Fizika 2. Predavanje 12. Rendgensko zračenje, Laseri. Atomska jezgra. Dr. sc. Damir Lelas

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Fizika 2. Predavanje 12. Rendgensko zračenje, Laseri. Atomska jezgra. Dr. sc. Damir Lelas"

Transcript

1 Fakultet elektrotehnike, strojarstva i brodogradnje Razlikovni studiji (910/920/930/940/950) Fizika 2 Predavanje 12 Rendgensko zračenje, Laseri. Atomska jezgra Dr. sc. Damir Lelas (Damir.Lelas@fesb.hr damir.lelas@cern.ch)

2 Danas ćemo raditi: (V. Henč-Bartolić i P. Kulišić: Valovi i optika, poglavlje 10 i 11) Rendgensko zračenje kontinuirani spektar linijski (karakteristični) spektar Moseleyev zakon za karakteristični X-spektar primjena redgenskog zračenja Fizika i tehnologija lasera što je laser princip rada lasera Atomska jezgra (uvod) Svojstva i struktura jezgre Energija vezanja jezgre Radioaktivnost, zakon radioaktivnog raspada 2

3 Rendgensko zračenje W. K. Röntgen 1895 opazio vrlo prodorno zračenje, mada je N. Tesla još 1892 radio fotografska snimanja pomoću valova sasvim odreďenog karaktera. X-zračenje (rendgensko zračenje) tvore elektromagnetski valovi vrlo kratkih valnih duljina: (1 pm-10 nm), a energije fotona su u području ev. X-zrake nastaju kad se brzi elektroni zaustave pri udaru u metu, anodu rendgenske cijevi. 3

4 Spektar rendgenskog zračenja Spektar rendgenskih zraka ovisi o energiji elektrona (naponu rendgenske cijevi (obično do 10 6 V) i o materijalu mete u koju udaraju elektroni. Razlikuju se dvije vrste spektra: kontinuirani spektar, je odrezan na nižim valnim duljinama i ovisi samo o naponu rendgenske cijevi. linijski (karakteristični) ovisi o materijalu mete u koju udaraju elektroni (anodi rendgenske cijevi). Kontinuirani spektar je odrezan, nema valnih duljina kraćih od g. di dλ Linijski (karakteristični spektar) λ 4

5 Kontinuirani spektar rendgenskog zračenja Kontinuirani spektar rendgenskog zračenja nastaje usporavanjem elektrona, to je tzv. zakočno zračenje (bremmsstrahlung), dio kinetičke energije elektrona se transformira u energiju fotona. U spektru nema valnih duljina kraćih od granične valne duljine g Ova minimalna valna duljina nastaje kad upadni elektron izgubi svu svoju kinetičku energiju u jednom jedinom sudar s atomima mete. Foton emitiranog rendgenskog zračenja ne može imati energiju veću od kinetičke energije E k upadnog elektrona. hc h g Ek eu g eu 5

6 Karakteristično X- zračenje Karakteristični spektar nastaje kad upadni elektron izbaci iz atoma jedan od elektrona i tako u jednoj od unutrašnjih ljuski nastane šupljina (npr. u K ili L ljusci). U nezaposjednuto stanje (šupljinu) s nižom energijom skače elektron iz ljuske s većom energijom. Razlika energija E n -E m (E n >E m ) jednaka je energiji emitiranog elektrona h =E n -E m. K-serija cr( Z 1) ( ) cr( Z 1) ( ) L-serija cr( Z 7,4) ( ) m m 3,4,5,... ν cr( Z b ) 2 ( m 2 ) m 3,4,5,... 6

7 Moseleyev zakon za karakteristični X-spektar (1) 1913., Moseley je generirao karakteristične x-zrake za sve elemente koje je mogao naći njih 38, koristeći ih kao mete koje bombardiraju elektroni u evakuiranoj cijevi. Uočio je da su frekvencije karakterističnih X-zraka proporcionalne kvadratu rednog broja. Prikazavši kvadratni korijen izmjerenih karakterističnih frekvencija u ovisnosti o rednom broju Z anode rendgenske cijevi, dobio je linearnu ovisnost o Z. Moseleyev rad je pokazao da se karakteristično X- zračenje treba prihvati kao znakovitost postojanja danog elementa. Položaj pojedinog elementa u prvim periodnim tablicama odreďivala je njegova masa, a Moseley je pokazao da redni broj tj. naboj jezgre treba biti veličina koja određuje položaj elementa u periodnoj tablici. Z ν 7

8 Moseleyev zakon za karakteristični X-spektar (2) Karakteristično X-zračenje je jednoznačan način da se identificira neki element i znatno je pouzdaniji od optičkog spektra. Naime, karakteristično x-zračenje nastaje kad elektron popunjava šupljinu u unutrašnjim ljuskama (npr. K- ljusci), pa naboj jezgre koji jednoznačno odreďuje identitet elementa nije zasjenjen. Optički spektar kod težih elemenata nastaje prijelazom elektrona izmeďu vanjskih ljusaka, te je naboj jezgre zasjenjen elektronima u unutrašnjim ljuskama. Očito optički spektar nije toliko osjetljiva proba naboja jezgre, odnosno identiteta elementa. Linijski spektar rendgenskog zračenja za dani element isti je bez obzira je li element u čvrstom, tekućem ili plinovitom stanju ili se nalazi u nekom kemijskom spoju. X-spektrometrijska metoda je nedestruktivna metoda za odreďivanja sastava tvari, svaki element u ispitivanom uzorku zrači karakterističnu X-zraku, a iz intenzitet pojedine karakteristične X-zrake odreďuje zastupljenost pojedinog elementa u uzorku. Široka primjena od biologije, kemije, industrije, povijesti umjetnosti, arheologije,... Z 8 ν

9 Difrakcija rendgenskog zračenja Rendgensko zračenje je elektromagnetski val koje iskazuje svoju valnu prirodu preko efekata ogiba i interferencije kad pada na optičku rešetku čija je konstanta usporediva s valnom duljinom rendgenskog zračenja. Ogib rendgenskih zraka je uočen pri upadu rendgenskog zračenja na kristale (M. von Laue 1912). Kristali se sastoje od pravilno rasporeďenih atoma u trodimenzionalnoj kristalnoj rešetci. Uvjet za konstruktivnu interferenciju 2d sin n n 1,2,3,... Braggov zakon Karakteristično X-zračenje se primjenjuje za odreďivanje strukture kristala i DNK molekula. 9

10 Energija ionozacije (ev) Energija ionizacije u ovisnosti o rednom broju Z Redni broj Z Uočite maksimume u energije ionizacije za Z=2, 10, 18, 36,...(vanjska elektronska ljuska kompletno popunjena). 10

11 Priča Vrlo brzo nakon što su izumljeni godine, laseri su postali novi izvori svjetlosti u znanstvenim laboratorijima širom svijeta. Danas se laseri koriste posvuda, u širokom spektru aplikacija poput prijenosa podataka, nadgledanja, zavarivanja, bar-code čitačima itd. Na slici je prikazana kirurška operacija pomoću laserskog svjetla prenesenog preko svjetlovoda. Svjetlost iz lasera, kao i iz bilo kojeg drugog izvora, nastaje emisijom atoma. Što je to onda tako drugačije kod laserske svjetlosti? Vjerovali ili ne, odgovor ćete saznati na današnjem predavanju 11

12 Laseri i laserska svjetlost (1) U kasnim tim i ranim tim kvantna fizika je napravila dva ogromna doprinosa modernim tehnologijama: tranzistori i laseri. Laserska svjetlost, kao i svjetlost npr. iz obične žarulje, je emitirana pri prijelazu atoma iz višeg u niže energijskog stanje. Za razliku od običnih izvora svjetlosti, u laserima atomi djeluju zajedno da bi proizveli svjetlost sa sljedećim karakteristikama: 1. Laserska svjetlost je visoko monokromatska, tj. sastavljena od samo jedne frekvencije. Svjetlost iz običnih (bijelih) žarulja je sastavljena od mnoštva različitih valnih duljine i stoga sigurno nije monokromatska. Čistoća laserske svjetlosti može biti do 1 dio u Laserska svjetlost je vrlo koherentna, tj. fotoni su međusobno u fazi. Primjer: 12

13 Laseri i laserska svjetlost (2) 3. Laserska svjetlost je jako usmjerena. Npr. laserski puls korišten za mjerenje udaljenosti do mjeseca napravio je točku na mjesečevoj površini radijusa od samo nekoliko metara. Svjetlost iz obične žarulje može se usmjeriti pomoću leća, ali nikad tako dobro kao laserska svjetlost. 3. Laserska svjetlost može se oštro fokusirati. Ako dva svjetlosna snopa imaju istu energiju, snop koji se fokusira u manju točku imat će veći intenzitet. Da bi dobili intenzitet svjetlosti koju daju jaki laseri tijelo bi trebalo zagrijati na temperaturu K (radi usporedbe, volframova nit u žarulji je ugrijana na 3000 K, a temperatura u jezgri sunca je 10 8 K). 13

14 Kako rade laseri (1) Riječ laser je kratica engleskog izraza light amplification by the stimulated emission of radiation, što se prevodi kao pojačanje svjetlosti stimuliranom emisijom radijacije. Ovaj koncept je uveo Einstein godine, dok je prvi laser napravljen Razmotrimo izolirani atom koji može biti ili u svom osnovnom stanju (stanju s najnižom energijom) E 0, ili u pobuďenom stanju (stanju s višom energijom) E x. Postoje tri različita fizikalna procesa kroz koje atom može prelaziti iz jednog u drugo stanje. 1. Apsorpcija. Atom se u početku nalazi u osnovnom stanju. Ako ga stavimo u elektromagnetsko polje frekvencije, atom može apsorbirati energiju h iz tog polja i preći u više energijsko stanja. Iz zakona sačuvanja energije imamo, h =E x -E Spontana emisija. Atom se na početku nalazi u pobuďenom stanju i nema vanjskog zračenja. Nakon nekog vremena, atom će spontano ( sam od sebe ) preći u osnovno stanje emitirajući foton energije h. Ovaj proces zovemo spontana emisija, jer se dogaďaj zbio bez vanjskog utjecaja. Svjetlost u običnoj žarulji je generirana na ovakav način. U normalnim okolnostima srednje vrijeme života atoma u pobuďenom stanju, prije spontane emisije, je oko 10-8 s. MeĎutim, za neka pobuďena stanja, ovo srednje vrijeme života može biti i do 10 5 puta veće. Takva stanja zovu se metastabilna stanja i igraju važnu ulogu u radu lasera. 14

15 Kako rade laseri (2) 3. Stimulirana emisija. Atom je na početku u pobuďenom stanju, ali je ovaj put prisutno vanjsko elektromagnetsko polje frekvencije =(E x -E 0 )/h. Foton energije h može stimulirati atom na prelazak u osnovno stanje, i tijekom tog procesa emitira dodatni foton čija energija je takoďer h. Ovaj proces se naziva stimulirana emisija jer je dogaďaj pobuďen vanjskim fotonom. Emitirani foton je u potpunosti identičan vanjskom fotonu, tj. imaju istu energiju, fazu, polarizaciju i smjer kretanja. Sva tri procesa prikazana su na slici (desno): atomi su prikazani crvenom točkom; atom je ili u osnovnom stanju E 0, ili u pobuďenom stanju E x. a) atom apsorbira foton iz dolazećeg zračenja, b) atom emitira foton bez vanjskog utjecaja, c) svjetlost koja prolazi uzrokuje da atom emitira foton iste energije, povećavajući tako energiju svjetlosnog vala Prije Proces Poslije Radijacija Materija Materija Radijacija 15

16 Kako rade laseri (3) Pretpostavimo sada da komad materijala sadrži veliki broj atoma u termalnoj ravnoteži na temperaturi T. Prije nego usmjerimo zračanje na taj materijal, N 0 atoma je u osnovnom stanju s energijom E 0, a N x atoma je u pobuďenom stanju s energijom E x. Ludwig Boltzmann je pokazao da se N x može izraziti preko N 0 pomoću relacije: ( Ex E0 )/ kt N N e gdje je k Boltzmannova konstanta x 0 Ova relacija izgleda razumno ( ). kt je srednja kinetička energija atoma na temperaturi T. Što je veća temperatura, više atoma će (u prosjeku) preko termalnih pobuďenja (sudari atoma) preći u pobuďeno stanje E x. Isto tako, s obzirom da je E x >E 0, iz gornje relacije se vidi da je N x <N 0. Dakle, ako postoje samo termička pobuďenja uvijek je manje atoma u pobuďenom stanju nego u osnovnom stanju, što je ilustrirano na slici desno. Ako sada atome preplavimo fotonima energije E x -E 0, jedni fotoni će nestajati kroz apsorpciju na atomima u osnovnom stanju, dok će se drugi fotoni stvarati uglavnom kroz stimuliranu emisiju. Einstein je pokazao da su ova oba procesa jednako vjerojatna. S obzirom da ima više atoma u osnovnom stanju prevladavat će efekt apsorpcije. Da bi proizveli lasersko svjetlo moramo imati više fotona emitiranih nego apsorbiranih, tj. moramo imati situaciju u kojoj stimulirana emisija dominira. Direktni način postizanja ovog efekta je započeti proces s više atoma u pobuďenom nego u osnovnom stanju (slika desno), što se zove inverzija gustoće naseljenosti. E x E 0 E x E 0 16

17 Kako rade laseri (4) - Plinski He-Ne laseri S obzirom da inverzija gustoće naseljenosti nije konzistentna s termalnom ravnotežom, treba smisliti pametan način kako je postići i zadržati. Plinski He-Ne laseri daju svjetlost valne duljine 632,8 nm. Rade na sljedećem principu: Staklena cijev se napuni mješavinom He-Ne plinova u odnosu od 5:1 do 20:1; neon je medij u kojemu se odvija fizikalni proces emisije laserskog svjetla. Na slici desno je prikazan energijski dijagram za atome He i Ne. Struja koja prolazi kroz mješavinu plinova, kroz sudare atoma He i elektrona struje, uzrokuje pobudu atoma helija u stanje E 3, koje je metastabilno. Energija stanja helija E 3 (20,61 ev) je vrlo blizu energiji neonskog stanja E 2 (20,66 ev). Stoga, kada se atom helija u stanju E 3 sudari s atomom neona u osnovnom stanju E 0, energija pobude atoma helija se vrlo često prenese na atom neona, koji se pobudi u stanje E 2. Na ovaj način neonska energijska razina E 2 postane naseljenija elektronima od razine E 1 imamo inverzuju gustoće naseljenosti. Ovu inverziju gustoće naseljenosti je relativno lako izvesti zbog: (1) na početku je razina E 1 skoro potpuno prazna, (2) metastabilnost helijske razine E 3 osigurava kontinuirani prelaz atoma neona na razinu E 2 i (3) atomi iz razine E 1 vrlo brzo se vraćaju (preko meďustanja koja nisu prikazana) u osnovno stanje E 0. zrcala 17

18 Kako rade laseri (5) Plinski He-Ne laseri (nastavak): Pretpostavimo sada da se jedan foton spontano emitira pri prijelazu atoma neona iz E 2 u E 1. Takav foton može tada stimulirat emisiju istih takvih fotona, koji nadalje opet stimuliraju istu emisiju... Kroz takav proces stvara se koherentni snop crvene laserske svjetlosti koja putuje duž osi cijevi s plinom. Ako još na krajevima cijevi postavimo zrcala (s jedne strane nepropusno, a s drugo djelomično propusno) fotoni će se reflektirati od zrcala povećavajući tako vjerojatnost stimulirane emisije. Korisno lasersko svjetlo dobije se od dijela svjetlosti koja proďe kroz djelomično propusno zrcalo. 18

19 Tipovi lasera Laseri sa čvrstom tvari kao aktivnim sredstvom Najpoznatiji su rubinski laser, Yag laser itd. Plinski laseri, kojima je aktivno sredstvo neki plin Najpoznatiji su He-Ne i CO 2 -N laseri Poluvodički laseri, kojima je aktivno sredstvo dioda (koriste se u telekomunikacijama i računalima) Kemijski laseri u kojima je laserska emisija uzrokovana kemijskim procesom Laseri se mogu dijeliti i na: Kontinuirani laseri, koji daju neprekinute laserske snopove Pulsni laseri, koji daju isprekidane laserske snopove Najmanji laseri, koji se koriste pri prijenosu podataka kroz svjetlovode mogu imati veličinu reda veličine mm i generirati malu snagu od npr. 200 mw. S druge strane najjači (i najveći) laseri koriste se u istraživanju nuklearne fuzije, astronomskim i vojnim aplikacijama. Takvi laseri mogu generirati kratke pulsove snage i do W, što je nekoliko stotina puta veće od ukupnog kapaciteta proizvodnje električne energije u SAD-u. 19

20 Primjene lasera (1) Svakodnevna upotreba Compact disc/dvd Laserski printer Bar-code čitači Zaštitni hologrami (na kreditnim karticama, Microsoftovom softwareu, vrijednosnim papirima,...) Prijenos podataka svjetlovodima Direktni prijenos podataka (komunikacija meďu satelitima, vojna tehnologija) Hologrami (npr. u muzejima umjesto originalnih umjetnina,...) Laser show... 20

21 Primjene lasera (2) Vojne primjene Mjerenje udaljenosti Lociranje mete (navoďenje pametnih bombi ) Laserska oružja ( Star Wars program)... Medicinske primjene Kirurgija Operacije očiju, operacije zubi, dermatološki zahvati, opći zahvati Dijagnostika i liječenje raka Liječenje termičkim efektima (biostimulacija) Industrija Mjerenja Povlačenje ultra ravnih linija Procesiranje materijala Rezanje, varenje, taljenje, isparavanje, fotolitografija u poluvodičkoj industriji... Spektralna analiza 21

22 Primjene lasera (3) Istraživačke svrhe Fundamentalna istraživanja Interakcija zračenja s materijom, genetski inženjering... Spektroskopija Nuklearna fuzija HlaĎenje atoma na ultra niske tempereture Generiranje vrlo kratkih pulseva za studiranje vrlo brzih procesa Posebne primjene Prijenos energije (u budućim svemirskim postajama) Laserski žiroskop (instrument za orijentaciju u prostoru) Laserski procesi direktno u svjetlovodu (primjena u telekomunikacijama) 22

23 Pitanja za provjeru znanja 1. Što je rendgensko zračenje i kako nastaje, kakva je struktura spektra rendgenskog zračenja (obavezno)? 2. Što je laser i kako radi laser (obavezno)? 3. Objasnite Mosleyev zakon, navedite njegovu primjenu? 4. Objasnite stimulitanu i spontanu emisiju, te princip rada He-Ne lasera. 23

24 V. Henč-Bartolić i P. Kulišić: Valovi i Optika, poglavlje 11 Atomska jezgra Svojstva i struktura jezgre Energija vezanja jezgre Radioaktivnost, zakon radioaktivnog raspada 24

25 Priča Ova slika je promijenila svijet!!! Kad je Robert Openheimer, voditelj tima znanstvenika na Manhattan projektu koji su razvili atomsku bombu, prisustovao prvoj eskploziji bombe citirao je sveti Hindu tekst: Sada postajem Smrt, uništavatelj Svjetova. Kakva fizika stoji iza ove slike? 25

26 Kako je otkrivena atomska jezgra 1896., Becquerel je otkrio radioaktivnost. Elektron otkriven 1897 od strane Thomsona, koji zamišlja da atom čini pozitivno nabijena kugla, a da su elektroni uniformno razasuti po toj pozitivno nabijenoj kugli i da titraju oko svojih fiksnih položaja, model: puding s grožďicma , Rutherford, Geiger i Marsden otkriili jezgru u eksperimentima raspršenja alfa zraka na zlatu. Iz kutne razdiobe raspršenih alfa čestica zaključuje da je radijus jezgre znatno manji od radijusa atoma i to za faktor 10 4, atom je većinom prazan prostor , Chadwick otkrio neutron , Hahn i Strassmann otkrili nuklearnu fisiju , Fermi sa suradnicima izgradio prvi kontrolirani fisijski reaktor. 26

27 Svojstva i struktura jezgre (1) Jezgra se sastoji od protona i neutrona (nukleoni): naboj protona je pozotivan i jednak naboju elektron e=1,6x10-19 As, spin protona je s=1/2, m p = 1, x10-27 kg, neutron je električni neutralan, spin s=1/2, m n = 1, x10-27 kg. A C Z A - Maseni broj, A=Z+N, broj nukleona Z Redni broj broj protona N - broj neutrona, N=A-Z Izotopi nuklidi (jezgre) koje imaju jednaki broj protona (isti Z), ali različit broj neutrona: H, H H 1 1, Izobari su nuklidi jednakog broja nukleona (isti A): 1 3 H 3 He 1, 2 27

28 Svojstva i struktura jezgre (2) Masa jezgre (nuklida) je praktički jednaka masi atoma jer je masa elektronskog omotača zanemariva. U tablicama su uvijek navedene mase atoma, a ne nuklida. Atomske mase iskazuju se u atomskim jedinicama mase u: 1 12 u masa atoma 6C u 1, kg Energijski ekvivalent E=mc 2 atomske masene konstante (u) je: 1m u c 2 931, 478 MeV 28

29 Veličina jezgre Još od Rutherfordova (1912) vremena brojnim eksperimentima je potvrďeno: većina jezgri je sfernog oblika. srednji radijus jezgre je r=r o A 1/3, r o =1,2x10-15 m. kako je volumen jezgre V~r 3, a r 3 ~A, slijedi da je volumen jezgre proporcionalan broju nukleona u jezgri, pa je gustoća svih jezgri približno ista. srednja gustoća jezgre oko 2x10 17 kg/m 3. uobičajeno je u nuklearnoj fizici koristiti jedinicu 1 fermi: 1fm =10-15 m U prirodi ima oko 400 stabilnih jezgri, stotine drugih je otkriveno, ali su nestabilne i ubrzo se raspadaju. Lagane jezgre su stabilne ako imaju jednak broj protona i neutrona N=Z, a teške jezgre su stabilne ako je broj neutrona veći od broja protona (N>Z) kad je Z>20. 29

30 Nuklearna sila (1) U jezgri djeluje vrlo jaka odbojna električna sila izmeďu protona i zbog njenog djelovanja jezgra bi se razletjela, ne bi bila stabilna. Jezgra je stabilna jer uz električnu silu izmeďu protona djeluje još jedna sila koju zovemo nuklearna sila ili jaka sila. Svojstva nuklearne sile: privlačna sila koja djeluje izmeďu nukleona (protona i neutrona). vrlo kratkog dosega, reda veličine promjera jezgre oko 2 fm. znatno je snažnija od elektromagnetske sile (otprilike 100 puta). Nuklearna sila (jaka sila) je najjača sila u prirodi, puta jače od gravitacijske sile. 30

31 Nuklearna sila (2) Iz raspršenja neutrona i protona na meti vodika može se dobiti potencijalna energija sistema neutron-proton, proton-proton. Dubina potencijlane jame zbog nuklearne sile izmeďu nukleona je MeV i postoji snažna odbojna komponenta nuklearne sile kad je udaljenost izmeďu nukleona manja od 0,4 fm. Eksperimenti takoďer pokazuju da nuklearna sila ne ovisi o električnom naboju nukleona koji su u interakciji: nuklearna sila ista je izmeďu: n-n, p-p i n-p. 31

32 Broj protona Z Karta nuklida U prirodi nema elemenata sa Z>92 U eksperimentima u laboratoriju su proizvedeni nuklidi do Z=116 i A=292 Stabilne jezgre (zeleno označene) Stabilne teže jezgre imaju više neutrona nego protona. Kako broj protona raste, povećava se Coulombova odbojna sila te je potreban veći broj neutrona da bi jezgra bila stabilna. Broj neutrona N 32

33 Defekt mase i energija veze Razlika ukupne mase protona i neutrona Zm p i Nm n i mase jezgre m A zove se defekt mase m: m Zm p Nm Pri spajanju nukleona u jezgri oslobodila bi se energija mc 2, da bi smo jezgru rastavili na nukleone moramo utrošiti upravo tu energiju pa je energija veze jezgre: Ukupna masa jezgre je uvijek manja od pojedinačnog zbroja masa protona i neutrona od kojih je jezgra izgraďena. Energija veze po nukleonu je E b /A energija koju treba dati jednom nukleonu da ga se izvuče iz jezgre. n E b = mc 2 m A 33

34 Energija vezanja po nukleonu Eb/A(MeV) Energija vezanja jezgre Energija vezanja je energija potrebna da se nukleoni vezani u jezgri razdvoje. Iz zakon očuvanja energije i Einsteinove relacije o ekvivalenciji mase i energije slijedi izraz za energiju veze jezgre mase m A : E b mc 2 Zm ( A Z )m m c 2 p n A Energija se oslobađa kad se teška jezgra cijepa u dvije lakše jegzre - fisija Energija se oslobađa kad dvije lakše jezgre formiraju težu jezgru-fuzija područje najveće stabilnosti Maseni broj A 34

35 Energijske razine jezgre Energija nukleona u jezgri je kvantizirana slično kao i energija elektrona u atomu. Slika desno prikazuje energijske razine u jezgri 28 Al. Uočite da su energijske razine reda veličine milijun ev, dok su energijske razine elektrona u atomu reda veličine ev. Slično kao i kod atoma kad jedan nukleon prijeďe iz stanje više energijske razine u nižu emitira se foton energije h, tj. kvant elektromagnetskog vala u gama području-gama zraka. 35

36 Radioaktivnost (1) U prirodi postoji samo 92 kemijska elementa + (još 12 umjetno proizvedenih), a poznato je oko 1500 različitih nuklida od kojih je 350 prirodnih a 1100 umjetnih. Većina nuklida je nestabilna (oko 1200) radioaktivna. Pogodna kombinacija protona i neutrona čini jezgru stabilnom, čim je drugačije jezgra se nastoji izbacivanjem nukleona približiti stabilnoj konfiguraciji , Becquerel je slučajno otkrio radioaktivnost u spojevima koji sadrže uran. Nakon niza eksperimenata zaključio je da se to zračenje spontano emitira, da je prodorno, da zacrnjuje fotografsku emulziju i da ionizira plin. Takva spontana emisja zračenja nazvana je radioaktivnost. Marie i Pierre Curie sustavno su izučavali radioaktivnosti, te otkrili dva do tada nepoznata elementa, oba radioaktivna, nazvana polonij i radij. Sustavna eksperimentalna istraživanja radioaktivnosti zajedno s Rutherfordovim raspršenjem alfa čestica ukazala su da je radioaktivnost rezultat raspada nestabilne jezgre. UtvrĎeno je da psotoje tri tipa radioaktivnosti: alfa raspad jezgra spontano emitira jezgru helija beta raspad jezgra spontano emitira elektron ili pozitron (antielektron) gama raspad jezgra spontano emitira gama zraku foton visoke energije 36

37 Radioaktivnost (2) Alfa raspad: 263 Sg 259 Rf 4 He Beta raspadi: 14 C 14 N e 18 F 18 O e Gama raspad: neutrini Dy Dy 37

38 Defekt mase m Karta nuklida i radioaktivnost Slika lijevo prikazuje defekt mase u ovisnosti o broju protona i neutrona u jezgri za lagane jezgre. Dolina na slici lijevo je područje stabilnih jezgri. Jezgre bogate protonima emisijom -čestica spuštaju se u dolinu. Jezgre s viškom neutrona spuštaju se u dolinu emisijom elektrona beta raspad. 38

39 Radioaktivni elementi u prirodi Neki radioaktivni elementi koje nalazimo u prirodi: 39

40 Zakon radioaktivnog raspada Radioaktivni raspad je statističke prirode, ne možemo predvidjeti kad će se odreďena jezgra raspasti, ali možemo izračunati vjerojatnost da se proces dogodi. Brzina kojom se radioaktivni uzorak raspada (-dn/dt) proporcionalan je broju radioaktivnih jezgri u uzorku -dn/dt = N, - konstanta raspada koja odreďuje brzinu raspada radioaktivne jezgre i ovisi o tipu nuklida. Broj neraspadnutih jezgri u nekom radioaktivnom uzorku nakon t vremena, ako je početni broj jezgri bio N o je: N N o e t Vrijeme poluživota, T 1/2,je vremenski interval unutar kojeg se raspadne polovina jezgri: T ln ,693 Aktivnost broj raspada u jedinici vremena, jedinica za aktivnost je 1Ci (Kiri)=3,7x10 10 raspada/s, odnosno 1 Bq (bekerel, SI jedinica)= 1 raspad/s. A dn dt t N e N o 40

41 Prodornost i doza radioaktivnog zračenja Alfa čestice jezgre helija jedva prolaze kroz list papira Beta čestice elektroni (pozitroni) prolaz kroz nekoliko milimetra aluminija Gama čestice fotoni prolaze kroz nekoliko centimetara olova Utjecaj zračenja na ljude se iskazuje preko: Apsorbirana doza apsorbirana energija po jedinici mase (Gy-gray), stara jedinica je rad, 1Gy=1 J/kg=100 rad. Uobičajneo je izjava: Doza gama zračenja od 3 Gy koju primi čitavo tijelo u kratkom vremenskom intervalu uzrokovat će smrt u 50 % slučajeva. Srednja doza koju primi čovjek u godini dana od prirodnih i umjetnih radioaktivnih izvora je oko 2 mgy. Ekvivalentna doza različiti tipovi zračenja mogu isporučiti istu dozu (energiju po jedinici mase), ali ne uzrokuju iste biološke efekte. Ekvivalentna doza zračenja izražava biološki utjecaj apsorbirane doze tako da apsorbiranu dozu množi s numeričkim faktorom RBE-relativni biološki utjecaj. RBE=1 za X-zrake i elektrone, RBE=5 za spore neutrone, RBE=10 za alfa zrake. SI jednica ekvivalentne doze je 1 sivert (Sv). Preporuka je da neprofesionalna osoba ne primi ekvivalentnu dozu zračenja veću od 5 msv u godini dana. Prilikom leta avionom ljudi su izloženi kozmičkom zračenju koje generiraju protoni emitirani iz Sunca. U 900 sati leta u godini dana ekvivalentna doza iznosi oko 5,4 msv, što prelazi dopuštenu granicu od 5 msv u godini dana. 41

42 Primjer - radioaktivnost Gama doza od 3 Gy je letalna doza, oko 50% ljudi koji prime ovu dozu umire. Ako se ekvivalentna doza primi u obliku topline, koliki bi bio porast temperature? Za specifični toplinski kapacitet ljudskog tijela uzmite vrijednost specifičnog toplinskog kapaciteta vode c=4180 J/kgK: T Q m c 3 J kg 4180J kgk 0 7, mk Očito oštećenja izazvana zračenjem nemaju nikakve veze s zagrijavanjem tijela. Oštećenja nastaju na razini DNA i tako utječu na promjene u biološkim i kemijskim procesima. 42

43 Ispitivanje starosti materijala datiranje ugljikom - Raspad bilo koje radioaktivne jezgre ne ovisi o okolini. - Omjer broja stabilnih jezgri kćerki i jezgri majki ovisi o vremenu, što je broj jezgri kćerki veći to je uzorak stariji. - Radionuklid 14 C ima vrijeme poluživota T 1/2 =5730 godina. - Stalna je proizvodnja izotopa 14 C u višim slojevima atmosfere, 1 atom 14 C na atoma 12 C. Formira se molekula ugljičnog dioksida CO 2, jedna na sadrži 14 C umjesto 12 C. - Kroz biološke procese, fotosinteza i disanje, CO 2 ulazi u tkivo, uspostavi se dinamička ravnoteža tako da svako živo biće sadrži fiksnu količinu 14 C u formi CO 2. - Kad prestanu biološki procesi, nema više izmjene radiougljika s atmosferom i količina 14 C se smanjuje raspadom. - Mjereći količinu 14 C po gramu organskog tkiva može se odrediti koliko je vremena prošlo od trenutka smrti organizma. - Ovo datiranje je pouzdano do godina starosti N n 6C H 43

44 Primjer Komad drveta na arheološkom nalazištu ima aktivnost 14 C od 13 raspada u minuti po gramu. Aktivnost živog drveta je 16 raspada u minuti po gramu. Kad je drvo uginulo? N e t t N o e t ; No t N ln 0, ln 0,693 N N o 1700 godina t 5730 godina 1 ln N N o 44

Atomska jezgra. Atomska jezgra. Materija. Kristal. Atom. Elektron. Jezgra. Nukleon. Kvark. Stanica

Atomska jezgra. Atomska jezgra. Materija. Kristal. Atom. Elektron. Jezgra. Nukleon. Kvark. Stanica Atomska jezgra Materija Kristal Atom Elektron Jezgra Nukleon Stanica Kvark Razvoj nuklearne fizike 1896. rođenje nuklearne fizike Becquerel otkrio radioaktivnost 1899. Rutherford pokazao da postoje različite

Διαβάστε περισσότερα

Fizika 2. Auditorne vježbe 12. Kvatna priroda svjetlosti. Ivica Sorić. Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstava

Fizika 2. Auditorne vježbe 12. Kvatna priroda svjetlosti. Ivica Sorić. Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstava Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstava Fizika Auditorne vježbe Kvatna priroda svjetlosti Ivica Sorić (Ivica.Soric@fesb.hr) Bohrovi postulati Elektron se kreće oko atomske

Διαβάστε περισσότερα

Atomi i jezgre 1.1. Atomi i kvanti 1.2. Atomska jezgra λ = h p E = hf, E niži

Atomi i jezgre 1.1. Atomi i kvanti 1.2. Atomska jezgra λ = h p E = hf, E niži tomi i jezgre.. tomi i kvanti.. tomska jezgra Kvant je najmanji mogući iznos neke veličine. Foton, čestica svjetlosti, je kvant energije: gdje je f frekvencija fotona, a h Planckova konstanta. E = hf,

Διαβάστε περισσότερα

Spektar X-zraka. Atomska fizika

Spektar X-zraka. Atomska fizika Spektar X-zraka Emitirana X- zraka Katoda Anoda Upadni elektron 1895. godine W. Röntgen opazio je nevidljivo (X-zrake) zračenje koje nastaje pri izboju u cijevi s razrijeđenim plinom. Rendgensko zračenje

Διαβάστε περισσότερα

To je ujedno 1/12 mase atoma ugljika koja je određena eksperimentom i koja iznosi kg. Dakle mase nukleona:

To je ujedno 1/12 mase atoma ugljika koja je određena eksperimentom i koja iznosi kg. Dakle mase nukleona: Nuklearna fizika_intro Osnovne sile u prirodi, građa atomske jezgre, nukleoni i izotopi, energija vezanja jezgre, radioaktivnost, osnovne vrste radioaktivnog zračenja i njihova svojstva, zakon radioaktivnog

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

UVOD U KVANTNU TEORIJU

UVOD U KVANTNU TEORIJU UVOD U KVANTNU TEORIJU UVOD U KVANTNU TEORIJU 1.) FOTOELEKTRIČKI EFEKT 2.) LINIJSKI SPEKTRI ATOMA 3.) BOHROV MODEL ATOMA 4.) CRNO TIJELO 5.) ČESTICE I VALOVI Elektromagnetsko zračenje UVOD U KVANTNU TEORIJU

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

PITANJA IZ NUKLEARNE FIZIKE I RADIOAKTIVNOSTI

PITANJA IZ NUKLEARNE FIZIKE I RADIOAKTIVNOSTI PITANJA IZ NUKLEARNE FIZIKE I RADIOAKTIVNOSTI. Od kojih se čestica sastoji atomska jezgra i koja su osnovna svojstva tih čestica?. Zašto elektroni ne mogu nalaziti u jezgri? 3. Kolika je veličina atoma,

Διαβάστε περισσότερα

Fizika 2. Auditorne vježbe 11. Kvatna priroda svjetlosti, Planckova hipoteza, fotoefekt, Comptonov efekt. Ivica Sorić

Fizika 2. Auditorne vježbe 11. Kvatna priroda svjetlosti, Planckova hipoteza, fotoefekt, Comptonov efekt. Ivica Sorić Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstava Fizika 2 Auditorne vježbe 11 Kvatna priroda svjetlosti, Planckova hipoteza, fotoefekt, Comptonov efekt Ivica Sorić (Ivica.Soric@fesb.hr)

Διαβάστε περισσότερα

konst. Električni otpor

konst. Električni otpor Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

NUKLEARNA FIZIKA. Osnove fizike 4

NUKLEARNA FIZIKA. Osnove fizike 4 NUKLEARNA FIZIKA Osnove fizike 4 Atom= jezgra + elektroni jezgra = protoni + neutroni (nukleoni) POVIJEST NUKLEARNE FIZIKE 1896. Becquerel otkriće radioaktivnosti 1898. Pierre & Marie Curie separacija

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Povijesni pregled rođenje nuklearne fizike; Henri Becquerel ( ) otkrio radioaktivnost u uranovoj rudi

Povijesni pregled rođenje nuklearne fizike; Henri Becquerel ( ) otkrio radioaktivnost u uranovoj rudi Nuklearna fizika Povijesni pregled 1896. rođenje nuklearne fizike; Henri Becquerel (1852.-1908.) otkrio radioaktivnost u uranovoj rudi 1898. Pierre & Marie Curie: separacija Ra Rutherford pokazao da postoji

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

Zadatci s dosadašnjih državnih matura poredani po nastavnom programu (više-manje svi, izdanje proljeće 2017.)

Zadatci s dosadašnjih državnih matura poredani po nastavnom programu (više-manje svi, izdanje proljeće 2017.) Zadatci s dosadašnjih državnih matura poredani po nastavnom programu (više-manje svi, izdanje proljeće 2017.) četvrti razred (valna optika, relativnost, uvod u kvantnu fiziku, nuklearna fizika) Sve primjedbe

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Elementarne čestice Elementarne ili osnovne ili fundamentalne čestice = Najmanji dijelovi od kojih je sastavljena tvar. Do 1950: Elektron, proton,

Elementarne čestice Elementarne ili osnovne ili fundamentalne čestice = Najmanji dijelovi od kojih je sastavljena tvar. Do 1950: Elektron, proton, Elementarne čestice Elementarne ili osnovne ili fundamentalne čestice = Najmanji dijelovi od kojih je sastavljena tvar. Do 1950: Elektron, proton, neutron Građa atoma Pozitron, neutrino, antineutrino Beta

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Uvod u atomsku fiziku

Uvod u atomsku fiziku Uvod u atomsku fiziku Do kraja 20. stoljeća Različiti modeli o grañi materije (atoma). J.J. Thomson Atom je pozitivno nabijena kuglica u kojoj su vrlo sitni elektroni ravnomjerno rasporeñeni. Atom kao

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

NUKLEARNI ALFA-RASPAD

NUKLEARNI ALFA-RASPAD NUKLEARNI ALFA-RASPAD U lakim jezgrama energija separacije α-čestice usporediva je s energijom separacije nukleona: 8-10 MeV. Tek za teške jezgre A>150 energija separacije može biti negativna i energetski

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

POBUĐENJA JEZGRE I RASPADI

POBUĐENJA JEZGRE I RASPADI POBUĐENJA JEZGRE I RASPADI Radioaktivni raspadi iz osnovnog ili pobuđenih stanja jezgre γ-raspad : elektromagnetska interakcija. Početno i konačno stanje pripadaju istoj Jezgri. Elektromagnetski prijelazi

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Gravitacija. Gravitacija. Newtonov zakon gravitacije. Odredivanje gravitacijske konstante. Keplerovi zakoni. Gravitacijsko polje. Troma i teška masa

Gravitacija. Gravitacija. Newtonov zakon gravitacije. Odredivanje gravitacijske konstante. Keplerovi zakoni. Gravitacijsko polje. Troma i teška masa Claudius Ptolemeus (100-170) - geocentrični sustav Nikola Kopernik (1473-1543) - heliocentrični sustav Tycho Brahe (1546-1601) precizno bilježio putanje nebeskih tijela 1600. Johannes Kepler (1571-1630)

Διαβάστε περισσότερα

Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A

Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A Osnove elektrotehnike I popravni parcijalni ispit 1..014. VARIJANTA A Prezime i ime: Broj indeksa: Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti. A C 1.1. Tri naelektrisanja

Διαβάστε περισσότερα

Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet

Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad, snaga, energija Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad i energija Da bi rad bio izvršen neophodno je postojanje sile. Sila vrši rad: Pri pomjeranju tijela sa jednog mjesta na drugo Pri

Διαβάστε περισσότερα

Dijagonalizacija operatora

Dijagonalizacija operatora Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA. IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)

Διαβάστε περισσότερα

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) (Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Fizika atomskog jezgra Sadržaj

Fizika atomskog jezgra Sadržaj Osnovne karakteristike atomskog jezgra 30 Defekt mase jezgra i energija veze 303 Stabilnost atomskog jezgra 305 Radioaktivni raspad 308 akon radioaktivnog raspada 309 Vrste radioaktivnog raspada 30 α-radioaktivni

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Osnovne karakteristike atomskog jezgra

Osnovne karakteristike atomskog jezgra Osnovne karakteristike atomskog jezgra Otkriće atomskog jezgra (Raderford, 1911., rasejanje α-čestica) - skoro celokupna masa atoma je skoncentrisana u prostoru dimenzija 10 15 m. Jezgro sadrži protone

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno. JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)

Διαβάστε περισσότερα

Što je svjetlost? Svjetlost je elektromagnetski val

Što je svjetlost? Svjetlost je elektromagnetski val Optika Što je svjetlost? Svjetlost je elektromagnetski val Transvezalan Boja ovisi o valnoj duljini idljiva svjetlost (od 400 nm do 700 nm) Ljubičasta ( 400 nm) ima kradu valnu duljinu od crvene (700 nm)

Διαβάστε περισσότερα

Opća bilanca tvari - = akumulacija u dif. vremenu u dif. volumenu promatranog sustava. masa unijeta u dif. vremenu u dif. volumen promatranog sustava

Opća bilanca tvari - = akumulacija u dif. vremenu u dif. volumenu promatranog sustava. masa unijeta u dif. vremenu u dif. volumen promatranog sustava Opća bilana tvari masa unijeta u dif. vremenu u dif. volumen promatranog sustava masa iznijeta u dif. vremenu iz dif. volumena promatranog sustava - akumulaija u dif. vremenu u dif. volumenu promatranog

Διαβάστε περισσότερα

Elektron u magnetskom polju

Elektron u magnetskom polju Quantum mechanics 1 - Lecture 13 UJJS, Dept. of Physics, Osijek 4. lipnja 2013. Sadržaj 1 Bohrov magneton Stern-Gerlachov pokus Vrtnja elektrona u magnetskom polju 2 Nuklearna magnetska rezonancija (NMR)

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

Rješenje 141 Uočimo da je valna duljina čestice obrnuto razmjerna sa razlikom energijskih razina. h = E E n m h E E. m c

Rješenje 141 Uočimo da je valna duljina čestice obrnuto razmjerna sa razlikom energijskih razina. h = E E n m h E E. m c Zadatak 4 (Ivia, trukovna škola) Crtež prikazuje dio energijkih razina vodikova atoma. Koja od trjelia prikazuje emiiju fotona najkraće valne duljine? Zaokružite ipravan odgovor. A. a) B. b) C. ) D. d

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

RADIOHEMIJA.

RADIOHEMIJA. RADIOHEMIJA http://www.ffh.bg.ac.rs/geografi_fh_procesi.html 1 ATOM I ATOMSKO JEZGRO Karakteristike elementarnih čestica: elektrona, protona i neutrona Redni i maseni broj hemijskog elementa Izotopi, izobari,

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

PT ISPITIVANJE PENETRANTIMA

PT ISPITIVANJE PENETRANTIMA FSB Sveučilišta u Zagrebu Zavod za kvalitetu Katedra za nerazorna ispitivanja PT ISPITIVANJE PENETRANTIMA Josip Stepanić SADRŽAJ kapilarni učinak metoda ispitivanja penetrantima uvjeti promatranja SADRŽAJ

Διαβάστε περισσότερα

Ionizirajuće zračenje u biosferi

Ionizirajuće zračenje u biosferi Sveučilište u Splitu Kemijsko-tehnološki fakultet Ionizirajuće zračenje u biosferi Mile Dželalija Split, 2006. M. Dželalija, Ionizirajuće zračenje u biosferi (interna skripta), Sveučilište u Splitu, Kemijsko-tehnološki

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam

Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam Polarzacja Proces asajaja polarzrae svjelos: a refleksja b raspršeje c dvolom d dkrozam Freselove jedadžbe Svjelos prelaz z opčkog sredsva deksa loma 1 u sredsvo deksa loma, dolaz do: refleksje (prema

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα