Prebrojavanje savršenih sparivanja

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Prebrojavanje savršenih sparivanja"

Transcript

1 Prebrojavanje savršenih sparivanja Frane Kalebić Joško Mandić Damir Vukičević Snježana Braić Sadržaj 1 Uvod 1 2 Sparivanje u grafovima Sparivanje u bipartitnom grafu Mađarska metoda Prebrojavanje Kekuléovih struktura Linearne rekurzivne metode Metode transfer matrice Uvod Mnogi se životni problemi mogu modelirati uz pomoć grafova. Graf se sastoji od točaka i njihovih spojnica. Tako točke mogu biti ljudi u određenom društvu, a spojnice parovi prijatelja, ili točke mogu biti električne komponente, a spojnice električna mreža itd. Grubo govoreći, graf je familija točaka, koje nazivamo vrhovima, zajedno sa spojnicama među njima, koje nazivamo bridovima. Precizna definicija glasi: Definicija 1.1. Graf je uređena trojka G = (V, E, ϕ), gdje je V neprazan skup vrhova, E skup bridova koji je disjunktan s V, a ϕ funkcija koja svakom bridu iz E pridružuje dva, ne nužno različita vrha iz V. Graf često zapisujemo kao par G = (V, E) ili samo G. Ako su nekom bridu e E pridruženi vrhovi u, v V, kažemo da su u i v krajevi brida e. Kažemo još i da su vrhovi u i v incidentni s bridom e, da su u i v susjedni vrhovi te pišemo e = uv. Bridovi s barem jednim zajedničkim krajem zovu se susjedni bridovi. Brid čiji se krajevi podudaraju zove se petlja, a brid čiji su krajevi različiti pravi brid ili karika. Dva ili više bridova koji imaju isti par krajeva zovu se višestruki bridovi. Graf koji nema petlji i višestrukih bridova nazivamojednostavnim grafom. Mi ćemo se ovdje baviti samo jednostavnim grafovima i pod pojmom graf podrazumijevati samo takve grafove. 1

2 1 UVOD 2 Definicija 1.2. Šetnja W u grafu G konačan je niz v 0 e 1 v 1 e 2 v 2...v m 1 e m v m čiji su članovi naizmjence vrhovi i bridovi grafa G sa svojstvom da su krajevi brida e i vrhovi v i 1 i v i, za svaki i = 1,..., m. Za vrh v 0 kažemo da je početak, a za vrh v m kraj šetnje W. Primijetimo da je u jednostavnom grafu šetnja potpuno određena nizom svojih vrhova v 0 v 1 v 2...v m 1 v m. Definicija 1.3. Šetnja u kojoj su svi bridovi različiti naziva se staza. Ako su pritom i svi vrhovi, osim eventualno početnog i krajnjeg, različiti, takvu stazu nazivamo put. Za šetnju kažemo da je zatvorena ako je v 0 = v m, a zatvoreni put nazivamo ciklusom. Da bismo dobili predodžbu o tome kakvim se problemima bavi teorija sparivanja, počnimo s dva jednostavna primjera koja dobro ilustriraju taj problem. Primjer 1.1. U nekom društvu, koje se sastoji od četiri djevojke D 1, D 2, D 3, D 4 i četiri momka M 1, M 2, M 3, M 4, postoje neke uzajamne simpatije. Naime, djevojka D 1 simpatizira momke M 2 i M 3, djevojka D 2 momke M 2 i M 4, djevojka D 3 momke M 1 i M 4, te djevojka D 4 simpatizira momka M 1. Odredite koliko najviše parova možemo povezati poštujući navedene simpatije? Primjer 1.2. Neko poduzeće dalo je oglas za zapošljavanje novih djelatnika na poslove P 1, P 2, P 3, P 4 i P 5. Na oglas se prijavilo pet kandidata K 1, K 2, K 3, K 4 i K 5, s tim da je kandidat K 1 kvalificiran za poslove P 3 i P 4, kandidat K 2 za posao P 3, kandidat K 3 za poslove P 1, P 2 i P 3, kandidat K 4 za poslove P 3 i P 4 te kandidat K 5 za poslove P 2 i P 5. Ispitajte je li moguće rasporediti kandidate na poslove tako da se svi poslovi obavljaju i da svaki kandidat obavlja posao za koji je kvalificiran? Ako izvršitelje i poslove, odnosno djevojke i momke, uzmemo za vrhove grafa, a bridovima spojimo svakog izvršitelja s poslovima koje zna obavljati, odnosno sve djevojke i momke koji se međusobno simpatiziraju, onda naš problem glasi: odredite maksimalan broj bridova od kojih nikoja dva nisu susjedna.

3 2 SPARIVANJE U GRAFOVIMA 3 2 Sparivanje u grafovima Definicija 2.1. Sparivanje u grafu G = (V, E) je skup bridova M E koji su karike i koji nisu međusobno susjedni. Kažemo da su vrhovi u i v spareni u M ako su u i v krajevi nekog brida iz M. Ako je E, onda je svaki jednočlani podskup od E jedan primjer sparivanja u G. No, zanimljivo je naći sparivanje sa što većim brojem bridova. Stoga definiramo: Definicija 2.2. Sparivanje M u grafu G je maksimalno sparivanje u G ako ne postoji sparivanje u G s većim brojem bridova od broja bridova u M. Definicija 2.3. Kažemo da sparivanje M u grafu G = (V, E) zasićuje vrh v V ili da je vrh v M-zasićen ako je v kraj nekog brida iz M. U protivnom kažemo da je vrh v M-nezasićen. Kažemo da je sparivanje M savršeno sparivanje ako je svaki vrh iz G M-zasićen. U literaturi se savršeno sparivanje često zove Kekuléova struktura, prema njemačkom kemičaru Augustu Kekuléu ( ). Očito je svako savršeno sparivanje ujedno i maksimalno, dok obrat općenito ne vrijedi. Nadalje, broj bridova u savršenom sparivanju je konstantan i iznosi V. Za 2 postojanje savršenog sparivanja nužno je da graf ima paran broj vrhova. No, to je samo nuždan, a ne i dovoljan uvjet za postojanje savršenog sparivanja. Osnovni problem teorije sparivanja jest ispitati postoji li savršeno sparivanje i ako postoji, konstruirati ga. U slučaju da se ne može konstruirati savršeno sparivanje, cilj je konstruirati sva ili bar neka maksimalna sparivanja. Definicija 2.4. Za skup vrhova S V grafa G = (V, E) kažemo da je stabilan ako nikoja dva vrha iz S nisu susjedna. Vršni pokrivač K V je skup vrhova grafa G takvih da svaki brid od G ima barem jedan kraj u K. Bridni pokrivač L E je skup bridova grafa G takvih da je svaki vrh grafa G kraj barem jednom bridu iz L. Označimo s v(g) = kardinalnost maksimalnog sparivanja u G, α(g) = kardinalnost maksimalnog stabilnog skupa u G, τ(g) = kardinalnost minimalnog vršnog pokrivača od G,

4 2 SPARIVANJE U GRAFOVIMA 4 Slika 1: Primjer maksimalnog i savršenog sparivanja ρ(g) = kardinalnost minimalnog bridnog pokrivača od G. Primijetimo da je ρ(g)dobro definiran samo za grafove bez izoliranih vrhova. Neka je K neki vršni pokrivač grafa G, a M neko sparivanje u G. Tada svaki brid iz M ima barem jedan kraj u K, a budući da bridovi iz M nemaju zajedničkih vrhova, to je M K. Stoga i za maksimalno sparivanje M i minimalni vršni pokrivač K također vrijedi M K, tj. υ(g) τ(g). Slično, ako je L bridni pokrivač grafa G, a S stabilan skup, onda je S L jer je svaki vrh iz S kraj barem jednom bridu iz L, a nikoja dva vrha iz S nisu susjedna. Stoga je α(g) ρ(g). Nadalje, vrijedi teorem Teorem 2.1. Skup S je stabilan ako i samo ako je skup V \ S vršni pokrivač grafa G = (V, E). Iz ovog odmah slijedi da je α(g) + τ (G) = V. Slično, v(g) + ρ (G) = V, tj. kardinalnost maksimalnog sparivanja i minimalnog bridnog pokrivača u sumi daju ukupan broj bridova grafa G, iako komplement sparivanja ne mora biti bridni pokrivač, kao što je slučaj sa stabilnim skupom i vršim pokrivačem. Jedan od osnovnih pojmova teorije sparivanja je pojam uvećavajućeg puta. Definicija 2.5. Neka je M sparivanje u grafu G = (V, E). M-alternirajući put u G je put čiji su bridovi naizmjenice elementi iz skupova M i E \ M. M-uvećavajući put u G je M-alternirajući put čiji su početak i kraj M-nezasićeni vrhovi. Teorem 2.2 (C. Berge, 1957.). Sparivanje M u grafu G je maksimalno sparivanje ako i samo ako G ne sadržava M-uvećavajući put. Ovaj teorem omogućuje nam da provjerimo je li neko sparivanje M u grafu G maksimalno, kako bismo ispitali postoji li ili ne M-uvećavajući put.

5 2 SPARIVANJE U GRAFOVIMA Sparivanje u bipartitnom grafu Definicija 2.6. Za graf G kažemo da je bipartitan ilidvodijelan ako se skup njegovih vrhova može podijeliti u dva disjunktna podskupa X i Y tako da svaki brid grafa G ima jedan kraj u X, a drugi u Y. Particija (X, Y ) naziva sebiparticija grafa G. Bipartitni graf s biparticijom (X, Y ) označava se G(X, Y ). Vidjeli smo da u svakom grafu vrijedi nejednakost υ(g) τ(g). No, sljedeći teorem kaže da u bipartitnom grafu vrijedi υ(g) = τ(g). Teorem 2.3 (Kőnig Egerváry, 1931.). U bipartitnom grafu G broj bridova maksimalnog sparivanja jednak je broju vrhova minimalnog pokrivača, tj. vrijedi jednakost υ(g) = τ(g). Definicija 2.7. Kažemo da bipartitni graf G(X, Y ) ima potpuno sparivanje u X ako postoji sparivanje u Gkoje zasićuje sve vrhove iz X. Potpuno sparivanje, dakle, definira jedno 1 1 preslikavanje između vrhova iz X i jednog dijela vrhova iz Y koje odgovarajuće vrhove iz X i Y spaja bridom. Stoga za svakih k vrhova iz X mora postojati barem k njima susjednih vrhova u Y. To je, dakle, nuždan uvjet za postojanje potpunog sparivanja. Sljedeći teorem kazuje da je to i dovoljan uvjet. Teorem 2.4 (P. Hall, 1935.). Bipartitni graf G s biparticijom (X, Y ) ima potpuno sparivanje ako i samo ako za svaki S X vrijedi Hallov uvjet: N (S) S, gdje je N(S) Y skup svih vrhova grafa G koji su susjedni vrhovima iz S. Ako particije X i Y imaju jednak broj elemenata, onda su potpunim sparivanjem u X zasićeni i svi vrhovi iz Y, pa je riječ o savršenom sparivanju u bipartitnom grafu. O tome govori sljedeći teorem popularno nazvan Teorem o braku. Teorem 2.5 (Teorem o braku). Bipartitni graf G s particijom (X, Y ) ima savršeno sparivanje ako i samo ako je X = Y i N(S) S, za svaki S X. Primjenjujući ovaj teorem na uvodne primjere 1.1 i 1.2, lako ćemo odgovoriti na pitanja koja se u njima postavljaju. Označimo li sa K = {K 1, K 2, K 3, K 4, K 5 } skup svih kandidata, a sa P = {P 1, P 2, P 3, P 4, P 5 } skup svih poslova, tada problem možemo predstaviti bipartitnim grafom G = (K, P ), a pitanje je li moguće rasporediti kandidate na poslove tako da svi kandidati obavljaju posao za koji su kvalificirani i da se svi poslovi obavljaju, ekvivalentno je pitanju postoji li u tom grafu savršeno sparivanje. Pogledajmo skup S = {K 1, K 2, K 4 } K. Kako je kandidat K 1 kvalificiran za poslove P 3, P 4, kandidat K 2 za posao P 3, a kandidat K 4 za poslove P 3, P 4, tako je skup svih vrhova koji su susjedni skupu S jednak N (S) = {P 3, P 4 }. Stoga je N (S) < S, pa nije zadovoljen Hallov uvjet, što znači da ne postoji savršeno sparivanje u ovom grafu. Dakle, nije moguće rasporediti kandidate na poslove tako da svi kandidati obavljaju posao za koji su kvalificirani, a da se svi poslovi obavljaju. No, u bipartitnom grafu koji odgovara problemu iz Primjera 1.1 vrijedi Hallov uvjet za svaki podskup skupa djevojaka, pa stoga postoji savršeno sparivanje u tom

6 2 SPARIVANJE U GRAFOVIMA 6 grafu, tj. možemo povezati sve parove poštujući navedene simpatije. Naravno, sada se postavlja pitanje kako konstruirati to sparivanje. Sam Hallov uvjet bez dodatnih razmatranja ne bi bio koristan u praksi jer za bipartitni graf G (X, Y ) treba ispitati sve podskupove skupa X, a broj podskupova naglo raste kako raste broj vrhova. Tako bi, naprimjer, za graf kojemu je X = 50 trebalo ispitati različitih podskupova od X. 2.2 Mađarska metoda Pored samog pitanja egzistencije savršenog sparivanja u bipartitnom grafu, jednako je važno i pitanje njegove konstrukcije u slučaju da takvo sparivanje postoji. Jedna od poznatih metoda koja se bavi pitanjima egzistencije i konstrukcije savršenog sparivanja u bipartitnom grafu je tzv. mađarska metoda. S pomoću nje se ili konstruira savršeno sparivanje u bipartitnom grafu G (X, Y ), ili se pronađe podskup S X za koji je N (S) < S, pa po Hallovu teoremu slijedi da savršeno sparivanje u G (X, Y ) ne postoji. Ideja je sljedeća: Započnemo s nekim sparivanjem M u bipartitnom grafu G (X, Y ), pri čemu za M možemo uzeti i prazan skup ako ne znamo ništa bolje. Ako M zasićuje X, onda je ono i savršeno sparivanje, pa smo gotovi. Ako, pak, postoji M-nezasićen vrh u X, onda algoritam sustavno traži M-uvećavajući put P s početkom u vrhu u. Ako takav put postoji, onda za sparivanje M = M E (P ), gdje je E (P ) skup bridova puta P, sadržava više bridova i zasićuje više vrhova u X nego sparivanje M. Tako dobivamo veće sparivanje M, a potom cijeli postupak ponovimo tako da umjesto polaznog sparivanja M uzmemo sparivanje M. U slučaju da takav put ne postoji, pronađemo skup R svih vrhova koji su s vrhom u povezani M-alternirajućim putom. Može se pokazati da za skup S = R X vrijedi N (S) < S, pa po Hallovu teoremu zaključujemo da ne postoji savršeno sparivanje u bipartitnom grafu G (X, Y ), a po Teoremu 2.2 da je sparivanje M maksimalno sparivanje u G. Ovaj algoritam dao je J. Edmonds godine, a zove se mađarska metoda jer se zasniva na idejama dvojice Mađara: Kőniga i Egerváryja. Algoritam: Ulaz. Bipartitni graf G s biparticijom (X, Y ), X = Y. Izlaz. Savršeno sparivanje M u G ili skup S X za koji je N (S) < S. Korak 1. Neka je M bilo koje sparivanje od G, npr. M =. Korak 2. Ako je X M-zasićen, stop (M je tada savršeno sparivanje od G). U protivnom, neka je vrh x X M-nezasićen. Stavimo S = {x}, T =. Korak 3. Ako je N (S) = T, stop ( N (S) < S ). U protivnom, neka je y N (S) \ T. Korak 4. Ako je y Y M-zasićen vrh, neka je zy M. Zamijenimo S sa S {z}, a T sa T {y} i vratimo se na korak 3. Ako je y M-nezasićen vrh, neka je P M-uvećavajući (x, y)-put. Zamijenimo M s M E (P ) i vratimo se na korak 2. Pogledajmo kako ovaj algoritam radi na primjeru naših djevojaka i momaka. Ulaz. Bipartitni graf G(X, Y ), X = {D 1, D 2, D 3, D 4 }, Y = {M 1, M 2, M 3, M 4 }.

7 2 SPARIVANJE U GRAFOVIMA 7 Korak 1. Neka je M =. Korak 2. X nije M-zasićen. Vrh x = D 1 X je M-nezasićen. Stavimo S = {D 1 }, T =. Korak 3. N (S) = {M 2, M 3 } T =. Neka je y = M 2 N (S) \ T = {M 2, M 3 }. Korak 4. y je M-nezasićen vrh. Neka je P = D 1 M 2 M-uvećavajući put. M = {D 1 M 2 } i vratimo se na korak 2. Korak 2. X je M = {D 1 M 2 }-nezasićen. Vrh x = D 2 X je M-nezasićen. Stavimo S = {D 2 }, T =. Korak 3. N (S) = {M 2, M 4 } T =. Neka je y = M 2 N (S) \ T = {M 2, M 4 }. Korak 4. y = M 2 je M-zasićen vrh jer je D 1 M 2 M. S = S {D 1 } = {D 1, D 2 }, T = T {M 2 } = {M 2 } Vratimo se na korak 3. Korak 3. N (S) = N ({D 1, D 2 }) = {M 2, M 3, M 4 } T = {M 2 } Neka je y = M 3 N (S) \ T = {M 3, M 4 } Korak 4. y = M 3 je M-nezasićen. Neka je P = D 2 M 2 D 1 M 3 M-uvećavajući (D 2, M 3 )-put. M = M E (P ) = {D 1 M 3, D 2 M 2 } i vratimo se na korak 2. Korak 2. X je M = {D 1 M 3, D 2 M 2 }-nezasićen. Vrh x = D 3 X je M-nezasićen. Stavimo S = {D 3 }, T =. Korak 3. N (S) = {M 1, M 4 } T =. Neka je y = M 1 N (S) \ T = {M 1, M 4 }. Korak 4. y = M 1 je M-nezasićen vrh. P = D 3 M 1 je M-uvećavajući (D 3, M 1 )-put, E (P ) = {D 3 M 1 } M = M E (P ) = {D 1 M 3, D 2 M 2, D 3 M 1 } i vratimo se na korak 2. Korak 2. X je M = {D 1 M 3, D 2 M 2, D 3 M 1 }-nezasićen. Vrh x = D 4 X je M-nezasićen. Stavimo S = {D 4 }, T =. Korak 3. N (S) = {M 1 } T =. Neka je M 1 N (S) \ T = {M 1 }. Korak 4. y = M 1 je M-zasićen vrh jer je D 3 M 1 M. S = S {D 3 } = {D 3, D 4 }, T = T {M 1 } = {M 1 } Vratimo se na korak 3. Korak 3. N (S) = N ({D 3, D 4 }) = {M 1, M 4 } T = {M 1 }

8 3 PREBROJAVANJE KEKULÉOVIH STRUKTURA 8 Neka je y = M 4 N (S) \ T = {M 4 } Korak 4. y = M 4 je M-nezasićen. P = D 4 M 1 D 3 M 4 je M-uvećavajući (D 4, M 4 )-put, E (P ) = {D 4 M 1, D 3 M 1, D 3 M 4 }, M = M E (P ) = {D 1 M 3, D 2 M 2, D 3 M 4, D 4 M 1 }, vratimo se na korak 2. Korak 2. X je M = {D 1 M 3, D 2 M 2, D 3 M 4, D 4 M 1 }-zasićen, pa smo gotovi. M je savršeno sparivanje. Primijetimo da nam Mađarska metoda daje samo egzistenciju jednog savršenog sparivanja, no ne kaže nam ništa o broju svih mogućih savršenih sparivanja. U praksi nam može biti od važnosti poznavati njihov broj. O tome više u sljedećem poglavlju. 3 Prebrojavanje Kekuléovih struktura U daljnjem ćemo tekstu najviše pozornosti posvetiti molekularnim grafovima, pa ćemo se za savršena sparivanja koristiti izraz Kekuléove strukture. Kekuléove strukture igraju posebno važnu ulogu u proučavanju benzenoida. Benzenoidni graf je povezani graf čije se ravninsko smještanje sastoji od kongruentnih pravilnih šesterokuta, tako da svaka dva šesterokuta ili imaju zajednički vrh, ili su disjunktni. U literaturi ih ponekad nazivaju i poliheksi, heksagonalne životinje, heksagonalna poliomina, heksagonalni sustavi i sl. Za benzenoid kažemo da je katakondenziran ako nijedan vrh nije incidentan s tri šesterokuta. Za benzenoid kažemo da je benzenoidni lanac ako je katakondenziran i nijedan šeterokut nema tri susjedna šesterokuta. Prebrojavanje savršenih sparivanja ima važne kemijske primjene. Naime, Linus Pauling (dobitnik dviju Nobelovih nagrada) uočio je da se s pomoću Paulingova reda veze (omjer broja Kekuléovih struktura koje udvostručavaju neku vezu i svih Kekuléovih struktura) može izračunati aproksimacija duljine veze među atomima ugljika u benzenoidnim molekulama. 3.1 Linearne rekurzivne metode Označimo s G neki molekularni graf, a sa k podgraf koji čini Kekuléovu strukturu, tj. koji se sastoji od nesusjednih bridova grafa G, a svaki vrh grafa G je incidentan s točno jednim bridom u k. Naprimjer, za naftalen se mogu pronaći tri Kekuléove strukture. Slika 2: Kekuléove strukture naftalena

9 3 PREBROJAVANJE KEKULÉOVIH STRUKTURA 9 S K (G) označimo broj svih različitih Kekuléovih struktura u grafu G. Da bismo odredili taj broj poslužit ćemo se linearnim rekurzijama na grafu i njegovim podgrafovima. Od samih početaka pa sve do danas, metode za prebrojavanje Kekuléovih struktura temelje se upravo na takvim rekurzijama. Neka je e proizvoljan brid grafa G. S G e označimo graf koji se dobije iz grafa G kada mu uklonimo brid e, a s G e graf koji se dobije iz grafa G uklanjanjem brida e i svih njemu susjednih bridova. Tada vrijedi jednostavna rekurzija K(G) = K(G e) + K(G e) (1) koju je i vrlo lako programirati. Važno je napomenuti da ako se primjenom ove rekurzije na neki izabrani niz bridova grafa G taj graf razbije u nepovezane dijelove, rekurziju tada možemo primijeniti zasebno na svaki njegov pojedini dio. Kod molekularnih grafova pozornost se posvećuje i dobivanju rekurzivne formule za prebrojavanje Kekuléovih struktura u ovisnosti o duljini lanca. Tako Gordonova i Davisonova shema za određivanje broja Kekuléovih struktura u katakondenziranom benzenoidnom lancu ima lagan i praktičan grafički prikaz. Pogledajmo to na sljedećem primjeru. Postupak izgleda ovako: 1. U šesterokute grafa koji prikazuje katakondenzirani benzenoidni lanac upisuju se brojevi počevši od jednog kraja i to na način: izvan početnog šesterokuta upiše se broj 1, a u prvi šesterokut upiše se broj Svaki broj u ostalim šesterokutima dobije se kao suma onog broja koji je upisan u šesterokut koji je njegov direktni prethodnik (njih dva određuju smjer) i onog koji je upisan u šesterokut neposredno prije skretanja lanca u tom smjeru. 3. Broj koji je upisan u zadnji šesterokut lanca upravo je broj Kekuléovih struktura K(G). U našem primjeru je K(G) = Metode transfer matrice Linearna rekurzija K(G) = K(G e) + K(G e) u slučaju grafova polimera (lanac s mnogo ponavljajućih elemenata ponavljajuće elemente nazivamo monomerima) ima vrlo elegantan oblik bez obzira na to kakvi su polimeri u pitanju. Mi ćemo se

10 3 PREBROJAVANJE KEKULÉOVIH STRUKTURA 10 ovdje fokusirati na regularne polimere u kojima se ponavlja ista jedinica monomera. Broj Kekuléovih struktura K L za ciklički lanac polimera duljine L se može izraziti u obliku K L = tr ( ρ T L) gdje je T transfer matrica karakteristična za jedinicu određenog monomera, a ρ matrica koja opisuje karakter rubnih uvjeta, npr. krajeva lanca polimera. Iz matrice T vidljivi su svi različiti načini na koje se Kekuléove strukture mogu načiniti iz jednog uzorka na granici jedne jedinice monomera do drugog uzorka na granici sljedeće jedinice monomera. Primjer 3.1. Nađimo transfer matricu za lanac polifena dug 14 heksagona. Taj lanac može se podijeliti na ćelije monomera kao na slici. S obzirom na vertikalnu os simetrije ovih šesterokuta razlikujemo lijevi i desni monomer. S lijeve i desne strane osi simetrije je neparan broj vrhova šesterokuta (3), pa moramo imati i neparan broj dvostrukih bridova (bridova u sparivanju) koji sijeku os simetrije. Budući da samo dva lijeva brida sijeku os simetrije, točno je jedan od njih dvostruki brid. Sve mogućnosti za postavljanje dvostrukih veza na granici monomera prikazane su na sljedećoj slici.

11 3 PREBROJAVANJE KEKULÉOVIH STRUKTURA 11 U slučaju da je gornji lijevi brid koji siječe os simetrije dvostruki brid, postoje dva načina za nastavak na sljedećoj granici, dok se u slučaju donjeg lijevog dvostrukog brida može nastaviti samo na jedan način jer propada mogućnost donja lijeva dvostruka veza gornja desna dvostruka veza. Naime, ta nas mogućnost dovodi do nezasićenog vrha (vidite donju sliku). Vrhove A i B ne smijemo spojiti dvostrukim bridom jer već imamo jednu dvostruku vezu koja siječe os simetrije, a znamo da može biti samo jedna takva. To znači da vrh B ostaje nezasićen, pa ta mogućnost ne daje savršeno sparivanje. Dakle, transfer matrica je oblika [ ] g g g d T = d g d d [ ] Za uske lance (široke par šesterokuta) postoji tek nekoliko mogućih uzoraka, tako da je matrica T malog reda, a nakon njene dijagonalizacije lako se izračuna i tražena potencija matrice T za proizvoljnu duljinu lanca L. No, s povećanjem širine trake w, tj. broja veza koje presijecaju os simetrije, eksponencijalno se povećava i red matrice T, ali ova tehnika sigurno je primjenjiva za širine w 12.

12 3 PREBROJAVANJE KEKULÉOVIH STRUKTURA 12 Primjer 3.2. Odredimo transfer matrice za lanac prikazan na donjoj slici. Lijevo od osi simetrije imamo neparan broj vrhova šesterokuta (ima ih 5), pa moramo imati i neparan broj dvostrukih bridova (bridova u sparivanju) koji sijeku os simetrije. Dakle, imamo jedan ili tri dvostruka brida koja sijeku os simetrije. Ispitajmo svaku mogućnost zasebno. Najprije pogledajmo sve mogućnosti u kojima je samo gornji lijevi brid dvostruki: Očito, sve tri mogućnosti zasićuju sve vrhove, tj. vode do savršenog sparivanja. Mogućnost srednja lijeva dvostruka veza gornja desna dvostruka veza nije dobra (slika 3). Naime, ta mogućnost dovodi nas do nezasićenog vrha. Vrh A ne možemo zasititi jer već imamo jednu dvostruku vezu koja siječe simetralu, a znamo da u ovom slučaju može biti samo jedna (situaciju s tri dvostruka brida zasebno ćemo ispitati). To znači da vrh A ostaje nezasićen, pa ta mogućnost ne daje savršeno sparivanje. Ostale dvije mogućnosti (slika 4) srednja lijeva dvostruka veza srednja desna dvostruka veza i srednja lijeva dvostruka veza donja desna dvostruka veza su u redu i dovode nas do savršenog sparivanja.

13 3 PREBROJAVANJE KEKULÉOVIH STRUKTURA 13 Slika 3: nije dobro Slika 4: dobro Sljedeće mogućnosti počinju s donjim lijevim dvostrukim bridom. U prva dva slučaja (slika 5): donja lijeva dvostruka veza gornja desna dvostruka veza i donja lijeva dvostruka veza srednja desna dvostruka veza nije moguće savršeno sparivanje jer dobivamo nezasićene vrhove (vrh A), dok je situacija donja lijeva dvostruka veza donja desna dvostruka veza u redu. Slika 5: nije dobro I napokon, ako su sva tri lijeva brida koja sijeku os simetrije dvostruki bridovi (slika 6), onda sve mogućnosti kad je na desnoj strani samo jedan dvostruki brid ili sva tri, dovode do nezasićenih vrhova početnih i krajnjih šesterokuta.

14 3 PREBROJAVANJE KEKULÉOVIH STRUKTURA 14 Slika 6: nije dobro Dakle, transfer matrica je oblika g g g s g d g gsd s g s s s d s gsd d g d s d d d gsd T = , gsd g gsd s gsd d gsd gsd što možemo poistovjetiti s matricom reda 3 oblika T = Lako se provjeri da je T n = 1 n n(n+1) n pa dobivamo broj Kekuléovih struktura u lancu duljine L u eksplicitnom obliku, K L = 3 + 2L + 1 L (L + 1). 2 Uočimo da je ova eksplicitna jednadžba analogna linearnoj rekurziji 1. označimo karakteristični polinom transfer matrice reda n s p (x) = det (xi T ) = n a i x n i, onda je, po Hamilton-Cayleyevu teoremu, T n = n a i T n i, pa je K L+1 = tr ( ρ T L+1 n T n) = i=0 i=1 n a i tr ( ρ T L+1 i) = i=1 n a i K L+1 i, što je prvobitna linearna rekurzija 1. Za naš primjer strukture polifena je K L+1 = K L + K L 1. Primijetimo da je rekurzija uvelike neovisna o krajevima lanca, ali oni utječu na početne vrijednosti na kojima se rekurzija temelji. i=1 Ako

15 LITERATURA 15 Literatura [1] D. Veljan, Kombinatorna i diskretna matematika, Algoritam, Zagreb [2] Wilson, J. Robin, Introduction to Graph Teory, Longman [3] Mario Osvin Pavčević, Uvod u teoriju grafova, Element, Zagreb [4] Diestel, Reinhald, Graph Theory, New York [5] Graph Theory Software [6] D. J. Klein, D. Babić and N. Trinajstić, Enumeration in Chemistry, Chemical Modelling: Applications and Theory, Volume 2, The Royal Society of Chemistry, [7] I. Gutman, O. E. Polanski, Mathematical Concepts in Organic Chemistry, Springer-Verlag, Berlin, [8] D. Veljan, Kombinatorika s teorijom grafova, Školska knjiga, Zagreb, 1989.

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Dijagonalizacija operatora

Dijagonalizacija operatora Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

Uvod u teoriju brojeva

Uvod u teoriju brojeva Uvod u teoriju brojeva 2. Kongruencije Borka Jadrijević Borka Jadrijević () UTB 2 1 / 25 2. Kongruencije Kongruencija - izjava o djeljivosti; Teoriju kongruencija uveo je C. F. Gauss 1801. De nicija (2.1)

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a. Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a

Διαβάστε περισσότερα

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

6 Polinomi Funkcija p : R R zadana formulom

6 Polinomi Funkcija p : R R zadana formulom 6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo:

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: 2 Skupovi Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: A B def ( x)(x A x B) Kažemo da su skupovi A i

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Sortiranje prebrajanjem (Counting sort) i Radix Sort

Sortiranje prebrajanjem (Counting sort) i Radix Sort Sortiranje prebrajanjem (Counting sort) i Radix Sort 15. siječnja 2016. Ante Mijoč Uvod Teorem Ako je f(n) broj usporedbi u algoritmu za sortiranje temeljenom na usporedbama (eng. comparison-based sorting

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Jankove grupe kao dizajni i jako regularni grafovi

Jankove grupe kao dizajni i jako regularni grafovi Jankove grupe kao dizajni i jako regularni grafovi Vedrana Mikulić (vmikulic@math.uniri.hr) Odjel za matematiku Sveučilište u Rijeci 9. listopad 2008. Djelovanje grupe na skup Definicija Grupa G djeluje

Διαβάστε περισσότερα

MJERA I INTEGRAL 2. kolokvij 30. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!)

MJERA I INTEGRAL 2. kolokvij 30. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) JMBAG IM I PZIM BOJ BODOVA MJA I INTGAL 2. kolokvij 30. lipnja 2017. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (ukupno 6 bodova) Neka je (, F, µ) prostor mjere i neka je (

Διαβάστε περισσότερα

ELEMENTARNA MATEMATIKA 1

ELEMENTARNA MATEMATIKA 1 Na kolokviju nije dozvoljeno koristiti ni²ta osim pribora za pisanje. Zadatak 1. Ispitajte odnos skupova: C \ (A B) i (A C) (C \ B). Rje²enje: Neka je x C \ (A B). Tada imamo x C i x / A B = (A B) \ (A

Διαβάστε περισσότερα

k a k = a. Kao i u slučaju dimenzije n = 1 samo je jedan mogući limes niza u R n :

k a k = a. Kao i u slučaju dimenzije n = 1 samo je jedan mogući limes niza u R n : 4 Nizovi u R n Neka je A R n. Niz u A je svaka funkcija a : N A. Označavamo ga s (a k ) k. Na primjer, jedan niz u R 2 je dan s ( 1 a k = k, 1 ) k 2, k N. Definicija 4.1. Za niz (a k ) k R n kažemo da

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno. JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj

( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj Zadaak (Ines, hoelijerska škola) Ako je g, izračunaj + 5 + Rješenje Korisimo osnovnu rigonomerijsku relaciju: + Znači svaki broj n možemo zapisai n n n ( + ) + + + + 5 + 5 5 + + + + + 7 + Zadano je g Tangens

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

KONAČNA MATEMATIKA Egzistencija kombinatornih konfiguracija Dirichlet-ov i Ramseyev teorem

KONAČNA MATEMATIKA Egzistencija kombinatornih konfiguracija Dirichlet-ov i Ramseyev teorem Природно-математички факултет, Универзитет у Нишу, Србија http://www.pmf.ni.ac.yu/mii Математика и информатика 1 (3) (2009), 19-24 KONAČNA MATEMATIKA Egzistencija kombinatornih konfiguracija Dirichlet-ov

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A :

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A : PRAVAC iješeni adaci od 8 Nađie aameaski i kanonski oblik jednadžbe aca koji olai očkama a) A ( ) B ( ) b) A ( ) B ( ) c) A ( ) B ( ) a) n a AB { } i ko A : j b) n a AB { 00 } ili { 00 } i ko A : j 0 0

Διαβάστε περισσότερα

LINEARNA ALGEBRA 1, ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ, VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ

LINEARNA ALGEBRA 1, ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ, VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ LINEARNA ALGEBRA 1 ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ 2. VEKTORSKI PROSTORI - LINEARNA (NE)ZAVISNOST SISTEM IZVODNICA BAZA Definicija 1. Neka je F

Διαβάστε περισσότερα

1 Aksiomatska definicija skupa realnih brojeva

1 Aksiomatska definicija skupa realnih brojeva 1 Aksiomatska definicija skupa realnih brojeva Definicija 1 Polje realnih brojeva je skup R = {x, y, z...} u kojemu su definirane dvije binarne operacije zbrajanje (oznaka +) i množenje (oznaka ) i jedna binarna

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

Teorem 1.8 Svaki prirodan broj n > 1 moºe se prikazati kao umnoºak prostih brojeva (s jednim ili vi²e faktora).

Teorem 1.8 Svaki prirodan broj n > 1 moºe se prikazati kao umnoºak prostih brojeva (s jednim ili vi²e faktora). UVOD U TEORIJU BROJEVA Drugo predavanje - 10.10.2013. Prosti brojevi Denicija 1.4. Prirodan broj p > 1 zove se prost ako nema niti jednog djelitelja d takvog da je 1 < d < p. Ako prirodan broj a > 1 nije

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum

16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum 16 Lokalni ekstremi Važna primjena Taylorovog teorema odnosi se na analizu lokalnih ekstrema (minimuma odnosno maksimuma) relanih funkcija (više varijabli). Za n = 1 i f : a,b R ako funkcija ima lokalni

Διαβάστε περισσότερα

REKURZIVNE FUNKCIJE PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK. Diplomski rad. Voditelj rada: Doc.dr.sc.

REKURZIVNE FUNKCIJE PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK. Diplomski rad. Voditelj rada: Doc.dr.sc. SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Brigita Švec REKURZIVNE FUNKCIJE Diplomski rad Voditelj rada: Doc.dr.sc. Zvonko Iljazović Zagreb, Rujan, 2014. Ovaj diplomski

Διαβάστε περισσότερα

Skup svih mogućih ishoda datog opita, odnosno skup svih elementarnih događaja se najčešće obeležava sa E. = {,,,... }

Skup svih mogućih ishoda datog opita, odnosno skup svih elementarnih događaja se najčešće obeležava sa E. = {,,,... } VEROVTNOĆ - ZDI (I DEO) U računu verovatnoće osnovni pojmovi su opit i događaj. Svaki opit se završava nekim ishodom koji se naziva elementarni događaj. Elementarne događaje profesori različito obeležavaju,

Διαβάστε περισσότερα

Bojanja grafova. Anamari Nakić, Mario-Osvin Pavčević. 6. svibnja 2014.

Bojanja grafova. Anamari Nakić, Mario-Osvin Pavčević. 6. svibnja 2014. Bojanja grafova Anamari Nakić, Mario-Osvin Pavčević 6. svibnja 2014. 2 Poglavlje 1 Bojanja vrhova Definicija 1.1 Bojanje zadanog grafa G je pridruživanje nekog skupa boja skupu vrhova od G, na način da

Διαβάστε περισσότερα

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i PRIPREMA ZA II PISMENI IZ ANALIZE SA ALGEBROM. zadatak Re{avawe algebarskih jedna~ina tre}eg i ~etvrtog stepena. U skupu kompleksnih brojeva re{iti jedna~inu: a x 6x + 9 = 0; b x + 9x 2 + 8x + 28 = 0;

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcija 8 Pojam funkcije, grafa i inverzne funkcije Poglavlje 1 Funkcije Neka su X i Y dva neprazna skupa. Ako je po nekom pravilu, ozna imo ga

Διαβάστε περισσότερα

Četrnaesto predavanje iz Teorije skupova

Četrnaesto predavanje iz Teorije skupova Četrnaesto predavanje iz Teorije skupova 27. 01. 2006. Kratki rezime prošlog predavanja: Dokazali smo teorem rekurzije, te primjenom njega definirali zbrajanje ordinalnih brojeva. Prvo ćemo navesti osnovna

Διαβάστε περισσότερα

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ). 0.1 Faktorizacija: ID, ED, PID, ND, FD, UFD Definicija. Najava pojmova: [ID], [ED], [PID], [ND], [FD] i [UFD]. ID: Komutativan prsten P, sa jedinicom 1 0, je integralni domen [ID] oblast celih), ili samo

Διαβάστε περισσότερα

4. poglavlje (korigirano) LIMESI FUNKCIJA

4. poglavlje (korigirano) LIMESI FUNKCIJA . Limesi funkcija (sa svim korekcijama) 69. poglavlje (korigirano) LIMESI FUNKCIJA U ovom poglavlju: Neodređeni oblik Neodređeni oblik Neodređeni oblik Kose asimptote Neka je a konačan realan broj ili

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos . KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα