ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΜΗΧΑΝΙΚΗ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΜΗΧΑΝΙΚΗ"

Transcript

1 ΦΥΣ 114 ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΜΗΧΑΝΙΚΗ Φθινόπωρο 010 Διδάσκων/Υπεύθυνος: Φώτης Πτωχός Τηλ: Γραφείο: B35 web-page:

2 Γραφικές παραστάσεις Μια γραφική παράσταση αποτελεί μια ακριβή γραφική αναπαράσταση των πειραματικών δεδομένων. Η γραφική παράσταση είναι ένας ιδιαίτερα αποδοτικός τρόπος για να παρουσιαστούν οι μετρήσεις και υπολογισμοί που έχουμε κάνει. Με το τρόπο αυτό μπορεί οποιοσδήποτε να δει το συσχετισμό μεταξύ διαφόρων μεγεθών αλλά και τη διασπορά (ακρίβεια) των συλλεγμένων μετρήσεων καθώς και οποιαδήποτε προτιμήσεις των μεγεθών (π.χ.περιγράφονται τα δεδομένα από ευθεία γραμμή; ποια η κλίση της κλπ). Όπως και σε μια φωτογραφία πρέπει να λάβουμε υπόψη το τρόπο με τον οποίο αντιπροσωπεύουμε τα δεδομένα. Όπως σε μια φωτογραφία, η γωνία λήψης της μπορεί να ενισχύσει ή να κρύψει κάποια χαρακτηριστικά του θέματός της έτσι και στην γραφική αναπαράσταση δεδομένων έχει σημασία η επιλογή των αξόνων αφού μπορούν να κρύψουν ή να διαφοροποιήσουν χαρακτηριστικά των δεδομένων Θεωρήστε ένα πείραμα στο οποίο θέλετε να εξετάσετε το ενδοχόμενο συσχέτισης μεταξύ των φάσεων της σελήνης και του μήκους μιας σανίδας ξύλου Φάσεις σελήνης Μήκος σανίδας (cm) Έστω ότι πήρατε τις ακόλουθες μετρήσεις 1 0 τέταρτο 1.1±0.5 0 τέταρτο 13.0± τέταρτο 11.8± τέταρτο 1.6±0.5

3 Β Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής παράστασης είναι να διαλέξετε αρχικά την ανεξάρτητη μεταβλητή σας (στη προκειμένη περίπτωση οι φάσεις της σελήνης) και να την τοποθετήσετε στον οριζόντιο άξονα, ενώ στο κατακόρυφο άξονα τοποθετείτε την εξαρτημένη μεταβλητή (το μήκος της σανίδας) Β Data 1 Α Αν χρησιμοποιήσουμε κάποιο γραφικό λογισμικό ενός υπολογιστή και κάνουμε το γράφημα θα μοιάζει όπως στο σχήμα. Υπάρχουν ωστόσο πολλά λάθη στο τρόπο που σχεδιάσαμε τη γραφική αυτή παράσταση. Αρχικά κάθε παράσταση θα πρέπει να έχει ένα σωστό τίτλο και οι άξονες να έχουν Ονομασίες αντιπροσωπευτικές των μεγεθών που αντιπροσωπεύουν Ο τίτλος θα μπορούσε να είναι συσχετισμός φάσεων σελήνης και μήκους σανίδας Με το τρόπο αυτό ο αναγνώστης ξέρει τι να περιμένει να δει στη παράσταση. O οριζόντιος άξονας θα πρέπει να έχει το τίτλο φάσεις σελήνης (τέταρτα) ενώ ο κατακόρυφος άξονας θα είχε το τίτλο Μήκος σανίδας (cm)

4 Γραφικές παραστάσεις - Υποδιαιρέσεις αξόνων Ο x-άξονας μπορεί να αναπαρασταθεί μόνο με ακέραιες (οι φάσεις της σελήνης) επομένως δεν χρειαζόμαστε πολλές υποδιαιρέσεις) Πόσες όμως υποδιαιρέσειs; Αρκετές ώστε ο x-άξονας να περιέχει όλα τα δεδομένα και τουλάχιστον μια επιπλέον σαν ανώτερο και κατώτερο όριο ώστε να δίνουν τη σιγουριά στον αναγνώστη ότι δεν υπάρχουν άλλα σημεία. Ποιά η κλίμακα του y- άξονα και το εύρος της; Δε θέλουμε μια κλίμακα στην οποία τα ακρώτατα σημεία να μοιάζουν ότι συμπίπτουν. Ένας πρακτικός Κανόνας είναι να συμπεριλαμβάνουμε πάντοτε τη τιμή 0 εφόσον η τιμή αυτή μπορεί να ληφθεί σε μια μέτρηση. Παρόλο το μήκος της σανίδας δεν είναι 0 για πολύ μικρές σανίδες μπορεί να πάρουμε τέτοια τιμή. error bar Δεν θα πρέπει το εύρος της υποδιαίρεσης της κλίμακας να είναι πολύ μεγάλο ώστε όλες οι μετρήσεις τεχνικά να πέφτουν σε μια υποδιαίρεση. +1 Τυπική απόκλιση Στα περισσότερα γραφήματα που θα έχετε να κάνετε Μέτρηση στο εργαστήριο θα πρέπει να ξεκινάτε τον y-άξονα -1 Τυπική απόκλιση από το 0. Τα δεδομένα στο προηγούμενο γράφημα φαίνονται να μην έχουν κάποια συσχέτιση και ότι είναι τυχαία. Αυτό γιατί οι τυχαίες διακυμάνσεις στις μετρήσεις δημιουργεί την αβεβαιότητα της κάθε μέτρησης. Αν σχεδιάζαμε μια κατακόρυφη γραμμή με μήκος όσο το μέγεθος της ±1 τυπικής απόκλισης κάθε μέτρησης θα μπορούσαμε να δείξουμε γραφικά την ακρίβεια του πειράματος

5 Γραφικές παραστάσεις - error bars Αν οι μετρήσεις που έχουμε είναι πάρα πολλές τότε ο υπολογισμός όλων των αβεβαιοτήτων είναι επίπονος και χρονοβόρος. Παρατηρούμε όμως ότι οι περισσότερες μετρήσεις έχουν παρόμοια αβεβαιότητα και οι τιμές των μετρήσεων που βρίσκονται στο μέσο του εύρους των τιμών που καλύπτουν οι μετρήσεις έχουν παρόμοια αβεβαιότητα. Μεγαλύτερη αβεβαιότητα παρουσιάζουν οι μετρήσεις που βρίσκονται στα άκρα του εύρους των μετρήσεων (από κατασκευή) μια και εκεί θα παρουσιάζεται η μεγαλύτερη διακύμανση. Ακολουθούμε τον εξής κανόνα για το σχεδιασμό των error bars Παίρνουμε τις πρώτες και τελευταίες μετρήσεις που καλύπτουν τα άκρα του εύρους τιμών των μετρήσεών μας και υπολογίζουμε την αβεβαιότητά μας. Με το τρόπο αυτό έχουμε μια καλή και συντηρητική ένδειξη της αβεβαιότητας των μετρήσεών μας χωρίς να χάνουμε σημαντική πληροφορία. Με τη μέθοδο αυτή πάντοτε υπολογίζουμε την αβεβαιότητα 4 το πολύ μετρήσεων Πειράματα που έχουν λιγότερες των 4 μετρήσεων θα έχουν όλα τα σημεία τους με error bars. Υπάρχει ακόμα ένα πλεονέκτημα στην επιλογή του y-άξονα να ξεκινά από το 0. Η τιμή κάθε μέτρησης είναι ανάλογη της απόστασης από το y=0. Επομένως οι διακυμάνσεις της απόστασης δίνουν οπτικά εύκολα την διασπορά μεταξύ των μετρήσεων.

6 Γραφικές παραστάσεις - Διορθωμένο γράφημα Μήκος, L(cm) Σχέση μεταξύ μήκους σανίδας και φάσεων της σελήνης Η γραφική παράσταση στη τελικής της μορφή δείχνει ότι οι διακυμάνσεις στις μετρούμενες τιμές του μήκους της σανίδας δεν είναι σημαντικά μεγαλύτερες από την αβεβαιότητα της κάθε μέτρησης. Δηλαδή το μήκος της σανίδας είναι ανεξάρτητο των φάσεων της σελήνης όπως και περιμέναμε Αν όλα τα δεδομένα μας έχουν τιμές οι οποίες είναι μέσα στο εύρος της ±1 τυπικής απόκλισης γύρω από την ίδια κεντρική τιμή δεν έχουμε κάποιο λόγο να ισχυριζόμαστε ότι οι μετρήσεις μας είναι διαφορετικές. Φάση σελήνης (τέταρτο) Βλέπουμε επομένως ότι η σωστή εκτίμηση προκύπτει με το να βρούμε τη μέση τιμή όλων των μετρήσεων του μήκους της σανίδας. Πάντοτε όταν κάνετε μια γραφική παράσταση σκεφθείτε τις αβεβαιότητες των μετρήσεων και σχεδιάστε την λογικά. Η αρχική γραφική παράσταση μπορεί να σας οδηγούσε στο συμπέρασμα ότι υπάρχει όντως συσχέτιση μεταξύ του μήκους της σανίδας και των φάσεων της σελήνης.

7 Κανόνες για τη δημιουργία γραφικών παραστάσεων Όταν σας ζητείτε να κάνετε τη γραφική παράσταση του Μεγέθους 1 ως προς το Μέγεθος σημαίνει ότι το Μέγεθος είναι στον άξονα x και το Μέγεθος 1 στο y-άξονα Ποτέ μη χαράζετε καμπύλες οι οποίες συνδέουν τα σημεία των μετρήσεών σας. Κάθε καμπύλη έχει μια φυσική ερμηνεία. Κάθε γραφική παράσταση θα πρέπει να έχει κάποιο τίτλο περιγραφής που εξηγεί σύντομα τη σημασία της παράστασης. Κάθε γραφική παράσταση θα πρέπει να έχει επιγραφές στους άξονες ανάλογα με το μέγεθος που αντιστοιχείτε καθώς και τις απαραίτητες μονάδες μέτρησης. Ο οριζόντιος άξονας θα πρέπει να έχει υποδιαιρέσεις πέρα από το εύρος των μετρήσεων (αριστερά και δεξιά του διαστήματος) ώστε να διασφαλίσετε τη μη ύπαρξη σημείων έξω από το εύρος που ορίζετε. Εξαίρεση σε αυτό υπάρχει όταν η επιπλέον υποδιαίρεση αντιστοιχεί σε αρνητική τιμή χωρίς φυσική σημασία οπότε σταματούμε στη τιμή x=0. Ο κατακόρυφος άξονας θα πρέπει να περιέχει τη τιμή 0 και να εκτείνεται πέρα της μεγαλύτερης τιμής που έχετε μετρήσει. Οι άξονες δε θα πρέπει να κρύβουν κάποιο σημείο μέτρησης. Η απόσταση από το y=0 είναι ανάλογη των τιμών των μετρήσεων και δίνει οπτικό έλεγχο της διακύμανσης των μετρήσεων. Σχεδιάστε τις αβεβαιότητες δίνοντας ±1 τυπική απόκλιση σε 4 σημεία. Για μεγάλα δείγματα σχεδιάστε μόνο τις αβεβαιότητες για τα πρώτα και τελευταία σημεία του εύρους. Αυτό προσφέρει οπτικό έλεγχο των αβεβαιοτήτων

8 Ανάλυση δεδομένων Σχέση μεταξύ μετρήσεων και θεωρίας: Γενικός νόμος φυσικής Μια μέτρηση Πολλές μετρήσεις Μια και μόνο μέτρηση, για παράδειγμα η θέση του βλήματος που κάνει πλάγια βολή μια χρονική στιγμή δεν είναι αρκετή για να περιγράψει το γενικό φαινόμενο Για να συνδέσουμε το πείραμα με θεωρία θα πρέπει να έχουμε πολλές μετρήσεις και από το τρόπο κατανομής των δεδομένων να ανακαλύψουμε την θεωρία που κρύβεται πίσω από τα δεδομένα Στο παράδειγμα του βλήματος, η μελέτη του βεληνεκούς για διάφορες γωνίες ρίψης και διαφορετικές ταχύτητες μπορούν να βοηθήσουν να κατανοήσουμε το φυσικό νόμο που περιγράφει το φαινόμενο αυτό Όταν πραγματοποιούμε κάποιο πείραμα δεν ενδιαφερόμαστε απλά και μόνο για τις τιμές κάποιων μεγεθών που μετράμε αλλά και για την συσχέτιση που υπάρχει μεταξύ των μεγεθών αυτών H συσχέτιση μεταξύ των μεγεθών είναι αυτή που εκδηλώνει την ύπαρξη κάποιου φυσικού νόμου Το βασικό εργαλείο που χρησιμοποιούμε για να βρούμε κάποιο συσχετισμό είναι οι γραφικές παραστάσεις. Το ερώτημα που γεννάται όμως είναι πως μπορούμε να μειώσουμε το μεγάλο αριθμό μετρήσεων σε ποσότητες που μπορούν να συγκριθούν με τη θεωρητικές προβλέψεις

9 Απόσταση, L(m) Προσαρμογή σε ευθεία γραμμή Μια από τις περισσότερες χρήσιμες τεχνικές είναι αυτή της περιγραφής των πειραματικών δεδομένων με μια ευθεία γραμμή. Υποθέστε ότι έχετε μια σειρά μετρήσεων σε μια γραφική παράσταση y ως προς x και από τη γραφική παράσταση βλέπουμε ότι αντιστοιχεί σε μια ευθεία γραμμή Για την περιγραφή αυτής της ευθείας χρειάζονται παράμετροι: η κλίση της, m, και η τετμημένη της ευθείας με τον άξονα των y, b Τη στιγμή που θα προσδιορίσουμε τις δύο αυτές παραμέτρους μπορούμε να υπολογίσουμε την τιμή y που αντιστοιχεί σε οποιαδήποτε τιμή του x. Κλίση=m= Δy Δx Δx = sec y-τετμημένη=b=5m Δy = 1m απόσταση από την αρχή t=0 Χρόνος, t(sec) y = ax + b Προσέξτε ότι είναι ακριβώς η κλίση και η τετμημένη b που παίζουν σημαντικό ρόλο στη θεωρία H κλίση είναι η ταχύτητα ενώ η τετμημένη μας δίνει την αρχική θέση του σώματος Επομένως το πρόβλημά μας ανάγεται στην εύρεση των παραμέτρων της ευθείας καθώς και των αβεβαιοτήτων που συνοδεύουν τις εκτιμήσεις αυτών

10 Εύρεση της ευθείας Έστω ότι έχουμε τις μετρήσεις που δίνονται στο παρακάτω πίνακα Χρόνος (sec) Απόσταση (m) Αβεβαιότητα, Δy (m) Πίνακας 1 (δεν χρειάζεται να υπολογισθεί) Χρειάζεται να υπολογίσουμε τις αβεβαιότητες για 4 τιμές Τις που βρίσκονται στο κατώτερο όριο τιμών και τις δύο στο υψηλότερο όριο τιμών Σα 1 ο βήμα κάνουμε τη γραφική παράσταση των δεδομένων του πίνακα 1 Απόσταση, L(m) Δεδομένα από το πίνακα 1 Χρησιμοποιώντας ένα χάρακα μπορούμε να σχεδιάσουμε τη καλύτερη ευθεία που διέρχεται από όλα τα σημεία χρόνος, t(sec) Αυτή η ευθεία λέγεται ευθεία καλύτερης προσαρμογής (best fit) Αν οι αβεβαιότητες όλων των σημείων είναι ίσες ή πολύ μικρές τότε η διαδικασία είναι πολύ απλή Αν οι αβεβαιότητες παρουσιάζουν μεγάλες διακυμάνσεις τότε η διαδικασία είναι πιο πολύπλοκη

11 Ευθεία γραμμή καλύτερης προσαρμογής Σημεία με μεγάλες αβεβαιότητες περιέχουν και τη λιγότερο σημαντικότητας πληροφορία και επομένως θα πρέπει να δώσουμε τη λιγότερο σημασία Η τετμημένη με το y-άξονα μπορεί να βρεθεί διαβάζοντας απλά τη τιμή από τη γραφική παράσταση. Στη περίπτωσή μας είναι περίπου 13m Για να βρούμε τη κλίση χρησιμοποιούμε το ορθογώνιο τρίγωνο της διαφ. 8 και υπολογίζουμε κάποιο διάστημα Δx και το αντίστοιχο Δy m = y y 1 x x 1 Όπου τα σημεία x 1, x, y 1 και y είναι κάποια σημεία της ευθείας γραμμής και όχι απαραίτητα πειραματικά σημεία Αυτό είναι σημαντικό γιατί από τη στιγμή που σχεδιάσατε τη καλύτερη ευθεία δεν ενδιαφερόμαστε πλέον για τα πειραματικά σημεία αλλά για την κλίση και τη τετμημένη της ευθείας Προσέξτε ότι για τη περίπτωσή μας κανένα από τα σημεία δεν βρίσκεται ακριβώς πάνω στην ευθεία Χρησιμοποιούμε επομένως τα δεδομένα για να βρούμε τη καμπύλη και τη καμπύλη για να βρούμε τη θεωρία 3m 140m Για το παράδειγμά μας έχουμε: m = = 11.5m / s 11m / s 1.7s 11.3s Στο τελευταίο βήμα γράφουμε το αποτέλεσμα σύμφωνα με τα σημαντικά ψηφία που επιτρέπονται από τις μετρήσεις μας στο πίνακα 1 (δύο σημαντικά ψηφία)

12 Απόσταση, L(m) Eύρεση της αβεβαιότητας της κλίσης και τετμημένης Ξεκινάμε σχεδιάζοντας ένα παραλληλόγραμμο το οποίο περικλείει όλα τα πειραματικά σημεία συμπεριλαμβανομένης της αβεβαιότητάς τους Το παραλληλόγραμμα της αβεβαιότητας φαίνεται στο παρακάτω σχήμα Δεδομένα από το πίνακα 1 Xρόνος, t(sec) H πάνω και κάτω γραμμή αυτού του παρ/μου σχεδιάζονται παράλληλα προς την ευθεία της καλύτερης προσαρμογής Tα άκρα σχεδιάζονται παρ/λα προς τον y-άξονα Οποιαδήποτε εκτίμηση της αβεβαιότητας της κλίσης και τετμημένης της ευθείας θα πρέπει να έχει σαν αποτέλεσμα μια ευθεία η οποία περνά από τα άκρα του παρ/μου και δεν τέμνει τις πλάγιες πλευρές Μπορούμε επομένως να χαράξουμε τις διαγωνίους του παρ/μου και οι κλίσεις και τετμημένες των αυτών ευθειών δίνουν την αβεβαιότητα στη κλίση και τετμημένη της ευθείας της καλύτερης προσαρμογής

13 Eύρεση της αβεβαιότητας της κλίσης και τετμημένης Όπως και στην περίπτωση της καλύτερης ευθείας προσαρμογής υπολογίζουμε τη κλίση και τετμημένη των διαγωνίων του παρ/μου Έχουμε m A = = 14m / s και m 31 1 B = = 10m / s Επομένως η αβεβαιότητα της κλίσης της καλύτερης ευθείας είναι: m A m B = 4m / s Επειδή εκφράζουμε την αβεβαιότητα συνήθως συμμετρικά θα έχουμε ότι η αβεβαιότητα του πειράματος είναι Δm = m A m B = m / s Βλέποντας τις ευθείες της αβεβαιότητας καταλαβαίνουμε ότι είναι αρκετά απίθανο να επιλέξουμε είτε την ευθεία Α ή την ευθεία Β σαν την ευθεία της καλύτερης προσαρμογής. Επομένως έχουμε υπερεκτιμήσει την αβεβαιότητα Μια προσεκτικότερη ανάλυση δείχνει ότι θα πάρουμε μια πιο καλή εκτίμηση της αβεβαιότητας αν διαιρέσουμε την προηγούμενη εκτίμησή μας με τη τετραγωνική ρίζα του αριθμού των μετρήσεών μας Γράφουμε: Δm = m A m B 1 1

14 Δm = m m A B 1 1 H εξίσωση αυτή δίνει την εκτίμηση της πιο πιθανής αβεβαιότητας. Στο παρονομαστή, για Ν=1, Δm= και αυτό είναι λογικό μια και από ένα σημείο μπορούμε να έχουμε οποιαδήποτε ευθεία Για Ν= μια γραμμή μόνο μπορεί να χαραχθεί από σημεία. Στην περίπτωση αυτή το παρ/μο της αβεβαιότητας προέρχεται μόνο από τις αβεβαιότητες των δύο αυτών σημείων και επομένως είναι λογικό Δm = (m A -m B )/ Για Ν>> η αβεβαιότητα ελλατώνεται σύμφωνα με τη ρίζα του αριθμού των μετρήσεων Ν και αυτό είναι το αποτέλεσμα που βρήκαμε όταν υπολογίσαμε του σφάλματος της μέσης τιμής Αυτό δεν αποτελεί τη λύση του προβλήματος αλλά είναι κάποια πολυ λογική και καλή προσέγγιση Η εύρεση της αβεβαιότητας της τετμημένης προχωρά σύμφωνα με τα όσα αναπτύξαμε για την αβεβαιότητα της κλίσης της ευθείας. Κάνοντας τις πράξεις έχουμε ότι m ± Δm = ( 11 ± 1)m / s και b ± Δb = ( 13 ± 6)m Η αβεβαιότητα της κλίσης είναι ίδιας τάξης με τα δεδομένα αλλά η αβεβαιότητα της τετμημένης είναι περίπου 50%

15 Στη περίπτωση της κλίσης παίρνουμε μια μέση τιμή ενώ για τη τετμημένη προεκτείνουμε σε περιοχή μακριά από τα δεδομένα και σε χρόνους που δεν έχουμε πειραματικές μετρήσεις και είναι επόμενο να έχουμε μεγαλύτερη αβεβαιότητα Σε κάποιο σημείο όχι πολύ μακριά από τα δεδομένα η αβεβαιότητα σχετικά με τη θέση του σώματος τη χρονική στιγμή t=0 μπορεί να γίνει ίση με 100% και μεγαλύτερη ακόμα. Αυτό σημαίνει ότι το πείραμά μας είναι πολύ δύσκολο να προσδιορίσει το τι κάνει το σώμα σε μια προγενέστερη χρονική στιγμή στην οποία δεν υπάρχουν μετρήσεις Μπορούμε δηλαδή να εκφράσουμε άποψη μόνο σχετικά με τη κίνηση στο διάστημα που μετρήσαμε αλλά όχι πέρα από αυτό Μπορεί να προσπαθήσει κάποιος να επιχειρηματολογήσει ότι αν το σώμα κινείται με σταθερή ταχύτητα κατά τη διάρκεια του διαστήματος ότι κινείται με τον ίδιο τρόπο έξω από το χρονικό διάστημα της μέτρησής μας. Αυτό μπορεί να είναι σωστό αλλά δεν έχουμε μετρήσεις οι οποίες μπορούν να δείξουν ότι αυτό συμβαίνει. Για να ελλατώσουμε την αβεβαιότητα χρειαζόμαστε περισσότερες μετρήσεις. Ένα τελευταίο σημείο. Ακόμα και αν υπήρχε πειραματικό σημείο στον y-άξονα αυτό δεν σημαίνει ότι δεν υπάρχει αβεβαιότητα στη τιμή της τετμημένης. Αυτό γιατί η ευθεία καλύτερης προσαρμογής δεν είναι απαραίτητο να περνά από όλα τα πειραματικά σημεία όπως συμβαίνει και στο παράδειγμά μας

16 Ημιλογαριθμικό χαρτί Πολλές φορές τα δεδομένα μας δεν περιγράφονται από μια απλή ευθεία αλλά ο νόμος της φυσικής που περιγράφει το φαινόμενο έχει μια εκθετική μορφή Για παράδειγμα η ραδιενεργός διάσπαση κάποιων ραδιοισοτόπων. Η διάσπαση ακολουθεί εκθετική μορφή σύμφωνα με τη σχέση t /τ A(t) = A 0 e Όπου Α 0 είναι η ενεργότητα τη στιγμή t=0 και τ η σταθερά διάσπασης Μπορούμε και πάλι να χρησιμοποιήσουμε την ίδια τεχνική για να βρούμε τη σταθερά διάσπασης και την αρχική ενεργότητα του δείγματος. Αρκεί να γράψουμε την παραπάνω εξίσωση σε γραμμική μορφή Η μετατροπή της εκθετικής εξίσωσης σε γραμμική γίνεται εύκολα λογαριθμίζοντας την εξίσωση ln[a(t)] = ln[a 0 e t /τ ] = ln[a 0 ] t τ = ln[a 0 ] + λt Ο όρος ln[a 0 ] αντιπροσωπεύει το σταθερό όρο της εξίσωσης της ευθείας ενώ ο όρος λ=-1/τ την κλίση της. Ο όρος t αποτελεί την ανεξάρτητη μεταβλητή ενώ ο λογάριθμος της ενεργότητας, ln[a(t)], την εξαρτόμενη μεταβλητή Για την γραφική παράσταση θα μπορούσαμε να υπολογίσουμε τους λογαρίθμους και να χρησιμοποιήσουμε χιλιοστομετρικό χαρτί ή να χρησιμοποιήσουμε το λεγόμενο ημιλογαριθμικό χαρτί

17 Ημιλογαριθμικό χαρτί Η χρήση του λογαριθμικού χαρτιού διευκολύνει στη περίπτωση αυτή γιατί μπορούμε να θέσουμε τις μετρήσεις μας απευθείας στο γράφημα χωρίς επιπλέον υπολογισμούς. Το χαρτί περιέχει το κάθετο άξονα με τέτοιο τρόπο ώστε οι Κατακόρυφες αποστάσεις να είναι ανάλογες των επιθυμητών λογαρίθμων Ο παρακάτω πίνακας περιέχει τα δεδομένα της ραδιενεργούς διάσπασης Πίνακας. Ενεργότητα ως προς χρόνο για το ραδιενεργό δείγμα μας Ενεργότητα, Α(χτύποι/sec) Δεδομένα από το πίνακα Χρόνος (min) Ενεργότητα Α και ΔΑ (χτύποι/s) ±31 740± ± ±1 5 35±18 xρόνος t (min)

18 Ηµιλογαριθµικό χαρτί Χρόνος (min) Ενεργότητα Α και ΔΑ (χτύποι/s) ±31 740± ± ±1 5 35± Ενεργότητα Free Logarithmic Graph Paper from t (min)

19 Ημιλογαριθμικό χαρτί Χρειάζεται ωστόσο κάποια προσοχή, γιατί τα δεδομένα μας δίνονται αυτόματα σε λογαριθμική κλίμακα, αλλά οι λογάριθμοι δεν υπολόγιστηκαν. Απλά το χαρτί παρέχει το κατάλληλο μετασχηματισμό. Όταν όμως πρέπει να υπολογίσουμε τη κλίση στο λογαριθμικό χαρτί θα πρέπει να υπολογίσουμε τους λογαρίθμους. Για παράδειγμα : λ = ln(860 / sec) ln(8 / sec) 0.5 min 4.5 min = 0.7 / min = 1 τ τ = 3.70 min Η τετμημένη θα δίνεται από A 0 = sec 60sec 1min = / min Όπως βλέπουμε χρειάζεται να υπολογίσουμε ένα λογάριθμο για να βρούμε την κλίση ενώ η τετμημένη δίνεται απευθείας από το χαρτί Ο τρόπος υπολισμού της αβεβαιότητας της κλίσης και τετμημένης είναι ακριβώς ίδιος όπως και στην περίπτωση της γραμμικής περίπτωσης. Θα πρέπει να σχεδιάσουμε το παρ/μο αβεβαιότητας και να υπολογίσουμε τις κλίσεις των δύο διαγωνίων και τις αντίστοιχες τετμημένες τους.

20 Log-Log χαρτί (λογαριθµικό λογαριθµικό) Πολλές φορές µπορούµε να βρούµε την συναρτησιακή εξάρτηση ενός φυσικού µεγέθους y από το ανεξάρτητο µέγεθος x, θεωρώντας το λογάριθµο των δεδοµένων που µετράµε. Αν το εξαρτόµενο µέγεθος y ειναι ανάλογο κάποιας δύναµης του ανεξάρτητου µεγέθους x, τότε το γράφηµα τou y ως προς x, σχεδιαζόµενο σε ένα λογαριθµικό-λογαριθµικό χαρτί θα είναι ευθεία η κλίση της οποίας θα είναι ίση µε τον εκθέτη στον οποίο είναι υψωµένο το ανεξάρτητο µέγεθος. Για παράδειγµα, έστω ότι µετρούµε κάποια δεδοµένα τα οποία κατανέµονται σύµφωνα µε την εξίσωση y = x n Θεωρώντας το λογάριθµο θα έχουµε: log y ( ) = log x n ( ) log y ( ) = nlog( x) Προφανώς από ένα γράφηµα µε λογαριθµικούς άξονες µπορούµε να βρούµε αµέσως τη κλίση Αν είχαµε περισσότερο πολύπλοκη µορφή: y = Ax n log( y) = log( Ax n ) = log( A) + nlog( x) Έχει διαφορά στο γράφηµα αν θεωρήσουµε Log 10 ή ln (log e ) σχέσεις?

21 8 7 Log-Log χαρτί (λογαριθµικό 6 λογαριθµικό) Χ Υ Free Logarithmic Graph Paper from

22 Ιστογράμματα Τα ιστογράμματα αποτελούν ένα εύχρηστο οπτικό τρόπο για να εξάγουμε την κατανομή που ακολουθούν μια σειρά μετρήσεων ενός μεγέθους αλλά και παράλληλα δίνουν τη δυνατότητα για εύκολη στατιστική ανάλυση των μετρήσεων Αν έχουμε μια σειρά από μεγάλο αριθμό μετρήσεων ενός μεγέθους τότε μπορούμε να ταξινομήσουμε τις μετρήσεις και να βρούμε τη συχνότητα εμφάνισης κάθε τιμής Συνήθως δεν κρατάμε κάθε μέτρηση ξεχωριστά αλλά χωρίζουμε το εύρος των τιμών σε κατάλληλα ίσα υποδιαστήματα και αθροίζουμε τις τιμές που πέφτουν σε κάθε υποδιάστημα, Με το τρόπο αυτό πέρνουμε τη κατανομή της συχνότητας εμφάνισης κάθε τιμής Για παράδειγμα έστω ότι μετρήσαμε κάποιο μέγεθος 30 φορές και βρήκαμε: Δηλαδή κάθε τμή x i εμφανίζεται n i φορές H μέση τιμή μπορεί να γραφεί: x i x = = x k n k n k Oι τιμές του μετρήσεων εμφανίζονται με την ακόλουθη συχνότητα: Τιμή # Τιμή # Τιμή #

23 f k Ιστογράμματα Ομαδοποιόντας τις μετρήσεις τότε βρίσκουμε ευκολότερο πόσο συνεισφέρει κάθε τιμή στο άθροισμα της μέσης τιμής, Σx k n k Στο παράδειγμα οι τιμές όλες οι τιμές βρίσκονται στο διάστημα και άρα η ακριβής τιμή θα βρίσκεται στο διάστημα. Εφόσον οι τιμές είναι οι πιο συχνές περιμένουμε ότι και η πραγματική τιμή θα είναι στο υποδιάστημα αυτό. Όντως η μέση τιμή είναι Συνήθως χωρίζουμε το διάστημα σε ίσα υποδιαστήματα κατάλληλου μήκους ώστε στο καθένα να συμπεριλαμβάνεται μεγάλος αριθμός μετρήσεων και βρίσκουμε το ποσοστό των μετρήσεων σε κάθε διάστημα F k = n k f k = F k Δx k Πιθανότητα να βρεθεί μια μέτρηση στο διάστημα k. Πυκνότητα Πιθανότητας μεταβλητής x να βρεθεί στο k-διάστημα Δx, το ποσοστό δηλαδή των μετρήσεων στο διάστημα Δx k Το ιστόγραμμα αποτελεί τη γραφική παράσταση της f k ως προς το x H ολική επιφάνεια των ορθογωνίων θα είναι ίση με την μονάδα: F k = 1 = x x = F k x k f k Δx k Στη περίπτωση αυτή χρησιμοποιούμε σα Δx=0.04cm Αν αριθμός των μετρήσεων γίνει αρκετά μεγάλος τότε το ιστόγραμμα πέρνει τη μορφή της κατανομής από την οποία προέρχονται οι μετρήσεις. Η καμπύλη αποτελεί την οριακή κατανομή k

24 Ιστογράμματα - Οριακή κατανομή Η οριακή κατανομή είναι μια θεωρητική καμπύλη που δεν μπορεί να προκύψει ποτέ από τις μετρήσεις Το εμβαδό κάθε παρ/μου του ιστογράμματος είναι ισοδύναμο με τον αριθμό μετρήσεων που περιλαμβάνεται στο διάστημα αυτό. a + f (x)dx b f (x)dx πιθανότητα μια μέτρηση να περιλαμβάνεται μεταξύ x και x+δx ποσοστό μετρήσεων μεταξύ x=α και x=b, η πιθανότητα δηλαδή μια μέτρηση να «πέσει» στο διάστημα α,b f (x)dx = 1 Η πιθανότητα μια μέτρηση να βρίσκεται μεταξύ - και + Λέμε τότε ότι η f(x) είναι κανονικοποιημένη

25 Ιστογράμματα - Οριακή κατανομή πολλών μετρήσεων Αν ξέρουμε την οριακή κατανομή μπορούμε να υπολογίσουμε τη μέση τιμή + x = x k F k και ανάλογα σ x = x x lim Δx k x = xf (x)dx 0 + ( ) f (x)dx Αν οι μέτρησεις επηρεάζονται από πολλές πηγές μικρών τυχαίων σφαλμάτων τότε η οριακή κατανομή προσεγγιζει αυτή της κατανομής Gauss Για πολύ μεγάλο αριθμό μετρήσεων και για τυχαία μικρά σφάλματα οι τιμές που αποκλίνουν πολύ από τη μέση τιμή κατανέμονται συμμετρικά ως προς τη μέση τιμή τότε στην άθροιση της εύρεσης της μέσης τιμής αυτές οι τιμές αλληλοαναιρούνται και η τελική τιμή πλησιάζει την πιστή τιμή του μεγέθους f (x) = G(x) = + 1 σ π e (x µ) σ G(x)dx = 1 Η πιθανότητα να πάρουµε µια τιµή x στο διάστηµα x 1 και x 1 +dx είναι: P(x 1 ) σ 1 e (x 1 µ) σ Η πιθανότητα να πάρουµε µια τιµή x στο διάστηµα x και x +dx είναι: P(x ) σ 1 e (x µ) σ Αν συνεχίσουµε για όλες τις τιµές x τότε η πιθανότητα για την x : P(x ) σ 1 e (x µ) σ

26 Mέση τιµή σα καλύτερος υπολογισµός αληθινής τιµής H πιθανότητα να παρατηρήσουµε το συγκεκριµένο δείγµα των Ν µετρήσεων είναι το γινόµενο των πιθανοτήτων: P(x 1, x,, x ) = P(x 1 ) P(x 1 ) P(x ) P(x 1, x,, x ) 1 (xi µ) σ σ Ν e Δεδοµένων Ν παρατηρούµενων τιµών x 1, x,, x o καλύτερος υπολογισµός της πραγµατικής τιµής είναι αυτός που πέρνουµε αν µεγιστοποιήσουµε την πιθανότητα Αυτό θα συµβεί όταν το άθροισµα στον εκθέτη είναι ελάχιστο (x i µ) σ ( ) Εποµένως θα πρέπει: d (x i µ) σ dµ = 0 (x i µ) σ = 0 µ = x i Ανάλογα ο καλύτερος υπολογισµός της τυπικής απόκλισης βρίσκεται ότι είναι: dp(x 1, x,, x ) dσ = 0 σ = 1 Ν ( x i x )

27 Καλύτερη ευθείας προσαρμογής Μέθοδος ελαχίστων τετραγώνων (μέθοδος χ ) Όπως είδαμε στη γραφική εύρεση της καλύτερης ευθείας προσαρμογής, αυτό που ενδιαφερόμαστε είναι ο καθορισμός των παραμέτρων της συνάρτησης (π.χ. μιας ευθείας) που περιγράφει τα δεδομένα Δύο μεθόδοι: Ελαχίστων τετραγώνων ή χ Μέγιστης πιθανότητας - maximum likelihood Υποθέτουμε ότι έχουμε μια συνάρτηση y μιας μεταβλητής x και μια σειρά παραμέτρων θ = (θ 1,θ,,θ Ν ) y = y(x; θ ) Έστω ότι μετρήσαμε διάφορες τιμές του y για κάποιες τιμές της ανεξάρτητης μεταβλητής x. Επομένως θα έχουμε Ν ζεύγη τιμών Ορίζουμε σαν χ τη ποσότητα: χ ( x; θ ) = ( x i, y i ± σ yi ) όπου ι =1,,Ν Ν y i y(x i ; θ ) σ i H μέθοδος των ελαχίστων τετραγώνων δηλώνει ότι η καλύτερη εκτίμηση των παραμέτρων θ i επιτυγχάνεται όταν βρεθεί μια ομάδα τιμών θ i για τις οποίες η συνάρτηση χ είναι ελάχιστη

28 Μέθοδος ελαχίστων τετραγώνων - χ Αν οι αποκλίσεις κάθε μέτρησης, σ i, είναι ίσες τότε η σχέση απλουστεύεται χ = 1 σ Ν ( ) y i y x i ; θ Είναι σημαντικό να προσέξετε ότι η μέθοδος όπως ορίστηκε χρειάζεται τη γνώση των αβεβαιοτήτων σ i και ότι υποθέτει ότι δεν υπάρχουν αβεβαιότητες στη γνώση της ανεξάρτητης μεταβλητής x. Aβεβαιότητες στις τιμές x i μπορούν να αγνοηθούν εφόσον: σ xi x i << σ yk y k µε i = 1,,...,, k = 1,,..., Αγνοώντας τις αβεβαιότητες, η μέθοδος ελαχίστων τετραγώνων είναι απλά το άθροισμα των αποστάσεων κάθε μέτρησης y i από τα σημεία της θεωρητικής καμπύλης (x i,y i (x i )). Ελαχιστοποιώντας τη συνάρτηση ψάχνουμε τα σημεία της καλύτερης καμπύλης για τα οποία αυτή η απόσταση ελαχιστοποιείται H εισαγωγή των αβεβαιοτήτων είναι απαραίτητη αν θέλουμε να κάνουμε στατιστική ανάλυση των αποτελεσμάτων διαφορετικά είναι απλό γεωμετρικό πρόβλημα

29 Εφαρμογή χ - εύρεση παραμέτρων ευθείας Ας υποθέσουμε ότι η συνάρτηση την οποία θέλουμε να προσαρμόσουμε στα σημεία των μετρήσεων μας είναι της μορφής ( ) = ax + b y x Θα υποθέσουμε ακόμα ότι οι αβεβαιότητες σ i των y i είναι όλες ίσες μεταξύ τους Επομένως το πρόβλημα εύρεσης των παραμέτρων α και b έγγυται στην ελαχιστοποίησης της συνάρτησης χ ως προς α και b Η ελαχιστοποίηση γίνεται πέρνοντας τη μερική παράγωγο της χ ως προς α και b και εξισώνοντας με μηδέν: χ a = 0 χ και b = 0 και λύνοντας το σύστημα των γραμμικών εξισώσεων που προκύπτει προς α και b a b ( y i ax i b) = ( y i ax i b) x i = 0 ( y i ax i b) = ( y i ax i b) = 0 y i x i = a x i + b x i y i = a x i + b b = y i a x i Αντικαθιστούμε στην 1 η εξίσωση και λύνουμε ως προς α: y i x i = a x i + 1 y i x i a a x i x i x i x i = y i x i x i y i

30 Εύρεση παραμέτρων ευθείας με μέθοδο χ Από την τελευταία εξίσωση παίρνουμε το α και αντικαθιστώντας στην εξίσωση του b παίρνουμε το b a = y i x i x i y i x i x i = xy x Δ y και b = x i y i x i x i x i y i x i = x y Αν διαιρέσουμε με Ν τον αριθμητή και παρονομαστή στις παραπάνω σχέσεις Δ x xy a = yx x y x x ( ) και b = y x x xy x x ( ) όπου x = 1 x i y = 1 y i

31 Παράδειγµα Έστω ότι κάποιος φοιτητής θέλει να µετρήσει τις µάζες διαφόρων σωµάτων µε µια ζυγαριά ελατηρίου. Θα πρέπει πριν µετρήσει τις µάζες να βαθµονοµήσει τη ζυγαριά. Για να το κάνει αυτό χρησιµοποιεί 5 γνωστές µάζες των kgr τις οποίες τοποθετεί διαδοχικά πάνω στη ζυγαριά και µετρά κάθε φορά το αντίστοιχο µήκος του ελατηρίου l k. Υποθέτοντας ότι το ελατήριο υπακούει στο νόµο του Hooke, περιµένει ότι l = A + Bm Η σταθερά A είναι το φυσικό µήκος τους εκκρεµούς και Β είναι Β=g/k, k η σταθερά ελατηρίου Χρησιµοποιόντας την γραµµική σχέση l = A + Bm µπορεί µετρώντας το µήκος του ελατηρίου για µια άγνωστη µάζα m να βρει τη µάζα. Χρειάζεται εποµένως τις τιµές Α και Β. Μέτρηση Μάζα m Μήκος, l m m i l i =5 m i = 30 l i = 56.6 m i = 0 m i l i = 16 Η σταθερά Β θα είναι Β = ml Δ m l = Εποµένως: ( ) Δ = m m Δ = = 00 Η σταθερά Α είναι: m l m A = Δ A = A = 39.0cm B =.06cm / kgr 00 l

32 Γραφική παράσταση Το γράφηµα των προηγούµενων µετρήσεων θα είναι: 60 Μήκος, l (cm) Μάζες, m (kgr) l = m Εποµένως αν κάποια µάζα επιµηκύνει το ελατήριο κατά 53.cm τότε σύµφωνα µε την εξίσωση της χ ευθείας: m = = 6.9kg Χρειάζεται να υπολογίσουµε τις αβεβαιότητες των Α και Β. Αρχικά όµως ποια είναι η αβεβαιότητα των µετρήσεων y? Έχουµε 5 µετρήσεις αλλά η διασπορά τους δεν µας δίνει την αβεβαιότητα τους. Ωστόσο κάθε µέτρηση περιµένουµε να κατανέµεται σύµφωνα µε την Gaussian κατανοµή γύρω από την αληθινή τιµή y=a + Bx i µε εύρος σ i Εποµένως όλες οι αποκλίσεις y i A Bx i θα είναι κατανεµηµένες Gaussian µε κεντρική τιµή 0 και το ίδιο εύρος σ y. 1 Το εύρος σ y δίνεται από την σχέση σ y = ( y i A Bx)

33 Εύρεση αβεβαιότητας παραµέτρων ευθείας Οι αβεβαιότητες των α και b βρίσκονται από εφαρμογή διάδοσης σφαλμάτων και πολύ άλγεβρα ( x a = i x ) y ( i σ a x x ) a = σ yi y i σ x a = σ i x y x x Αλλά Αντικαταστούμε την τελευταία σχέση στον αριθμητή της εξίσωσης για σ a οπότε x i x σ a = σ y ( x x ) ( x x ) 1 = σ y x x x x x x x x ( ) = σ y ( ) = σ y ( ) σ a ( ) σ a = σ y Ανάλογα βρίσκουμε και την αβεβαιότητα του b σ b = σ y x σ y = ( ) ( x x ) x i + x xx i ( x x ) ( x i + x xx i ) = x i + x x x i = x i + x x x = x i x 1 i ( y i A Bx)

34 Περίπτωση με σφάλμα σε x και y Aν οι μετρήσεις έχουν σφάλμα σε x, σ x και y, σ y, τότε μπορούμε να βρούμε ένα ισοδύναμο σφάλμα στην διεύθυνση y που προκαλεί το ίδιο αποτέλεσμα Δx Δy new (x,y) Υποθέτοντας αρχικά ότι σ y = 0 Δy new = dy dx Δx σ y new = dy dx σ x Αν σ y δεν είναι 0 τότε το νέο σφάλµα µπορεί να γραφεί σ y new = σ y + dy dx σ x αφού οι δυό αβεβαιότητες είναι ανεξάρτητες µεταξύ τους

35 Περίληψη Μέθοδος χ Οπότε συνοψίζοντας τη μέθοδο των ελαχίστων τετραγώνων για την περίπτωση της ευθείας και υποθέτοντας ότι τα σφάλματα των επιμέρους μετρήσεων y i είναι ίσα μεταξύ τους ότι : κλίση τεταγμένη a = xy x y x x ( ) b = y x x xy x x ( ) σ a = σ y 1 x x ( ) σ b = σ y x ( ) x x Η συναλοίωτη σχέση μεταξύ των α και b και ο παράγοντας συσχετισμού είναι: όπου: cov( a,b) = x = 1 y = 1 x ( ) x x x i y i xy = 1 x = 1 ρ a,b = x x x i y i x i

36 Μέθοδος ελαχίστων τετραγώνων - σ yi άνισα Αν τα σφάλματα των μετρήσεων είναι διαφορετικά μεταξύ τους τότε η συνάρτηση που θα πρέπει να ελαχιστοποιήσουμε είναι χ = Ν y i ax i b σ i Η ελαχιστοποιήση δίνει τις ίδιες εξισώσεις μόνο που στη περιπτώση αυτή οι μέσες τιμές των μεγεθών αντιστοιχούν σε αυτές που προκύπτουν με το να ζυγίσουμε τις τιμές με τα ανάλογα βάρη (1/σ i ) και η κανονικοποίηση δεν γίνεται ως προς Ν αλλά ως προς το συνολικό βάρος Οι σχέσεις που δίνουν τις παραµέτρους α και b γίνονται (y = αx + b): b = a = wx wy wx wxy Δ wwxy wx Δ wy σ b = σ a = wx Δ w Δ Δ = 1 σ i ( ) wwx wx

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα q Θεωρία: Η απάντηση που ζητάτε είναι αποτέλεσμα μαθηματικών πράξεων και εφαρμογή τύπων. Το αποτέλεσμα είναι συγκεκριμένο q Πείραμα: Στηρίζεται

Διαβάστε περισσότερα

Α. 1. Μετρήσεις και Σφάλµατα

Α. 1. Μετρήσεις και Σφάλµατα Α. 1. Μετρήσεις και Σφάλµατα Κάθε πειραµατική µέτρηση υπόκειται σε πειραµατικά σφάλµατα. Με τον όρο αυτό δεν εννοούµε λάθη τα οποία γίνονται κατά την εκτέλεση του πειράµατος ή τη λήψη των µετρήσεων, τα

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ Κοίταξε τις µεθόδους, τις λυµένες ασκήσεις και τις ασκήσεις προς λύση των ενοτήτων 6, 7 του βοηθήµατος Μεθοδολογία Άλγεβρας και Στοιχείων Πιθανοτήτων Α Γενικού Λυκείου των Ευσταθίου Μ. και Πρωτοπαπά Ελ.

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

8. Σύνθεση και ανάλυση δυνάμεων

8. Σύνθεση και ανάλυση δυνάμεων 8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο R, να αποδείξετε ότι (f() + g() )=f ()+g (), R Μονάδες 7 Α. Σε

Διαβάστε περισσότερα

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος.

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ Άσκηση 1 (Προτάθηκε από Χρήστο Κανάβη) Έστω CV 0.4 όπου CV ο συντελεστής μεταβολής, και η τυπική απόκλιση s = 0. ενός δείγματος που έχει την ίδια

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 9η Ολυμπιάδα Φυσικής Γ Λυκείου (Β φάση) Κυριακή 9 Μαρτίου 01 Ώρα:.00-1.00 ΟΔΗΓΙΕΣ: 1. Το δοκιμιο αποτελειται απο εννεα (9) σελιδες και επτα (7) θεματα.. Να απαντησετε σε ολα τα θεματα του δοκιμιου.. Μαζι

Διαβάστε περισσότερα

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης ενός συστήματος συντεταγμένων για τον προσδιορισμό της θέσης ενός σημείου πάνω σε μια επιφάνεια προέρχεται από την Γεωγραφία και ήταν γνωστή στους

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6.

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6. ΜΙΓΑ ΙΚΟΙ 1 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 1 2 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 3 Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2 4 Για κάθε z C ισχύει z z 2 z 5 Για κάθε µιγαδικό z ισχύει:

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ )

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) 5 1 1 1η σειρά ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) ΘΕΜΑ 1 Α. Ας υποθέσουμε ότι x 1,x,...,x κ είναι οι τιμές μιας μεταβλητής X, που αφορά τα άτομα ενός δείγματος μεγέθους

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

Επιμέλεια: Σακαρίκος Ευάγγελος 133 Θέματα - 21/1/2015

Επιμέλεια: Σακαρίκος Ευάγγελος 133 Θέματα - 21/1/2015 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα 1 Επιμέλεια: Σακαρίκος Ευάγγελος 133 Θέματα - 1/1/015 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Κεφάλαιο 1 ο : Συστήματα 3 1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 4 Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 4 Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ. 3. Δίνονται τα σύνολα 2

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ. 3. Δίνονται τα σύνολα 2 ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ ΣΥΝΟΛΑ-ΠΙΘΑΝΟΤΗΤΕΣ Έστω βασικό σύνολο Ω = {, 4, 5, 8, 0} και τα υποσύνολα του Ω, Α = {, 5, 0}, Β = {4, 8, 0} i) Να παραστήσετε με διάγραμμα Venn τα παραπάνω σύνολα ii) Να περιγράψετε

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ

Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ 0 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΑΣΚΗΣΕΙΣ Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ 0 1 Στρατηγική επίλυσης προβλημάτων Α. Κάνε κατάλληλο σχήμα,τοποθέτησε τα δεδομένα στο σχήμα και ονόμασε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

Γενικά Μαθηματικά (Φυλλάδιο 1 ο )

Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Περιλαμβάνει: ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΚΕΦΑΛΑΙΟ : ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009 ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 2009 ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 4 ώρες (240 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΒΟΗΘΗΜΑΤΑ Ευρωπαικό τυπολόγιο Μη προγραμματιζόμενος υπολογιστής, χωρίς γραφικά

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 010 ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 4 Ιουνίου 010 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 4 ώρες (40 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΒΟΗΘΗΜΑΤΑ Ευρωπαικό τυπολόγιο Μη προγραμματιζόμενος υπολογιστής, χωρίς γραφικά

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς o ΘΕΜΑ Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) A. Aν οι συναρτησεις

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

Θεωρητικές Κατανομές Πιθανότητας

Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ

Διαβάστε περισσότερα

Ολοκλήρωση - Μέθοδος Monte Carlo

Ολοκλήρωση - Μέθοδος Monte Carlo ΦΥΣ 145 - Διαλ.09 Ολοκλήρωση - Μέθοδος Monte Carlo Χρησιμοποίηση τυχαίων αριθμών για επίλυση ολοκληρωμάτων Η μέθοδος Monte Carlo δίνει μια διαφορετική προσέγγιση για την επίλυση ενός ολοκληρώμτατος Τυχαίοι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

(Μονάδες 10) γ) Αν η εξίσωση (1) έχει ρίζες τους αριθμούς x 1, x 2 και d x 1,

(Μονάδες 10) γ) Αν η εξίσωση (1) έχει ρίζες τους αριθμούς x 1, x 2 και d x 1, Σε ένα τμήμα της Α Λυκείου κάποιοι μαθητές παρακολουθούν μαθήματα Αγγλικών και κάποιοι Γαλλικών. Η πιθανότητα ένας μαθητής να μην παρακολουθεί Γαλλικά είναι 0,8. Η πιθανότητα ένας μαθητής να παρακολουθεί

Διαβάστε περισσότερα

1.1. 1o ΚΕΦΑΛΑΙΟ Β ΘΕΜΑΤΑ

1.1. 1o ΚΕΦΑΛΑΙΟ Β ΘΕΜΑΤΑ 1o ΚΕΦΑΛΑΙΟ Β ΘΕΜΑΤΑ 1.1 16950 Β (ΑΝΑΡΤΗΘΗΚΕ 08-11-14) α) Να κατασκευάσετε ένα γραµµικό σύστηµα δυο εξισώσεων µε δυο αγνώστους µε συντελεστές διάφορους του µηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Η πρώτη οθόνη μετά την εκτέλεση του προγράμματος διαφέρει κάπως από τα προηγούμενα λογισμικά, αν και έχει αρκετά κοινά στοιχεία. Αποτελείται

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

Περίθλαση από µία σχισµή.

Περίθλαση από µία σχισµή. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 71 7. Άσκηση 7 Περίθλαση από µία σχισµή. 7.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε την συµπεριφορά των µικροκυµάτων

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 8 ο 8.1 Συντελεστές συσχέτισης: 8.1.1 Συσχέτιση Pearson, και ρ του Spearman 8.1.2 Υπολογισµός του συντελεστή

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

Δύο φίλοι θα παίξουν τάβλι και αποφασίζουν νικητής να είναι εκείνος που θα κερδίσει τρεις συνολικά παρτίδες ή δύο συνεχόμενες παρτίδες.

Δύο φίλοι θα παίξουν τάβλι και αποφασίζουν νικητής να είναι εκείνος που θα κερδίσει τρεις συνολικά παρτίδες ή δύο συνεχόμενες παρτίδες. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ 3 ου ΚΕΦΑΛΑΙΟΥ Άσκηση (Προτάθηκε από pito ) Για ένα φάρμακο σε πειραματικό στάδιο αποδείχθηκε ότι δημιουργεί δύο ειδών παρενέργειες. Η πιθανότητα να δημιουργήσει

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

m (gr) 100 200 300 400 500 600 700 l (cm) 59.1 62.4 65.2 69.3 71.2 74.1 77.2

m (gr) 100 200 300 400 500 600 700 l (cm) 59.1 62.4 65.2 69.3 71.2 74.1 77.2 ΣΧΟΛΙΑ ΓΙΑ ΤΗΝ ΕΡΓΑΣΙΑ ΣΤΟ ΜΑΘΗΜΑ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Η εργασία αυτή απευθύνεται σε όλους όσους επιθυµούν να ϐελτιώσουν την ϐαθµολογία τους. Βασικό στοιχείο της εργασίας είναι οι γραφικές παραστάσεις των

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν Η f είναι συνεχής στο Δ και f = για κάθε εσωτερικό σημείο του Δ τότε να αποδείξετε

Διαβάστε περισσότερα

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ.

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ. Λυµένη Άσκηση στην οµαδοποιηµένη κατανοµή Στην Γ τάξη του Ενιαίου Λυκείου µιας περιοχής φοιτούν 4 µαθητές των οποίων τα ύψη τους σε εκατοστά φαίνονται στον ακόλουθο πίνακα. 7 4 76 7 6 7 3 77 77 7 6 7 6

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

Ε Ρ Γ Α Σ Τ Η Ρ Ι Α Κ Ε Σ Α Σ Κ Η Σ Ε Ι Σ Φ Υ Σ Ι Κ Η Σ

Ε Ρ Γ Α Σ Τ Η Ρ Ι Α Κ Ε Σ Α Σ Κ Η Σ Ε Ι Σ Φ Υ Σ Ι Κ Η Σ ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ε Ρ Γ Α Σ Τ Η Ρ Ι Α Κ Ε Σ Α Σ Κ Η Σ Ε Ι Σ Φ Υ Σ Ι Κ Η Σ Μπεθάνης Κ., Καρπούζας Μ. & Τζαμαλής Π. ΑΘΗΝΑ 03-4 i ΧΡΗΣΙΜΕΣ ΟΔΗΓΙΕΣ ΚΑΙ ΠΑΡΑΔΕΙΓΜΑΤΑ

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α και Β ΛΥΚΕΙΟΥ για τις παν.εξετ. των ΕΠΑ.Λ.

ΑΛΓΕΒΡΑ Α και Β ΛΥΚΕΙΟΥ για τις παν.εξετ. των ΕΠΑ.Λ. ΑΛΓΕΒΡΑ Α και Β ΛΥΚΕΙΟΥ για τις παν.εξετ. των ΕΠΑ.Λ. Μια συνοπτική παρουσίαση της Άλγεβρας, για όσους θέλουν να προετοιμαστούν για τις Πανελλαδικές Εξετάσεις των ΕΠΑ.Λ. Για απορίες στο www.commonmaths.weebly.com

Διαβάστε περισσότερα

(t) x (t) t t t t. ΘΕΜΑ Α Α 1. Σχολικό βιβλίο σελ. 150 Α 2. Σχολικό βιβλίο σελ. 56 Α 3. Σχολικό βιβλίο σελ. 149 Α 4. i) Λ ii) Σ iii) Λ iv) Λ v) Σ

(t) x (t) t t t t. ΘΕΜΑ Α Α 1. Σχολικό βιβλίο σελ. 150 Α 2. Σχολικό βιβλίο σελ. 56 Α 3. Σχολικό βιβλίο σελ. 149 Α 4. i) Λ ii) Σ iii) Λ iv) Λ v) Σ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ Α Α Σχολικό βιβλίο σελ Α Σχολικό βιβλίο σελ 6 Α Σχολικό βιβλίο σελ 9 Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΚΥΡΙΑΚΗ // - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1.

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1. Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1.Δίνεται η συνάρτηση f()= 4 1 α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; β) Αν χ=, ποια είναι η τιμή της f; γ) Αν f()=1, ποια είναι

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα.

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. ΘΕΜΑ Α Παράδειγμα 1 Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. Α2. Για τον προσδιορισμό μιας δύναμης που ασκείται σε ένα σώμα απαιτείται να

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ . ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 4 α. Να βρείτε τον γεωμετρικό τόπο των εικόνων του. β. Αν Re ( ) 0, τότε: 4 i. Να αποδείξετε ότι ο μιγαδικός w = + είναι πραγματικός και ισχύει 4 w 4. ii. Να βρείτε τον

Διαβάστε περισσότερα

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Ορθοκανονικό σύστημα αξόνων ονομάζεται ένα σύστημα από δύο κάθετους άξονες με κοινή αρχή στους οποίους οι μονάδες έχουν το ίδιο μήκος. Υπάρχουν περιπτώσεις

Διαβάστε περισσότερα

Προσδιορισμός της σταθεράς ενός ελατηρίου.

Προσδιορισμός της σταθεράς ενός ελατηρίου. Μ3 Προσδιορισμός της σταθεράς ενός ελατηρίου. 1 Σκοπός Στην άσκηση αυτή θα προσδιοριστεί η σταθερά ενός ελατηρίου χρησιμοποιώντας στην ακολουθούμενη διαδικασία τον νόμο του Hooke και τη σχέση της περιόδου

Διαβάστε περισσότερα

Η Κανονική Κατανομή κανονική κατανομή (normal distribution) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem) συνδέει οποιαδήποτε άλλη κατανομή

Η Κανονική Κατανομή κανονική κατανομή (normal distribution) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem) συνδέει οποιαδήποτε άλλη κατανομή Η Κανονική Κατανομή H κανονική κατανομή (ormal dstrbuto) θεωρείται η σπουδαιότερη κατανομή της Θεωρίας Πιθανοτήτων και της Στατιστικής. Οι λόγοι που εξηγούν την εξέχουσα θέση της, είναι βασικά δύο: ) Πολλές

Διαβάστε περισσότερα

Ερωτήσεις ανάπτυξης. α) να βρείτε το σηµείο x 0. β) να αποδείξετε ότι η κλίση της εφαπτοµένης της

Ερωτήσεις ανάπτυξης. α) να βρείτε το σηµείο x 0. β) να αποδείξετε ότι η κλίση της εφαπτοµένης της Ερωτήσεις ανάπτυξης. ** Η συνάρτηση είναι παραγωγίσιµη στο R και η ευθεία (ε) είναι εφαπτοµένη της C στο σηµείο (0, (0)). Μετακινούµε τη C παράλληλα προς τους άξονες, όπως φαίνεται στο σχήµα, και ονοµάζουµε

Διαβάστε περισσότερα

Κανονικ ες ταλαντ ωσεις

Κανονικ ες ταλαντ ωσεις Κανονικες ταλαντωσεις Ειδαµε ηδη οτι φυσικα συστηµατα πλησιον ενος σηµειου ευαταθους ισορροπιας συ- µπεριφερονται οπως σωµατιδια που αλληλεπιδρουν µε γραµµικες δυναµεις επαναφορας οπως θα συνεαινε σε σωµατιδια

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 04/ 01/ 2010

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 04/ 01/ 2010 ΕΠΩΝΥΜΟ:........................ ΟΝΟΜΑ:........................... ΤΜΗΜΑ:........................... ΤΣΙΜΙΣΚΗ & ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ : 270727 222594 ΑΡΤΑΚΗΣ 12 Κ. ΤΟΥΜΠΑ THΛ : 919113 949422 www.syghrono.gr

Διαβάστε περισσότερα

1. Πειραματική διάταξη

1. Πειραματική διάταξη 1. Πειραματική διάταξη 1.1 Περιγραφή της διάταξης Η διάταξη του πειράματος αποτελείται από έναν αερόδρομο και ένα ή δύο κινητά τα οποία είναι συζευγμένα μέσω ελατήριου. Η κίνηση των ταλαντωτών καταγράφεται

Διαβάστε περισσότερα

ENOTHTA 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ

ENOTHTA 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ENOTHTA. ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΜΕΡΟΣ ο. Πώς προσδιορίζουμε τη θέση των αντικειμένων; A O M B ' y P Ì(,y) Ð Για τον προσδιορισμό της θέσης πάνω σε μία ευθεία πρέπει να έχουμε ένα σημείο της

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΣΩΜΑΤΟΣ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΤΡΙΒΗΣ ΟΛΙΣΘΗΣΗΣ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΣΩΜΑΤΟΣ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΤΡΙΒΗΣ ΟΛΙΣΘΗΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΣΩΜΑΤΟΣ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΤΡΙΒΗΣ ΟΛΙΣΘΗΣΗΣ [Π. Μουρούζης, Γ. Παληός, Κ. Παπαμιχάλης, Γ. Τουντουλίδης, Τζ. Τσιτοπούλου, Ι. Χριστακόπουλος] Για

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :

Διαβάστε περισσότερα

Μετρήσεις Αβεβαιότητες Μετρήσεων

Μετρήσεις Αβεβαιότητες Μετρήσεων Μετρήσεις Αβεβαιότητες Μετρήσεων 1. Σκοπός Σκοπός του μαθήματος είναι να εξοικειωθούν οι σπουδαστές με τις βασικές έννοιες που σχετίζονται με τη θεωρία Σφαλμάτων, όπως το σφάλμα, την αβεβαιότητα της μέτρησης

Διαβάστε περισσότερα

Κεφάλαιο Η2. Ο νόµος του Gauss

Κεφάλαιο Η2. Ο νόµος του Gauss Κεφάλαιο Η2 Ο νόµος του Gauss Ο νόµος του Gauss Ο νόµος του Gauss µπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού του ηλεκτρικού πεδίου. Ο νόµος του Gauss βασίζεται στο γεγονός ότι η ηλεκτρική

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΝΟΜΟΥ ΦΘΙΩΤΙΔΑΣ

Διαβάστε περισσότερα

(Μονάδες 15) (Μονάδες 12)

(Μονάδες 15) (Μονάδες 12) ΑΛΓΕΒΡΑ Β Λυκε ί ου τ ράε ζ αθε μάτ ων( 1ηέ κδοση) θέ μαδε ύτ ε ροκαιτ έ τ αρτ ο Κόμβ οςατ σι οούλου01415 δης Ει μέ λε ι α:εμμανουήλκ.σκαλί Αντ ώνηςκ.αοστ όλου Άσκηση 1 α) Να κατασκευάσετε ένα γραμμικό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ 6.. ΕΙΣΑΓΩΓΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Για τον υπολογισµό των τάσεων και των παραµορφώσεων ενός σώµατος, που δέχεται φορτία, δηλ. ενός φορέα, είναι βασικό δεδοµένο ή ζητούµενο

Διαβάστε περισσότερα

Λυση. και επομένως. Αντικαθιστούμε στη σχέση. Λυση. y = f 3 και y = f 3

Λυση. και επομένως. Αντικαθιστούμε στη σχέση. Λυση. y = f 3 και y = f 3 Ø ÔØÓÑ Ò ½ Á ÒÓÙ ÖÓÙ ¾¼¼ Ασκηση Δίνεται η συνάρτηση f (x) =x +lnx. Να βρεθεί η εφαπτομένη της C f στοσημείομετετμημένηe. Η εξίσωση της τυχούσας εφαπτομένης της C f είναι y = f (x 0 ) x + f (x 0 ) f (x

Διαβάστε περισσότερα

Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου

Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου ΛΥΚΕΙΟ ΜΑΚΑΡΙΟΥ Γ ΛΑΡΝΑΚΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2014-15 Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου 1) Να γράψετε 3 διανυσματικά μεγέθη και 2 μονόμετρα μεγέθη καθώς και τις μονάδες μέτρησής τους (στο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Α Να αποδείξετε ότι η παράγωγος της συνάρτησης f(x) x είναι f (x) Β Πότε µια συνάρτηση f σε ένα διάστηµα

Διαβάστε περισσότερα

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Σχέσεις Αναδρομής Γραμμικές Σχέσεις Αναδρομής με σταθερούς συντελεστές

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Επιμέλεια: Σακαρίκος Ευάγγελος 08 Θέματα - 4//05 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσαν. Κεφάλαιο

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΕΥΘ. ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ( ΜΕΣΩ ΤΗΣ ΕΛΕΥΘΕΡΗΣ ΠΤΩΣΗΣ )

ΜΕΛΕΤΗ ΕΥΘ. ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ( ΜΕΣΩ ΤΗΣ ΕΛΕΥΘΕΡΗΣ ΠΤΩΣΗΣ ) ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ ΜΕΛΕΤΗ ΕΥΘ. ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ( ΜΕΣΩ ΤΗΣ ΕΛΕΥΘΕΡΗΣ ΠΤΩΣΗΣ ) Α. ΣΤΟΧΟΙ Η ικανότητα συναρμολόγησης μιας απλής πειραματικής διάταξης. Η σύγκριση των πειραματικών

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα

ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα Σκοπός πειράµατος Στο πείραµα αυτό θα χρησιµοποιήσουµε βασικά όργανα του εργαστηρίου (διαστηµόµετρο, µικρόµετρο, χρονόµετρο) προκειµένου να: Να µετρήσουµε την πυκνότητα

Διαβάστε περισσότερα

ιάθλαση. Ολική ανάκλαση. ιάδοση µέσα σε κυµατοδηγό.

ιάθλαση. Ολική ανάκλαση. ιάδοση µέσα σε κυµατοδηγό. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 91 9. Άσκηση 9 ιάθλαση. Ολική ανάκλαση. ιάδοση µέσα σε κυµατοδηγό. 9.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε τα φαινόµενα

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα

Διαβάστε περισσότερα

ΜΜΚ 105: Πειραματική και Στατιστική Ανάλυση Δημιουργία Πινάκων και Γραφικών Παραστάσεων στην Excel 18/09/14

ΜΜΚ 105: Πειραματική και Στατιστική Ανάλυση Δημιουργία Πινάκων και Γραφικών Παραστάσεων στην Excel 18/09/14 ΜΜΚ 105: Πειραματική και Στατιστική Ανάλυση Δημιουργία Πινάκων και Γραφικών Παραστάσεων στην Excel 18/09/14 1. Δημιουργία Πίνακα 1.1 Εισαγωγή μετρήσεων και υπολογισμός πράξεων Έστω ότι χρειάζεται να υπολογιστεί

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 4: Συναρτήσεις ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 4: Συναρτήσεις Συγγραφή: Ομάδα Υποστήριξης

Διαβάστε περισσότερα

ΣΥΝΘΕΤΕΣ ΑΣΚΗΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΣΤΑ ΣΥΣΤΗΜΑΤΑ

ΣΥΝΘΕΤΕΣ ΑΣΚΗΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΘΕΤΕΣ ΑΣΚΗΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΣΤΑ ΣΥΣΤΗΜΑΤΑ 1. Να λύσετε τα συστήματα: 4 1 17 x y α) 19 x y δ) 1 4 17 5 5 x y β) 15 1 1 y x 1 1 0 x y ε) 1 1 8 x y στ) γ) 5 5 a 1 7 1 1 5 x y 1 7 x y. Να λυθούν τα συστήματα:

Διαβάστε περισσότερα

Κεφάλαιο 3: Τυχαίες µεταβλητές και κατανοµές πιθανότητας.

Κεφάλαιο 3: Τυχαίες µεταβλητές και κατανοµές πιθανότητας. Κεφάλαιο 3: Τυχαίες µεταβλητές και κατανοµές πιθανότητας. Περιεχόµενα ιακριτές τυχαίες µεταβλητές Συνεχείς τυχαίες µεταβλητές Μέση τιµή τυχαίων µεταβλητών Ροπές, διασπορά, και τυπική απόκλιση τυχαίων µεταβλητών

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: ΑΛΓΟΡΙΘΜΟΙ ΕΥΘΕΙΑΣ ΚΥΚΛΟΥ -ΈΛΛΕΙΨΗΣ

ΚΕΦΑΛΑΙΟ 2: ΑΛΓΟΡΙΘΜΟΙ ΕΥΘΕΙΑΣ ΚΥΚΛΟΥ -ΈΛΛΕΙΨΗΣ ΚΕΦΑΛΑΙΟ : ΑΛΓΟΡΙΘΜΟΙ ΕΥΘΕΙΑΣ ΚΥΚΛΟΥ -ΈΛΛΕΙΨΗΣ Μια εικόνα μπορεί να περιγραφεί με πολλούς τρόπους. Αν υποθέσουμε ότι έχουμε μια προβολή ψηφιδοπλέγματος, μια εικόνα καθορίζεται πλήρως από το σύνολο των

Διαβάστε περισσότερα