Ιστογράμματα - Γραφήματα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ιστογράμματα - Γραφήματα"

Transcript

1 Ιστογράμματα - Γραφήματα Ιστογράμματα Παραδείγματα Ιστόγραμμα 1D Ιστόγραμμα 2D εδομένα από αρχείο Προσομοίωση ραδιενεργούς διάσπασης Γραφήματα Παραδείγματα Γραφήματα με σφάλματα στα σημεία Πολικό γράφημα 1

2 Ιστογράμματα Το ROOT υποστηρίζει ιστογράμματα μιας (1D), δύο (2D) και τριών (3D) διαστάσεων. Κάθε ιστόγραμμα αποτελεί ένα αντικείμενο των κλάσεων TH1F, TH2F, TH3F (τύπου float ) TH1D, TH2D, TH3D (τύπου double) ημιουργία ιστογραμμάτων: TH1F *h1 = new TH1F("h1","h1 title",100,0,4.4); TH2F *h2 = new TH2F("h2","h2 title",40,0,4,30,-3,3); Γέμισμα ιστογραμμάτων: h1->fill(x); h2->fill(x,y); Σχεδίαση ιστογραμμάτων: h1->draw(); h2->draw(); Η σχεδίαση των ιστογραμμάτων, γραφικών κτλ. γίνεται σε κατάλληλους καμβάδες αντικείμενα της κλάσης TCanvas. Για παράδειγμα: c1 = new TCanvas( c1, c1 title, 600, 400); c1->cd(); h1->draw(); 2

3 Παράδειγμα 1: Ιστόγραμμα 1D Το διπλανό παράδειγμα: Ορίζει το ιστόγραμμα gauss Γεμίζει με τυχαίους αριθμούς οι οποίοι ακολουθούν κατανομή Gauss Ορίζει τον καμβά c1 διαστάσεων 600x400 pixels Σχεδιάζει το ιστόγραμμα gauss Το ιστόγραμμα δεξιά και κάτω σχεδιάζεται με : gauss->draw( e ) 3

4 Παράδειγμα 2: Ιστογράμματα 1D Το διπλανό παράδειγμα: Ορίζει τα ιστογράμματα gauss και landau Τα γεμίζει με τυχαίους αριθμούς. Ορίζει τον καμβά c1 διαστάσεων 900x400 pixels και τον χωρίζει σε δύο μέρη Σχεδιάζει τα ιστογράμματα gauss και landau 4

5 Παράδειγμα 3: Ιστογράμματα 1D Το διπλανό παράδειγμα: Ορίζει τα ιστογράμματα gauss και landau Τα γεμίζει με τυχαίους αριθμούς. Ορίζει το κατάλληλο χρώμα στα δύο ιστογράμματα. Ορίζει τον καμβά c1 διαστάσεων 600x400 pixels. Σχεδιάζει τα ιστογράμματα gauss και landau στον ίδιο καμβά. 5

6 Παράδειγμα 4: Ιστόγραμμα 2D Το διπλανό παράδειγμα: Ορίζει το 2D ιστόγραμμα g2d Τα γεμίζει με τυχαίους αριθμούς. Ορίζει τον καμβά c1 διαστάσεων 600x400 pixels. Σχεδιάζει τo ιστογράμματα g2d Το ιστόγραμμα δεξιά και κάτω σχεδιάζεται με : g2d->draw( CONT ) 6

7 Παράδειγμα 4: Ιστόγραμμα 2D g2d->draw( LEGO ) g2d->draw( LEGO2 ) g2d->draw( SURF3 ) g2d->draw( SURF4 ) 7

8 Παράδειγμα 5 : εδομένα από αρχείο Tο παρόν παράδειγμα: ( εξιά επάνω) ημιουργεί το αρχείο δεδομένων my_data.txt στο οποίο αποθηκεύει δεδομένα από 3 κατανομές Gauss (Αριστερά κάτω) ιαβάζει τα δεδομένα από το αρχείο, δημιουργεί το ιστόγραμμα h1 και το γεμίζει με τα δεδομένα. Ορίζει τον καμβά c1 διαστάσεων 600x400 pixels και σχεδιάζει τo ιστόγραμμα h1. 8

9 Παράδειγμα 6: Προσομοίωση Ραδιενεργού διάσπασης Το 131 Ι είναι ένα ραδιενεργό στοιχείο με t 1/2 =8.02 days. Ένας πειραματιστής καταμετρά ένα δείγμα 131 Ι επί 100 ημέρες και καταγράφει διασπάσεις. Στο τέλος κάνει το ιστόγραμμα του αριθμού των γεγονότων προς τον χρόνο από την αρχή του πειράματος. Να γράψετε ένα πρόγραμμα το οποίο να προσομοιώνει το παραπάνω πείραμα. 9

10 Παράδειγμα 6: Προσομοίωση Ραδιενεργού διάσπασης Η προσομοίωση της ραδιενεργού διάσπασης γίνεται με τη δημιουργία τυχαίων αριθμών οι οποίοι ακολουθούν εκθετική κατανομή με χρόνο ημισείας ζωής t 1/2 =8.02 grandom->exp(half_lifetime) Το πρόγραμμα ορίζει το ιστόγραμμα decay και το γεμίζει με τους τυχαίους αριθμούς. Προσέξτε τον τρόπο με τον οποίο βάζουμε μονάδες στους άξονες. Ένα ιστόγραμμα φυσικής έχει ΠΑΝΤΟΤΕ μονάδες. εξιά επάνω είναι το ιστόγραμμα το οποίο οφείλει να μετρήσει και ο πειραματιστής. εξιά κάτω είναι το ίδιο ιστόγραμμα με λογαριθμικό τον κατακόρυφο άξονα. Αυτό γίνεται με την παρεμβολή πριν την σχεδίαση του ιστογράμματος της γραμμής: c1->setlogy(); Στην επόμενη διαφάνεια παρουσιάζεται ένας διαφορετικός τρόπος παρουσίασης των σημείων ενός ιστογράμματος. 10

11 Παράδειγμα 6: Προσομοίωση Ραδιενεργού διάσπασης 11

12 Γραφήματα Κάθε γράφημα αποτελεί αντικείμενο της κλάσης TGraph. Ένα γράφημα περιέχει n σημεία. Εάν υποθέσουμε ότι τα δεδομένα για τα σημεία εμπεριέχονται σε δύο πίνακες x[n], y[n] τότε μπορούμε να ορίσουμε το γράφημα ως: TGraph *gr = new TGraph(n,x,y); Το ακόλουθο παράδειγμα δημιουργεί και σχεδιάζει ένα απλό γράφημα: 12

13 Γραφήματα Κατά τη σχεδίαση ενός γραφήματος μπορούμε να χρησιμοποιήσουμε τις ακόλουθες βασικές δυνατότητες: "L" "F" "F2" "A" "C" Μία απλή γραμμή ενώνει μεταξύ τους τα σημεία Γεμίζει την περιοχή κάτω από το γράφημα Γεμίζει την περιοχή και σχεδιάζει μια πολυωνυμική γραμμή Τυπώνει τους δύο άξονες γύρω από το γράφημα Μία καμπύλη γραμμή ενώνει μεταξύ τους τα σημεία "*" Ένα * τυπώνεται σε κάθε σημείο "P" "B" Ο τρέχων marker τυπώνεται σε κάθε σημείο Τυπώνει bar chart σε κάθε σημείο Ακολουθούν βασικά παραδείγματα εκτύπωσης γραφημάτων. 13

14 Γραφήματα gr->draw(ac*); gr->setfillcolor(42); gr->draw(ab); gr->setfillcolor(42); gr->draw(af); 14

15 Γραφήματα με σφάλματα στα σημεία Για να δημιουργήσουμε ένα γράφημα με σφάλματα στα σημεία αυτό πρέπει να είναι αντικείμενο της κλάσης TGraphErrors. TGraphErrors *gr = new TGraphErrors(n,x,y,sx,sy); Όπου n ο αριθμός σημείων του γραφήματος, x[n], y[n] οι πίνακες με τα δεδομένα και sx[n], sy[n] οι πίνακες με τα σφάλματα. Το ακόλουθο παράδειγμα κάνει το γράφημα μιας σειράς μετρήσεων που ακολουθούν τον νόμο του Οhm. 15

16 Γραφήματα με σφάλματα στα σημεία Προσέξτε στον κώδικα τον τρόπο με το οποίο ορίζουμε τον τίτλο στο γράφημα, τις μονάδες στους άξονες και το στυλ, μέγεθος και χρώμα των σημείων. 16

17 Πολικό γράφημα Για να δημιουργήσουμε ένα πολικό γράφημα αυτό πρέπει να είναι αντικείμενο της κλάσης TGraphPolar. TGraphPolar *gr = new TGraphPolar(n,x,y); Όπου n ο αριθμός σημείων του γραφήματος, x[n], y[n] οι πίνακες με τα δεδομένα. Το ακόλουθο παράδειγμα κάνει ουσιαστικά το πολικό γράφημα της συνάρτησης cos(x). 17

18 Πολικό γράφημα 18

Επεξεργασία πολλαπλών φύλλων εργασίας - Γραφημάτων Excel

Επεξεργασία πολλαπλών φύλλων εργασίας - Γραφημάτων Excel Επεξεργασία πολλαπλών φύλλων εργασίας - Γραφημάτων Excel 11.1. Πολλαπλά φύλλα εργασίας Στο προηγούμενο κεφάλαιο δημιουργήσαμε ένα φύλλο εργασίας με τον προϋπολογισμό δαπανών του προσωπικού που θα συμμετάσχει

Διαβάστε περισσότερα

a. Κάνουμε κλικ στο Δημιουργία Διαφάνειας c. Ξεκινούμε να γράφουμε την διαφάνεια a. Είναι η πρώτη διαφάνεια της σειράς

a. Κάνουμε κλικ στο Δημιουργία Διαφάνειας c. Ξεκινούμε να γράφουμε την διαφάνεια a. Είναι η πρώτη διαφάνεια της σειράς PowerPoint 1. Εισαγωγή διαφάνειας a. Κάνουμε κλικ στο Δημιουργία Διαφάνειας b. Επιλέγουμε το είδος της διαφάνειας που επιθυμούμε. Η πρώτη διαφάνεια συνήθως είναι η διαφάνεια τίτλου. c. Ξεκινούμε να γράφουμε

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

Το περιβάλλον του προγράμματος ζωγραφικής «Ζωγραφική»

Το περιβάλλον του προγράμματος ζωγραφικής «Ζωγραφική» Ζωγραφική Το περιβάλλον του προγράμματος ζωγραφικής «Ζωγραφική» Το περιβάλλον του προγράμματος ζωγραφικής Designer Το περιβάλλον του προγράμματος ζωγραφικής Tux-Paint Η Γραμμή Μενού. Η Εργαλειοθήκη του

Διαβάστε περισσότερα

Μαθαίνω τα βασικά εργαλεία του προγράμματος ζωγραφικής για να μπορώ να ζωγραφίζω στον ηλεκτρονικό υπολογιστή.

Μαθαίνω τα βασικά εργαλεία του προγράμματος ζωγραφικής για να μπορώ να ζωγραφίζω στον ηλεκτρονικό υπολογιστή. ΦΥΛΛΟ ΕΡΓΟΥ 1 ΤΑΞΗ Α Μαθαίνω τα βασικά εργαλεία του προγράμματος ζωγραφικής για να μπορώ να ζωγραφίζω στον ηλεκτρονικό υπολογιστή. 1. Παρατηρώ το πρόγραμμα ζωγραφικής στην οθόνη του υπολογιστή μου. 2.

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 3 Κεφάλαιο 9: Ζωγραφική

ΕΝΟΤΗΤΑ 3 Κεφάλαιο 9: Ζωγραφική ζωγραφικής, αντιγραφή, Το περιβάλλον του προγράμματος ζωγραφικής «Ζωγραφική» Το περιβάλλον του προγράμματος ζωγραφικής Designer Το περιβάλλον του προγράμματος ζωγραφικής Tux-Paint ζωγραφικής, αντιγραφή,

Διαβάστε περισσότερα

Οδηγίες για το CABRI - GEOMETRY II Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας

Οδηγίες για το CABRI - GEOMETRY II Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Οδηγίες για το CABRI - GEOMETRY II Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Εκτελώντας το πρόγραμμα παίρνουμε ένα παράθυρο εργασίας Γεωμετρικών εφαρμογών. Τα βασικά κουμπιά και τα μενού έχουν την παρακάτω

Διαβάστε περισσότερα

ΒΙΟΣΤΑΤΙΣΤΙΚΗ. ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας

ΒΙΟΣΤΑΤΙΣΤΙΚΗ. ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας Επικοινωνία: Πτέρυγα 4, Τοµέας Κοινωνικής Ιατρικής Εργαστήριο Βιοστατιστικής Τηλ. 4613 e-mail: biostats@med.uoc.gr thalegak@med.uoc.gr

Διαβάστε περισσότερα

Περιεχόμενα. 26 Γραφικά δύο διαστάσεων... 11. 27 Γραφικά τριών διαστάσεων... 45

Περιεχόμενα. 26 Γραφικά δύο διαστάσεων... 11. 27 Γραφικά τριών διαστάσεων... 45 Περιεχόμενα 26 Γραφικά δύο διαστάσεων... 11 26.1 Η συνάρτηση plot...11 26.2 Στυλ γραμμών, σημειωτές, και χρώματα...14 26.3 Κάνναβοι διαγραμμάτων, πλαίσιο αξόνων, και ετικέτες...16 26.4 Προσαρμογή αξόνων

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ 9 ο ΜΑΘΗΜΑ ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Πότε κάνουμε ομαδοποίηση των παρατηρήσεων; Όταν το πλήθος των τιμών μιας μεταβλητής είναι αρκετά μεγάλο κάνουμε ομαδοποίηση των παρατηρήσεων. Αυτό συμβαίνει είτε

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑ ΔΗΜΙΟΥΡΓΙΑΣ ΓΡΑΦΗΜΑΤΟΣ ΣΤΟ MICROSOFT EXCEL 2003

ΠΑΡΑΔΕΙΓΜΑ ΔΗΜΙΟΥΡΓΙΑΣ ΓΡΑΦΗΜΑΤΟΣ ΣΤΟ MICROSOFT EXCEL 2003 ΠΑΡΑΔΕΙΓΜΑ ΔΗΜΙΟΥΡΓΙΑΣ ΓΡΑΦΗΜΑΤΟΣ ΣΤΟ MICROSOFT EXCEL 2003 Μία από τις βασικές λειτουργίες του Excel είναι και η παραγωγή γραφημάτων για την απεικόνιση επεξεργασμένων αριθμητικών δεδομένων στα φύλλα εργασίας.

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

Το πρόγραμμα συγχρηματοδοτείται 75% από το Ευρωπαϊκό κοινωνικό ταμείο και 25% από εθνικούς πόρους.

Το πρόγραμμα συγχρηματοδοτείται 75% από το Ευρωπαϊκό κοινωνικό ταμείο και 25% από εθνικούς πόρους. Το πρόγραμμα συγχρηματοδοτείται 75% από το Ευρωπαϊκό κοινωνικό ταμείο και 25% από εθνικούς πόρους. ΓΕΝΙΚΟ ΤΜΗΜΑ ΦΥΣΙΚΗΣ, ΧΗΜΕΙΑΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΕΡΓΑΣΤΗΡΙΑ ΦΥΣΙΚΗΣ ORIGIN ΕΙΣΑΓΩΓΙΚΟ ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ

Διαβάστε περισσότερα

Σχεδιασμός Διανυσματικών Γραφικών με το I n k s c a p e

Σχεδιασμός Διανυσματικών Γραφικών με το I n k s c a p e Σχεδιασμός Διανυσματικών Γραφικών με το I n k s c a p e Φύλλο Εργασίας Αν κάτι πάει στραβά, μην αγχώνεστε! Κάντε αναίρεση (Ctrl+Ζ). Βασικά Σχήματα Τα βασικά σχήματα που μπορεί να σχεδιάσει κανείς στο Inkscape

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΚΦΕ Α Αν. Αττικής - Υπεύθυνος Κ. Παπαμιχάλης Εργαστηριακές ασκήσεις Φυσικής Β Γυμνασίου ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 7 ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ Βασικές έννοιες: Θέση - μετατόπιση - χρόνος - χρονικό διάστημα - ταχύτητα

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη της Πληροφορικής Εργαστήριο. Microsoft Excel Μέρος 2

Εισαγωγή στην Επιστήμη της Πληροφορικής Εργαστήριο. Microsoft Excel Μέρος 2 Πανεπιστήμιο Κύπρου Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη της Πληροφορικής και Πληροφοριακά Συστήματα Εργαστήριο - ΕΠΛ003 Εισαγωγή στην Επιστήμη της Πληροφορικής Εργαστήριο Microsoft Excel Μέρος 2

Διαβάστε περισσότερα

Εγχειρίδιο Invest i. Εγχειρίδιο Invest

Εγχειρίδιο Invest i. Εγχειρίδιο Invest i Εγχειρίδιο Invest ii Copyright 2004, 2005 Raphael Slinckx Copyright 2007 Terrence Hall Δίνεται άδεια για αντιγραφή, διανομή και/ή τροποποίηση του εγγράφου υπό τους ""όρους της Ελεύθερης Άδειας Τεκμηρίωσης

Διαβάστε περισσότερα

Έναρξη Τερματισμός του MatLab

Έναρξη Τερματισμός του MatLab Σύντομος Οδηγός MATLAB Β. Χ. Μούσας 1/6 Έναρξη Τερματισμός του MatLab Η έναρξη της λειτουργίας του MatLab εξαρτάται από το λειτουργικό σύστημα. Στα συστήματα UNIX πληκτρολογούμε στη προτροπή του συστήματος

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΜΗΧΑΝΙΚΗ

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΜΗΧΑΝΙΚΗ ΦΥΣ 114 ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΜΗΧΑΝΙΚΗ Φθινόπωρο 010 Διδάσκων/Υπεύθυνος: Φώτης Πτωχός e-mail: fotis@ucy.ac.cy Τηλ:.89.837 Γραφείο: B35 web-page: http://www.ucy.ac.cy/~fotis/phy114/phy114.htm Γραφικές παραστάσεις

Διαβάστε περισσότερα

II. Συναρτήσεις. math-gr

II. Συναρτήσεις. math-gr II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική

Διαβάστε περισσότερα

Φύλλο Εργασίας Μαθητή Τίτλος: Γίνομαι Ερευνητής/Ερευνήτρια

Φύλλο Εργασίας Μαθητή Τίτλος: Γίνομαι Ερευνητής/Ερευνήτρια Φύλλο Εργασίας Μαθητή Τίτλος: Γίνομαι Ερευνητής/Ερευνήτρια Τάξη: Γ Γυμνασίου Ενότητα: Επικοινωνώ και Συνεργάζομαι σε Διαδικτυακά Περιβάλλοντα Λύνω Προβλήματα με Υπολογιστικά Φύλλα Μάθημα: Επεξεργασία Ηλεκτρονικού

Διαβάστε περισσότερα

Προγραμματιστικές Ασκήσεις, Φυλλάδιο 1

Προγραμματιστικές Ασκήσεις, Φυλλάδιο 1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΕ C Προγραμματιστικές Ασκήσεις, Φυλλάδιο Εκφώνηση: 9/3/0 Παράδοση: 5/4/0,.59 Άσκηση 0 η : Το πρόβλημα της βελόνας του Buffon Θέμα της εργασίας

Διαβάστε περισσότερα

27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό

27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό ΗΜΥ 429 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 1 (i) Βασική στατιστική 2 Στατιστική Vs Πιθανότητες Στατιστική: επιτρέπει μέτρηση και αναγνώριση θορύβου και

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α και Β ΛΥΚΕΙΟΥ για τις παν.εξετ. των ΕΠΑ.Λ.

ΑΛΓΕΒΡΑ Α και Β ΛΥΚΕΙΟΥ για τις παν.εξετ. των ΕΠΑ.Λ. ΑΛΓΕΒΡΑ Α και Β ΛΥΚΕΙΟΥ για τις παν.εξετ. των ΕΠΑ.Λ. Μια συνοπτική παρουσίαση της Άλγεβρας, για όσους θέλουν να προετοιμαστούν για τις Πανελλαδικές Εξετάσεις των ΕΠΑ.Λ. Για απορίες στο www.commonmaths.weebly.com

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Όταν το πλήθος των παρατηρήσεων είναι μεγάλο, είναι απαραίτητο οι παρατηρήσεις να ταξινομηθούν σε μικρό πλήθος ομάδων που ονομάζονται κλάσεις (class intervals). Η ομαδοποίηση αυτή γίνεται

Διαβάστε περισσότερα

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΟ SPSS To SPSS θα: - Κάνει πολύπλοκη στατιστική ανάλυση σε δευτερόλεπτα -

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΥΔΡΟΛΟΓΙΑ Πιθανοτική προσέγγιση των υδρολογικών μεταβλητών

ΤΕΧΝΙΚΗ ΥΔΡΟΛΟΓΙΑ Πιθανοτική προσέγγιση των υδρολογικών μεταβλητών ΤΕΧΝΙΚΗ ΥΔΡΟΛΟΓΙΑ Πιθανοτική προσέγγιση των υδρολογικών μεταβλητών Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Εργαστήριο Υδρολογίας και Αξιοποίησης Υδατικών Πόρων ΣΥΛΛΟΓΙΣΜΟΣ-ΕΠΑΓΩΓΗ (DEDUCTION

Διαβάστε περισσότερα

Ο ΣΚΟΠΟΣ ΤΟΥ ΕΚΠΑΙ ΕΥΤΙΚΟΥ ΠΑΡΑ ΕΙΓΜΑΤΟΣ ΕΙΝΑΙ Η ΣΧΕ ΙΑΣΗ ΤΟΥ ΠΑΡΑΚΑΤΩ ΣΧΗΜΑΤΟΣ

Ο ΣΚΟΠΟΣ ΤΟΥ ΕΚΠΑΙ ΕΥΤΙΚΟΥ ΠΑΡΑ ΕΙΓΜΑΤΟΣ ΕΙΝΑΙ Η ΣΧΕ ΙΑΣΗ ΤΟΥ ΠΑΡΑΚΑΤΩ ΣΧΗΜΑΤΟΣ Πανεπιστήμιο Πατρών - Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών ΜΗΧΑΝΟΛΟΓΙΚΟ ΣΧΕΔΙΟ Ι Εκπαιδευτικό παράδειγμα για την εκμάθηση σχεδίασης με την βοήθεια του σχεδιαστικού πακέτου Auto

Διαβάστε περισσότερα

Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις

Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις 1. Σκοπός Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις Σκοπός της άσκησης είναι να εξοικειωθούν οι σπουδαστές με τη γραφική απεικόνιση των δεδομένων τους, την χρήση των γραφικών παραστάσεων για την εξαγωγή

Διαβάστε περισσότερα

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012 ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ Δίνονται τα εξής πρότυπα: [ ] [ ] [ ] [ ] Άσκηση η (3 μονάδες) Χρησιμοποιώντας το κριτήριο της ομοιότητας να απορριφθεί ένα χαρακτηριστικό με βάση το συντελεστή συσχέτισης. (γράψτε ποιο

Διαβάστε περισσότερα

Συνδυασμός Μαθηματικών με γραφικές παραστάσεις

Συνδυασμός Μαθηματικών με γραφικές παραστάσεις Το πρόγραμμα Origin Συνδυασμός Μαθηματικών με γραφικές παραστάσεις Δημιουργία γραφικής παράστασης συνάρτησης Για να δημιουργήσετε τη γραφική παράσταση από μια συνάρτηση επιλέξτε File-New-Graph To Origin

Διαβάστε περισσότερα

Παρουσίαση του Mathematica

Παρουσίαση του Mathematica Παρουσίαση του Mathematica Εργαστήριο Σκυλίτσης Θεοχάρης Καλαματιανός Ρωμανός Καπλάνης Αθανάσιος Ιόνιο Πανεπιστήμιο (www.ionio.gr)( Εισαγωγή Σύμβολα πράξεων ή συναρτήσεων: Πρόσθεση + Αφαίρεση - Πολλαπλασιασμός

Διαβάστε περισσότερα

Microsoft PowerPoint 2007

Microsoft PowerPoint 2007 Information Technology Services and Solutions Σύμβουλοι Μηχανογράφησης και Εκπαίδευσης Στεφ. Σκουλούδη 27, Καλλίπολη, Πειραιάς 210 45 38 177 http://www.itss.gr/ Microsoft PowerPoint 2007 Κωνσταντίνος Κωβαίος

Διαβάστε περισσότερα

Εισαγωγή στην C. Μορφή Προγράµµατος σε γλώσσα C

Εισαγωγή στην C. Μορφή Προγράµµατος σε γλώσσα C Εισαγωγή στην C Μορφή Προγράµµατος σε γλώσσα C Τµήµα Α Με την εντολή include συµπεριλαµβάνω στο πρόγραµµα τα πρότυπα των συναρτήσεων εισόδου/εξόδου της C.Το αρχείο κεφαλίδας stdio.h είναι ένας κατάλογος

Διαβάστε περισσότερα

Βιομηχανικοί Ελεγκτές

Βιομηχανικοί Ελεγκτές Βιομηχανικοί Ελεγκτές Σημειώσεις Εργαστηρίου Έλεγχος Στάθμης Δοχείου με P.I.D. Ελεγκτή Περιεχόμενα 1. Τρόπος Εισαγωγής στο πρόγραμμα εξομοίωσης. 2. Τρόπος λειτουργίας εξομοιωτή. 3. Αναγνώριση ιδιοτήτων

Διαβάστε περισσότερα

Απλή αρμονική ταλάντωση με χρήση Multilog

Απλή αρμονική ταλάντωση με χρήση Multilog 1 Εργαστηριακή Διδασκαλία των Φυσικών εργασιών στα Γενικά Λύκεια Περίοδος 2006 2007 Φυσική Κατεύθυνσης Γ Λυκείου Ενδεικτική προσέγγιση της εργαστηριακή δραστηριότητας : Απλή αρμονική ταλάντωση με χρήση

Διαβάστε περισσότερα

Ο ΗΓΙΕΣ DOCUMENT DESIGNER

Ο ΗΓΙΕΣ DOCUMENT DESIGNER Ο ΗΓΙΕΣ DOCUMENT DESIGNER ΕΙΣΑΓΩΓΗ Εάν δεν επιθυµείτε να χρησιµοποιείτε τις προσχεδιασµένες φόρµες εντύπων της Singular, η εργασία αυτή σας δίνει τη δυνατότητα να σχεδιάζετε φόρµες µε βάση τις οποίες επιθυµείτε

Διαβάστε περισσότερα

Πίνακες, περιγράµµατα και σκίαση

Πίνακες, περιγράµµατα και σκίαση Πίνακες, περιγράµµατα και σκίαση Οι πίνακες Οι πίνακες είναι ορθογώνια πλαίσια που χωρίζονται σε γραµµές και στήλες. Η τοµή µιας γραµµής µε µια στήλη προσδιορίζει ένα κελί. Τα στοιχεία, που παρουσιάζουµε,

Διαβάστε περισσότερα

Γρήγορη Εκκίνηση. Όταν ξεκινήσετε το GeoGebra, εμφανίζεται το παρακάτω παράθυρο:

Γρήγορη Εκκίνηση. Όταν ξεκινήσετε το GeoGebra, εμφανίζεται το παρακάτω παράθυρο: Τι είναι το GeoGebra; Γρήγορη Εκκίνηση Λογισμικό Δυναμικών Μαθηματικών σε ένα - απλό στη χρήση - πακέτο Για την εκμάθηση και τη διδασκαλία σε όλα τα επίπεδα της εκπαίδευσης Συνδυάζει διαδραστικά γεωμετρία,

Διαβάστε περισσότερα

«Αβάκιο» Οδηγός χρήσης Μικρόκοσμου που αποτελείται από τις ψηφίδες Καμβάς, Χελώνα, Γλώσσα, Μεταβολέας, Χρώματα.

«Αβάκιο» Οδηγός χρήσης Μικρόκοσμου που αποτελείται από τις ψηφίδες Καμβάς, Χελώνα, Γλώσσα, Μεταβολέας, Χρώματα. «Αβάκιο» Οδηγός χρήσης Μικρόκοσμου που αποτελείται από τις ψηφίδες Καμβάς, Χελώνα, Γλώσσα, Μεταβολέας, Χρώματα. Πώς θα δουλέψεις με το Χελωνόκοσμο την πρώτη φορά 1. Θα χρησιμοποιήσεις το αριστερό πλήκτρο

Διαβάστε περισσότερα

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ A A. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι f g f g,. Μονάδες 7 Α. Σε ένα πείραμα με ισοπίθανα αποτελέσματα

Διαβάστε περισσότερα

Prost S: Οδοποιΐα Σιδηροδρομική Υδραυλικά έργα

Prost S: Οδοποιΐα Σιδηροδρομική Υδραυλικά έργα Prost S: Οδοποιΐα Σιδηροδρομική Υδραυλικά έργα Χαρακτηριστικά Οριζοντιογραφία Στο γραφικό περιβάλλον της εφαρμογής είναι δυνατή η σχεδίαση οριζοντιογραφιών δρόμων, σιδηροδρομικών γραμμών, ανοικτών και

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2015-2016 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό

Διαβάστε περισσότερα

ΘΕΜΑ : ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΜΕ 2 Σ.Φ ΙΣΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ. ΔΙΑΡΚΕΙΑ: 1 περιόδους. 28/9/2008 12:48 Όνομα: Λεκάκης Κωνσταντίνος καθ.

ΘΕΜΑ : ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΜΕ 2 Σ.Φ ΙΣΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ. ΔΙΑΡΚΕΙΑ: 1 περιόδους. 28/9/2008 12:48 Όνομα: Λεκάκης Κωνσταντίνος καθ. ΘΕΜΑ : ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΜΕ 2 Σ.Φ ΙΣΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ ΔΙΑΡΚΕΙΑ: 1 περιόδους 28/9/2008 12:48 καθ. Τεχνολογίας 28/9/2008 12:57 Προοπτικό σχέδιο με 2 Σημεία Φυγής Σημείο φυγής 1 Σημείο φυγής 2 Γωνία κτιρίου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ - ΘΕΜΑ Ο Έστω η συνάρτηση f( ) =, 0 ) Να αποδείξετε ότι f ( ). f( ) =. ) Να υπολογίσετε το όριο lm f ( )+ 4. ) Να βρείτε την εξίσωση της εφαπτομένης

Διαβάστε περισσότερα

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Περιεχόμενα Μαθήματος Εισαγωγή στο Πρόβλημα. Monte Carlo Εκτιμητές. Προσομοίωση. Αλυσίδες Markov. Αλγόριθμοι MCMC (Metropolis Hastings & Gibbs Sampling).

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

Singular Report Generator. Σχ 1 ηµιουργία Καταστάσεων SRG

Singular Report Generator. Σχ 1 ηµιουργία Καταστάσεων SRG Μια από τις πιο σηµαντικές ανάγκες που αντιµετωπίζει µια επιχείρηση κατά την εγκατάσταση ενός λογισµικού «πακέτου» (Οικονοµικής & Εµπορικής ιαχείρισης), είναι ο τρόπος µε τον οποίο πρέπει να ανταποκριθεί

Διαβάστε περισσότερα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια

Διαβάστε περισσότερα

ΟΝΟΜΑΤΕΠΩΝΥΜΟ : Αντικείμενα: περιγραφική στατιστική, γραφήματα, συναρτήσεις βάσεων δεδομένων, συγκεντρωτικοί πίνακες

ΟΝΟΜΑΤΕΠΩΝΥΜΟ : Αντικείμενα: περιγραφική στατιστική, γραφήματα, συναρτήσεις βάσεων δεδομένων, συγκεντρωτικοί πίνακες Σχολή Διοίκησης και Οικονομίας (ΣΔΟ) Τμήμα Λογιστικής και Χρηματοοικονομικής Διδάσκων: Δρ. Γκόγκος Χρήστος Μάθημα: Πληροφορική ΙI (εργαστήριο) Ακαδημαϊκό έτος 2013-2014 εαρινό εξάμηνο ΟΝΟΜΑΤΕΠΩΝΥΜΟ : ΑΡΙΘΜΟΣ

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΕΑ ΥΛΗ (SYLLABUS) INTERMEDIATE Παρουσιάσεις ΕΚΔΟΣΗ 1.0. Διεύθυνση: Ασκληπιού 18 Τηλέφωνο: 215.5515254

ΕΞΕΤΑΣΤΕΑ ΥΛΗ (SYLLABUS) INTERMEDIATE Παρουσιάσεις ΕΚΔΟΣΗ 1.0. Διεύθυνση: Ασκληπιού 18 Τηλέφωνο: 215.5515254 ΕΞΕΤΑΣΤΕΑ ΥΛΗ (SYLLABUS) INTERMEDIATE Παρουσιάσεις ΕΚΔΟΣΗ 1.0 ΤΙ ΕΙΝΑΙ ΤΟ INTERMEDIATE Το Intermediate είναι εστιασμένο σε γνώσεις πληροφορικής και χρήσης ηλεκτρονικών υπολογιστών και περιλαμβάνει όλες

Διαβάστε περισσότερα

Eisagwgă sto PICTEX: Mèroc prÿto

Eisagwgă sto PICTEX: Mèroc prÿto EÖtupon TeÔqoc No. 1 Septèmbrioc 1998 9 Eisagwgă sto PICTEX: Mèroc prÿto Apìstoloc Surìpouloc 28ης Οκτωβρίου 366 67100Ξάνθη 1. Eisagwgă Το PICTEX είναι μια συλλογή από μακροεντολές του TEX με τις οποίες

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Θέμα εξετάσεων 2000 Εξετάσαμε 50 μαθητές ως προς τα βιβλία που έχουν διαβάσει και διαπιστώσαμε ότι: 5 μαθητές δεν έχουν διαβάσει κανένα βιβλίο, 15 μαθητές έχουν

Διαβάστε περισσότερα

2.1 Τρέχοντα Κύµατα. Οµάδα.

2.1 Τρέχοντα Κύµατα. Οµάδα. 2.1 Τρέχοντα Κύµατα. Οµάδα. 2.1.41. Κάποια ερωτήµατα πάνω σε µια κυµατοµορφή. Ένα εγκάρσιο αρµονικό κύµα, πλάτους 0,2m, διαδίδεται κατά µήκος ενός ελαστικού γραµµικού µέσου, από αριστερά προς τα δεξιά

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ. Ακολουθίες. Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε το διάνυσμα.

ΔΙΑΝΥΣΜΑΤΑ. Ακολουθίες. Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε το διάνυσμα. Ακολουθίες ΔΙΑΝΥΣΜΑΤΑ Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε το διάνυσμα. Να ορίζουμε τις σχέσεις μεταξύ διανυσμάτων (παράλληλα, ομόρροπα, αντίρροπα, ίσα και αντίθετα διανύσματα). Να προσθέτουμε και

Διαβάστε περισσότερα

Κεφάλαιο 4 Κανονική Κατανομή. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς

Κεφάλαιο 4 Κανονική Κατανομή. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς Κεφάλαιο 4 Κανονική Κατανομή Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς 4-4-1 Εισαγωγή Όσο το n αυξάνει, η διωνυμική κατανομή προσεγγίζει... n = 6 n = 1 n = 14 Binomial Distribution:

Διαβάστε περισσότερα

Δημιουργία παρουσιάσεων (Power Point)

Δημιουργία παρουσιάσεων (Power Point) Δημιουργία παρουσιάσεων (Power Point) Το πρόγραμμα PowerPoint είναι η «αίθουσα προβολών» του Office. Μια προβολή (παρουσίασης) του PowerPoint μπορεί να έχει ως στόχο να ενημερώσει, να διδάξει ή και να

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πιθανότητες. Τυχαίες μεταβλητές - Κατανομές ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2

ΠΕΡΙΕΧΟΜΕΝΑ. Πιθανότητες. Τυχαίες μεταβλητές - Κατανομές ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2 ΠΕΡΙΕΧΟΜΕΝΑ ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 Πιθανότητες 1.1 Πιθανότητες και Στατιστική... 5 1.2 ειγματικός χώρος Ενδεχόμενα... 7 1.3 Ορισμοί και νόμοι των πιθανοτήτων... 10 1.4 εσμευμένη πιθανότητα Ολική

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ

ΜΑΘΗΜΑΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΤΟ EXCEL I K ΗΜΗΤΡΙΟΥ 17 1. Γράφηµα συνάρτησης µιας µεταβλητής ΜΑΘΗΜΑΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ Θα σχεδιάσοµε µε το Excel το γράφηµα της συνάρτησης y=sin(x), x [0,2π], για να επιδείξοµε γενικότερα τη

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Ηλεκτρικό δυναμικό Νίκος Ν. Αρπατζάνης Ηλεκτρικό δυναμικό Θα συνδέσουμε τον ηλεκτρομαγνητισμό με την ενέργεια. Χρησιμοποιώντας την αρχή διατήρησης της ενέργειας μπορούμε να λύνουμε διάφορα

Διαβάστε περισσότερα

Φύλλο Εργασίας 9 Το Φαινόμενο του Θερμοκηπίου υπερ-θερμαίνει

Φύλλο Εργασίας 9 Το Φαινόμενο του Θερμοκηπίου υπερ-θερμαίνει Φύλλο Εργασίας 9 Το Φαινόμενο του Θερμοκηπίου υπερ-θερμαίνει α. Παρατηρώ, Πληροφορούμαι, Ενδιαφέρομαι Παρατήρησε στο παρακάτω ενδεικτικό γράφημα την αύξηση της μέσης θερμοκρασίας της γης από το 1870 έως

Διαβάστε περισσότερα

Γραφικά Υπολογιστών: Σχεδίαση γραμμών (Bresenham), Σχεδίασης Κύκλων, Γέμισμα Πολυγώνων

Γραφικά Υπολογιστών: Σχεδίαση γραμμών (Bresenham), Σχεδίασης Κύκλων, Γέμισμα Πολυγώνων 1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Σχεδίαση γραμμών (Bresenham), Σχεδίασης Κύκλων, Γέμισμα Πολυγώνων Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Περιγραφή

Διαβάστε περισσότερα

ΤΕΙ Ιονίων Νήσων Εργαστηριακές Ασκήσεις στα Γεωγραφικά Συστήματα Πληροφοριών

ΤΕΙ Ιονίων Νήσων Εργαστηριακές Ασκήσεις στα Γεωγραφικά Συστήματα Πληροφοριών ΕΡΓΑΣΤΗΡΙΟ 2 ο : Εισαγωγή στα Γεωγραφικά Συστήματα Πληροφοριών ArcMap (2/2) Μέρος 1: (συνέχεια από τα προηγούμενα) Κάνουμε κλικ το εικονίδιο Add Data στην γραμμή εργαλείων standard και επιλέγουμε το αρχείο/τα

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΟΔΗΓΙΕΣ ΓΙΑ ΤΗΝ ΧΡΗΣΗ ΤΟΥ ΧΕΛΩΝΟΚΟΣΜΟΥ ΣΤΟ ΑΒΑΚΙΟ E-SLATE ΠΟΙΕΣ ΨΗΦΙΔΕΣ ΠΡΕΠΕΙ ΝΑ ΕΜΦΑΝΙΣΟΥΜΕ

ΒΑΣΙΚΕΣ ΟΔΗΓΙΕΣ ΓΙΑ ΤΗΝ ΧΡΗΣΗ ΤΟΥ ΧΕΛΩΝΟΚΟΣΜΟΥ ΣΤΟ ΑΒΑΚΙΟ E-SLATE ΠΟΙΕΣ ΨΗΦΙΔΕΣ ΠΡΕΠΕΙ ΝΑ ΕΜΦΑΝΙΣΟΥΜΕ ΒΑΣΙΚΕΣ ΟΔΗΓΙΕΣ ΓΙΑ ΤΗΝ ΧΡΗΣΗ ΤΟΥ ΧΕΛΩΝΟΚΟΣΜΟΥ ΣΤΟ ΑΒΑΚΙΟ E-SLATE Επιμόρφωση Β Επιπέδου, Ξάνθη, 2013 Γιάννης Κουτίδης, www.kutidis.gr Το λογισμικό βρίσκεται στην διεύθυνση http://etl.ppp.uoa.gr/_content/download/index_download.htm

Διαβάστε περισσότερα

11 η ΕΥΡΩΠΑΙΚΗ ΟΛΥΜΠΙΑ Α ΕΠΙΣΤΗΜΩΝ EUSO 2013

11 η ΕΥΡΩΠΑΙΚΗ ΟΛΥΜΠΙΑ Α ΕΠΙΣΤΗΜΩΝ EUSO 2013 11 η ΕΥΡΩΠΑΙΚΗ ΟΛΥΜΠΙΑ Α ΕΠΙΣΤΗΜΩΝ EUSO 2013 ΤΟΠΙΚΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΠΕΙΡΑΜΑΤΙΚΗ ΟΚΙΜΑΣΙΑ ΣΤΗ ΦΥΣΙΚΗ Σάββατο 8 ΕΚΕΜΒΡΙΟΥ 2012 ΕΚΦΕ ΑΧΑΪΑΣ (ΑΙΓΙΟΥ) (Διάρκεια εξέτασης 60 min) Μαθητές: Σχολική Μονάδα

Διαβάστε περισσότερα

ρ. Μάρκος Ν. ενδρινός Καθηγητής Πληροφορικής ΤΕΙ-Α Microsoft Office Power Point 2003

ρ. Μάρκος Ν. ενδρινός Καθηγητής Πληροφορικής ΤΕΙ-Α Microsoft Office Power Point 2003 ρ. Μάρκος Ν. ενδρινός Καθηγητής Πληροφορικής ΤΕΙ-Α Microsoft Office Power Point 2003 8-10 Νοεµβρίου 2010 1 1. PowerPoint. Ενας επεξεργαστής παρουσιάσεων. Το PowerPoint είναι ένα πρόγραµµα, ίσως όχι τόσο

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΕΙΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΕΙΟΥ ΘΕΜΑ Α Α1. Έστω μια συνάρτηση ff που έχει πεδίο ορισμού το ΔΔ. 1. Πότε η ffλέγεται συνεχής στο xx 0 ΔΔ ; 2. Πότε η ff λέγεται συνεχής; (Μονάδες

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

Εικόνες και γραφικά. Τεχνολογία Πολυµέσων 05-1

Εικόνες και γραφικά. Τεχνολογία Πολυµέσων 05-1 Εικόνες και γραφικά Περιγραφή στατικών εικόνων Αναπαράσταση γραφικών Υλικό γραφικών Dithering και anti-aliasing Σύνθεση εικόνας Ανάλυση εικόνας Μετάδοση εικόνας Τεχνολογία Πολυµέσων 05-1 Περιγραφή στατικών

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο, να αποδείξετε ότι (f() + g ()) f () + g (),. Μονάδες 7 Α. Σε ένα πείραµα µε ισοπίθανα

Διαβάστε περισσότερα

Oικονομικές και Mαθηματικές Eφαρμογές

Oικονομικές και Mαθηματικές Eφαρμογές Το πακέτο ΕXCEL: Oικονομικές και Mαθηματικές Eφαρμογές Eπιμέλεια των σημειώσεων και διδασκαλία: Ευαγγελία Χαλιώτη* Θέματα ανάλυσης: - Συναρτήσεις / Γραφικές απεικονίσεις - Πράξεις πινάκων - Συστήματα εξισώσεων

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ

Διαβάστε περισσότερα

Γενικός τρόπος σύνταξης: Όνομα_συνάρτησης(όρισμα1,όρισμα2,,όρισμαΝ) Η ονομασία τους είναι δεσμευμένη. Παραδείγματος χάριν: sin(x) cos(x) tan(x) exp(x)

Γενικός τρόπος σύνταξης: Όνομα_συνάρτησης(όρισμα1,όρισμα2,,όρισμαΝ) Η ονομασία τους είναι δεσμευμένη. Παραδείγματος χάριν: sin(x) cos(x) tan(x) exp(x) Εσωτερικές (built-in) συναρτήσεις του Matlab Γενικός τρόπος σύνταξης: Όνομα_συνάρτησης(όρισμα1,όρισμα2,,όρισμαΝ) Επιτελούν διάφορες προκαθορισμένες λειτουργίες Η ονομασία τους είναι δεσμευμένη Παραδείγματος

Διαβάστε περισσότερα

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Η πρώτη οθόνη μετά την εκτέλεση του προγράμματος διαφέρει κάπως από τα προηγούμενα λογισμικά, αν και έχει αρκετά κοινά στοιχεία. Αποτελείται

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

Ζημιοκατανομές και Θεωρία Ακραίων Τιμών

Ζημιοκατανομές και Θεωρία Ακραίων Τιμών Ζημιοκατανομές και Θεωρία Ακραίων Τιμών Χατζηκωνσταντής Παναγιώτης ΜΑΕ/07023 Τμήμα Στατιστικής Επιστήμης και Ασφαλίσεων Υγείας M.Sc. Aναλογιστικής Επιστήμης και Risk Mgemet Πανεπιστήμιο Πειραιώς (2007)

Διαβάστε περισσότερα

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21 ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΟΛΟΚΛΗΡΩΣΗΣ. Παρατήρηση: Για να εφαρμόσουμε τον τύπο πρέπει μία από τις δύο συναρτήσεις να είναι ή να την γράψουμε υπό μορφή παραγώγου

ΜΕΘΟΔΟΙ ΟΛΟΚΛΗΡΩΣΗΣ. Παρατήρηση: Για να εφαρμόσουμε τον τύπο πρέπει μία από τις δύο συναρτήσεις να είναι ή να την γράψουμε υπό μορφή παραγώγου ΜΕΘΟΔΟΙ ΟΛΟΚΛΗΡΩΣΗΣ Β. Ολοκλήρωση κατά παράγοντες Γενικά η μέθοδος αυτή εφαρμόζεται όταν έχουμε γινόμενο δύο συναρτήσεων Εκφράζεται με τον τύπο της παραγοντικής ολοκλήρωσης: f()g ()d= f()g() - f ()g()d

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ WORD 2007. 2. Πώς αλλάζουμε το διάστιχο μίας παραγράφου; [Πηγαίνουμε στην παράγραφο και στην κεντρική καρτέλα πατάμε το εικονίδιο Διάστιχο]

ΕΡΩΤΗΣΕΙΣ WORD 2007. 2. Πώς αλλάζουμε το διάστιχο μίας παραγράφου; [Πηγαίνουμε στην παράγραφο και στην κεντρική καρτέλα πατάμε το εικονίδιο Διάστιχο] ΕΡΩΤΗΣΕΙΣ WORD 2007 1. Πώς βάζουμε διπλή υπογράμμιση και χρώμα υπογράμμισης; [Επιλέγουμε το κείμενο και στην κεντρική καρτέλα πατάμε στο βελάκι δίπλα στο εικονίδιο της υπογράμμισης] 2. Πώς αλλάζουμε το

Διαβάστε περισσότερα

8. Σύνθεση και ανάλυση δυνάμεων

8. Σύνθεση και ανάλυση δυνάμεων 8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα

Διαβάστε περισσότερα

Σ Υ Λ Λ Ο Γ Ι Σ Μ Ο Ι Π Ρ Ο Β Λ Η Μ Α Τ Ι Σ Μ Ο Ι. της απαντήσεις τους κατασκευάστηκε το παρακάτω ραβδόγραμμα. κανάλι α i. συχνότητα ν i.

Σ Υ Λ Λ Ο Γ Ι Σ Μ Ο Ι Π Ρ Ο Β Λ Η Μ Α Τ Ι Σ Μ Ο Ι. της απαντήσεις τους κατασκευάστηκε το παρακάτω ραβδόγραμμα. κανάλι α i. συχνότητα ν i. Γ. ΛΥΚ. ΘΡΑΚΟΜΑΚΕΔΟΝΩΝ (2014-15) Λ. Γρίλλιας Σ Υ Λ Λ Ο Γ Ι Σ Μ Ο Ι Π Ρ Ο Β Λ Η Μ Α Τ Ι Σ Μ Ο Ι 1) Σε ένα σχολείο ρωτήθηκαν 70 μαθητές για την προτίμησή τους σε ποδοσφαιρικές ομάδες. Από της απαντήσεις

Διαβάστε περισσότερα

ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ

ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ 2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 475 ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ Μαστρογιάννης Αθανάσιος Εκπαιδευτικός Δευτεροβάθμιας

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr Ποσοτικές Μέθοδοι Εισηγητής: Ν.Κυρίτσης MBA Ph.D. Candidate e-mail: kyritsis@ist.edu.gr Εισαγωγή στη Στατιστική Διδακτικοί Στόχοι Μέτρα Σχετικής Διασποράς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή Η Τυποποιημένες

Διαβάστε περισσότερα

Βάσεις δεδομένων (Access)

Βάσεις δεδομένων (Access) Βάσεις δεδομένων (Access) Όταν εκκινούμε την Access εμφανίζεται το παρακάτω παράθυρο: Κουμπί Κενή βάση δεδομένων Κουμπί του Office Για να φτιάξουμε μια νέα ΒΔ κάνουμε κλικ στο κουμπί «Κενή βάση δεδομένων»

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2011 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2011 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΕΙΑΣ ΘΕΜΑ Ο : Α. Για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω να αποδειχθεί ότι: Ρ(Α-Β)=Ρ(Α)-

Διαβάστε περισσότερα

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΜΕ ΕXCEL

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΜΕ ΕXCEL ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΜΕ ΕXCEL 1. Εισαγωγή δεδομένων σε φύλλο εργασίας του Microsoft Excel Για να τοποθετήσουμε τις μετρήσεις μας σε ένα φύλλο Excel, κάνουμε κλικ στο κελί στο οποίο θέλουμε να τοποθετήσουμε

Διαβάστε περισσότερα

POWERPOINT 2003. Είναι το δημοφιλέστερο πρόγραμμα παρουσιάσεων.

POWERPOINT 2003. Είναι το δημοφιλέστερο πρόγραμμα παρουσιάσεων. POWERPOINT 2003 1. Τι είναι το PowerPoint (ppt)? Είναι το δημοφιλέστερο πρόγραμμα παρουσιάσεων. 2. Τι δυνατότητες έχει? Δημιουργία παρουσίασης. Μορφοποίηση παρουσίασης. Δημιουργία γραφικών. Δημιουργία

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ 3 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009

ΜΑΘΗΜΑΤΙΚΑ 3 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009 ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 2009 ΜΑΘΗΜΑΤΙΚΑ 3 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 3 ώρες (180 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΒΟΗΘΗΜΑΤΑ Ευρωπαικό τυπολόγιο Μη προγραμματιζόμενος υπολογιστής, χωρίς γραφικά

Διαβάστε περισσότερα

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης:

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: παρόμοιο με του Cabri με αρκετές όμως διαφορές στην αρχιτεκτονική

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑ.Λ. (ΟΜΑ Α Β ) ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΔΕΥΤΕΡΑ, 22 ΑΠΡΙΛΙΟΥ 201 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

Άσκηση 3 Η ΔΙΟΔΟΣ ΩΣ ΗΜΙΑΓΩΓΟΣ

Άσκηση 3 Η ΔΙΟΔΟΣ ΩΣ ΗΜΙΑΓΩΓΟΣ Άσκηση 3 Η ΔΙΟΔΟΣ ΩΣ ΗΜΙΑΓΩΓΟΣ Αυτό έργο χορηγείται με άδεια Creative Commons Attribution-NonCommercial-ShareAlike Greece 3.0. Ονοματεπώνυμο: Μητρόπουλος Σπύρος Α.Ε.Μ.: 3215 Εξάμηνο: Β' Σκοπός της εργαστηριακής

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΕΒΔΟΜΟ ΘΕΩΡΙΑΣ-ΜΗ ΓΡΑΜΜΙΚΕΣ ΜΟΡΦΕΣ ΟΙΚΟΝΟΜΕΤΡΙΚΩΝ ΥΠΟΔΕΙΓΜΑΤΩΝ Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 2008-2009

Διαβάστε περισσότερα

Base. http://www.tex.unipi.gr/undergraduate/notes/cad_cam1/main.htm

Base. http://www.tex.unipi.gr/undergraduate/notes/cad_cam1/main.htm Το φυλλάδιο οδηγιών που κρατάτε στα χέρια σας βρίσκεται και σε ηλεκτρονική μορφή (αρχείο Acrobatpdf) στον φάκελο PDF του υπολογιστή (υπάρχει η σχετική συντόμευση την επιφάνεια εργασίας). Για την καλύτερη

Διαβάστε περισσότερα

Πρόλογος 13 Κατάλογος συμβολών και συντμήσεων 15 1 ΓΙΑΤΙ ΝΑ ΑΣΧΟΛΗΘΟΥΜΕ ΜΕ ΤΗ ΣΤΑΤΙΣΤΙΚΗ; 21

Πρόλογος 13 Κατάλογος συμβολών και συντμήσεων 15 1 ΓΙΑΤΙ ΝΑ ΑΣΧΟΛΗΘΟΥΜΕ ΜΕ ΤΗ ΣΤΑΤΙΣΤΙΚΗ; 21 ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 13 Κατάλογος συμβολών και συντμήσεων 15 1 ΓΙΑΤΙ ΝΑ ΑΣΧΟΛΗΘΟΥΜΕ ΜΕ ΤΗ ΣΤΑΤΙΣΤΙΚΗ; 21 Χρήση στατιστικών τεχνικών στις επιχειρήσεις 21 Οι δυο έννοιες της λέξης στατιστική 22 Πληθυσμοί

Διαβάστε περισσότερα

ΜΕΡΟΣ Α Αποτελείται από 6 ερωτήσεις. Κάθε ορθή απάντηση βαθμολογείται με 5 μονάδες. Να απαντήσετε όλες τις ερωτήσεις.

ΜΕΡΟΣ Α Αποτελείται από 6 ερωτήσεις. Κάθε ορθή απάντηση βαθμολογείται με 5 μονάδες. Να απαντήσετε όλες τις ερωτήσεις. ΛΥΚΕΙΟ ΑΓ. ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013 2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΤΑΞΗ: Α ΗΜΕΡ.: 02/06/2014 ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΟΙΝΟΥ ΚΟΡΜΟΥ Ονοματεπώνυμο: ΔΙΑΡΚΕΙΑ: 2 ώρες Τάξη: ΟΔΗΓΙΕΣ : α) Το εξεταστικό

Διαβάστε περισσότερα

Άσκηση 14. Τριφασική γεννήτρια εναλλασσόμενου ρεύματος. Δυναμική συμπεριφορά

Άσκηση 14. Τριφασική γεννήτρια εναλλασσόμενου ρεύματος. Δυναμική συμπεριφορά 1 ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΤΕΧΝΙΑΣ ΟΧΗΜΑΤΩΝ ΗΜΕΡΟΜΗΝΙΑ. ΗΜΕΡΑ. ΩΡΑ. ΟΜΑΔΑ... ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΦΥΛΛΟ ΕΡΓΟΥ Άσκηση 1 Σύστημα φόρτισης αυτοκινήτου Τριφασική γεννήτρια εναλλασσόμενου ρεύματος. Δυναμική συμπεριφορά ΚΑΘΗΓΗΤΗΣ

Διαβάστε περισσότερα