΕ ΥΠ. ΑΡΙΘΜ. 104/2007 Μεθοδολογία αξιολόγησης αιτήσεων για χορήγηση άδειας παραγωγής

Διαβάστε περισσότερα

ΓΡΑΦΕΙΟ ΣΕΠ ΛΙΒΑΝΕΙΟΥ ΓΥΜΝΑΣΙΟΥ ΚΑΡΔΑΜΥΛΩΝ 2009

ΓΡΑΦΕΙΟ ΣΕΠ ΛΙΒΑΝΕΙΟΥ ΓΥΜΝΑΣΙΟΥ ΚΑΡΔΑΜΥΛΩΝ 2009 ΓΡΑΦΕΙΟ ΣΕΠ ΛΙΒΑΝΕΙΟΥ ΓΥΜΝΑΣΙΟΥ ΚΑΡΔΑΜΥΛΩΝ 009 ΤΟ ΕΛΛΗΝΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΥΣΤΗΜΑ ΑΕΙ/ΑΤΕΙ ΙΕΚ ΑΓΟΡΑ ΕΡΓΑΣΙΑΣ ΓΤΑΞΗ ΓΤΑΞΗ ΕΙΔΙΚΟΤΗΤΕΣ Β ΤΑΞΗ ΕΙΔΙΚΟΤΗΤΕΣ ΒΤΑΞΗ ΒΤΑΞΗ ΤΟΜΕΙΣ Α ΤΑΞΗ ΕΙΔΙΚΟΤΗΤΕΣ ΑΤΑΞΗ ΑΤΑΞΗ

Διαβάστε περισσότερα

ΝΕΟ ΛΥΚΕΙΟ 2014 ΕΦΑΡΜΟΓΗ ΓΙΑ ΤΟΥΣ ΜΑΘΗΤΕΣ ΤΗΣ Α ΤΑΞΗΣ ΛΥΚΕΙΟΥ (ΣΧΟΛΙΚΟ ΈΤΟΣ: 2013 2014)

ΝΕΟ ΛΥΚΕΙΟ 2014 ΕΦΑΡΜΟΓΗ ΓΙΑ ΤΟΥΣ ΜΑΘΗΤΕΣ ΤΗΣ Α ΤΑΞΗΣ ΛΥΚΕΙΟΥ (ΣΧΟΛΙΚΟ ΈΤΟΣ: 2013 2014) ΝΕΟ ΛΥΚΕΙΟ 2014 ΕΦΑΡΜΟΓΗ ΓΙΑ ΤΟΥΣ ΜΑΘΗΤΕΣ ΤΗΣ Α ΤΑΞΗΣ ΛΥΚΕΙΟΥ (ΣΧΟΛΙΚΟ ΈΤΟΣ: 2013 2014) Α ΛΥΚΕΙΟΥ Η Α' τάξη Ημερησίου Γενικού Λυκείου αποτελεί τάξη γενικής παιδείας 35 συνολικά ωρών εβδομαδιαίως και 2

Διαβάστε περισσότερα

ÑÏÕËÁ ÌÁÊÑÇ. Β. Να αναφέρετε τις κυριότερες τυποποιηµένες τεχνικές σχεδίασης αλγορίθµων. ΜΟΝΑ ΕΣ 3

ÑÏÕËÁ ÌÁÊÑÇ. Β. Να αναφέρετε τις κυριότερες τυποποιηµένες τεχνικές σχεδίασης αλγορίθµων. ΜΟΝΑ ΕΣ 3 1 Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1 Ο ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη Σωστό

Διαβάστε περισσότερα

Ελευθέριος Πρωτοπαπάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΛΙΓΟ ΠΡΙΝ ΤΙΣ ΕΞΕΤΑΣΕΙΣ (ΘΕΜΑΤΑ ΤΕΛΕΥΤΑΙΑΣ ΕΠΑΝΑΛΗΨΗΣ)

Ελευθέριος Πρωτοπαπάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΛΙΓΟ ΠΡΙΝ ΤΙΣ ΕΞΕΤΑΣΕΙΣ (ΘΕΜΑΤΑ ΤΕΛΕΥΤΑΙΑΣ ΕΠΑΝΑΛΗΨΗΣ) Ελευθέρις Πρωταάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΛΙΓΟ ΠΡΙΝ ΤΙΣ ΕΞΕΤΑΣΕΙΣ (ΘΕΜΑΤΑ ΤΕΛΕΥΤΑΙΑΣ ΕΠΑΝΑΛΗΨΗΣ) Να βρείτε την τιµή των αραστάσεων: o o συν 90 + ηµ 0 -σφ75 α) A =, ηµ o o 0 + συν 80

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 5 ο : Ο Προσδιορισμός των Τιμών ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Ασκήσεις 1. Οι συναρτήσεις ζήτησης και προσφοράς ενός αγαθού είναι: =20-2P και S =5+3P αντίστοιχα.

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΚΕΦΑΛΑΙΟ 3 ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ Πολλαπλασιαστική αρχή (multiplicatio rule). Έστω ότι ένα πείραμα Ε 1 έχει 1 δυνατά αποτελέσματα. Έστω επίσης ότι για κάθε ένα από αυτά τα δυνατά

Διαβάστε περισσότερα

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή KΕΦΑΛΑΙΟ ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ιατεταγµένα σώµατα-αξίωµα πληρότητας Ένα σύνολο Σ καλείται διατεταγµένο σώµα όταν στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι

Διαβάστε περισσότερα

ΑΙΤΗΣΗ. O Αιτών /Η Αιτούσα

ΑΙΤΗΣΗ. O Αιτών /Η Αιτούσα ΚΟΙΝΩΝΙΚΟ ΠΟΛΥΚΕΝΤΡΟ ιοσκούρων 4 & Πολυγνώτου ΑΘΗΝΑ 105 55 Τηλ. 2103310080-1, Fax: 2103310083 E-mail: info@ kpolykentro.gr www.kpolykentro.gr ΑΙΤΗΣΗ ΕΚ ΗΛΩΣΗΣ ΥΠΟΨΗΦΙΟΤΗΤΑΣ ΕΚΠΑΙ ΕΥΤΗ/ΤΡΙΑΣ στο πλαίσιο

Διαβάστε περισσότερα