Ιστογράμματα - Γραφήματα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ιστογράμματα - Γραφήματα"

Transcript

1 Ιστογράμματα - Γραφήματα Ιστογράμματα Παραδείγματα Ιστόγραμμα 1D Ιστόγραμμα 2D εδομένα από αρχείο Προσομοίωση ραδιενεργούς διάσπασης Γραφήματα Παραδείγματα Γραφήματα με σφάλματα στα σημεία Πολικό γράφημα 1

2 Ιστογράμματα Το ROOT υποστηρίζει ιστογράμματα μιας (1D), δύο (2D) και τριών (3D) διαστάσεων. Κάθε ιστόγραμμα αποτελεί ένα αντικείμενο των κλάσεων TH1F, TH2F, TH3F (τύπου float ) TH1D, TH2D, TH3D (τύπου double) ημιουργία ιστογραμμάτων: TH1F *h1 = new TH1F("h1","h1 title",100,0,4.4); TH2F *h2 = new TH2F("h2","h2 title",40,0,4,30,-3,3); Γέμισμα ιστογραμμάτων: h1->fill(x); h2->fill(x,y); Σχεδίαση ιστογραμμάτων: h1->draw(); h2->draw(); Η σχεδίαση των ιστογραμμάτων, γραφικών κτλ. γίνεται σε κατάλληλους καμβάδες αντικείμενα της κλάσης TCanvas. Για παράδειγμα: c1 = new TCanvas( c1, c1 title, 600, 400); c1->cd(); h1->draw(); 2

3 Παράδειγμα 1: Ιστόγραμμα 1D Το διπλανό παράδειγμα: Ορίζει το ιστόγραμμα gauss Γεμίζει με τυχαίους αριθμούς οι οποίοι ακολουθούν κατανομή Gauss Ορίζει τον καμβά c1 διαστάσεων 600x400 pixels Σχεδιάζει το ιστόγραμμα gauss Το ιστόγραμμα δεξιά και κάτω σχεδιάζεται με : gauss->draw( e ) 3

4 Παράδειγμα 2: Ιστογράμματα 1D Το διπλανό παράδειγμα: Ορίζει τα ιστογράμματα gauss και landau Τα γεμίζει με τυχαίους αριθμούς. Ορίζει τον καμβά c1 διαστάσεων 900x400 pixels και τον χωρίζει σε δύο μέρη Σχεδιάζει τα ιστογράμματα gauss και landau 4

5 Παράδειγμα 3: Ιστογράμματα 1D Το διπλανό παράδειγμα: Ορίζει τα ιστογράμματα gauss και landau Τα γεμίζει με τυχαίους αριθμούς. Ορίζει το κατάλληλο χρώμα στα δύο ιστογράμματα. Ορίζει τον καμβά c1 διαστάσεων 600x400 pixels. Σχεδιάζει τα ιστογράμματα gauss και landau στον ίδιο καμβά. 5

6 Παράδειγμα 4: Ιστόγραμμα 2D Το διπλανό παράδειγμα: Ορίζει το 2D ιστόγραμμα g2d Τα γεμίζει με τυχαίους αριθμούς. Ορίζει τον καμβά c1 διαστάσεων 600x400 pixels. Σχεδιάζει τo ιστογράμματα g2d Το ιστόγραμμα δεξιά και κάτω σχεδιάζεται με : g2d->draw( CONT ) 6

7 Παράδειγμα 4: Ιστόγραμμα 2D g2d->draw( LEGO ) g2d->draw( LEGO2 ) g2d->draw( SURF3 ) g2d->draw( SURF4 ) 7

8 Παράδειγμα 5 : εδομένα από αρχείο Tο παρόν παράδειγμα: ( εξιά επάνω) ημιουργεί το αρχείο δεδομένων my_data.txt στο οποίο αποθηκεύει δεδομένα από 3 κατανομές Gauss (Αριστερά κάτω) ιαβάζει τα δεδομένα από το αρχείο, δημιουργεί το ιστόγραμμα h1 και το γεμίζει με τα δεδομένα. Ορίζει τον καμβά c1 διαστάσεων 600x400 pixels και σχεδιάζει τo ιστόγραμμα h1. 8

9 Παράδειγμα 6: Προσομοίωση Ραδιενεργού διάσπασης Το 131 Ι είναι ένα ραδιενεργό στοιχείο με t 1/2 =8.02 days. Ένας πειραματιστής καταμετρά ένα δείγμα 131 Ι επί 100 ημέρες και καταγράφει διασπάσεις. Στο τέλος κάνει το ιστόγραμμα του αριθμού των γεγονότων προς τον χρόνο από την αρχή του πειράματος. Να γράψετε ένα πρόγραμμα το οποίο να προσομοιώνει το παραπάνω πείραμα. 9

10 Παράδειγμα 6: Προσομοίωση Ραδιενεργού διάσπασης Η προσομοίωση της ραδιενεργού διάσπασης γίνεται με τη δημιουργία τυχαίων αριθμών οι οποίοι ακολουθούν εκθετική κατανομή με χρόνο ημισείας ζωής t 1/2 =8.02 grandom->exp(half_lifetime) Το πρόγραμμα ορίζει το ιστόγραμμα decay και το γεμίζει με τους τυχαίους αριθμούς. Προσέξτε τον τρόπο με τον οποίο βάζουμε μονάδες στους άξονες. Ένα ιστόγραμμα φυσικής έχει ΠΑΝΤΟΤΕ μονάδες. εξιά επάνω είναι το ιστόγραμμα το οποίο οφείλει να μετρήσει και ο πειραματιστής. εξιά κάτω είναι το ίδιο ιστόγραμμα με λογαριθμικό τον κατακόρυφο άξονα. Αυτό γίνεται με την παρεμβολή πριν την σχεδίαση του ιστογράμματος της γραμμής: c1->setlogy(); Στην επόμενη διαφάνεια παρουσιάζεται ένας διαφορετικός τρόπος παρουσίασης των σημείων ενός ιστογράμματος. 10

11 Παράδειγμα 6: Προσομοίωση Ραδιενεργού διάσπασης 11

12 Γραφήματα Κάθε γράφημα αποτελεί αντικείμενο της κλάσης TGraph. Ένα γράφημα περιέχει n σημεία. Εάν υποθέσουμε ότι τα δεδομένα για τα σημεία εμπεριέχονται σε δύο πίνακες x[n], y[n] τότε μπορούμε να ορίσουμε το γράφημα ως: TGraph *gr = new TGraph(n,x,y); Το ακόλουθο παράδειγμα δημιουργεί και σχεδιάζει ένα απλό γράφημα: 12

13 Γραφήματα Κατά τη σχεδίαση ενός γραφήματος μπορούμε να χρησιμοποιήσουμε τις ακόλουθες βασικές δυνατότητες: "L" "F" "F2" "A" "C" Μία απλή γραμμή ενώνει μεταξύ τους τα σημεία Γεμίζει την περιοχή κάτω από το γράφημα Γεμίζει την περιοχή και σχεδιάζει μια πολυωνυμική γραμμή Τυπώνει τους δύο άξονες γύρω από το γράφημα Μία καμπύλη γραμμή ενώνει μεταξύ τους τα σημεία "*" Ένα * τυπώνεται σε κάθε σημείο "P" "B" Ο τρέχων marker τυπώνεται σε κάθε σημείο Τυπώνει bar chart σε κάθε σημείο Ακολουθούν βασικά παραδείγματα εκτύπωσης γραφημάτων. 13

14 Γραφήματα gr->draw(ac*); gr->setfillcolor(42); gr->draw(ab); gr->setfillcolor(42); gr->draw(af); 14

15 Γραφήματα με σφάλματα στα σημεία Για να δημιουργήσουμε ένα γράφημα με σφάλματα στα σημεία αυτό πρέπει να είναι αντικείμενο της κλάσης TGraphErrors. TGraphErrors *gr = new TGraphErrors(n,x,y,sx,sy); Όπου n ο αριθμός σημείων του γραφήματος, x[n], y[n] οι πίνακες με τα δεδομένα και sx[n], sy[n] οι πίνακες με τα σφάλματα. Το ακόλουθο παράδειγμα κάνει το γράφημα μιας σειράς μετρήσεων που ακολουθούν τον νόμο του Οhm. 15

16 Γραφήματα με σφάλματα στα σημεία Προσέξτε στον κώδικα τον τρόπο με το οποίο ορίζουμε τον τίτλο στο γράφημα, τις μονάδες στους άξονες και το στυλ, μέγεθος και χρώμα των σημείων. 16

17 Πολικό γράφημα Για να δημιουργήσουμε ένα πολικό γράφημα αυτό πρέπει να είναι αντικείμενο της κλάσης TGraphPolar. TGraphPolar *gr = new TGraphPolar(n,x,y); Όπου n ο αριθμός σημείων του γραφήματος, x[n], y[n] οι πίνακες με τα δεδομένα. Το ακόλουθο παράδειγμα κάνει ουσιαστικά το πολικό γράφημα της συνάρτησης cos(x). 17

18 Πολικό γράφημα 18

1 ο Εργαστήριο Συντεταγμένες, Χρώματα, Σχήματα

1 ο Εργαστήριο Συντεταγμένες, Χρώματα, Σχήματα 1 ο Εργαστήριο Συντεταγμένες, Χρώματα, Σχήματα 1. Σύστημα Συντεταγμένων Το σύστημα συντεταγμένων που έχουμε συνηθίσει από το σχολείο τοποθετούσε το σημείο (0,0) στο σημείο τομής των δυο αξόνων Χ και Υ.

Διαβάστε περισσότερα

Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος

Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος Χρησιμοποιείται μόνο όταν οι τιμές της μεταβλητής έχουν ένα σταθερό άθροισμα (συνήθως 100%, όταν μιλάμε για σχετικές συχνότητες) Είναι χρήσιμο μόνο

Διαβάστε περισσότερα

Β Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής

Διαβάστε περισσότερα

Επεξεργασία πολλαπλών φύλλων εργασίας - Γραφημάτων Excel

Επεξεργασία πολλαπλών φύλλων εργασίας - Γραφημάτων Excel Επεξεργασία πολλαπλών φύλλων εργασίας - Γραφημάτων Excel 11.1. Πολλαπλά φύλλα εργασίας Στο προηγούμενο κεφάλαιο δημιουργήσαμε ένα φύλλο εργασίας με τον προϋπολογισμό δαπανών του προσωπικού που θα συμμετάσχει

Διαβάστε περισσότερα

a. Κάνουμε κλικ στο Δημιουργία Διαφάνειας c. Ξεκινούμε να γράφουμε την διαφάνεια a. Είναι η πρώτη διαφάνεια της σειράς

a. Κάνουμε κλικ στο Δημιουργία Διαφάνειας c. Ξεκινούμε να γράφουμε την διαφάνεια a. Είναι η πρώτη διαφάνεια της σειράς PowerPoint 1. Εισαγωγή διαφάνειας a. Κάνουμε κλικ στο Δημιουργία Διαφάνειας b. Επιλέγουμε το είδος της διαφάνειας που επιθυμούμε. Η πρώτη διαφάνεια συνήθως είναι η διαφάνεια τίτλου. c. Ξεκινούμε να γράφουμε

Διαβάστε περισσότερα

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Ενότητα 8: Γραφικές παραστάσεις Διδάσκουσα: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Μέρος 1ο. Περιγραφική Στατιστική (Descriptive Statistics)

Μέρος 1ο. Περιγραφική Στατιστική (Descriptive Statistics) Μέρος 1ο. Περιγραφική Στατιστική (Descriptive Statistics) 1. Οργάνωση και Γραφική παράσταση στατιστικών δεδομένων 2. Αριθμητικά περιγραφικά μέτρα Εφαρμοσμένη Στατιστική Μέρος 1 ο Κ. Μπλέκας (1/13) στατιστικών

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. ΔΕΚΑΤΟ ΠΕΜΠΤΟ ΜΑΘΗΜΑ Ας δούμε τα γραφήματα των συναρτήσεων των τριών τελευταίων παραδειγμάτων του τελευταίου μαθήματος. Στο πρώτο παράδειγμα το γράφημα καθεμιάς f () = είναι

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : , Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η :1-0-017, 3-0-017 Διδάσκουσα: Κοντογιάννη Αριστούλα Σκοπός του μαθήματος Η παρουσίαση

Διαβάστε περισσότερα

7 ο Εργαστήριο Θόρυβος 2Δ, Μετακίνηση, Περιστροφή

7 ο Εργαστήριο Θόρυβος 2Δ, Μετακίνηση, Περιστροφή 7 ο Εργαστήριο Θόρυβος 2Δ, Μετακίνηση, Περιστροφή O θόρυβος 2Δ μας δίνει τη δυνατότητα να δημιουργίας υφής 2Δ. Στο παρακάτω παράδειγμα, γίνεται σχεδίαση γραμμών σε πλέγμα 300x300 με μεταβαλόμενη τιμή αδιαφάνειας

Διαβάστε περισσότερα

Η άσκηση μπορεί να γίνει με συνεργασία το πολύ δυο φοιτητών, οι οποίοι θα λάβουν τον ίδιο βαθμό στην εργασία.

Η άσκηση μπορεί να γίνει με συνεργασία το πολύ δυο φοιτητών, οι οποίοι θα λάβουν τον ίδιο βαθμό στην εργασία. Άσκηση #4 Η άσκηση μπορεί να γίνει με συνεργασία το πολύ δυο φοιτητών, οι οποίοι θα λάβουν τον ίδιο βαθμό στην εργασία. Βαθμολογούνται: 1. Η αποτελεσματική επίλυση του προβλήματος. Δηλ σωστή υλοποίηση

Διαβάστε περισσότερα

Διαγράμματα. Νίκος Σκουλίδης, Σημειώσεις Φυσικής Α` Γυμνασίου, , Διαγράμματα_1_0.docx

Διαγράμματα. Νίκος Σκουλίδης, Σημειώσεις Φυσικής Α` Γυμνασίου, , Διαγράμματα_1_0.docx Διαγράμματα Στα περισσότερα από τα Φύλλα Εργασίας που εργαστήκατε και συμπληρώσατε, είχατε να σχεδιάσετε και ένα διάγραμμα. Ίσως ήταν η πρώτη φορά που ασχοληθήκατε με αυτό το αντικείμενο και να σας φάνηκε

Διαβάστε περισσότερα

Γραφικά με υπολογιστές. Διδάσκων: Φοίβος Μυλωνάς. Διάλεξη #07

Γραφικά με υπολογιστές. Διδάσκων: Φοίβος Μυλωνάς. Διάλεξη #07 Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο Γραφικά με υπολογιστές Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #07 Γραμμές και Πολύγωνα: Εισαγωγή Αναπαράσταση 2D και 3D Χρωματισμός πολυγώνων

Διαβάστε περισσότερα

3 ο Εργαστήριο Μεταβλητές, Τελεστές

3 ο Εργαστήριο Μεταβλητές, Τελεστές 3 ο Εργαστήριο Μεταβλητές, Τελεστές Μια μεταβλητή έχει ένα όνομα και ουσιαστικά είναι ένας δείκτης σε μια συγκεκριμένη θέση στη μνήμη του υπολογιστή. Στη θέση μνήμης στην οποία δείχνει μια μεταβλητή αποθηκεύονται

Διαβάστε περισσότερα

Σκοπός. Εργαστήριο 6 Εντολές Επανάληψης Τα Εργαστηριακά Προγράμματα. Η δομή Επιλογής στη PASCAL. H δομή Επανάληψης στη PASCAL. Η εντολή επανάληψης for

Σκοπός. Εργαστήριο 6 Εντολές Επανάληψης Τα Εργαστηριακά Προγράμματα. Η δομή Επιλογής στη PASCAL. H δομή Επανάληψης στη PASCAL. Η εντολή επανάληψης for Εργαστήριο 6 Εντολές Επανάληψης Τα Εργαστηριακά Προγράμματα Η δομή Επιλογής στη PASCAL H δομή Επανάληψης στη PASCAL Η εντολή επανάληψης for Σκοπός Η εντολή επανάληψης while. 1 ΕΡΓΑΣΤΗΡΙΟ 6 Εισαγωγή στο

Διαβάστε περισσότερα

Λειτουργία και Απόδοση του Πρότυπου Ανιχνευτή ΝΕΣΤΩΡ

Λειτουργία και Απόδοση του Πρότυπου Ανιχνευτή ΝΕΣΤΩΡ 12 Λειτουργία και Απόδοση του Πρότυπου Ανιχνευτή ΝΕΣΤΩΡ Εισαγωγή Στο παρόν Κεφάλαιο περιγράφεται η λειτουργία και απόδοση του πρότυπου ανιχνευτή ΝΕΣΤΩΡ κατά τη λειτουργία του στη βαθιά θάλασσα. Συγκεκριμένα

Διαβάστε περισσότερα

Παρουσίαση Libreoffice. Βασίλειος Καραβασίλης Μονάδα Αριστείας ΕΛΛΑΚ ΕΤΕΠΗ 27/04/2015

Παρουσίαση Libreoffice. Βασίλειος Καραβασίλης Μονάδα Αριστείας ΕΛΛΑΚ ΕΤΕΠΗ 27/04/2015 Παρουσίαση Libreoffice Βασίλειος Καραβασίλης Μονάδα Αριστείας ΕΛΛΑΚ ΕΤΕΠΗ 27/04/2015 Εισαγωγή Είναι μια σουίτα εφαρμογών γραφείου που περιέχει διάφορα επιμέρους προγράμματα για την επεξεργασία κειμένου,

Διαβάστε περισσότερα

Εργαστήριο 4 ΔΗΜΙΟΥΡΓΙΑ ΓΡΑΦΗΜΑΤΩΝ ΜΕ ΤΟ EXCEL ΑΚ ΤΡΑΥΛΟΣ

Εργαστήριο 4 ΔΗΜΙΟΥΡΓΙΑ ΓΡΑΦΗΜΑΤΩΝ ΜΕ ΤΟ EXCEL ΑΚ ΤΡΑΥΛΟΣ Εργαστήριο 4 ΔΗΜΙΟΥΡΓΙΑ ΓΡΑΦΗΜΑΤΩΝ ΜΕ ΤΟ EXCEL ΑΚ ΤΡΑΥΛΟΣ Βήμα 1 ο : Από τα αποτελέσματα μιας στατιστικής ανάλυσης έχουμε τα παρακάτω περιγραφικά στατιστικά. Για τον σκοπό της εργασίας με την εντολή copy

Διαβάστε περισσότερα

EXCEL. 1 Προϊόν Τεμάχια Τιμή Μονάδας Κόστος ΦΠΑ Τελική τιμή

EXCEL. 1 Προϊόν Τεμάχια Τιμή Μονάδας Κόστος ΦΠΑ Τελική τιμή 1. Ανοίξτε την εφαρμογή Λογιστικού Φύλλου Εκτελούμε το Excel 2. Δημιουργήστε τον πιο κάτω πίνακα: Α Β C D E F 1 Προϊόν Τεμάχια Τιμή Μονάδας Κόστος ΦΠΑ Τελική τιμή 2 Προϊόν Α 3 2,3 3 Προϊόν Β 4 7 3. Στo

Διαβάστε περισσότερα

Γραφήματα. Excel 2003

Γραφήματα. Excel 2003 Γραφήματα Excel 2003 Ορολογία Τίτλος γραφήματος Σειρά δεδομένων Υπόμνημα Κατηγορίες Ετικέτες Δείκτες Περιοχή γραφήματος Περιοχή σχεδίασης γραφήματος Γραμμές πλέγματος Οδηγός γραφημάτων Για τη δημιουργία

Διαβάστε περισσότερα

Το περιβάλλον του προγράμματος ζωγραφικής «Ζωγραφική»

Το περιβάλλον του προγράμματος ζωγραφικής «Ζωγραφική» Ζωγραφική Το περιβάλλον του προγράμματος ζωγραφικής «Ζωγραφική» Το περιβάλλον του προγράμματος ζωγραφικής Designer Το περιβάλλον του προγράμματος ζωγραφικής Tux-Paint Η Γραμμή Μενού. Η Εργαλειοθήκη του

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2013-2014 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητή: ένα χαρακτηριστικό ή ιδιότητα που μπορεί να πάρει διαφορετικές τιμές

Διαβάστε περισσότερα

Εισαγωγή στη Χρήση του SPSS for Windows Σελίδα:

Εισαγωγή στη Χρήση του SPSS for Windows Σελίδα: ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 7 ο 7.1. Μορφοποίηση πινάκων 7.2 ηµιουργία Υποδείγµατος Πινάκων (TEMPLATE) 7.3 Κατασκευή Γραφηµάτων 7.4 ηµιουργία

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 9/10/009 ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 3o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Emal: gasl@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gasl

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 3 Κεφάλαιο 9: Ζωγραφική

ΕΝΟΤΗΤΑ 3 Κεφάλαιο 9: Ζωγραφική ζωγραφικής, αντιγραφή, Το περιβάλλον του προγράμματος ζωγραφικής «Ζωγραφική» Το περιβάλλον του προγράμματος ζωγραφικής Designer Το περιβάλλον του προγράμματος ζωγραφικής Tux-Paint ζωγραφικής, αντιγραφή,

Διαβάστε περισσότερα

Άσκηση 1 (ανακοινώθηκε στις 20 Μαρτίου 2017, προθεσμία παράδοσης: 24 Απριλίου 2017, 12 τα μεσάνυχτα).

Άσκηση 1 (ανακοινώθηκε στις 20 Μαρτίου 2017, προθεσμία παράδοσης: 24 Απριλίου 2017, 12 τα μεσάνυχτα). Κ08 Δομές Δεδομένων και Τεχνικές Προγραμματισμού Διδάσκων: Μανόλης Κουμπαράκης Εαρινό Εξάμηνο 2016-2017. Άσκηση 1 (ανακοινώθηκε στις 20 Μαρτίου 2017, προθεσμία παράδοσης: 24 Απριλίου 2017, 12 τα μεσάνυχτα).

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο. Εργαστηριακή Άσκηση 1 Σχέδιο 1 2. Σπύρος Ερμίδης. Σχολή Ναυπηγών Μηχανολόγων Μηχανικών Ε.Μ.Π

Μηχανολογικό Σχέδιο. Εργαστηριακή Άσκηση 1 Σχέδιο 1 2. Σπύρος Ερμίδης. Σχολή Ναυπηγών Μηχανολόγων Μηχανικών Ε.Μ.Π Σχολή Ναυπηγών Μηχανολόγων Μηχανικών Ε.Μ.Π Μηχανολογικό Σχέδιο Εργαστηριακή Άσκηση 1 Σχέδιο 1 2 Σπύρος Ερμίδης Η παρουσίαση προετοιμάστηκε το ακ. έτος 2014 15 από τον Σερράο Απόστολο (nm11046@mail.ntua.gr)

Διαβάστε περισσότερα

Οδηγίες για το CABRI - GEOMETRY II Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας

Οδηγίες για το CABRI - GEOMETRY II Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Οδηγίες για το CABRI - GEOMETRY II Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Εκτελώντας το πρόγραμμα παίρνουμε ένα παράθυρο εργασίας Γεωμετρικών εφαρμογών. Τα βασικά κουμπιά και τα μενού έχουν την παρακάτω

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική

Εφαρμοσμένη Στατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Περιγραφική Στατιστική Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

ΤΕΣΤ Α2 ΟΜΑΔΑ Ι. παράγωγος είναι αρνητική: f (x) = 1 2x, f

ΤΕΣΤ Α2 ΟΜΑΔΑ Ι. παράγωγος είναι αρνητική: f (x) = 1 2x, f ΤΕΣΤ Α ΟΜΑΔΑ Ι Θεωρούμε την συνάρτηση: f() = pln(+ ) για, με p>. Να διερευνηθεί αν είναι κυρτή η κοίλη. Να βρεθούν οι τιμές της παραμέτρου p για τις οποίες η μέγιστη τιμή της βρίσκεται στο =.. Η συνάρτηση

Διαβάστε περισσότερα

Γραφήματα οικογένειας παραβολών

Γραφήματα οικογένειας παραβολών Γραφήματα οικογένειας παραβολών Η βολή ενός αντικειμένου στον αέρα έχει ως αποτέλεσμα μια καμπυλωμένη τροχιά, η οποία είναι πάντοτε μια παραβολή. Η παραβολή είναι το γράφημα μιας δευτεροβάθμιας συνάρτησης,

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

Μαθαίνω τα βασικά εργαλεία του προγράμματος ζωγραφικής για να μπορώ να ζωγραφίζω στον ηλεκτρονικό υπολογιστή.

Μαθαίνω τα βασικά εργαλεία του προγράμματος ζωγραφικής για να μπορώ να ζωγραφίζω στον ηλεκτρονικό υπολογιστή. ΦΥΛΛΟ ΕΡΓΟΥ 1 ΤΑΞΗ Α Μαθαίνω τα βασικά εργαλεία του προγράμματος ζωγραφικής για να μπορώ να ζωγραφίζω στον ηλεκτρονικό υπολογιστή. 1. Παρατηρώ το πρόγραμμα ζωγραφικής στην οθόνη του υπολογιστή μου. 2.

Διαβάστε περισσότερα

Μοντέλα στην Επιστήμη Τροφίμων 532Ε

Μοντέλα στην Επιστήμη Τροφίμων 532Ε Μοντέλα στην Επιστήμη Τροφίμων 532Ε Ασκηση Περιγραφικής Στατιστικής Κουτσουμανής Κ. Τομέας Επιστήμης και Τεχνολογίας Τροφίμων Σχολή Γεωπονίας, Α.Π.Θ Μοντέλα στην Επιστήμη Τροφίμων 532Ε Στέλνουμε την άσκηση

Διαβάστε περισσότερα

DIP_04 Σημειακή επεξεργασία. ΤΕΙ Κρήτης

DIP_04 Σημειακή επεξεργασία. ΤΕΙ Κρήτης DIP_04 Σημειακή επεξεργασία ΤΕΙ Κρήτης ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΙΚΟΝΑΣ Σκοπός μιας τέτοιας τεχνικής μπορεί να είναι: η βελτιστοποίηση της οπτικής εμφάνισης μιας εικόνας όπως την αντιλαμβάνεται ο άνθρωπος, η τροποποίηση

Διαβάστε περισσότερα

Κατακόρυφη - Οριζόντια μετατόπιση καμπύλης

Κατακόρυφη - Οριζόντια μετατόπιση καμπύλης 1 Κατακόρυφη - Οριζόντια μετατόπιση καμπύλης Έστω ότι έχουμε την συνάρτηση: f(x) = x + 3x 1 H γραφική της παράσταση είναι: Και την συνάρτηση f(x) = x + 3x + η οποία έχει προκύψει από την προηγούμενη αφού

Διαβάστε περισσότερα

Προγραμματισμός με Logo στο MicroWorlds Pro

Προγραμματισμός με Logo στο MicroWorlds Pro 1 Προγραμματισμός με Logo στο MicroWorlds Pro Η Logo είναι μια γλώσσα προγραμματισμού ειδικά σχεδιασμένη για τους μαθητές. Το πιο βασικό ίσως εργαλείο της Logo είναι η χελώνα. Κάποιες βασικές εντολές της

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 3 ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕΛΕΤΗ ΙΣΤΟΓΡΑΜΜΑΤΟΣ. ( ) 1, αν Ι(i,j)=k hk ( ), διαφορετικά

ΑΣΚΗΣΗ 3 ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕΛΕΤΗ ΙΣΤΟΓΡΑΜΜΑΤΟΣ. ( ) 1, αν Ι(i,j)=k hk ( ), διαφορετικά ΑΣΚΗΣΗ 3 ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕΛΕΤΗ ΙΣΤΟΓΡΑΜΜΑΤΟΣ Αντικείμενο: Εξαγωγή ιστογράμματος εικόνας, απλοί μετασχηματισμοί με αυτό, ισοστάθμιση ιστογράμματος. Εφαρμογή βασικών παραθύρων με την βοήθεια του ΜΑΤLAB

Διαβάστε περισσότερα

Υπλογστική Φυσική Στοιχεωδών Σωματιδίων. Κ.Κορδάς. Εγκατάσταση και εξοικοίωση με την PYTHIA. Κώστας Κορδάς. Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Υπλογστική Φυσική Στοιχεωδών Σωματιδίων. Κ.Κορδάς. Εγκατάσταση και εξοικοίωση με την PYTHIA. Κώστας Κορδάς. Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Υπλογστική Φυσική Στοιχεωδών Σωματιδίων Κ.Κορδάς Εγκατάσταση και εξοικοίωση με την PYTHIA Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Υπολογιστική Φυσική Στοιχειωδών, M.Sc Υπολογιστικής Φυσικής,

Διαβάστε περισσότερα

Διάλεξη 2 - Σημειώσεις

Διάλεξη 2 - Σημειώσεις Διάλεξη 2 - Σημειώσεις Συναρτήσεις 1. Συνάρτηση: μία συνάρτηση είναι ένας κανόνας που αναθέτει σε κάθε στοιχείο του συνόλου ακριβώς ένα στοιχείο του συνόλου. Το σύνολο καλείται πεδίο ορισμού της συνάρτησης

Διαβάστε περισσότερα

Υπολογιστικά Φύλλα Microsoft Excel 2016 Level I

Υπολογιστικά Φύλλα Microsoft Excel 2016 Level I Υπολογιστικά Φύλλα Microsoft Excel 2016 Level I 1. Εισαγωγή 1.1. Δυνατότητες και χαρακτηριστικά του προγράμματος 1.2. Τρόποι ενεργοποίησης του προγράμματος 1.3. Περιγραφή του βασικού παραθύρου Ορολογία

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑ ΔΗΜΙΟΥΡΓΙΑΣ ΓΡΑΦΗΜΑΤΟΣ ΣΤΟ MICROSOFT EXCEL 2003

ΠΑΡΑΔΕΙΓΜΑ ΔΗΜΙΟΥΡΓΙΑΣ ΓΡΑΦΗΜΑΤΟΣ ΣΤΟ MICROSOFT EXCEL 2003 ΠΑΡΑΔΕΙΓΜΑ ΔΗΜΙΟΥΡΓΙΑΣ ΓΡΑΦΗΜΑΤΟΣ ΣΤΟ MICROSOFT EXCEL 2003 Μία από τις βασικές λειτουργίες του Excel είναι και η παραγωγή γραφημάτων για την απεικόνιση επεξεργασμένων αριθμητικών δεδομένων στα φύλλα εργασίας.

Διαβάστε περισσότερα

Περιεχόμενα. 26 Γραφικά δύο διαστάσεων... 11. 27 Γραφικά τριών διαστάσεων... 45

Περιεχόμενα. 26 Γραφικά δύο διαστάσεων... 11. 27 Γραφικά τριών διαστάσεων... 45 Περιεχόμενα 26 Γραφικά δύο διαστάσεων... 11 26.1 Η συνάρτηση plot...11 26.2 Στυλ γραμμών, σημειωτές, και χρώματα...14 26.3 Κάνναβοι διαγραμμάτων, πλαίσιο αξόνων, και ετικέτες...16 26.4 Προσαρμογή αξόνων

Διαβάστε περισσότερα

2. ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ

2. ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 2. ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ εισαγωγή \γράφηµα επιλέγουµε το τύπο του γραφήµατος από τους βασικούς ή προσαρµοσµένους τύπους. Συνεχίζοντας µπορούµε να ορίσουµε τη περιοχή των δεδοµένων και αν είναι κατά γραµµές

Διαβάστε περισσότερα

Το πρόγραμμα συγχρηματοδοτείται 75% από το Ευρωπαϊκό κοινωνικό ταμείο και 25% από εθνικούς πόρους.

Το πρόγραμμα συγχρηματοδοτείται 75% από το Ευρωπαϊκό κοινωνικό ταμείο και 25% από εθνικούς πόρους. Το πρόγραμμα συγχρηματοδοτείται 75% από το Ευρωπαϊκό κοινωνικό ταμείο και 25% από εθνικούς πόρους. ΓΕΝΙΚΟ ΤΜΗΜΑ ΦΥΣΙΚΗΣ, ΧΗΜΕΙΑΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΕΡΓΑΣΤΗΡΙΑ ΦΥΣΙΚΗΣ ORIGIN ΕΙΣΑΓΩΓΙΚΟ ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ

Διαβάστε περισσότερα

1ο μέρος 1. Φτιάχνουμε την πίστα. Μια ενδεικτική πίστα φαίνεται παρακάτω:

1ο μέρος 1. Φτιάχνουμε την πίστα. Μια ενδεικτική πίστα φαίνεται παρακάτω: 1ο μέρος 1. Φτιάχνουμε την πίστα. Μια ενδεικτική πίστα φαίνεται παρακάτω: Εικόνα 1 Για να φτιάξουμε το τείχος επιλέγουμε καταρχήν την καρτέλα Γραφικά (κάτω δεξιά) και έπειτα το γεμάτο τετράγωνο από την

Διαβάστε περισσότερα

Πρότυπα και διανύσματα

Πρότυπα και διανύσματα Πρότυπα και διανύσματα Πρότυπα συναρτήσεων Πρότυπα κλάσεων Παραδείγματα ιανύσματα της καθιερωμένης C++ Επαναλήπτες σε διανύσματα 1 Πρότυπα συναρτήσεων Το πρότυπο (template) είναι μια αφηρημένη συνταγή

Διαβάστε περισσότερα

Κεφάλαιο 4 Εισαγωγή στη στατιστική ανάλυση μετρήσεων

Κεφάλαιο 4 Εισαγωγή στη στατιστική ανάλυση μετρήσεων Κεφάλαιο 4 Εισαγωγή στη στατιστική ανάλυση μετρήσεων Σύνοψη Στο κεφάλαιο αυτό παρουσιάζονται οι βασικές έννοιες της στατιστικής ανάλυσης των μετρήσεων που υπόκεινται σε τυχαία σφάλματα. Παρουσιάζεται μέσω

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. Ενότητα: Εισαγωγή στα Υπολογιστικά Φύλλα Εργασίας-Μέρος 2

Τίτλος Μαθήματος: Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. Ενότητα: Εισαγωγή στα Υπολογιστικά Φύλλα Εργασίας-Μέρος 2 Τίτλος Μαθήματος: Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές Ενότητα: Εισαγωγή στα Υπολογιστικά Φύλλα Εργασίας-Μέρος 2 Διδάσκων: Αναπληρωτής Καθηγητής Αλέξιος Δούβαλης Τμήμα: Φυσικής Πανεπιστήμιο Ιωαννίνων

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ

ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ Δημήτρης Στεφανάκης Η Μέθοδος των Ελαχίστων Τετραγώνων (ΜΕΤ) χρησιμοποιείται για την κατασκευή της γραφικής παράστασης που περιγράφει ένα φαινόμενο,

Διαβάστε περισσότερα

Έναρξη Τερματισμός του MatLab

Έναρξη Τερματισμός του MatLab Σύντομος Οδηγός MATLAB Β. Χ. Μούσας 1/6 Έναρξη Τερματισμός του MatLab Η έναρξη της λειτουργίας του MatLab εξαρτάται από το λειτουργικό σύστημα. Στα συστήματα UNIX πληκτρολογούμε στη προτροπή του συστήματος

Διαβάστε περισσότερα

7.2.1 Εκτίμηση της Καμπύλης Παλινδρόμησης της Μεταβλητής Υ πάνω στην Μεταβλητή Χ

7.2.1 Εκτίμηση της Καμπύλης Παλινδρόμησης της Μεταβλητής Υ πάνω στην Μεταβλητή Χ 7.2.1 Εκτίμηση της Καμπύλης Παλινδρόμησης της Μεταβλητής Υ πάνω στην Μεταβλητή Χ Για να προσδιορισθεί η καμπύλη παλινδρόμησης, η οποία αποτελείται από όλα τα ζεύγη σημείων τα οποία μπορούν προσδιορισθούν

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΚΦΕ Α Αν. Αττικής - Υπεύθυνος Κ. Παπαμιχάλης Εργαστηριακές ασκήσεις Φυσικής Β Γυμνασίου ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 7 ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ Βασικές έννοιες: Θέση - μετατόπιση - χρόνος - χρονικό διάστημα - ταχύτητα

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη της Πληροφορικής Εργαστήριο. Microsoft Excel Μέρος 2

Εισαγωγή στην Επιστήμη της Πληροφορικής Εργαστήριο. Microsoft Excel Μέρος 2 Πανεπιστήμιο Κύπρου Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη της Πληροφορικής και Πληροφοριακά Συστήματα Εργαστήριο - ΕΠΛ003 Εισαγωγή στην Επιστήμη της Πληροφορικής Εργαστήριο Microsoft Excel Μέρος 2

Διαβάστε περισσότερα

Εγχειρίδιο Invest i. Εγχειρίδιο Invest

Εγχειρίδιο Invest i. Εγχειρίδιο Invest i Εγχειρίδιο Invest ii Copyright 2004, 2005 Raphael Slinckx Copyright 2007 Terrence Hall Δίνεται άδεια για αντιγραφή, διανομή και/ή τροποποίηση του εγγράφου υπό τους ""όρους της Ελεύθερης Άδειας Τεκμηρίωσης

Διαβάστε περισσότερα

Λίγα λόγια από το συγγραφέα Κεφάλαιο 1: PowerPoint Κεφάλαιο 2: Εκκίνηση του PowerPoint... 13

Λίγα λόγια από το συγγραφέα Κεφάλαιο 1: PowerPoint Κεφάλαιο 2: Εκκίνηση του PowerPoint... 13 Περιεχόμενα Λίγα λόγια από το συγγραφέα... 7 Κεφάλαιο 1: PowerPoint... 9 Κεφάλαιο 2: Εκκίνηση του PowerPoint... 13 Κεφάλαιο 3: Δημιουργία νέας παρουσίασης... 27 Κεφάλαιο 4: Μορφοποίηση κειμένου παρουσίασης...

Διαβάστε περισσότερα

Παράδειγμα «Ημίτονο και ζωγραφική!»: Έχει δει στα μαθηματικά τη γραφική παράσταση της συνάρτησης του ημιτόνου; Σας θυμίζει κάτι η παρακάτω εικόνα;

Παράδειγμα «Ημίτονο και ζωγραφική!»: Έχει δει στα μαθηματικά τη γραφική παράσταση της συνάρτησης του ημιτόνου; Σας θυμίζει κάτι η παρακάτω εικόνα; Τελεστές, συνθήκες και άλλα! Όπως έχει διαφανεί από όλα τα προηγούμενα παραδείγματα, η κατασκευή κατάλληλων συνθηκών στις εντολές εάν, εάν αλλιώς, για πάντα εάν, περίμενε ώσπου, επανέλαβε ώσπου, είναι

Διαβάστε περισσότερα

4 ο Εργαστήριο Τυχαίοι Αριθμοί, Μεταβλητές Συστήματος

4 ο Εργαστήριο Τυχαίοι Αριθμοί, Μεταβλητές Συστήματος 4 ο Εργαστήριο Τυχαίοι Αριθμοί, Μεταβλητές Συστήματος Μεταβλητές Συστήματος Η Processing χρησιμοποιεί κάποιες μεταβλητές συστήματος, όπως τις ονομάζουμε, για να μπορούμε να παίρνουμε πληροφορίες από το

Διαβάστε περισσότερα

Προγραμματιστικές Ασκήσεις, Φυλλάδιο 1

Προγραμματιστικές Ασκήσεις, Φυλλάδιο 1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΕ C Προγραμματιστικές Ασκήσεις, Φυλλάδιο Εκφώνηση: 9/3/0 Παράδοση: 5/4/0,.59 Άσκηση 0 η : Το πρόβλημα της βελόνας του Buffon Θέμα της εργασίας

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν ΘΕΜΑ 1o ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5)

Διαβάστε περισσότερα

Επιλογή ενός στοιχείου γραφήματος από μια λίστα στοιχείων γραφήματος

Επιλογή ενός στοιχείου γραφήματος από μια λίστα στοιχείων γραφήματος - 217 - Το στοιχείο που θέλετε να επιλέξετε επισημαίνεται ξεκάθαρα με λαβές επιλογής. Συμβουλή: Για να σας βοηθήσει να εντοπίσετε το στοιχείο γραφήματος που θέλετε να επιλέξετε, το Microsoft Office Excel

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΜΗΧΑΝΙΚΗ

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΜΗΧΑΝΙΚΗ ΦΥΣ 114 ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΜΗΧΑΝΙΚΗ Φθινόπωρο 010 Διδάσκων/Υπεύθυνος: Φώτης Πτωχός e-mail: fotis@ucy.ac.cy Τηλ:.89.837 Γραφείο: B35 web-page: http://www.ucy.ac.cy/~fotis/phy114/phy114.htm Γραφικές παραστάσεις

Διαβάστε περισσότερα

ΒΙΟΣΤΑΤΙΣΤΙΚΗ. ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας

ΒΙΟΣΤΑΤΙΣΤΙΚΗ. ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας Επικοινωνία: Πτέρυγα 4, Τοµέας Κοινωνικής Ιατρικής Εργαστήριο Βιοστατιστικής Τηλ. 4613 e-mail: biostats@med.uoc.gr thalegak@med.uoc.gr

Διαβάστε περισσότερα

II. Συναρτήσεις. math-gr

II. Συναρτήσεις. math-gr II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική

Διαβάστε περισσότερα

3) το παράθυρο Πίνακας τιμών όπου εμφανίζονται οι τιμές που παίρνουν οι παράμετροι

3) το παράθυρο Πίνακας τιμών όπου εμφανίζονται οι τιμές που παίρνουν οι παράμετροι Ο Δ Η Γ Ι Ε Σ Γ Ι Α Τ Ο M O D E L L U S 0.0 4. 0 5 Για να κατεβάσουμε το πρόγραμμα Επιλέγουμε Download στη διεύθυνση: http://modellus.co/index.php/en/download. Στη συνέχεια εκτελούμε το ModellusX_windows_0_4_05.exe

Διαβάστε περισσότερα

Φύλλο Εργασίας Μαθητή Τίτλος: Γίνομαι Ερευνητής/Ερευνήτρια

Φύλλο Εργασίας Μαθητή Τίτλος: Γίνομαι Ερευνητής/Ερευνήτρια Φύλλο Εργασίας Μαθητή Τίτλος: Γίνομαι Ερευνητής/Ερευνήτρια Τάξη: Γ Γυμνασίου Ενότητα: Επικοινωνώ και Συνεργάζομαι σε Διαδικτυακά Περιβάλλοντα Λύνω Προβλήματα με Υπολογιστικά Φύλλα Μάθημα: Επεξεργασία Ηλεκτρονικού

Διαβάστε περισσότερα

Εισαγωγή στο Gnuplot. Σφυράκης Χρυσοβαλάντης

Εισαγωγή στο Gnuplot. Σφυράκης Χρυσοβαλάντης Εισαγωγή στο Gnuplot Σφυράκης Χρυσοβαλάντης Περιεχόμενα Εισαγωγή... 3 Εντολές του Gnuplot... 3 Έξοδος του γραφήματος... 3 Καθορισμός των χαρακτηριστικών του γραφήματος... 4 Συναρτήσεις Αρχεία Δεδομένων...

Διαβάστε περισσότερα

ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ. f : A R και στη συνέχεια δίνουμε τον τύπο της συνάρτησης, π.χ.

ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ. f : A R και στη συνέχεια δίνουμε τον τύπο της συνάρτησης, π.χ. Συναρτήσεις σελ ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία (κανόνα),

Διαβάστε περισσότερα

A Λυκείου 9 Μαρτίου 2013

A Λυκείου 9 Μαρτίου 2013 Θεωρητικό Μέρος A Λυκείου 9 Μαρτίου 2013 Θέμα 1 ο Στις ερωτήσεις A1, A2, A3, A4 και Β μία μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής

Διαβάστε περισσότερα

ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ (Σημειώσεις Powerpoint) ΕΚΠΑΙΔΕΥΤΕΣ: ΒΑΡΕΛΑΣ ΙΩΑΝΝΗΣ, ΠΟΖΟΥΚΙΔΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ MICROSOFT POWERPOINT (ΕΚΠΑΙΔΕΥΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ)

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη της Πληροφορικής Εργαστήριο. Microsoft Excel Μέρος 2

Εισαγωγή στην Επιστήμη της Πληροφορικής Εργαστήριο. Microsoft Excel Μέρος 2 Πανεπιστήμιο Κύπρου Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη της Πληροφορικής Εργαστήριο ΕΠΛ001 Εισαγωγή στην Επιστήμη της Πληροφορικής Εργαστήριο Microsoft Excel Μέρος 2 Παναγιώτης Χατζηχριστοδούλου

Διαβάστε περισσότερα

Σχεδιασμός Διανυσματικών Γραφικών με το I n k s c a p e

Σχεδιασμός Διανυσματικών Γραφικών με το I n k s c a p e Σχεδιασμός Διανυσματικών Γραφικών με το I n k s c a p e Φύλλο Εργασίας Αν κάτι πάει στραβά, μην αγχώνεστε! Κάντε αναίρεση (Ctrl+Ζ). Βασικά Σχήματα Τα βασικά σχήματα που μπορεί να σχεδιάσει κανείς στο Inkscape

Διαβάστε περισσότερα

Σημειώσεις στο PowerPoint

Σημειώσεις στο PowerPoint Σημειώσεις στο PowerPoint Τι είναι το PowerPoint; Το PowerPoint 2010 είναι μια οπτική και γραφική εφαρμογή που χρησιμοποιείται κυρίως για τη δημιουργία παρουσιάσεων. Με το PowerPoint, μπορείτε να δημιουργήσετε

Διαβάστε περισσότερα

Μπορούμε να δημιουργήσουμε διάφορα γραφήματα που αναπαριστούν τα δεδομένα ή υπολογισμούς του λογιστικού φύλλου μας.

Μπορούμε να δημιουργήσουμε διάφορα γραφήματα που αναπαριστούν τα δεδομένα ή υπολογισμούς του λογιστικού φύλλου μας. Κεφάλαιο 3 Το Excel είναι ένα πρόγραμμα ανάλυσης (συνήθως οικονομικής) με το οποίο ο χρήστης μπορεί να επιλύσει διάφορα προβλήματα όπως: προϋπολογισμού, χρηματοοικονομικού σχεδιασμού, εκτίμηση κόστους

Διαβάστε περισσότερα

1. Πειραματικά Σφάλματα

1. Πειραματικά Σφάλματα . Πειραματικά Σφάλματα Σκοπός της εκτέλεσης ενός πειράματος στη Φυσική είναι ο προσδιορισμός ποσοτικός ή/και ποιοτικός- κάποιων φυσικών μεγεθών που περιγράφουν ένα συγκεκριμένο φαινόμενο. Ο ποιοτικός προσδιορισμός

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ & ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ & ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ & ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ Μέρος 3ο ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ 1 ΕΚΤΥΠΩΣΗ ΚΕΙΜΕΝΟΥ Ένα κείμενο μπορεί να εκχωρηθεί ως τιμή μιας μεταβλητής

Διαβάστε περισσότερα

ΦΥΣ 145 Υπολογιστικές Μέθοδοι στη Φυσική. Τελική εξέταση 5 Μάη 2007 Ομάδα 1 η

ΦΥΣ 145 Υπολογιστικές Μέθοδοι στη Φυσική. Τελική εξέταση 5 Μάη 2007 Ομάδα 1 η ΦΥΣ 145 Υπολογιστικές Μέθοδοι στη Φυσική Τελική εξέταση 5 Μάη 2007 Ομάδα 1 η Γράψτε το ονοματεπώνυμο, αριθμό ταυτότητάς και το password σας στο πάνω μέρος της αυτής της σελίδας. Πρέπει να απαντήσετε και

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α και Β ΛΥΚΕΙΟΥ για τις παν.εξετ. των ΕΠΑ.Λ.

ΑΛΓΕΒΡΑ Α και Β ΛΥΚΕΙΟΥ για τις παν.εξετ. των ΕΠΑ.Λ. ΑΛΓΕΒΡΑ Α και Β ΛΥΚΕΙΟΥ για τις παν.εξετ. των ΕΠΑ.Λ. Μια συνοπτική παρουσίαση της Άλγεβρας, για όσους θέλουν να προετοιμαστούν για τις Πανελλαδικές Εξετάσεις των ΕΠΑ.Λ. Για απορίες στο www.commonmaths.weebly.com

Διαβάστε περισσότερα

Κεφάλαιο 1 Χρήση προτύπου 2. Κεφάλαιο 2 Τροποποίηση μιας παρουσίασης 9. Κεφάλαιο 4 Προσθήκη αντικειμένων 26. Κεφάλαιο 5 Ειδικά εφέ 35

Κεφάλαιο 1 Χρήση προτύπου 2. Κεφάλαιο 2 Τροποποίηση μιας παρουσίασης 9. Κεφάλαιο 4 Προσθήκη αντικειμένων 26. Κεφάλαιο 5 Ειδικά εφέ 35 Περιεχόμενα Κεφάλαιο 1 Χρήση προτύπου 2 Κεφάλαιο 2 Τροποποίηση μιας παρουσίασης 9 Κεφάλαιο 3 Εφαρμογή σχεδίων 19 Κεφάλαιο 4 Προσθήκη αντικειμένων 26 Κεφάλαιο 5 Ειδικά εφέ 35 Κεφάλαιο 6 Κουμπιά ενεργειών

Διαβάστε περισσότερα

11 Το ολοκλήρωµα Riemann

11 Το ολοκλήρωµα Riemann Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την

Διαβάστε περισσότερα

Ο ΣΚΟΠΟΣ ΤΟΥ ΕΚΠΑΙ ΕΥΤΙΚΟΥ ΠΑΡΑ ΕΙΓΜΑΤΟΣ ΕΙΝΑΙ Η ΣΧΕ ΙΑΣΗ ΤΟΥ ΠΑΡΑΚΑΤΩ ΣΧΗΜΑΤΟΣ

Ο ΣΚΟΠΟΣ ΤΟΥ ΕΚΠΑΙ ΕΥΤΙΚΟΥ ΠΑΡΑ ΕΙΓΜΑΤΟΣ ΕΙΝΑΙ Η ΣΧΕ ΙΑΣΗ ΤΟΥ ΠΑΡΑΚΑΤΩ ΣΧΗΜΑΤΟΣ Πανεπιστήμιο Πατρών - Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών ΜΗΧΑΝΟΛΟΓΙΚΟ ΣΧΕΔΙΟ Ι Εκπαιδευτικό παράδειγμα για την εκμάθηση σχεδίασης με την βοήθεια του σχεδιαστικού πακέτου Auto

Διαβάστε περισσότερα

Δημιουργία και επεξεργασία διανυσματικών επιπέδων στο QGIS

Δημιουργία και επεξεργασία διανυσματικών επιπέδων στο QGIS Δημιουργία και επεξεργασία διανυσματικών επιπέδων στο QGIS Δημιουργία επιπέδου σχεδίασης 1. Από το Menu Layer Create Layer New Shapefile Layer δημιουργούμε νέο επίπεδο. Στο παράθυρο που ανοίγει (Εικ. 1)

Διαβάστε περισσότερα

Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α)

Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α) Τμήμα Διοίκησης Επιχειρήσεων (Αγ. Νικόλαος), Τ.Ε.Ι. Κρήτης Σελίδα 1 από 15 2η Εργαστηριακή Άσκηση Σκοπός: Η παρούσα εργαστηριακή άσκηση, χρησιμοποιώντας ως δεδομένα τα στοιχεία που προέκυψαν από την 1η

Διαβάστε περισσότερα

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012 ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ Δίνονται τα εξής πρότυπα: [ ] [ ] [ ] [ ] Άσκηση η (3 μονάδες) Χρησιμοποιώντας το κριτήριο της ομοιότητας να απορριφθεί ένα χαρακτηριστικό με βάση το συντελεστή συσχέτισης. (γράψτε ποιο

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C Επιμέλεια: Κ Μυλωνάκης ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΕΡΩΤΗΣΗ Τι ονομάζεται πραγματική συνάρτηση με πεδίο ορισμού το Α; Έστω Α ένα υποσύνολο του R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία

Διαβάστε περισσότερα

4. Να βρείτε την εξίσωση της ευθείας που διέρχεται από την αρχή των αξόνων και το σημείο Α(,.

4. Να βρείτε την εξίσωση της ευθείας που διέρχεται από την αρχή των αξόνων και το σημείο Α(,. 1. Τι ξέρετε για τη γραφική παράσταση των συναρτήσεων της μορφής ; Πώς ονομάζεται το ; Η γραφική παράσταση των συναρτήσεων της μορφής, είναι ευθεία γραμμή που διέρχεται από την αρχή των αξόνων. Το ονομάζεται

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 A εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής κατά

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ 9 ο ΜΑΘΗΜΑ ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Πότε κάνουμε ομαδοποίηση των παρατηρήσεων; Όταν το πλήθος των τιμών μιας μεταβλητής είναι αρκετά μεγάλο κάνουμε ομαδοποίηση των παρατηρήσεων. Αυτό συμβαίνει είτε

Διαβάστε περισσότερα

f(x) = και στην συνέχεια

f(x) = και στην συνέχεια ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση. Στις συναρτήσεις μπορούμε να μετασχηματίσουμε πρώτα τον τύπο τους και μετά να βρίσκουμε το πεδίο ορισμού τους; Όχι. Το πεδίο ορισμού της συνάρτησης το βρίσκουμε πριν μετασχηματίσουμε

Διαβάστε περισσότερα

Kεφάλαιο 11 Λίστες και Ανάλυση Δεδομένων Kεφάλαιο 12 Εργαλεία ανάλυσης πιθανοτήτων Kεφάλαιο 13 Ανάλυση δεδομένων...

Kεφάλαιο 11 Λίστες και Ανάλυση Δεδομένων Kεφάλαιο 12 Εργαλεία ανάλυσης πιθανοτήτων Kεφάλαιο 13 Ανάλυση δεδομένων... Μέρος 2 Kεφάλαιο 11 Λίστες και Ανάλυση Δεδομένων... 211 Kεφάλαιο 12 Εργαλεία ανάλυσης πιθανοτήτων... 241 Kεφάλαιο 13 Ανάλυση δεδομένων... 257 Kεφάλαιο 14 Συναρτήσεις Μέρος Β... 285 Kεφάλαιο 15 Ευρετήριο

Διαβάστε περισσότερα

Περιεχόμενα. Περιεχόμενα...v

Περιεχόμενα. Περιεχόμενα...v Περιεχόμενα Περιεχόμενα...v Κεφάλαιο 1: Ρυθμίσεις γραμμών εργαλείων και μενού...1 Κεφάλαιο 2: Διαχείριση παραθύρων και προβολές...18 Κεφάλαιο 3: Εύρεση, αντικατάσταση, και μετάβαση σε συγκεκριμένο στοιχείο...35

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.08.: Επίπεδα Εμβαδά Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

7.Α.1 Παρουσιάσεις. 7.Α.2 Περιγραφή περιεχομένων της εφαρμογής

7.Α.1 Παρουσιάσεις. 7.Α.2 Περιγραφή περιεχομένων της εφαρμογής Μάθημα 7ο Πολυμέσα 7.Α.1 Παρουσιάσεις Οι παρουσιάσεις είναι μια εφαρμογή που χρησιμεύει στην παρουσίαση των εργασιών μας. Αποτελούν μια συνοπτική μορφή των εργασιών μας. Μέσω δημιουργίας διαφανειών, μορφοποιήσεων

Διαβάστε περισσότερα

6 ο Εργαστήριο Σχεδιάζοντας σχήματα από σημεία κορυφών, Θόρυβος-Τυχαίοι Αριθμοί (συνέχεια)

6 ο Εργαστήριο Σχεδιάζοντας σχήματα από σημεία κορυφών, Θόρυβος-Τυχαίοι Αριθμοί (συνέχεια) 6 ο Εργαστήριο Σχεδιάζοντας σχήματα από σημεία κορυφών, Θόρυβος-Τυχαίοι Αριθμοί (συνέχεια) Σχεδιάζοντας σχήματα από σημεία κορυφών Με nofill() δηλώνουμε ότι το σχήμα δεν θα έχει γέμισμα με χρώμα Η beginshape()

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 1: Βασικές Έννοιες. Δρ. Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 1: Βασικές Έννοιες. Δρ. Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 1: Βασικές Έννοιες Δρ. Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Μαθηματικός Ορισμός Τρισδιάστατου Χώρου

Μαθηματικός Ορισμός Τρισδιάστατου Χώρου Μαθηματικός Ορισμός Τρισδιάστατου Χώρου (R 3 ), κατ επέκτασιν του διδιάστατου Ο R 3 είναι ένα σύνολο σημείων με συντεταγμένες (x,y,z) Τα x, y και z έχουν τις εξής ιδιότητες: Το καθένα από αυτά διατρέχει

Διαβάστε περισσότερα

Κεφάλαιο ΙV: Δείκτες και πίνακες. 4.1 Δείκτες.

Κεφάλαιο ΙV: Δείκτες και πίνακες. 4.1 Δείκτες. Κεφάλαιο ΙV: Δείκτες και πίνακες. 4.1 Δείκτες. Η C, όπως έχουμε αναφέρει, είναι μια γλώσσα προγραμματισμού υψηλού επιπέδου η οποία αναπτύχθηκε για πρώτη φορά το 1972 από τον Dennis Ritchie στα AT&T Bell

Διαβάστε περισσότερα

Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις

Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις 1. Σκοπός Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις Σκοπός της άσκησης είναι να εξοικειωθούν οι σπουδαστές με τη γραφική απεικόνιση των δεδομένων τους, την χρήση των γραφικών παραστάσεων για την εξαγωγή

Διαβάστε περισσότερα