Ασκήσεις2 8. ; Αληθεύει ότι το (1, 0, 1, 2) είναι ιδιοδιάνυσμα της f ; b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης 3 3

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ασκήσεις2 8. ; Αληθεύει ότι το (1, 0, 1, 2) είναι ιδιοδιάνυσμα της f ; b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης 3 3"

Transcript

1 Ασκήσεις 8 Ασκήσεις Ιδιοτιμές και ιδιοδιανύσματα Βασικά σημεία Ορισμός ιδιοτιμων και ιδιοδιανυσμάτων, υπολογισμός τους Σε διακεκριμένες ιδιοτιμές αντιστοιχούν γραμμικά ανεξάρτητα ιδιοδιανύσματα Αν ΑΧ=λΧ, τότε φ(α)χ=φ(λ)χ Ορισμός και πρώτες ιδιότητες χαρακτηριστικού πολυωνύμου Ιδιόχωροι, διάσταση ιδιόχωρου, εύρεση βάσης ιδιόχωρου Σχέση ιδιοτιμών με ίχνος και ορίζουσα Όμοιοι πίνακες έχουν το ίδιο χαρακτηριστικό πολυώνυμο Συνιστώμενες ασκήσεις: -4, 7a,b -9, -6, 9, -4 Συμβολισμός: V είναι πεπερασμένης διάστασης -διανυσματικός χώρος, όπου a Αληθεύει ότι το είναι ιδιοτιμή της γραμμικής απεικόνισης 4 4 f :, f ( x, y, z, w) ( x w, y z, z w, x w) ; Αληθεύει ότι το (, 0,, ) είναι ιδιοδιάνυσμα της f ; b Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης f :, f ( x, y, z) ( x y,x y z, x y z) c Έστω f : η γραμμική απεικόνιση που ορίζεται από f ( e ) e, f ( e ) e, ή όπου e { e, e} είναι η συνήθης βάση του Να υπολογιστούν οι ιδιοτιμές και τα ιδιοδιανύσματα της f όταν i) και ii) Δώστε μια γεωμετρική ερμηνεία του αποτελέσματος στο i ) a Έστω και X 5 5 Είναι το X ιδιοδιάνυσμα του ; Είναι το 6 ιδιοτιμή του ; b Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα του Να βρεθούν οι πιθανές ιδιοτιμές της γραμμικής απεικόνισης f : V V σε κάθε μια από τις επόμενες περιπτώσεις a f, b c f f V f, 0 4 Έστω με ( x ) x x x a Είναι ο αντιστρέψιμος; b Είναι ο ( I)( 4 I) αντιστρέψιμος; c Υπολογίστε την ορίζουσα του 5I d Να βρεθεί το ( x) e Αληθεύει ότι υπάρχει B τέτοιος ώστε k B B για κάποιο θετικό ακέραιο k ;

2 Ασκήσεις 9 k t t f Αληθεύει ότι υπάρχει ακέραιος k με, όπου είναι ο ανάστροφος του ; 5 Έστω, B, όπου ο είναι αντιστρέψιμος Δείξτε ότι B( x) B( x) (Σημείωση: Ισχύει το συμπέρασμα και χωρίς την υπόθεση ότι ο Α είναι αντιστρέψιμος, βλ άσκηση 7) 6 Έστω αντιστρέψιμος και ( x ) ( ) x x x 0, οπότε 0 0 Δείξτε ότι ( ) ( ) ( ) ( ) x x x x Έστω και ( x) [ x] a Δείξτε ότι αν το είναι ιδιοτιμή του με αντίστοιχο ιδιοδιάνυμσα X, τότε το ( ) είναι ιδιοτιμή του ( ) με αντίστοιχο διάνυσμα το X b Έστω Βρείτε (χωρίς να γίνουν πράξεις) μια ιδιοτιμή και ένα αντίστοιχο ιδιοδιάνυσμα του B 8 45 I 8 c Έστω ότι Δείξτε ότι για κάθε ιδιοτιμή του ( ) υπάρχει ιδιοτιμή i του τέτοια ώστε ( i ) a Για ποια a το (,) είναι ένα ιδιοδιάνυσμα της γραμμικής απεικόνισης f :, f ( x, y) ( x ay, x y) ; b Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα των γραμμικών απεικονίσεων i f :, f ( x, y, z) (4 x,y 5 z, y z), ii g :, f ( x, y, z) (4 x,y 5 z, y z) 9 Δίνεται η γραμμική απεικόνιση f : [ x] [ x], με f x x x x ( ), f ( x ) x, f () x a Βρείτε τα ιδιοδιανύσματα της f και μια βάση για κάθε ιδιόχωρο της f b Αληθεύει ότι η f είναι ισομορφισμός; 4 c Αληθεύει ότι η f 6 f 4 V είναι ισομορφισμός; 4 d Βρείτε δύο γραμμικά ανεξάρτητα ιδιοδιανύσματα της f 6 f 4 V 0 Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα των γραμμικών απεικονίσεων g : [ x] [ x], g( ( x)) x () h : [ x] [ x], h( ( x)) ( x), όπου ( x) είναι η παράγωγος του ( x) Έστω ( a ij ) τέτοιος ώστε για κάθε j,,, ισχύει Έστω a Υπάρχει μη μηδενικό b Αν ο είναι αντιστρέψιμος και X τέτοιο ώστε X X b ij i a ij Δείξτε τα εξής ( ), τότε για κάθε j,,, ισχύει bij i

3 Ασκήσεις a a 0 0 a 0 0 a a Δείξτε ότι το χαρακτηριστικό πολυώνυμο του είναι το ( ) ( x a x a0) b Δείξτε ότι αν είναι μια ιδιοτιμή του, τότε το t είναι ένα ιδιοδιάνυσμα του Βρείτε το χαρακτηριστικό πολυώνυμο του Έστω f, g : V V δυο γραμμικές απεικονίσεις a Έστω ότι f g g f και v είναι ένα ιδιοδιάνυσμα της f με v ker g Τότε το g( v ) είναι ένα ιδιοδιάνυσμα της f b Έστω v ένα ιδιοδιάνυσμα και της f και της g Τότε για κάθε ( x), ( x) [ x] το v είναι ένα ιδιοδιάνυσμα της ( f ) ( g) 5 Έστω δυο ιδιοτιμές μιας γραμμικής απεικόνισης f : V V με αντίστοιχα ιδιοδιανύσματα u, v Τότε a τα u, v είναι γραμμικά ανεξάρτητα και b για κάθε a, b {0}, το au bv δεν είναι ιδιοδιάνυσμα της f 6 Να βρεθούν οι ιδιοτιμές του C Έστω Αποδείξτε ότι οι ακόλουθες ιδιότητες είναι ισοδύναμες a Ο είναι αντιστρέψιμος b O σταθερός όρος του ( x ) είναι μη μηδενικός c Το 0 δεν είναι ιδιοτιμή του 8 Έστω αντιστρέψιμος a Δείξτε ότι το είναι ιδιοτιμή του αν και μόνο αν το είναι ιδιοτιμή του b Έστω ότι ο είναι όμοιος με τον και περιττός Δείξτε ότι το ή το είναι ιδιοτιμή του 44 9 Έστω τέτοιο ώστε ( x ) [ x ], det, Tr ( ) 4 και μια ιδιοτιμή του είναι το i Να βρεθούν οι ιδιοτιμές του

4 Ασκήσεις 0 Ξέρουμε ότι όμοιοι πίνακες έχουν το ίδιο χαρακτηριστικό πολυώνυμο Αληθεύει ότι όμοιοι πίνακες έχουν τα ίδια ιδοδιανύσματα; Έστω αντιστρέψιμος Δείξτε ότι αν ο είναι όμοιος με τον, τότε το είναι άρτιος,, και το χαρακτηριστικό πολυώνυμο του είναι της μορφής ( x )( x ), j t Βρείτε τους ιδιόχωρους της γραμμικής απεικόνισης f :,, όπου Θεωρούμε δυο διαγώνιους πίνακες a b, B a b Δείξτε ότι οι ακόλουθες προτάσεις είναι ισοδύναμες a Οι, B είναι όμοιοι b Υπάρχει μετάθεση S τέτοια ώστε bi a ( i) για κάθε i,, c ( x) B( x) 4 a Έστω Δείξτε ότι ( x ) ( ) x αν και μόνο αν κάθε ιδιοτιμή του είναι ίση με 0 b Να βρεθούν όλοι οι τέτοιοι ώστε ( x ) x 5 Βρείτε το χαρακτηριστικό πoλυώνυμο, τις ιδιοτιμές και τα ιδιοδιανύσματα του a b b b b a b b b b a b b b b a 6 Έστω a, b με a b Δείξτε ότι το χαρακτηριστικό πολυώνυμο του 0 a a a b 0 a a b b 0 a b b b 0 ( ) είναι το a( x b) b( x a) ab 7 Έστω και B Δείξτε ότι ( ) x ( x) ( ) x ( x) (Συνεπώς αν, τότε B ( x) ( x) ) B 8 Έστω a,, a, b,, b και C aib j B B Χρησιμοποιώντας την προηγούμενη άσκηση ή αλλιώς βρείτε το C ( x ) και τις ιδιοτιμές του C 9 Έστω και Βρείτε το χαρακτηριστικό πολυώνυμο, τις ιδιοτιμές και τα ιδιοδιανύσματα του Για κάθε ιδιοτιμή του, βρείτε τη διάσταση του -διανυσματικού χώρου X X X

5 Ασκήσεις 0 Έστω V ένας -διανυσματικός χώρος και f : V V μια γραμμική απεικόνιση Έστω ότι, είναι δυο ιδιοτιμές της f τέτοιες ώστε Θέτουμε V ( ) Ker( f ) και V ( ) Ker( f ) V a Δείξτε ότι V ( ) V ( ) {0 V } b Έστω x V ( ) V ( ) Δείξτε ότι αν το x είναι ένα ιδιοδιάνυσμα της f, τότε x V ( ) ή x V ( ) B B Έστω, B, C και D Τότε B B a ( x) ( x) ( x) C B B b ( x) ( x) ( x) D ib ib, B είναι όμοιοι, όπου c Αν οι ιδιοτιμές του είναι οι,,, τότε οι ιδιοτιμές του Έστω a, b Δίνεται ότι οι πίνακες Να βρεθούν οι a, b a a b, B 0 0 b 0 0 Να βρεθεί τo χαρακτηριστικό πολυώνυμο της γραμμικής απεικόνισης είναι οι,,, 0,,0 f f f, όπου f :, f ( x, y, z) (0, x, y) 4 Επαναληπτική άσκηση κατανόησης Εξετάστε ποιες από τις ακόλουθες προτάσεις αληθεύουν Σε κάθε περίπτωση δώστε μια απόδειξη ή ένα αντιπαράδειγμα a Αν το είναι ιδιοτιμή του και το είναι ιδιοτιμή του B, τότε το είναι ιδιοτιμή του B b Αν το είναι ιδιοτιμή του και το είναι ιδιοτιμή του B, τότε το είναι ιδιοτιμή του B c Κάθε έχει τουλάχιστον μια πραγματική ιδιοτιμή d Κάθε έχει τουλάχιστον μια πραγματική ιδιοτιμή e Αν το είναι ιδιοτιμή του τότε το είναι ιδιοτιμή του f Αν το είναι ιδιοτιμή του, όπου, τότε το είναι ιδιοτιμή του g Αν ( x) ( x), όπου, B, τότε οι, B είναι όμοιοι B h Έστω ότι οι Α, Β είναι όμοιοι Τότε οι ( ), ( B) είναι όμοιοι για κάθε ( x) [ x] i Υπάρχει με ιδιοτιμές τις 0,,, j Αν v είναι ιδιοδιάνυσμα της γραμμικής απεικόνισης f : V V και v ker f, τότε το 0 είναι ιδιοτιμή της f k Έστω με ( x ) ( x )( x 5) Τότε υπάρχει γραμμική απεικόνιση f : και διατεταγμένη βάση του με f (,0,0) (,0,0) και ( f :, ) l Έστω Αν το είναι ιδιοτιμή του, τότε υπάρχει μη μηδενικό X I με X V X

6 Ασκήσεις Υποδείξεις/Απαντήσεις Ασκήσεις Λύση a Σύμφωνα με τον ορισμό της ιδιοτιμής, το είναι ιδιοτιμή της f αν και μόνο αν υπάρχει μη μηδενικό 4 ( x, y, z, w) με f ( x, y, z, w) ( x, y, z, w) Παρατηρούμε ότι f ( x, y, z, w) ( x, y, z, w) ( x w, y z, z w, x w) ( x, y, z, w) x w x y z y z w z x w w x w 0 z 0 z w 0 x w 0 x z w 0, y 4 Άρα το είναι ιδιοτιμη της f (και τα αντίστοιχα ιδιοδιανύσματα είναι τα (0, y,0,0), όπου y 0 ) Υπολογίζοντας βρίσκουμε f (, 0,, ) (,,,) Από τη σχέση αυτή είναι σαφές ότι δεν υπάρχει με f (,0,, ) (,0,,) Άρα το (,0,, ) δεν είναι ιδιοδιανυσμα της f b Έστω και ( z, y, z) Έχουμε ( ) x y 0 f ( x, y, z) ( x, y, z) x ( ) y z 0 x y ( ) z 0 Το σύστημα () έχει μη τετριμμένη λύση ως προς x, y, z αν και μόνο αν 0 det 0 ( ) det ( ) det 0 ( )(( )( ) ) ( ) 0 ( )(( )( ) ) 0 ( )( )( ) 0,, Άρα οι ιδιοτιμές είναι,, Ιδιοδιανύσματα που αντιστοιχούν στην ιδιοτιμή : y 0 y 0 Για, το σύστημα () γίνεται x y z 0 που ισοδυναμεί με το Οι λύσεις του x z 0 x y z 0 τελευταίου είναι x(, 0, ), x Άρα τα ιδιοδιανύσματα που αντιστοιχούν στη είναι τα x(,0, ), x {0} Ιδιοδιανύσματα που αντιστοιχούν στην ιδιοτιμή : ()

7 Ασκήσεις 4 x y 0 x y 0 Για, το σύστημα () γίνεται x y z 0 που ισοδυναμεί με το Οι λύσεις x y z 0 x y 0 αυτού είναι x(,, ), x Άρα τα ζητούμενα ιδιοδιανύσματα είναι τα x(,, ), x {0} Ιδιοδιανύσματα που αντιστοιχούν στην ιδιοτιμή : x y 0 x y 0 Για, το σύστημα () γίνεται x z 0 που ισοδυναμεί με το Οι λύσεις αυτού x z 0 x y z 0 είναι x(,, ), x Άρα τα ζητούμενα ιδιοδιανύσματα είναι τα x(,, ), x {0} c Για (, ) f ( x, y) xf ( e ) yf ( e ) xe ye ( y, x) Έστω Τότε x y έχουμε x y 0 f ( x, y) ( x, y) Ζητάμε μη μηδενικές λύσεις του συστήματος ως προς x, y Έχουμε x y 0 det ( ) i) Έστω Τότε ( ) 0 για κάθε και άρα το παραπάνω σύστημα έχει μόνο τη μηδενική λύση Άρα δεν υπάρχουν ιδιοτιμές και ιδιοδιανύσματα της f ii) Έστω Τότε το σύστημα έχει μη μηδενική λύση αν και μόνο αν ( ) 0, δηλαδή αν και x y 0 μόνο αν i, i Άρα οι ιδιοτιμές είναι οι i, i Λύνοντας το σύστημα για τις τιμές x y 0 αυτές βρίσκουμε αντίστοιχα τα ιδιοδιανύσματα x( i,), x {0} και x( i,), x {0} Γεωμετρική ερμηνεία του i) Η f παριστάνει στροφή κατά 90 ο στη φορά της κίνησης των δεικτών του ρολογιού Άρα δεν υπάρχει ευθεία U που διέρχεται από το (0,0) τέτοια ώστε f ( U ) U Συνεπώς η f δεν έχει ιδιοδιάνυσμα U f(u) Η ευθεία U δεν απεικονίζεται στον εαυτό της Λύση a Έχουμε Επειδή, το είναι ένα ιδιοδιάνυσμα του Έχουμε 0 0

8 Ασκήσεις det( 6 I4) det 0, γιατί στον τελευταίο πίνακα δυο γραμμές είναι ίσες Άρα το 6 είναι μια ιδιοτιμή του Α b Έχουμε x ( x) det( xi) det 0 x 4 0 x x 4 ( x)det ( x ) ( x ) x και άρα οι ιδιοτιμές είναι, Ιδιoδιανύσματα που αντιστοιχούν στην ιδιοτιμή : Έχουμε x 0 x x 0 ( I) X x 0 4x 4x 0 0 x 0 x x 0 και το τελευταίο σύστημα ισοδυναμεί με το x x 0 που έχει λύσεις τις x 0 x x 0 x, x, x x 0 x 0 Άρα τα αντίστοιχα ιδιοδιανύσματα είναι τα x x 0 x, x, x, όπου τουλάχιστον ένα από x 0 τα x, x δεν είναι 0 Ιδιοδιανύσματα που αντιστοιχούν στην ιδιοτιμή : x 0 x x x 0 ( I) X x 0 x 4x 0 0 x 0 x 4x 0 x x x 0 x x 0 Οι λύσεις του τελευταίου συστήματος είναι x x x, x x x Άρα τα ιδιοδιανύσματα που αντιστοιχούν στην ιδιοτιμή είναι τα x x, x {0} x Λύση: Έστω ότι υπάρχει μια ιδιοτιμή λ της f με αντίστοιχο ιδιοδιάνυσμα v Τότε f ( v) v, v 0 Επομένως a f v f f v f v f v v ( ) ( ( )) ( ) ( ) Οι πιθανές ιδιοτιμές έχουν ως εξής f f ( v) v v v Αφού v 0, έχουμε V, οπότε

9 Ασκήσεις 6 b f f f ( v) f ( v) v v v Αφού v 0, έχουμε, οπότε 0, c 0 ( ) 0 0 Αφού v 0, παίρνουμε 0 f f v v 4 Λύση a Όχι, γιατί ο σταθερός όρος του χαρακτηριστικού πολυωνύμου του είναι 0 (βλ Πρόταση 5 ) b Έχουμε ( x ) x ( x )( x ) και άρα οι ιδιοτιμές του είναι 0,, Αφού το δεν είναι ιδιοτιμή του, έχουμε det( I) 0 Όμοια det( 4 I) 0 Άρα det(( I )( 4 I )) det( I )det( 4 I )) 0 και ο ( I)( 4 I) είναι αντιστρέψιμος c Έχουμε det( 5 I ) det(( 5 I )( I )) det( 5 I ) det( I ) (5) ( ) 600 d Επειδή 0,, είναι ιδιοτιμές του, οι 0,, είναι ιδιοτιμές του (Παράδειγμα 0 ) και επειδή ο είναι πίνακας αυτές είναι όλες οι ιδιοτιμές του Άρα ( x) x( x )( x 4) k k k k e Υπόδειξη: Θεωρήστε ίχνη στη σχέση B B για να λάβετε 0 0, που είναι άτοπο k f Όπως στο d βλέπουμε ότι οι ιδιοτιμές του είναι οι 0,, k και επομένως το δεν είναι ιδιοτιμή του k Όμως το είναι ιδιοτιμή του t 5 Λύση: Από τη σχέση ( B) B έπεται ότι οι B, B είναι όμοιοι και άρα έχουν το ίδιο χαρακτηριστικό πολυώνυμο (βλ Πρόταση 8) 6 Λύση: Ξέρουμε ότι 0 det (Πρόταση 5) Επειδή ο είναι αντιστρέψιμος έχουμε det 0 Εργαζόμενοι με ρητές συναρτήσεις και χρησιμοποιώντας ιδιότητες οριζουσών έχουμε ( x) det xi det xi det I x det ( ) det x I det ( ) x det I 0 ( ) 0 x ( ) x x ( ) 0 x ( ) 0 x x x ( ) ( ) x x x 7 a Βλ Παράδειγμα 0 b Λύση: Λόγω της δεύτερης στήλης του Α (που είναι της μορφής E ), μια ιδιοτιμή αυτού είναι το και ένα αντίστοιχο ιδιοδιάνυσμα είναι το 0 X E Από το a έπεται ότι μια ιδιοτιμή του B είναι το ( ) ( ) και ένα αντίστοιχο ιδιοδιάνυσμα είναι το X c Λύση: Είναι σαφές ότι ισχύει το ζητούμενο αν το ( x) c είναι σταθερό πολυώνυμο, γιατί τότε ( ) ci και κάθε ιδιοτιμή του ci είναι ίση με το c Ξέρουμε ότι ο έχει τουλάχιστον μια ιδιοτιμή Αν i είναι οποιαδήποτε ιδιοτιμή του, τότε ( i ) Οι παραπομπές της μορφής Θεώρημα, αναφέρονται στο Μέρος ΙΙ του βιβλίου Μια Εισαγωγή στη Γραμμική Άλγεβρα, Δ Βάρσος, Δ Δεριζιώτης, Ι Εμμανουήλ, Μ Μαλιάκας, Α Μελάς, Ο Ταλέλλη, Εκδόσεις Σοφία, 0, ISBN:

10 Ασκήσεις 7 Μπορούμε λοιπόν να υποθέσουμε ότι deg ( x) Έστω μια ιδιοτιμή του ( ) με αντίστοιχο ιδιοδιάνυσμα X Από το Θεμελιώδες Θεώρημα της Άλγεβρας (βλ Θεώρημα 5) υπάρχουν c,,, k, c 0, τέτοια ώστε ( x) c( x )( x ) Άρα έχουμε ( ) I c( I )( k I ) και από ( ( ) I ) X 0 παίρνουμε c( I )( I ) X 0 Επειδή X 0 και c 0, συμπεραίνουμε ότι κάποιος πίνακας i I έχει ορίζουσα ίση με 0 Άρα το i είναι ιδιοτιμή του Έχουμε ( i ) Σημείωση: Βλ Θεώρημα 6 για ένα ισχυρότερο αποτέλεσμα a 8 a Λύση Έστω Έχουμε f (,) (,) Παρατηρούμε ότι το τελευταίο σύστημα έχει λύση ως προς αν και μόνο αν a bαπάντηση Υπάρχει μοναδική ιδιοτιμή 4 και το σύνολο των ιδιοδιανυσμάτων είναι {( x,0,0) x 0} Οι ιδιοτιμές είναι 4, i, i με αντίστοιχα σύνολα ιδιοδιανυσμάτων τα { x(,0,0) x 0},{ x(0, i,) x 0}, k { x(0, i,) x 0} k 9 Λύση a Εύκολα επαληθεύεται ότι τα σύνολο { v, v, v } είναι βάση του [ x] (πώς;) όπου v x x, v x, v Επειδή f ( v ) x x v 0v 0 v, f ( v ) x ( x ) 0v v v, f ( v) x ( x ) 0v v v, ο πίνακας της f ως προς την προηγούμενη διατεταγμένη βάση είναι To χαρακτηριστικό πολυώνυμο του είναι x 0 0 det 0 x ( x)(( x) ) ( x)( x)( x) 0 x και επομένως οι ιδιοτιμές της f είναι οι,, Ενδεικτικά υπολογίζουμε τα ιδιοδιανύσματα που αντιστοιχούν στην ιδιοτιμή Είναι βολικό να χρησιμοποιήσουμε την παραπάνω βάση για παραστάσεις πολυωνύμων Έστω λοιπόν ( x) av bv cv [ x] με f ( ( x)) ( x) Έχουμε f ( ( x)) f ( av bv cv ) af ( v ) bf ( v ) cf ( v ) a( v ) b( v v ) c( v v ) ( a) v ( b c) v ( b c) v Άρα από την ισότητα f ( ( x)) ( x) παίρνουμε a a b c b b c c

11 Ασκήσεις 8 και επομένως a 0, b c υτό σημαίνει ότι τα ιδιοδιανύσματα της f που αντιστοιχούν στην ιδιοτιμή είναι τα bv bv b( x ) b bx b, b {0} και μια βάση του ιδιόχωρου V f () είναι το { v v}, Με παρόμοιο τρόπο αποδεικνύεται ότι τα ιδιοδιανύσματα που αντιστοιχουν στην ιδιοτιμή είναι τα av, b {0}, και μια βάση του ιδιόχωρου V f () είναι το { v }, και τα ιδιοδιανύματα που αντιστοιχούν στην ιδιοτιμή είναι τα bv, {0}, bv b και μια βάση του ιδιόχωρου V f () είναι το { v v} b Επειδή το 0 δεν είναι ιδιοτιμή της f, η f είναι ισομορφισμός c Επειδή οι,, είναι ιδιοτιμες της f, καθεμιά από τις (), (), () είναι ιδιοτιμή της ( f ) Για ( x) x 6x 4, το () 0 είναι ιδιοτιμή της f 6 f 4 V Άρα η f 6 f 4 V δεν είναι ισομορφισμός d Ξέρουμε ότι κάθε ιδιοδιάνυσμα της f είναι ιδιοδιάνυσμα της ( f ), για κάθε ( x) [ x] Συνεπώς κάθε δύο γραμμικά ανεξάρτητα ιδιοδιανύσματα της f παραμένουν γραμμικά ανεξάρτητα 4 ιδιοδιανύσματα της f 6 f 4 V Μια επιλογή τέτοιων είναι, για παράδειγμα, τα v v, v όπως είδαμε στο υποερώτημα a Ότι αυτά είναι γραμμικά ανεξάρτητα έπεται από το ότι αντιστοιχούν σε διαφορετικές ιδιοτιμές της f Φυσικά και με άμεσο υπολογισμό επαληθεύεται ότι είναι γραμμικά ανεξάρτητα 0 a Οι ιδιοτιμές είναι 0, με αντίστοιχα σύνολα ιδιοδιανυσμάτων τα { ax bx c [ x] a b c 0, ( a, b, c) (0,0,0)}, { bx [ x] b 0} b Υπάρχει μοναδική ιδιοτιμή, το 0, και το σύνολο των αντίστοιχων ιδιοδιανυσμάτων είναι { ax bx c [ x] a b 0, c 0} a Λύση: Αρκεί να δειχτεί ότι το είναι ιδιοτιμή του Παρατηρούμε ότι το είναι ιδιοτιμή του καθότι από τον πολλαπλασιασμό πινάκων έχουμε a i i t a i i Από την Πρόταση έπεται ότι το είναι ιδιοτιμή του b Υπόδειξη: Χρησιμοποιώντας την προηγούμενη σχέση, δείξτε ότι Υπόδειξη: a Χρησιμοποιείστε επαγωγή και το ανάπτυγμα ορίζουσας του det( xi ) b a a 0 a a 0 0 Υπόδειξη: Ένας τρόπος λύσης είναι να παρατηρήσουμε ότι ο πίνακας της άσκησης είναι ο ανάστροφος ενός πίνακα της προηγούμενης άσκησης και να εφαρμόσουμε την Πρόταση Απάντηση: ( ) ( x ) 4 Υπόδειξη για το b: Με τρόπο όπως στο Παράδειγμα 0, αποδεικνύεται ότι ( f )( v) ( ) v, όπου v είναι ένα ιδιοδιάνυσμα της f που αντιστοιχεί στην ιδιοτιμή t 5 Λύση: a Έστω ότι au bv 0, ()

12 Ασκήσεις 9 όπου a, b Τότε επειδή η f είναι γραμμική έχουμε 0 f (0) f ( au bv) af ( u) bf ( b) au bv δηλαδή, au bv 0 () Από την () παίρνουμε au bv 0 οπότε αφαιρώντας τη () παίρνουμε b( ) v 0 Επειδή v 0 (το v είναι ιδιοδιάνυσμα), έχουμε b( ) 0 και επειδή παίρνουμε b 0 Τότε από την () έχουμε au 0, οπότε a 0 αφού u 0 b: Έστω ότι υπάρχουν a, b, με f ( au bv) ( au bv) Έχουμε f ( au bv) af ( u) bf ( v) au bv και άρα au bv au bv Από το προηγούμενο ερώτημα τα u, v είναι γραμμικά ανεξάρτητα και επομένως παίρνουμε a a, b b Αν ήταν a 0 και b 0, τότε θα είχαμε, άτοπο από την υπόθεση Δείξαμε ότι δεν υπάρχει στοιχείο της μορφής au bv, όπου a, b {0}, που είναι ιδιοδιάνυσμα της f B 6 Υπόδειξη : Ο D είναι της μορφής D, όπου, B, 0 C ( x) ( x) ( x) (βλ Πρόταση 4) Με πράξεις βρίσκουμε D C ( x) x x 4, C ( x) ( x )( x 5 x) C και ξέρουμε ότι 7 Υπόδειξη: Ξέρουμε ότι ο σταθερός όρος του ( x ) είναι το γινόμενο των ιδιοτιμών του (Πρόταση 5 και Πρόταση 6) 8 Υπόδειξη για το b: Στη λύση της άσκησης 6 είδαμε ότι ( ) ( ) (det ) ( ) x Δείξτε ότι από την προηγούμενη σχέση έπεται ότι αν ( x ) ( x )( x ), i, τότε ( x) ( x)( x) Άρα αν,, είναι οι ιδιοτιμές του, τότε,, είναι πάλι οι n ιδιοτιμές του (με ενδεχομένως άλλη σειρά) Χρησιμοποιήστε την εξής παρατήρηση: Αν X είναι ένα πεπερασμένο σύνολο με περιττό πλήθος στοιχείων και f : X X μια απεικόνιση τέτοια ώστε f X, τότε υπάρχει x X με f ( x) x 9 Βλ Παράδειγμα μετά το Πόρισμα 7 x x 0 0 Απάντηση: Όχι γενικά Για παράδειγμα, οι πίνακες, είναι όμοιοι, το 0 0 ιδιοδιάνυσμα του πρώτου και όχι του δεύτερου (Αποδείξτε τους ισχυρισμούς αυτούς) είναι Λύση: Επειδή ο είναι όμοιος με τον έχουμε det det( ) Αλλά det( ) ( ) det, οπότε det ( ) det Επειδή det 0, έχουμε ( ), δηλαδή ο είναι άρτιος, Επειδή ο είναι όμοιος με τον έχουμε ( x) ( x) σύμφωνα με την Πρόταση 8, δηλαδή ( x ) det( xi ) Αλλά

13 Ασκήσεις 0 det( xi ) det( ( xi )) ( ) det( xi ) det( xi ) ( x) Άρα ( x) ( x) Από την τελευταία σχέση έπεται ότι αν ( x ) x a x a x a 0, τότε ai 0 για κάθε περιττό i Άρα υπάρχει μονικό πολυώνυμο ( x) [ x] βαθμού, τέτοιο ώστε ( x ) ( x ) Από το Θεμελιώδες Θεώρημα της Άλγεβρας υπάρχουν,,, τέτοια ώστε ( x) ( x )( x ) Επίσης υπάρχουν,, τέτοια ώστε ( x ) ( x ) ( x )( x ) Σημείωση: Μια άλλη λύση θα δούμε στις Ασκήσεις4,, Άρα Απάντηση: Οι ιδιόχωροι είναι οι () t t V, V ( ), δηλαδή το σύνολο των συμμετρικών πινάκων και το σύνολο των αντισυμμετρικών πινάκων αντίστοιχα Υπόδειξη: Οι συνεπαγωγές a b, b c είναι άμεσες Για τη c a, έστω ότι ( x) B ( x) Τότε οι, B έχουν τις ίδιες ιδιοτιμές Οι ιδιοτιμές του είναι οι a, a,, a και οι ιδιοτιμές του B είναι οι b, b,, γιατί οι, B είναι διαγώνιοι πίνακες Άρα υπάρχει μετάθεση S τέτοια ώστε b για κάθε i,, i b a ( i) O πίνακας είναι ο πίνακας της γραμμικής απεικόνισης f : f ( e ) a e, i,,, i i i όπου { e, e,, e } είναι μια διατεταγμένη βάση του Έχουμε ( i) ( i) ( i) i ( i) f ( e ) a e b e Άρα ο πίνακας B είναι ο πίνακας της ίδιας γραμμικής απεικόνισης f : διατεταγμένη βάση { e, e, e } του Συνεπώς οι, B είναι όμοιοι a b 4 Απάντηση για το b: c a, όπου () (), ( ) a bc που ορίζεται από ως προς τη 5 Υπόδειξη: Το ( x ) μπορεί να υπολογιστεί με στοιχειώδεις μετασχηματισμούς γραμμών και στηλών του πίνακα xi (Για παράδειγμα, ξεκινήστε προσθέτοντας στην πρώτη στήλη του xi κάθε άλλη στήλη Στη συνέχεια μετατρέψτε τον πίνακα σε άνω τριγωνικό αφαιρώντας την πρώτη γραμμή από κάθε άλλη γραμμή) Απάντηση: Το χαρακτηριαστικό πολυώνυμο είναι ( x ) ( ) ( x a ( ) b )( x a b ), οι ιδιοτιμές είναι a ( ) b (με πολλαπλότητα ) και a b (με πολλαπλότητα ), και οι ιδιόχωροι είναι V ( ) E E και

14 Ασκήσεις V ( ) E E, E E,, E E, όπου E,, E είναι η συνήθης βάση του 6 Υπόδειξη: Πρώτα εφαρμόστε στον xi την ακολουθία στοιχειωδών πράξεων γραμμών,,, και δείξτε αναπτύσσοντας την ορίζουσα του προκύπτοντος πίνακα ότι det( xi ) ( x a)det( xi ) ( ) a( x b), Στη συνέχεια, εργαζόμενοι με στήλες δείξτε ότι det( xi ) ( x b)det( xi ) ( ) b( x a), Από τις δυο σχέσεις προκύπτει το ζητούμενο Σημείωση: Η δεύτερη σχέση προκύπτει άμεσα εφαρμόζοντας την πρώτη σχέση στον ανάστροφο του xi 7 Υπόδειξη: Δείξτε την εξής ισότητα ( ) ( ) πινάκων B xi I 0 I 0 xi 0 xi B I B I 0 B xi 8 Λύση a ος τρόπος Έστω και B b b a Τότε από τον πολλαπλασιασμό πινάκων έχουμε C B και ο B είναι ο πίνακας ( Tr( C)) ( a b a b ) Από την προηγούμενη άσκηση παίρνουμε x ( ) ( ) x ( x) B B B( ) ( ) x B( x) ( ) x ( x Tr( C)) ( ) x ( x Tr( C)), δηλαδή ( x ) ( ) x C ( x Tr ( C )) Άρα: Αν Tr( C) 0, τότε υπάρχει μοναδική ιδιοτιμή, το 0 (με πολλαπλότητα ) Αν Tr( C) 0, τότε οι ιδιοτιμές είναι 0 (με πολλαπλότητα ) και Tr( C) ab a b (με πολλαπλότητα ) a ος τρόπος Έστω και B b b a Τότε από τον πολλαπλασιασμό πινάκων έχουμε C B και ο B είναι ο πίνακας ( Tr( C)) ( a b a b ) Επίσης C ( B) B ( TrC) C Θεωρούμε ότι C Από C ( TrC) C έπεται ότι αν είναι μια ιδιοτιμή του C, τότε 0 ή TrC Επειδή το άθροισμα των ιδιοτιμών του C είναι ίσο με TrC (Πρόταση 7), συμπεραίνουμε ότι οι ιδιοτιμές του C είναι οι 0,,0,TrC Άρα ( x ) ( ) x C ( x Tr ( C )) Σημείωση: Ένας άλλος τρόπος απόδειξης του ( x ) ( ) x C ( x Tr ( C )) προκύπτει με βάση την άσκηση 6 ii) του βιβλίου 9 Λύση: Έστω ο δοσμένος πίνακας Αναπτύσσοντας την ορίζουσα του

15 Ασκήσεις x x 0 xi 0 x x ως προς την πρώτη γραμμή έχουμε x 0 0 x det( xi ) x det ( ) det x 0 0 x 0 0 x 0 0 Αναπτύσσουμε τις δυο ορίζουσες στο δεξιό μέλος ως προς την τελευταία γραμμή και έχουμε det( xi ) x det( xi ) det( xi ) ( ) ( ) ( ) ( ) Με βάση την προηγούμενη σχέση, μια εύκολη επαγωγή στο δίνει det( xi ) ( x ) ( x ) για κάθε, δηλαδή ( x) ( x) ( x ) Άρα οι ιδιοτιμές είναι, και η καθεμιά έχει πολλαπλότητα Λύνοντας το σύστημα ( I ) X 0 για βλέπουμε ότι ο αντίστοιχος ιδιόχωρος παράγεται από το σύνολο E E, E E,, E E, όπου E,, E είναι η συνήθης βάση του Όμοια, για βλέπουμε ότι ο αντίστοιχος ιδιόχωρος παράγεται από το E E, E E,, E E Αν τότε a ( E E ) a( E E ) a ( E E ) 0, ai, a E a E a E a E a E a E 0 και επειδή τα E,, E είναι γραμμικά ανεξάρτητα παίρνουμε a a a 0 Δηλαδή το E E, E E,, E E είναι γραμμικά ανεξάρτητο Επομένως είναι μια βάση του ιδιόχωρου που αντιστοιχεί στο Όμοια, το σύνολο E E, E E,, E E είναι μια βάση του ιδόχωρου που αντιστοιχεί στο Άρα καθένας από τους ιδιόχωρους έχει διάσταση Σημείωση: Μπορεί να δοθεί άλλη λύση που βασίζεται στην παρατήρηση ότι I (άσκηση) 0 Λύση a v V ( ) V ( ) f ( v) v v ( ) v 0 v 0 καθώς b Έστω x u v, u V ( ), v V ( ) Έστω ότι το x είναι ένα ιδιοδιάνυσμα της f, δηλαδή x 0 V και f ( x) x για κάποιο Επειδή f ( x) f ( u v) f ( u) f ( v) u v έχουμε x u v u v u v ( ) u ( ) v V ( ) V ( ) οπότε από το προηγούμενο υποερώτημα παίρνουμε ( ) u ( ) v 0 V Αν ήταν u 0 V και v 0 V, τότε θα είχαμε 0, άτοπο Άρα u 0 V ή v, οπότε αντίστοιχα ισχύει x v V ( ) ή x u V ( ) 0 V

16 Ασκήσεις a Λύση: Με στοιχειώδεις πράξεις γραμμών στον πίνακα C xi (αφαιρούμε τις γραμμές,,,v από τις γραμμές v, v,, v αντίστοιχα) έχουμε xi B xi B det( C xi ) det det B xi B ( xi ) xi B xi B det B xi B xi Με στοιχειώδεις πράξεις στηλών στον τελευταίο πίνακα (προσθέτουμε στις στήλες,,,v τις στήλες v, v,, v αντίστοιχα) έχουμε xi B xi B B det det B xi B xi B xi ( B xi ) B xi B xi B det det( B xi )det( B xi ) 0 B xi ( x) ( x) B B b Υπόδειξη: Τροποποιήστε κατάλληλα την απόδειξη του a c Προκύπτει άμεσα από το a για B Υπόδειξη: Από την Πρόταση 8 έχουμε ( x) ( x) Απάντηση: a b 0 Απάντηση: ( x) x f 4 Απάντηση a Λ Παράδειγμα: Το είναι ιδιοτιμή του, το είναι ιδιοτιμή του, αλλά το δεν είναι ιδιοτιμή του b Λ Παράδειγμα: Το είναι ιδιοτιμή του, το είναι ιδιοτιμή του, αλλά το δεν είναι ιδιοτιμή του c Λ Παράδειγμα: Ο δεν έχει ιδιοτιμή (στο ) αφού το χαρακτηριστικό 0 πολυώνυμό του είναι το x d Σ Πράγματι, το χαρακτηριστικό πολυώνυμο του είναι περιττού βαθμού και έχει πραγματικούς συντελεστές Από την Πρόταση 8 έχει τουλάχιστον μια πραγματική ρίζα e Σ Έπεται από το Παράδειγμα 0 για και ( x) x Έχουμε () f Λ Παράδειγμα: 0 0 B

17 Ασκήσεις 4 0 g Λ Παράδειγμα: I και 0 B Τότε ( x) B ( x) ( x ), αλλά οι 0, B δεν είναι όμοιοι γιατί αν υπήρχε αντιστρέψιμος P με B P P, τότε B P IP I, άτοπο h Σ Απόδειξη: Από την υπόθεση υπάρχει αντιστρέψιμος P με B P P Με μια άμεση επαγωγή αποδεικνύεται ότι k k B P P για κάθε θετικό ακέραιο k (πως;) Έστω ότι ( x) a n nx ax a0 Τότε n n ( B) a B a B a I a P P a P P a P P n n n 0 0 n 0 P ( a a a I ) P P ( ) P, δηλαδή ( B) P ( ) P και άρα οι ( ), ( B) είναι όμοιοι i Λ Πράγματι, το πολυώνυμο ( x ) έχει βαθμό και άρα δεν μπορεί να έχει περισσότερες από ρίζες στο j Σ Πράγματι, έχουμε v 0 και f ( v) 0 0v k Λ Έστω ότι υπάρχουν f και με τις δοσμένες ιδιότητες Από f (,0,0) (,0,0) έχουμε ότι το είναι μια ιδιοτιμή της f και άρα είναι μια ιδιοτιμή του ( f :, ) σύμφωνα με την Πρόταση 6 Αλλά το δεν είναι ρίζα του ( x ) ( x )( x 5) l Σ Αφού το είναι ιδιοτιμή του, το ( ) είναι ιδιοτιμή του Άρα υπάρχει μη μηδενικό X με X X

Γραμμική Άλγεβρα II Εαρινό εξάμηνο

Γραμμική Άλγεβρα II Εαρινό εξάμηνο Γραμμική Άλγεβρα II Εαρινό εξάμηνο 0-0 Υποδείξεις/Απαντήσεις των Ασκήσεων Περιεχόμενα Ασκήσεις Πολυώνυμα Ασκήσεις Ιδιοτιμές-Ιδιοδιανύσματα 6 Ασκήσεις Διαγωνίσιμες γραμμικές απεικονίσεις 9 Ασκήσεις4 Τριγωνίσιμες

Διαβάστε περισσότερα

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις Ασκήσεις 5 Βασικά σημεία Ιδιότητες ιδιόχωρων: Έστω,, Ισχύουν τα εξής Ασκήσεις Διαγωνίσιμες Γραμμικές Απεικονίσεις κάποιες διακεκριμένες ιδιοτιμές της γραμμικής απεικόνισης : V V, όπου o Αν v v 0, όπου

Διαβάστε περισσότερα

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0.

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0. Ασκήσεις4 46 Ασκήσεις 4 Τριγωνίσιμες γραμμικές απεικονίσεις, Θεώρημα των Cayley-Hamilton Βασικά σημεία Ορισμός τριγωνίσιμου πίνακα, ορισμός τριγωνίσιμης γραμμικής απεικόνισης Κριτήριο τριγωνισιμότητας

Διαβάστε περισσότερα

Ασκήσεις6 Διαγωνοποίηση Ερμιτιανών Πινάκων

Ασκήσεις6 Διαγωνοποίηση Ερμιτιανών Πινάκων 7 Βασικά σημεία Ασκήσεις6 Διαγωνοποίηση Ερμιτιανών Πινάκων Το σύνηθες εσωτερικό γινόμενο στο και Ορθοκανονικές βάσεις και η μέθοδος Gram-Schmidt Ορισμός, Ερμιτιανού πίνακα και μοναδιαίου πίνακα Ιδιότητες

Διαβάστε περισσότερα

Γραμμική Άλγεβρα ΙΙ Εξέταση Σεπτεμβρίου Όνομα συνοπτικές ενδεικτικές λύσεις

Γραμμική Άλγεβρα ΙΙ Εξέταση Σεπτεμβρίου Όνομα συνοπτικές ενδεικτικές λύσεις Γραμμική Άλγεβρα ΙΙ Εξέταση Σεπτεμβρίου 009 Όνομα συνοπτικές ενδεικτικές λύσεις ΑΜ Ημ/ία Αίθουσα 1 Σύνολο Η εξέταση αποτελείται από θέματα. Κάθε θέμα αξίζει 4 μονάδες. Το άριστα είναι μονάδες και η βάση

Διαβάστε περισσότερα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα Σελίδα από 58 Κεφάλαιο 9 Ιδιοτιμές και Ιδιοδιανύσματα 9. Ορισμοί... 9. Ιδιότητες... 9. Θεώρημα Cayley-Hamlto...9 9.. Εφαρμογές του Θεωρήματος Cayley-Hamlto... 9.4 Ελάχιστο Πολυώνυμο...40 Ασκήσεις του Κεφαλαίου

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 2 η Ημερομηνία Αποστολής στον Φοιτητή: 28 Νοεμβρίου 2011

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 2 η Ημερομηνία Αποστολής στον Φοιτητή: 28 Νοεμβρίου 2011 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 8 Νοεμβρίου 0 Ημερομηνία παράδοσης της Εργασίας: 6 Ιανουαρίου 0 Οι ασκήσεις

Διαβάστε περισσότερα

Βασική Άλγεβρα. Ασκήσεις (εκδοχή )

Βασική Άλγεβρα. Ασκήσεις (εκδοχή ) Βασική Άλγεβρα Ασκήσεις 05-6 (εκδοχή 8--05) Βασική Άλγεβρα Ασκήσεις Υποδείξεις/Απαντήσεις Περιεχόμενα σελίδα Ασκήσεις Διαιρετότητα στους ακέραιους, ισοτιμίες Ασκήσεις Ακέραιοι odulo, Θεώρημα του Euler

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 0 Οκτωβρίου 008 Ημερομηνία παράδοσης της Εργασίας: Νοεμβρίου 008 Πριν

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος 6/6/06 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 0 Δίνεται ο πίνακας A =. Nα υπολογίσετε την βαθμίδα του και να βρείτε τη διάσταση και από μία βάση α) του μηδενοχώρου

Διαβάστε περισσότερα

Δακτύλιοι και Πρότυπα Ασκήσεις 6. Η ύλη των ασκήσεων αυτών είναι η Ενότητα6, Εφαρμογές Θεωρημάτων Δομής στη Γραμμική Αλγεβρα.

Δακτύλιοι και Πρότυπα Ασκήσεις 6. Η ύλη των ασκήσεων αυτών είναι η Ενότητα6, Εφαρμογές Θεωρημάτων Δομής στη Γραμμική Αλγεβρα. Δακτύλιοι και Πρότυπα 0-7 Ασκήσεις Η ύλη των ασκήσεων αυτών είναι η Ενότητα, Εφαρμογές Θεωρημάτων Δομής στη Γραμμική Αλγεβρα Βρείτε τη ρητή κανονική μορφή και μια κανονική μορφή Jorda του M( ) 0 0 Έστω

Διαβάστε περισσότερα

2 3x 5x x

2 3x 5x x ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕ ΚΑΤΕΥΘΥΝΣΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΑΣΚΗΣΕΙΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Ι ΙΩΑΝΝΗΣ Σ ΣΤΑΜΑΤΙΟΥ ΣΑΜΟΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασμένων Ομάδων Ι

ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασμένων Ομάδων Ι ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασμένων Ομάδων Ι Χρησιμοποιώντας το θεώρημα του Weddebu για ημιαπλούς δακτυλίους, αναπτύσσουμε εδώ τις πρώτες προτάσεις από τη θεωρία των αναπαραστάσεων και αρακτήρων πεπερασμένων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάμε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων Αυτές συνδέονται μεταξύ τους με την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

Δακτύλιοι και Πρότυπα Ασκήσεις 3. Στις παρακάτω ασκήσεις κάθε δακτύλιος είναι μη τετριμμένος μεταθετικός δακτύλιος. N ( a)

Δακτύλιοι και Πρότυπα Ασκήσεις 3. Στις παρακάτω ασκήσεις κάθε δακτύλιος είναι μη τετριμμένος μεταθετικός δακτύλιος. N ( a) 11 Δακτύλιοι και Πρότυπα 2016-17 Ασκήσεις 3 Η ύλη των ασκήσεων αυτών είναι η Ενότητα3, Ελεύθερα πρότυπα Στις παρακάτω ασκήσεις κάθε δακτύλιος είναι μη τετριμμένος μεταθετικός δακτύλιος 1 Δείξτε ότι το

Διαβάστε περισσότερα

8.1 Διαγωνοποίηση πίνακα

8.1 Διαγωνοποίηση πίνακα Κεφάλαιο 8 Κανονικές μορφές από 6 Κεφάλαιο 8 Κ Α Ν Ο Ν Ι Κ Ε Σ Μ Ο Ρ Φ Ε Σ 8. Διαγωνοποίηση πίνακα Ορισμός 8.α Ένας πίνακας M n ( ) oνομάζεται διαγωνοποιήσιμος στο αν υπάρχει αντιστρέψιμος πίνακας P M

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: Οκτωβρίου 005) Η Άσκηση στην εργασία αυτή είναι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Burnside

ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Burnside ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Bursde a b Θα αποδείξουμε εδώ ότι κάθε ομάδα τάξης pq ( p, q πρώτοι) είναι επιλύσιμη Το θεώρημα αυτό αποδείχτηκε από τον Bursde το 904 ο οποίος χρησιμοποίησε τη νέα

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10 Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 0 Επαναληπτικες Ασκησεις ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθοι Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laiihtml

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 00 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ9) Ηράκλειο, 7 Ιανουαρίου 00 Θέμα. (μονάδες.5) α) [μονάδες:.0]. Υπολογίστε

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανυσματικοί Χώροι Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Διανυσματικός Χώρος επί του F Αλγεβρική δομή που αποτελείται

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-9) ΜΕΡΟΣ 7: ΙΔΙΟΤΙΜΕΣ & ΙΔΙΟΔΙΑΝΥΣΜΑΤΑ ΔΙΑΓΩΝΙΟΠΟΙΗΣΗ ΠΙΝΑΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΑΠΟ ΤΙΣ ΠΑΡΑΔΟΣΕΙΣ

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

1 ιαδικασία διαγωνιοποίησης

1 ιαδικασία διαγωνιοποίησης ιαδικασία διαγωνιοποίησης Εστω V ένας R-διανυσματικός χώρος (ή έναςc-διανυσματικός χώρος) διάστασης n. Είναι γνωστό ότι κάθε διάνυσμα (,,..., n ) του χώρου V μπορεί να παρασταθεί και σαν πίνακας στήλη

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ Α ΕΡΓΑΣΙΑΣ. ( 8 µον.) Η άσκηση αυτή αναφέρεται σε διαιρετότητα και ρίζες πολυωνύµων. a. Να λυθεί η εξίσωση

Διαβάστε περισσότερα

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο.

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο. Κεφάλαιο Πρότυπα Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο Ορισμοί και Παραδείγματα Παραδοχές Στo βιβλίο αυτό θα κάνουμε τις εξής παραδοχές Χρησιμοποιούμε προσθετικό συμβολισμό

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ 7 ης ΕΒΔΟΜΑΔΑΣ

ΑΣΚΗΣΕΙΣ 7 ης ΕΒΔΟΜΑΔΑΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Ακαδηµαϊκό έτος 5-6 ΜΑΘΗΜΑ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Καθηγητής: Σ Πνευµατικός ΑΣΚΗΣΕΙΣ 7 ης ΕΒΔΟΜΑΔΑΣ ΟΙ ΚΑΝΟΝΙΚΕΣ ΜΟΡΦΕΣ JORDAN Θεωρούµε ένα n-διάστατο διανυσµατικό χώρο E στο σώµα Κ = ή και

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανυσματικοί Χώροι Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Διανυσματικός Χώρος επί του F Αλγεβρική δομή που αποτελείται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι ΚΕΦΑΛΑΙΟ : Ημιαπλοί Δακτύλιοι Είδαμε στο κύριο θεώρημα του προηγούμενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισμα απλών προτύπων Εδώ θα χαρακτηρίσουμε όλους

Διαβάστε περισσότερα

Μία απεικόνιση από ένα διανυσματικό χώρο V στον εαυτό του, L : V V την ονομάζουμε γραμμικό τελεστή στο V (ή ενδομορφισμό του V ). Ορισμός. L : V V γρα

Μία απεικόνιση από ένα διανυσματικό χώρο V στον εαυτό του, L : V V την ονομάζουμε γραμμικό τελεστή στο V (ή ενδομορφισμό του V ). Ορισμός. L : V V γρα Γραμμική Άλγεβρα ΙΙ Διάλεξη 15 Αναλλοίωτοι Υπόχωροι, Ιδιόχωροι Χρήστος Κουρουνιώτης Πανεπιστήμιο Κρήτης 2/5/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 15 2/5/2014 1 / 12 Μία απεικόνιση από ένα διανυσματικό

Διαβάστε περισσότερα

= k. n! k! (n k)!, k=0

= k. n! k! (n k)!, k=0 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Συμπληρωματικές Ασκήσεις Χειμερινό Εξάμηνο 2015 Χρήστος Α Αθανασιάδης Συμβολίζουμε με O το μηδενικό πίνακα καταλλήλων διαστάσεων, με I (ορισμένες φορές, με I n τον n n ταυτοτικό πίνακα,

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι

Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι Επιμέλεια: Ι. Λυχναρόπουλος. Δείξτε ότι ο V R εφοδιασμένος με τις ακόλουθες πράξεις (, a b) + (, d) ( a+, b+ d) και k ( ab, ) ( kakb,

Διαβάστε περισσότερα

Δακτύλιοι και Πρότυπα Ασκήσεις 2. όπου a (4 i) (1 2 i), b i. Στη συνέχεια βρείτε κάθε τέτοιο d. b. Δείξτε ότι [ i] (4 i)

Δακτύλιοι και Πρότυπα Ασκήσεις 2. όπου a (4 i) (1 2 i), b i. Στη συνέχεια βρείτε κάθε τέτοιο d. b. Δείξτε ότι [ i] (4 i) 6 Δακτύλιοι και Πρότυπα 016-17 Ασκήσεις Η ύλη των ασκήσεων αυτών είναι η Ενότητα, Περιοχές κυρίων ιδεωδών. 1. Θεωρούμε το δακτύλιο [ i]. a. Βρείτε ένα d [ i] με ( a, b) d, όπου a (4 i) (1 i), b 16 1 i.

Διαβάστε περισσότερα

Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ

Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Στο πρώτο μέρος αυτού του κεφαλαίου συνοψίζουμε όσα είναι απαραίτητα για την εύρεση ιδιοτιμών και ιδιοδιανυσμάτων ενός τετραγωνικού πίνακα Στο δεύτερο μέρος αναπτύσσονται

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)

Διαβάστε περισσότερα

Θεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή )

Θεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή ) Θεωρία Galos Πρόχειρες σημειώσεις 0- (εκδοχή -7-0) Περιεχόμενα 0 Υπενθυμίσεις και συμπληρώματα Ανάγωγα πολυώνυμα Ανάγωγα πολυώνυμα και σώματα Χαρακτηριστική σώματος Απλές ρίζες πολυωνύμων Ασκήσεις 0 Επεκτάσεις

Διαβάστε περισσότερα

ΧΑΡΑΚΤΗΡΙΣΤΙΚΟ ΠΟΛΥΩΝΥΜΟ ΠΙΝΑΚΑ: Έστω Α ένας n nπίνακας επί ενός σώματος F. Για χ στο F, ορίζεται το πολυώνυμο ( ως προς χ ) : h ( x) = det( A- xi ).

ΧΑΡΑΚΤΗΡΙΣΤΙΚΟ ΠΟΛΥΩΝΥΜΟ ΠΙΝΑΚΑ: Έστω Α ένας n nπίνακας επί ενός σώματος F. Για χ στο F, ορίζεται το πολυώνυμο ( ως προς χ ) : h ( x) = det( A- xi ). 1 ΧΑΡΑΚΤΗΡΙΣΤΙΚΟ ΠΟΛΥΩΝΥΜΟ ΠΙΝΑΚΑ: Έστω Α ένας n nπίνακας επί ενός σώματος F. Για χ στο F, ορίζεται το πολυώνυμο ( ως προς χ ) : h ( x) = det( A- xi ). A n Πόρισμα 1: Ο βαθμός του χαρ/κου πολυωνύμου ενός

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ Ονοματεπώνυμο:......... Α.Μ....... Ετος... ΑΙΘΟΥΣΑ:....... I. (περί τις 55μ. = ++5++. Σωστό ή Λάθος: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - //8 ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ (αʹ Αν AB = BA όπου A, B τετραγωνικά και

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z)

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z) ΚΕΦΑΛΑΙΟ 1: Πρότυπα Στο κεφάλαιο αυτό θα υπενθυμίσουμε τις βασικές έννοιες που αφορούν πρότυπα πάνω από ένα δακτύλιο Θα περιοριστούμε στα πλέον απαραίτητα για αυτά που ακολουθούν στα άλλα κεφάλαια Η κατευθυντήρια

Διαβάστε περισσότερα

{ } ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι 2 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ. Απαντήσεις. 1. (15 µονάδες)

{ } ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι 2 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ. Απαντήσεις. 1. (15 µονάδες) Σελίδα από 8 (5 µονάδες) ΠΛΗ : ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Απαντήσεις i Εξηγείστε γιατί κάθε ένα από τα παρακάτω υποσύνολα του R δεν είναι υπόχωρος του R {[ xyz,, ] T z } {[ xyz,,

Διαβάστε περισσότερα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παράδειγμα Να βρείτε τις ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα του πίνακα A 4. Επίσης να προσδιοριστούν οι ιδιοχώροι και οι γεωμετρικές πολλαπλότητες των ιδιοτιμών.

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 6 / ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ Γραμμικές απεικονίσεις, Αλλαγή βάσης, Ιδιοτιμές, Ιδιοδιανύσματα

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 6 / ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ Γραμμικές απεικονίσεις, Αλλαγή βάσης, Ιδιοτιμές, Ιδιοδιανύσματα ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 6 / 009-0 ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ Γραμμικές απεικονίσεις, Αλλαγή βάσης, Ιδιοτιμές, Ιδιοδιανύσματα Έστω η γραμμική απεικόνιση T : με (α) Βρείτε τον πίνακα της T, I Ως προς την κανονική βάση

Διαβάστε περισσότερα

Λύσεις και Υποδείξεις Επιλεγµένων Ασκήσεων

Λύσεις και Υποδείξεις Επιλεγµένων Ασκήσεων Λύσεις και Υποδείξεις Επιλεγµένων Ασκήσεων 11 1 i) ii) 1 1 1 0 1 1 0 0 0 x = 0 x +x 4 +x 5 = x = 1 Λύνοντας ως προς x και στη συνέχεια ως προς x 4, ϐρίσκουµε ότι η γενική λύση του συστήµατος είναι η 5άδα

Διαβάστε περισσότερα

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι)

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι) 77 78 7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7. ΕΙΣΑΓΩΓΗ Η Άλγεβρα των μητρών οι πινάκων είναι ιδιαίτερα χρήσιμη για την επίλυση συστημάτων καθώς επίσης στις επιστήμες της οικονομετρίας και της στατιστικής. ΟΡΙΣΜΟΣ: Μήτρα

Διαβάστε περισσότερα

Πορίσματα της Κανονικής Μορφής Smith (συμπλήρωμα για την Ενότητα 4)

Πορίσματα της Κανονικής Μορφής Smith (συμπλήρωμα για την Ενότητα 4) Πορίσματα της Κανονικής Μορφής Smh (συμπλήρωμα για την Ενότητα 4 Θα δείξουμε εδώ ότι από την κανονική μορφή Smh πινάκων πάνω από περιοχή κυρίων ιδεωδών R, έπονται τα εξής Το Θεώρημα Βάσεων Το Θεώρημα Ανάλυσης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobso Στο κεφάλαιο αυτό μελετάμε δακτυλίους του Art χρησιμοποιώντας το ριζικό του Jacobso. Ως εφαρμογή αποδεικνύουμε ότι κάθε δακτύλιος του Art είναι και της Noether. 4.1. Δακτύλιοι

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΣ 121: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟΥ 3

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΣ 121: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟΥ 3 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΣ 11: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟΥ 3 1. Να βρείτε τις ιδιοτιμές και τα ιδιοδιανύσματα των πιο κάτω πινάκων: 1 0 3 1 1 1 1 1 3 1 1 4 a b.

Διαβάστε περισσότερα

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις 1. Εισαγωγή Δίνεται η συνάρτηση μεταφοράς = = 1 + 6 + 11 + 6 = + 6 + 11 + 6 =. 2 Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις L = 0 # και L $ % &'

Διαβάστε περισσότερα

ΠΛΗ ΛΥΣΕΙΣ ΕΡΓ_2 ΣΕΛ. 1/11

ΠΛΗ ΛΥΣΕΙΣ ΕΡΓ_2 ΣΕΛ. 1/11 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: Νοεμβρίου 007 Ημερομηνία παράδοσης της Εργασίας: 4 Δεκεμβρίου 007 Πριν από την λύση κάθε άσκησης καλό

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

( ) 10 ( ) εποµ ένως. π π π π ή γενικότερα: π π. π π. π π. Άσκηση 1 (10 µον) Θεωρούµε το µιγαδικό αριθµό z= i.

( ) 10 ( ) εποµ ένως. π π π π ή γενικότερα: π π. π π. π π. Άσκηση 1 (10 µον) Θεωρούµε το µιγαδικό αριθµό z= i. http://elern.mths.gr/, mths@mths.gr, Τηλ: 697905 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ 00-0: Άσκηση (0 µον) Θεωρούµε το µιγαδικό αριθµό z= i. α) (5 µον) Βρείτε την τριγωνοµετρική µορφή του z.

Διαβάστε περισσότερα

Κεφάλαιο 4 ιανυσµατικοί Χώροι

Κεφάλαιο 4 ιανυσµατικοί Χώροι Κεφάλαιο 4 ιανυσµατικοί Χώροι 4 ιανυσµατικοί χώροι - Βασικοί ορισµοί και ιδιότητες ιανυσµατικοί Χώροι Ένας ιανυσµατικός Χώρος V (δχ) είναι ένα σύνολο από µαθηµατικά αντικείµενα (αριθµούς, διανύσµατα, πίνακες,

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ηµεροµηνία Αποστολής στον Φοιτητή: 12 Οκτωβρίου 2007

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ηµεροµηνία Αποστολής στον Φοιτητή: 12 Οκτωβρίου 2007 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 1) ΕΡΓΑΣΙΑ 1 η Ηµεροµηνία Αποστολής στον Φοιτητή: 1 Οκτωβρίου 007 Ηµεροµηνία παράδοσης της Εργασίας: 9 Νοεµβρίου 007. Πριν από την λύση κάθε άσκησης

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Χαρακτηριστικό Πολυώνυµο Γινοµένου Πινάκων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 4 Μέρος 1. Η οµή Ενός

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Σεπτεμβρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Σεπτεμβρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Λύσεις των Θεμάτων της Εξέτασης Σεπτεμβρίου 00 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ9) Ηράκλειο, Αυγούστου 00 Θέμα. (μονάδες.5) α) [μονάδες: 0.5] Υπολογίστε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές λύσεις ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: 6 Νοεµβρίου 005 Ηµεροµηνία Παράδοσης της Εργασίας

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 2008

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 2008 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 8 Ημερομηνία παράδοσης της Εργασίας: Φεβρουαρίου 8 Πριν από την λύση κάθε άσκησης καλό

Διαβάστε περισσότερα

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( )

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( ) Συνεχείς συναρτήσεις πολλών µεταβλητών 7 Η Ευκλείδεια απόσταση που ορίσαµε στον R επιτρέπει ( εκτός από τον ορισµό των ορίων συναρτήσεων και ακολουθιών και τον ορισµό της συνέχειας συναρτήσεων της µορφής

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τμήμα Επιστήμης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τμήμα Επιστήμης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τμήμα Επιστήμης Υπολογιστών «Γραμμική Άλγεβρα» (ΗΥ119) Χειμερινό Εξάμηνο 009-010 Διδάσκων: Ι. Τσαγράκης 6 Ο ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ Άσκηση 1: Δείξτε ότι η απεικόνιση τον ker f. Είναι η

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ 00- ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ. (5 µον.) ίνεται ο πίνακας 0 0 A. 0 (α) (α) Να βρεθούν όλες οι ιδιοτιµές και τα ιδιοδιανύσµατα του πίνακα Α. (β) Είναι δυνατή η διαγωνιοποίηση

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ , Β= 1 y, όπου y 0. , όπου y 0.

ΑΠΑΝΤΗΣΕΙΣ , Β= 1 y, όπου y 0. , όπου y 0. ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ 9 Ιουνίου 8:-: ΑΠΑΝΤΗΣΕΙΣ Θέμα (Α) ( 5 μονάδες) Δίδονται οι πίνακες Α=,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ορθοκανονικοποίηση, Ορίζουσες, Ιδιοτιμές και Ιδιοδιανύσματα Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Διαβάστε περισσότερα

Σημειώσεις για το μάθημα: «Βασικές Αρχές Θεωρίας Συστημάτων» (Μέρος Α )

Σημειώσεις για το μάθημα: «Βασικές Αρχές Θεωρίας Συστημάτων» (Μέρος Α ) Χρήστος Ι Σχοινάς Αν Καθηγητής ΔΠΘ Σημειώσεις για το μάθημα «Βασικές Αρχές Θεωρίας Συστημάτων» (Μέρος Α ) ΞΑΝΘΗ, 008 - - - - ΚΕΦΑΛΑΙΟ ΔΙΑΝΥΣΜATA Ορισμοί και ιδιότητες Συχνά, σε διάφορα προβλήματα στα Μαθηματικά,

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Ορίζουσα Gram και οι Εφαρµογές της Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 65 11 Η Ορίζουσα Gram και

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ ρ Χρήστου Νικολαϊδη Δεκέμβριος Περιεχόμενα Κεφάλαιο : σελ. Τι είναι ένας πίνακας. Απλές πράξεις πινάκων. Πολλαπλασιασμός πινάκων.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ Εισαγωγή Οι αριθμοί που εκφράζουν το πλήθος των στοιχείων ανά αποτελούν ίσως τους πιο σημαντικούς αριθμούς της Συνδυαστικής και καλούνται διωνυμικοί συντελεστές διότι εμφανίζονται

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

Copyright: Ψωμόπουλος Ευάγγελος, Eκδόσεις Zήτη, Γ έκδοση: Μάρτιος 2012, Θεσσαλονίκη

Copyright: Ψωμόπουλος Ευάγγελος, Eκδόσεις Zήτη, Γ έκδοση: Μάρτιος 2012, Θεσσαλονίκη Kάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα ISBN 978-960-456-314-2 Copyright: Ψωμόπουλος Ευάγγελος, Eκδόσεις Zήτη, Γ έκδοση: Μάρτιος 2012, Θεσσαλονίκη Tο παρόν έργο πνευματικής ιδιοκτησίας προστατεύεται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Burnside

ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Burnside ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Bursde Θα αποδείξουµε εδώ ότι κάθε οµάδα τάξης a q b (, q πρώτοι) είναι επιλύσιµη. Το θεώρηµα αυτό αποδείχτηκε από τον Bursde το 904 ο οποίος χρησιµοποίησε τη νέα τότε

Διαβάστε περισσότερα

Θέμα 1. με επαυξημένο 0 1 1/ 2. πίνακα. και κλιμακωτή μορφή αυτού

Θέμα 1. με επαυξημένο 0 1 1/ 2. πίνακα. και κλιμακωτή μορφή αυτού ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΗΣ Ιουλίου 0 Θέμα α) (Μον.6) Να βρεθεί η τιμή του πραγματικού

Διαβάστε περισσότερα

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β)

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β) Κεφάλαιο 3β Ελεύθερα Πρότυπα (µέρος β) Ο σκοπός µας εδώ είναι να αποδείξουµε το εξής σηµαντικό αποτέλεσµα. 3.3.6 Θεώρηµα Έστω R µια περιοχή κυρίων ιδεωδών, F ένα ελεύθερο R-πρότυπο τάξης s < και N F. Τότε

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος Παράδειγμα Έστω το σύνολο V το σύνολο όλων των θετικών πραγματικών αριθμών εφοδιασμένο με την ακόλουθη πράξη της πρόσθεσης: y y με, y V και του πολλαπλασιασμού

Διαβάστε περισσότερα

Κεφάλαιο 9 Ιδιοτιµές και Ιδιοδιανύσµατα

Κεφάλαιο 9 Ιδιοτιµές και Ιδιοδιανύσµατα Σελίδα από 5 Κεφάλαιο 9 Ιδιοτιµές και Ιδιοδιανύσµατα 9. Ορισµοί... 9. Ιδιότητες...7 9. Θεώρηµα Cayley-Hamilto...4 9.. Εφαρµογές του Θεωρήµατος Cayley-Hamilto...6 9.4 Ελάχιστο Πολυώνυµο...5 Ασκήσεις του

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ12 «ΜΑΘΗΜΑΤΙΚΑ Ι» Επαναληπτική Τελική Εξέταση 16 Ιουλίου 2003

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ12 «ΜΑΘΗΜΑΤΙΚΑ Ι» Επαναληπτική Τελική Εξέταση 16 Ιουλίου 2003 http://edueapgr/pli/pli/studetshtm Page of 6 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ «ΜΑΘΗΜΑΤΙΚΑ Ι» Επαναληπτική Τελική Εξέταση 6 Ιουλίου Απαντήστε όλα

Διαβάστε περισσότερα

Το φασματικό Θεώρημα

Το φασματικό Θεώρημα Το φασματικό Θεώρημα 1 Το φάσμα ενός τελεστή Λήμμα 1.1 Έστω A B(H) φυσιολογικός τελεστής. Αν x H είναι ιδιοδιάνυσμα του A με ιδιοτιμή λ, τότε A x = λx. Έπεται ότι οι ιδιόχωροι ενός φυσιολογικού τελεστή

Διαβάστε περισσότερα

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας.

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. 1. Κάθε πολυώνυμο ανάγωγο επί του Z είναι ανάγωγο επί του Q. Σωστό. 2. Κάθε πολυώνυμο ανάγωγο επί του Q είναι ανάγωγο επί

Διαβάστε περισσότερα

Η ΚΑΝΟΝΙΚΗ ΜΟΡΦΗ JORDAN

Η ΚΑΝΟΝΙΚΗ ΜΟΡΦΗ JORDAN Η ΚΑΝΟΝΙΚΗ ΜΟΡΦΗ JORDN Εάν ένας πίνακας δεν διαγωνοποιείται, τότε ο στόχος μας είναι υπολογίσουμε μέσω ενός μετασχηματισμού ομοιότητας, έναν απλούστερο πίνακα, «σχεδόν διαγώνιο» όπως ο παρακάτω πίνακας

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασµένων Οµάδων Ι

ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασµένων Οµάδων Ι ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασµένων Οµάδων Ι Χρησιµοποιώντας το θεώρηµα του Weddebu για ηµιαπλούς δακτυλίους αναπτύσσουµε εδώ τις πρώτες προτάσεις από τη θεωρία των αναπαραστάσεων και αρακτήρων πεπερασµένων

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 4 Ιουνίου 009 Θέμα (0 μονάδες) α) (7 μον) Για τις διάφορες τιμές του k R, να λυθεί το σύστημα y+ kz =

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

1 Ορίζουσες. Άσκηση 1.1 Θεωρούμε τον πίνακα. 1 x x x x 1 x x x x 1 x x x x 1 A =

1 Ορίζουσες. Άσκηση 1.1 Θεωρούμε τον πίνακα. 1 x x x x 1 x x x x 1 x x x x 1 A = 1 Ορίζουσες Άσκηση 1.1 Θεωρούμε τον πίνακα 1 x x x x 1 x x x x 1 x x x x 1, όπου x είναι τυχόν στοιχείο του σώματος R. Να βρεθούν όλες οι τιμές του x για τις οποίες ο πίνακας A δεν είναι αντιστρέψιμος.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ. Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες,

ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ. Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες, ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες, παριστάνεται με την εξής ορθογώνια διάταξη: α11 α12 α1n α21 α22 α2n A = αm1 αm2 αmn Ορισμός 2: Δύο πίνακες Α και Β είναι ίσοι, και γράφουμε

Διαβάστε περισσότερα

( 1)( 3) ( ) det( ) (1 )( 1 ) ( 2)( 2) pl( ) det( L ) (5 )( 7 ) ( 1) ( ) det( M ) (1 )(1 )

( 1)( 3) ( ) det( ) (1 )( 1 ) ( 2)( 2) pl( ) det( L ) (5 )( 7 ) ( 1) ( ) det( M ) (1 )(1 ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 9 Ιουνίου 0 Θέμα Δίδονται οι πίνακες K= 5 4, L=, M=. 9 7 A) (8 μονάδες) Για κάθε

Διαβάστε περισσότερα

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x. Κεφάλαιο 4 Μήκη και ορθές γωνίες Μήκος διανύσµατος Στο επίπεδο, R 2, ϐρίσκουµε το µήκος ενός διανύσµατος x = (x 1, x 2 ) χρησιµοποιώντας το Πυθαγόρειο ϑεώρηµα : x 2 = x 2 1 + x 2 2. Στο χώρο R 3, εφαρµόζουµε

Διαβάστε περισσότερα

ΚΕΦ.6:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ. ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ

ΚΕΦ.6:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ. ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ ΚΕΦ:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ Τετραγωνικές μορφές: Συναρτήσεις με τύπο Q ν α ι j j, j [ ] ν α α ν αν α νν ν Τ Χ ΑΧ Για παράδειγμα εάν v Q α + α + α + α α + α + α + α δηλ a a a a α + α + α

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάµε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων. Αυτές συνδέονται µεταξύ τους µε την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ; ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά

Διαβάστε περισσότερα

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει 8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y

Διαβάστε περισσότερα

να είναι παραγωγίσιμη Να ισχύει ότι f Αν μια από τις τρεις παραπάνω συνθήκες δεν ισχύουν τότε δεν ισχύει και το θεώρημα Rolle.

να είναι παραγωγίσιμη Να ισχύει ότι f Αν μια από τις τρεις παραπάνω συνθήκες δεν ισχύουν τότε δεν ισχύει και το θεώρημα Rolle. Κατηγορία η Συνθήκες θεωρήματος Rolle Τρόπος αντιμετώπισης:. Για να ισχύει το θεώρημα Rolle για μια συνάρτηση σε ένα διάστημα [, ] (δηλαδή για να υπάρχει ένα τουλάχιστον (, ) τέτοιο ώστε ( ) ) πρέπει:

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 10ο Σετ Ασκήσεων (Λύσεις) Γραμμικοί Μετασχηματισμοί

Εφαρμοσμένα Μαθηματικά ΙΙ 10ο Σετ Ασκήσεων (Λύσεις) Γραμμικοί Μετασχηματισμοί Εφαρμοσμένα Μαθηματικά ΙΙ ο Σετ Ασκήσεων (Λύσεις) Γραμμικοί Μετασχηματισμοί Επιμέλεια: Ι. Λυχναρόπουλος. Να εξετασθεί αν είναι γραμμικές οι ακόλουθες συναρτήσεις: a) f : R R με f b) f : R R f y, ( +, y

Διαβάστε περισσότερα

Μεταθέσεις και πίνακες μεταθέσεων

Μεταθέσεις και πίνακες μεταθέσεων Παράρτημα Α Μεταθέσεις και πίνακες μεταθέσεων Το παρόν παράρτημα βασίζεται στις σελίδες 671 8 του βιβλίου: Γ. Χ. Ψαλτάκης, Κβαντικά Συστήματα Πολλών Σωματιδίων (Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο,

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Να γνωρίζει: α. την έννοια του μιγαδικού αριθμού και β. πότε δύο μιγαδικοί αριθμοί είναι ίσοι. Να μπορεί να βρίσκει: α. το άθροισμα,

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ ΣΥΝΟΔΕΥΤΙΚΟ ΕΝΤΥΠΟ ΓΙΑ ΤΙΣ ΓΡΑΠΤΕΣ ΕΡΓΑΣΙΕΣ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά)

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα