ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΜΗΧΑΝΙΚΗ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΜΗΧΑΝΙΚΗ"

Transcript

1 ΦΥΣ 114 ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΜΗΧΑΝΙΚΗ Φθινόπωρο 010 Διδάσκων/Υπεύθυνος: Φώτης Πτωχός Τηλ: Γραφείο: B35 web-page:

2 Γραφικές παραστάσεις Μια γραφική παράσταση αποτελεί μια ακριβή γραφική αναπαράσταση των πειραματικών δεδομένων. Η γραφική παράσταση είναι ένας ιδιαίτερα αποδοτικός τρόπος για να παρουσιαστούν οι μετρήσεις και υπολογισμοί που έχουμε κάνει. Με το τρόπο αυτό μπορεί οποιοσδήποτε να δει το συσχετισμό μεταξύ διαφόρων μεγεθών αλλά και τη διασπορά (ακρίβεια) των συλλεγμένων μετρήσεων καθώς και οποιαδήποτε προτιμήσεις των μεγεθών (π.χ.περιγράφονται τα δεδομένα από ευθεία γραμμή; ποια η κλίση της κλπ). Όπως και σε μια φωτογραφία πρέπει να λάβουμε υπόψη το τρόπο με τον οποίο αντιπροσωπεύουμε τα δεδομένα. Όπως σε μια φωτογραφία, η γωνία λήψης της μπορεί να ενισχύσει ή να κρύψει κάποια χαρακτηριστικά του θέματός της έτσι και στην γραφική αναπαράσταση δεδομένων έχει σημασία η επιλογή των αξόνων αφού μπορούν να κρύψουν ή να διαφοροποιήσουν χαρακτηριστικά των δεδομένων Θεωρήστε ένα πείραμα στο οποίο θέλετε να εξετάσετε το ενδοχόμενο συσχέτισης μεταξύ των φάσεων της σελήνης και του μήκους μιας σανίδας ξύλου Φάσεις σελήνης Μήκος σανίδας (cm) Έστω ότι πήρατε τις ακόλουθες μετρήσεις 1 0 τέταρτο 1.1±0.5 0 τέταρτο 13.0± τέταρτο 11.8± τέταρτο 1.6±0.5

3 Β Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής παράστασης είναι να διαλέξετε αρχικά την ανεξάρτητη μεταβλητή σας (στη προκειμένη περίπτωση οι φάσεις της σελήνης) και να την τοποθετήσετε στον οριζόντιο άξονα, ενώ στο κατακόρυφο άξονα τοποθετείτε την εξαρτημένη μεταβλητή (το μήκος της σανίδας) Β Data 1 Α Αν χρησιμοποιήσουμε κάποιο γραφικό λογισμικό ενός υπολογιστή και κάνουμε το γράφημα θα μοιάζει όπως στο σχήμα. Υπάρχουν ωστόσο πολλά λάθη στο τρόπο που σχεδιάσαμε τη γραφική αυτή παράσταση. Αρχικά κάθε παράσταση θα πρέπει να έχει ένα σωστό τίτλο και οι άξονες να έχουν Ονομασίες αντιπροσωπευτικές των μεγεθών που αντιπροσωπεύουν Ο τίτλος θα μπορούσε να είναι συσχετισμός φάσεων σελήνης και μήκους σανίδας Με το τρόπο αυτό ο αναγνώστης ξέρει τι να περιμένει να δει στη παράσταση. O οριζόντιος άξονας θα πρέπει να έχει το τίτλο φάσεις σελήνης (τέταρτα) ενώ ο κατακόρυφος άξονας θα είχε το τίτλο Μήκος σανίδας (cm)

4 Γραφικές παραστάσεις - Υποδιαιρέσεις αξόνων Ο x-άξονας μπορεί να αναπαρασταθεί μόνο με ακέραιες (οι φάσεις της σελήνης) επομένως δεν χρειαζόμαστε πολλές υποδιαιρέσεις) Πόσες όμως υποδιαιρέσειs; Αρκετές ώστε ο x-άξονας να περιέχει όλα τα δεδομένα και τουλάχιστον μια επιπλέον σαν ανώτερο και κατώτερο όριο ώστε να δίνουν τη σιγουριά στον αναγνώστη ότι δεν υπάρχουν άλλα σημεία. Ποιά η κλίμακα του y- άξονα και το εύρος της; Δε θέλουμε μια κλίμακα στην οποία τα ακρώτατα σημεία να μοιάζουν ότι συμπίπτουν. Ένας πρακτικός Κανόνας είναι να συμπεριλαμβάνουμε πάντοτε τη τιμή 0 εφόσον η τιμή αυτή μπορεί να ληφθεί σε μια μέτρηση. Παρόλο το μήκος της σανίδας δεν είναι 0 για πολύ μικρές σανίδες μπορεί να πάρουμε τέτοια τιμή. error bar Δεν θα πρέπει το εύρος της υποδιαίρεσης της κλίμακας να είναι πολύ μεγάλο ώστε όλες οι μετρήσεις τεχνικά να πέφτουν σε μια υποδιαίρεση. +1 Τυπική απόκλιση Στα περισσότερα γραφήματα που θα έχετε να κάνετε Μέτρηση στο εργαστήριο θα πρέπει να ξεκινάτε τον y-άξονα -1 Τυπική απόκλιση από το 0. Τα δεδομένα στο προηγούμενο γράφημα φαίνονται να μην έχουν κάποια συσχέτιση και ότι είναι τυχαία. Αυτό γιατί οι τυχαίες διακυμάνσεις στις μετρήσεις δημιουργεί την αβεβαιότητα της κάθε μέτρησης. Αν σχεδιάζαμε μια κατακόρυφη γραμμή με μήκος όσο το μέγεθος της ±1 τυπικής απόκλισης κάθε μέτρησης θα μπορούσαμε να δείξουμε γραφικά την ακρίβεια του πειράματος

5 Γραφικές παραστάσεις - error bars Αν οι μετρήσεις που έχουμε είναι πάρα πολλές τότε ο υπολογισμός όλων των αβεβαιοτήτων είναι επίπονος και χρονοβόρος. Παρατηρούμε όμως ότι οι περισσότερες μετρήσεις έχουν παρόμοια αβεβαιότητα και οι τιμές των μετρήσεων που βρίσκονται στο μέσο του εύρους των τιμών που καλύπτουν οι μετρήσεις έχουν παρόμοια αβεβαιότητα. Μεγαλύτερη αβεβαιότητα παρουσιάζουν οι μετρήσεις που βρίσκονται στα άκρα του εύρους των μετρήσεων (από κατασκευή) μια και εκεί θα παρουσιάζεται η μεγαλύτερη διακύμανση. Ακολουθούμε τον εξής κανόνα για το σχεδιασμό των error bars Παίρνουμε τις πρώτες και τελευταίες μετρήσεις που καλύπτουν τα άκρα του εύρους τιμών των μετρήσεών μας και υπολογίζουμε την αβεβαιότητά μας. Με το τρόπο αυτό έχουμε μια καλή και συντηρητική ένδειξη της αβεβαιότητας των μετρήσεών μας χωρίς να χάνουμε σημαντική πληροφορία. Με τη μέθοδο αυτή πάντοτε υπολογίζουμε την αβεβαιότητα 4 το πολύ μετρήσεων Πειράματα που έχουν λιγότερες των 4 μετρήσεων θα έχουν όλα τα σημεία τους με error bars. Υπάρχει ακόμα ένα πλεονέκτημα στην επιλογή του y-άξονα να ξεκινά από το 0. Η τιμή κάθε μέτρησης είναι ανάλογη της απόστασης από το y=0. Επομένως οι διακυμάνσεις της απόστασης δίνουν οπτικά εύκολα την διασπορά μεταξύ των μετρήσεων.

6 Γραφικές παραστάσεις - Διορθωμένο γράφημα Μήκος, L(cm) Σχέση μεταξύ μήκους σανίδας και φάσεων της σελήνης Η γραφική παράσταση στη τελικής της μορφή δείχνει ότι οι διακυμάνσεις στις μετρούμενες τιμές του μήκους της σανίδας δεν είναι σημαντικά μεγαλύτερες από την αβεβαιότητα της κάθε μέτρησης. Δηλαδή το μήκος της σανίδας είναι ανεξάρτητο των φάσεων της σελήνης όπως και περιμέναμε Αν όλα τα δεδομένα μας έχουν τιμές οι οποίες είναι μέσα στο εύρος της ±1 τυπικής απόκλισης γύρω από την ίδια κεντρική τιμή δεν έχουμε κάποιο λόγο να ισχυριζόμαστε ότι οι μετρήσεις μας είναι διαφορετικές. Φάση σελήνης (τέταρτο) Βλέπουμε επομένως ότι η σωστή εκτίμηση προκύπτει με το να βρούμε τη μέση τιμή όλων των μετρήσεων του μήκους της σανίδας. Πάντοτε όταν κάνετε μια γραφική παράσταση σκεφθείτε τις αβεβαιότητες των μετρήσεων και σχεδιάστε την λογικά. Η αρχική γραφική παράσταση μπορεί να σας οδηγούσε στο συμπέρασμα ότι υπάρχει όντως συσχέτιση μεταξύ του μήκους της σανίδας και των φάσεων της σελήνης.

7 Κανόνες για τη δημιουργία γραφικών παραστάσεων Όταν σας ζητείτε να κάνετε τη γραφική παράσταση του Μεγέθους 1 ως προς το Μέγεθος σημαίνει ότι το Μέγεθος είναι στον άξονα x και το Μέγεθος 1 στο y-άξονα Ποτέ μη χαράζετε καμπύλες οι οποίες συνδέουν τα σημεία των μετρήσεών σας. Κάθε καμπύλη έχει μια φυσική ερμηνεία. Κάθε γραφική παράσταση θα πρέπει να έχει κάποιο τίτλο περιγραφής που εξηγεί σύντομα τη σημασία της παράστασης. Κάθε γραφική παράσταση θα πρέπει να έχει επιγραφές στους άξονες ανάλογα με το μέγεθος που αντιστοιχείτε καθώς και τις απαραίτητες μονάδες μέτρησης. Ο οριζόντιος άξονας θα πρέπει να έχει υποδιαιρέσεις πέρα από το εύρος των μετρήσεων (αριστερά και δεξιά του διαστήματος) ώστε να διασφαλίσετε τη μη ύπαρξη σημείων έξω από το εύρος που ορίζετε. Εξαίρεση σε αυτό υπάρχει όταν η επιπλέον υποδιαίρεση αντιστοιχεί σε αρνητική τιμή χωρίς φυσική σημασία οπότε σταματούμε στη τιμή x=0. Ο κατακόρυφος άξονας θα πρέπει να περιέχει τη τιμή 0 και να εκτείνεται πέρα της μεγαλύτερης τιμής που έχετε μετρήσει. Οι άξονες δε θα πρέπει να κρύβουν κάποιο σημείο μέτρησης. Η απόσταση από το y=0 είναι ανάλογη των τιμών των μετρήσεων και δίνει οπτικό έλεγχο της διακύμανσης των μετρήσεων. Σχεδιάστε τις αβεβαιότητες δίνοντας ±1 τυπική απόκλιση σε 4 σημεία. Για μεγάλα δείγματα σχεδιάστε μόνο τις αβεβαιότητες για τα πρώτα και τελευταία σημεία του εύρους. Αυτό προσφέρει οπτικό έλεγχο των αβεβαιοτήτων

8 Ανάλυση δεδομένων Σχέση μεταξύ μετρήσεων και θεωρίας: Γενικός νόμος φυσικής Μια μέτρηση Πολλές μετρήσεις Μια και μόνο μέτρηση, για παράδειγμα η θέση του βλήματος που κάνει πλάγια βολή μια χρονική στιγμή δεν είναι αρκετή για να περιγράψει το γενικό φαινόμενο Για να συνδέσουμε το πείραμα με θεωρία θα πρέπει να έχουμε πολλές μετρήσεις και από το τρόπο κατανομής των δεδομένων να ανακαλύψουμε την θεωρία που κρύβεται πίσω από τα δεδομένα Στο παράδειγμα του βλήματος, η μελέτη του βεληνεκούς για διάφορες γωνίες ρίψης και διαφορετικές ταχύτητες μπορούν να βοηθήσουν να κατανοήσουμε το φυσικό νόμο που περιγράφει το φαινόμενο αυτό Όταν πραγματοποιούμε κάποιο πείραμα δεν ενδιαφερόμαστε απλά και μόνο για τις τιμές κάποιων μεγεθών που μετράμε αλλά και για την συσχέτιση που υπάρχει μεταξύ των μεγεθών αυτών H συσχέτιση μεταξύ των μεγεθών είναι αυτή που εκδηλώνει την ύπαρξη κάποιου φυσικού νόμου Το βασικό εργαλείο που χρησιμοποιούμε για να βρούμε κάποιο συσχετισμό είναι οι γραφικές παραστάσεις. Το ερώτημα που γεννάται όμως είναι πως μπορούμε να μειώσουμε το μεγάλο αριθμό μετρήσεων σε ποσότητες που μπορούν να συγκριθούν με τη θεωρητικές προβλέψεις

9 Απόσταση, L(m) Προσαρμογή σε ευθεία γραμμή Μια από τις περισσότερες χρήσιμες τεχνικές είναι αυτή της περιγραφής των πειραματικών δεδομένων με μια ευθεία γραμμή. Υποθέστε ότι έχετε μια σειρά μετρήσεων σε μια γραφική παράσταση y ως προς x και από τη γραφική παράσταση βλέπουμε ότι αντιστοιχεί σε μια ευθεία γραμμή Για την περιγραφή αυτής της ευθείας χρειάζονται παράμετροι: η κλίση της, m, και η τετμημένη της ευθείας με τον άξονα των y, b Τη στιγμή που θα προσδιορίσουμε τις δύο αυτές παραμέτρους μπορούμε να υπολογίσουμε την τιμή y που αντιστοιχεί σε οποιαδήποτε τιμή του x. Κλίση=m= Δy Δx Δx = sec y-τετμημένη=b=5m Δy = 1m απόσταση από την αρχή t=0 Χρόνος, t(sec) y = ax + b Προσέξτε ότι είναι ακριβώς η κλίση και η τετμημένη b που παίζουν σημαντικό ρόλο στη θεωρία H κλίση είναι η ταχύτητα ενώ η τετμημένη μας δίνει την αρχική θέση του σώματος Επομένως το πρόβλημά μας ανάγεται στην εύρεση των παραμέτρων της ευθείας καθώς και των αβεβαιοτήτων που συνοδεύουν τις εκτιμήσεις αυτών

10 Εύρεση της ευθείας Έστω ότι έχουμε τις μετρήσεις που δίνονται στο παρακάτω πίνακα Χρόνος (sec) Απόσταση (m) Αβεβαιότητα, Δy (m) Πίνακας 1 (δεν χρειάζεται να υπολογισθεί) Χρειάζεται να υπολογίσουμε τις αβεβαιότητες για 4 τιμές Τις που βρίσκονται στο κατώτερο όριο τιμών και τις δύο στο υψηλότερο όριο τιμών Σα 1 ο βήμα κάνουμε τη γραφική παράσταση των δεδομένων του πίνακα 1 Απόσταση, L(m) Δεδομένα από το πίνακα 1 Χρησιμοποιώντας ένα χάρακα μπορούμε να σχεδιάσουμε τη καλύτερη ευθεία που διέρχεται από όλα τα σημεία χρόνος, t(sec) Αυτή η ευθεία λέγεται ευθεία καλύτερης προσαρμογής (best fit) Αν οι αβεβαιότητες όλων των σημείων είναι ίσες ή πολύ μικρές τότε η διαδικασία είναι πολύ απλή Αν οι αβεβαιότητες παρουσιάζουν μεγάλες διακυμάνσεις τότε η διαδικασία είναι πιο πολύπλοκη

11 Ευθεία γραμμή καλύτερης προσαρμογής Σημεία με μεγάλες αβεβαιότητες περιέχουν και τη λιγότερο σημαντικότητας πληροφορία και επομένως θα πρέπει να δώσουμε τη λιγότερο σημασία Η τετμημένη με το y-άξονα μπορεί να βρεθεί διαβάζοντας απλά τη τιμή από τη γραφική παράσταση. Στη περίπτωσή μας είναι περίπου 13m Για να βρούμε τη κλίση χρησιμοποιούμε το ορθογώνιο τρίγωνο της διαφ. 8 και υπολογίζουμε κάποιο διάστημα Δx και το αντίστοιχο Δy m = y y 1 x x 1 Όπου τα σημεία x 1, x, y 1 και y είναι κάποια σημεία της ευθείας γραμμής και όχι απαραίτητα πειραματικά σημεία Αυτό είναι σημαντικό γιατί από τη στιγμή που σχεδιάσατε τη καλύτερη ευθεία δεν ενδιαφερόμαστε πλέον για τα πειραματικά σημεία αλλά για την κλίση και τη τετμημένη της ευθείας Προσέξτε ότι για τη περίπτωσή μας κανένα από τα σημεία δεν βρίσκεται ακριβώς πάνω στην ευθεία Χρησιμοποιούμε επομένως τα δεδομένα για να βρούμε τη καμπύλη και τη καμπύλη για να βρούμε τη θεωρία 3m 140m Για το παράδειγμά μας έχουμε: m = = 11.5m / s 11m / s 1.7s 11.3s Στο τελευταίο βήμα γράφουμε το αποτέλεσμα σύμφωνα με τα σημαντικά ψηφία που επιτρέπονται από τις μετρήσεις μας στο πίνακα 1 (δύο σημαντικά ψηφία)

12 Απόσταση, L(m) Eύρεση της αβεβαιότητας της κλίσης και τετμημένης Ξεκινάμε σχεδιάζοντας ένα παραλληλόγραμμο το οποίο περικλείει όλα τα πειραματικά σημεία συμπεριλαμβανομένης της αβεβαιότητάς τους Το παραλληλόγραμμα της αβεβαιότητας φαίνεται στο παρακάτω σχήμα Δεδομένα από το πίνακα 1 Xρόνος, t(sec) H πάνω και κάτω γραμμή αυτού του παρ/μου σχεδιάζονται παράλληλα προς την ευθεία της καλύτερης προσαρμογής Tα άκρα σχεδιάζονται παρ/λα προς τον y-άξονα Οποιαδήποτε εκτίμηση της αβεβαιότητας της κλίσης και τετμημένης της ευθείας θα πρέπει να έχει σαν αποτέλεσμα μια ευθεία η οποία περνά από τα άκρα του παρ/μου και δεν τέμνει τις πλάγιες πλευρές Μπορούμε επομένως να χαράξουμε τις διαγωνίους του παρ/μου και οι κλίσεις και τετμημένες των αυτών ευθειών δίνουν την αβεβαιότητα στη κλίση και τετμημένη της ευθείας της καλύτερης προσαρμογής

13 Eύρεση της αβεβαιότητας της κλίσης και τετμημένης Όπως και στην περίπτωση της καλύτερης ευθείας προσαρμογής υπολογίζουμε τη κλίση και τετμημένη των διαγωνίων του παρ/μου Έχουμε m A = = 14m / s και m 31 1 B = = 10m / s Επομένως η αβεβαιότητα της κλίσης της καλύτερης ευθείας είναι: m A m B = 4m / s Επειδή εκφράζουμε την αβεβαιότητα συνήθως συμμετρικά θα έχουμε ότι η αβεβαιότητα του πειράματος είναι Δm = m A m B = m / s Βλέποντας τις ευθείες της αβεβαιότητας καταλαβαίνουμε ότι είναι αρκετά απίθανο να επιλέξουμε είτε την ευθεία Α ή την ευθεία Β σαν την ευθεία της καλύτερης προσαρμογής. Επομένως έχουμε υπερεκτιμήσει την αβεβαιότητα Μια προσεκτικότερη ανάλυση δείχνει ότι θα πάρουμε μια πιο καλή εκτίμηση της αβεβαιότητας αν διαιρέσουμε την προηγούμενη εκτίμησή μας με τη τετραγωνική ρίζα του αριθμού των μετρήσεών μας Γράφουμε: Δm = m A m B 1 1

14 Δm = m m A B 1 1 H εξίσωση αυτή δίνει την εκτίμηση της πιο πιθανής αβεβαιότητας. Στο παρονομαστή, για Ν=1, Δm= και αυτό είναι λογικό μια και από ένα σημείο μπορούμε να έχουμε οποιαδήποτε ευθεία Για Ν= μια γραμμή μόνο μπορεί να χαραχθεί από σημεία. Στην περίπτωση αυτή το παρ/μο της αβεβαιότητας προέρχεται μόνο από τις αβεβαιότητες των δύο αυτών σημείων και επομένως είναι λογικό Δm = (m A -m B )/ Για Ν>> η αβεβαιότητα ελλατώνεται σύμφωνα με τη ρίζα του αριθμού των μετρήσεων Ν και αυτό είναι το αποτέλεσμα που βρήκαμε όταν υπολογίσαμε του σφάλματος της μέσης τιμής Αυτό δεν αποτελεί τη λύση του προβλήματος αλλά είναι κάποια πολυ λογική και καλή προσέγγιση Η εύρεση της αβεβαιότητας της τετμημένης προχωρά σύμφωνα με τα όσα αναπτύξαμε για την αβεβαιότητα της κλίσης της ευθείας. Κάνοντας τις πράξεις έχουμε ότι m ± Δm = ( 11 ± 1)m / s και b ± Δb = ( 13 ± 6)m Η αβεβαιότητα της κλίσης είναι ίδιας τάξης με τα δεδομένα αλλά η αβεβαιότητα της τετμημένης είναι περίπου 50%

15 Στη περίπτωση της κλίσης παίρνουμε μια μέση τιμή ενώ για τη τετμημένη προεκτείνουμε σε περιοχή μακριά από τα δεδομένα και σε χρόνους που δεν έχουμε πειραματικές μετρήσεις και είναι επόμενο να έχουμε μεγαλύτερη αβεβαιότητα Σε κάποιο σημείο όχι πολύ μακριά από τα δεδομένα η αβεβαιότητα σχετικά με τη θέση του σώματος τη χρονική στιγμή t=0 μπορεί να γίνει ίση με 100% και μεγαλύτερη ακόμα. Αυτό σημαίνει ότι το πείραμά μας είναι πολύ δύσκολο να προσδιορίσει το τι κάνει το σώμα σε μια προγενέστερη χρονική στιγμή στην οποία δεν υπάρχουν μετρήσεις Μπορούμε δηλαδή να εκφράσουμε άποψη μόνο σχετικά με τη κίνηση στο διάστημα που μετρήσαμε αλλά όχι πέρα από αυτό Μπορεί να προσπαθήσει κάποιος να επιχειρηματολογήσει ότι αν το σώμα κινείται με σταθερή ταχύτητα κατά τη διάρκεια του διαστήματος ότι κινείται με τον ίδιο τρόπο έξω από το χρονικό διάστημα της μέτρησής μας. Αυτό μπορεί να είναι σωστό αλλά δεν έχουμε μετρήσεις οι οποίες μπορούν να δείξουν ότι αυτό συμβαίνει. Για να ελλατώσουμε την αβεβαιότητα χρειαζόμαστε περισσότερες μετρήσεις. Ένα τελευταίο σημείο. Ακόμα και αν υπήρχε πειραματικό σημείο στον y-άξονα αυτό δεν σημαίνει ότι δεν υπάρχει αβεβαιότητα στη τιμή της τετμημένης. Αυτό γιατί η ευθεία καλύτερης προσαρμογής δεν είναι απαραίτητο να περνά από όλα τα πειραματικά σημεία όπως συμβαίνει και στο παράδειγμά μας

16 Ημιλογαριθμικό χαρτί Πολλές φορές τα δεδομένα μας δεν περιγράφονται από μια απλή ευθεία αλλά ο νόμος της φυσικής που περιγράφει το φαινόμενο έχει μια εκθετική μορφή Για παράδειγμα η ραδιενεργός διάσπαση κάποιων ραδιοισοτόπων. Η διάσπαση ακολουθεί εκθετική μορφή σύμφωνα με τη σχέση t /τ A(t) = A 0 e Όπου Α 0 είναι η ενεργότητα τη στιγμή t=0 και τ η σταθερά διάσπασης Μπορούμε και πάλι να χρησιμοποιήσουμε την ίδια τεχνική για να βρούμε τη σταθερά διάσπασης και την αρχική ενεργότητα του δείγματος. Αρκεί να γράψουμε την παραπάνω εξίσωση σε γραμμική μορφή Η μετατροπή της εκθετικής εξίσωσης σε γραμμική γίνεται εύκολα λογαριθμίζοντας την εξίσωση ln[a(t)] = ln[a 0 e t /τ ] = ln[a 0 ] t τ = ln[a 0 ] + λt Ο όρος ln[a 0 ] αντιπροσωπεύει το σταθερό όρο της εξίσωσης της ευθείας ενώ ο όρος λ=-1/τ την κλίση της. Ο όρος t αποτελεί την ανεξάρτητη μεταβλητή ενώ ο λογάριθμος της ενεργότητας, ln[a(t)], την εξαρτόμενη μεταβλητή Για την γραφική παράσταση θα μπορούσαμε να υπολογίσουμε τους λογαρίθμους και να χρησιμοποιήσουμε χιλιοστομετρικό χαρτί ή να χρησιμοποιήσουμε το λεγόμενο ημιλογαριθμικό χαρτί

17 Ημιλογαριθμικό χαρτί Η χρήση του λογαριθμικού χαρτιού διευκολύνει στη περίπτωση αυτή γιατί μπορούμε να θέσουμε τις μετρήσεις μας απευθείας στο γράφημα χωρίς επιπλέον υπολογισμούς. Το χαρτί περιέχει το κάθετο άξονα με τέτοιο τρόπο ώστε οι Κατακόρυφες αποστάσεις να είναι ανάλογες των επιθυμητών λογαρίθμων Ο παρακάτω πίνακας περιέχει τα δεδομένα της ραδιενεργούς διάσπασης Πίνακας. Ενεργότητα ως προς χρόνο για το ραδιενεργό δείγμα μας Ενεργότητα, Α(χτύποι/sec) Δεδομένα από το πίνακα Χρόνος (min) Ενεργότητα Α και ΔΑ (χτύποι/s) ±31 740± ± ±1 5 35±18 xρόνος t (min)

18 Ηµιλογαριθµικό χαρτί Χρόνος (min) Ενεργότητα Α και ΔΑ (χτύποι/s) ±31 740± ± ±1 5 35± Ενεργότητα Free Logarithmic Graph Paper from t (min)

19 Ημιλογαριθμικό χαρτί Χρειάζεται ωστόσο κάποια προσοχή, γιατί τα δεδομένα μας δίνονται αυτόματα σε λογαριθμική κλίμακα, αλλά οι λογάριθμοι δεν υπολόγιστηκαν. Απλά το χαρτί παρέχει το κατάλληλο μετασχηματισμό. Όταν όμως πρέπει να υπολογίσουμε τη κλίση στο λογαριθμικό χαρτί θα πρέπει να υπολογίσουμε τους λογαρίθμους. Για παράδειγμα : λ = ln(860 / sec) ln(8 / sec) 0.5 min 4.5 min = 0.7 / min = 1 τ τ = 3.70 min Η τετμημένη θα δίνεται από A 0 = sec 60sec 1min = / min Όπως βλέπουμε χρειάζεται να υπολογίσουμε ένα λογάριθμο για να βρούμε την κλίση ενώ η τετμημένη δίνεται απευθείας από το χαρτί Ο τρόπος υπολισμού της αβεβαιότητας της κλίσης και τετμημένης είναι ακριβώς ίδιος όπως και στην περίπτωση της γραμμικής περίπτωσης. Θα πρέπει να σχεδιάσουμε το παρ/μο αβεβαιότητας και να υπολογίσουμε τις κλίσεις των δύο διαγωνίων και τις αντίστοιχες τετμημένες τους.

20 Log-Log χαρτί (λογαριθµικό λογαριθµικό) Πολλές φορές µπορούµε να βρούµε την συναρτησιακή εξάρτηση ενός φυσικού µεγέθους y από το ανεξάρτητο µέγεθος x, θεωρώντας το λογάριθµο των δεδοµένων που µετράµε. Αν το εξαρτόµενο µέγεθος y ειναι ανάλογο κάποιας δύναµης του ανεξάρτητου µεγέθους x, τότε το γράφηµα τou y ως προς x, σχεδιαζόµενο σε ένα λογαριθµικό-λογαριθµικό χαρτί θα είναι ευθεία η κλίση της οποίας θα είναι ίση µε τον εκθέτη στον οποίο είναι υψωµένο το ανεξάρτητο µέγεθος. Για παράδειγµα, έστω ότι µετρούµε κάποια δεδοµένα τα οποία κατανέµονται σύµφωνα µε την εξίσωση y = x n Θεωρώντας το λογάριθµο θα έχουµε: log y ( ) = log x n ( ) log y ( ) = nlog( x) Προφανώς από ένα γράφηµα µε λογαριθµικούς άξονες µπορούµε να βρούµε αµέσως τη κλίση Αν είχαµε περισσότερο πολύπλοκη µορφή: y = Ax n log( y) = log( Ax n ) = log( A) + nlog( x) Έχει διαφορά στο γράφηµα αν θεωρήσουµε Log 10 ή ln (log e ) σχέσεις?

21 8 7 Log-Log χαρτί (λογαριθµικό 6 λογαριθµικό) Χ Υ Free Logarithmic Graph Paper from

22 Ιστογράμματα Τα ιστογράμματα αποτελούν ένα εύχρηστο οπτικό τρόπο για να εξάγουμε την κατανομή που ακολουθούν μια σειρά μετρήσεων ενός μεγέθους αλλά και παράλληλα δίνουν τη δυνατότητα για εύκολη στατιστική ανάλυση των μετρήσεων Αν έχουμε μια σειρά από μεγάλο αριθμό μετρήσεων ενός μεγέθους τότε μπορούμε να ταξινομήσουμε τις μετρήσεις και να βρούμε τη συχνότητα εμφάνισης κάθε τιμής Συνήθως δεν κρατάμε κάθε μέτρηση ξεχωριστά αλλά χωρίζουμε το εύρος των τιμών σε κατάλληλα ίσα υποδιαστήματα και αθροίζουμε τις τιμές που πέφτουν σε κάθε υποδιάστημα, Με το τρόπο αυτό πέρνουμε τη κατανομή της συχνότητας εμφάνισης κάθε τιμής Για παράδειγμα έστω ότι μετρήσαμε κάποιο μέγεθος 30 φορές και βρήκαμε: Δηλαδή κάθε τμή x i εμφανίζεται n i φορές H μέση τιμή μπορεί να γραφεί: x i x = = x k n k n k Oι τιμές του μετρήσεων εμφανίζονται με την ακόλουθη συχνότητα: Τιμή # Τιμή # Τιμή #

23 f k Ιστογράμματα Ομαδοποιόντας τις μετρήσεις τότε βρίσκουμε ευκολότερο πόσο συνεισφέρει κάθε τιμή στο άθροισμα της μέσης τιμής, Σx k n k Στο παράδειγμα οι τιμές όλες οι τιμές βρίσκονται στο διάστημα και άρα η ακριβής τιμή θα βρίσκεται στο διάστημα. Εφόσον οι τιμές είναι οι πιο συχνές περιμένουμε ότι και η πραγματική τιμή θα είναι στο υποδιάστημα αυτό. Όντως η μέση τιμή είναι Συνήθως χωρίζουμε το διάστημα σε ίσα υποδιαστήματα κατάλληλου μήκους ώστε στο καθένα να συμπεριλαμβάνεται μεγάλος αριθμός μετρήσεων και βρίσκουμε το ποσοστό των μετρήσεων σε κάθε διάστημα F k = n k f k = F k Δx k Πιθανότητα να βρεθεί μια μέτρηση στο διάστημα k. Πυκνότητα Πιθανότητας μεταβλητής x να βρεθεί στο k-διάστημα Δx, το ποσοστό δηλαδή των μετρήσεων στο διάστημα Δx k Το ιστόγραμμα αποτελεί τη γραφική παράσταση της f k ως προς το x H ολική επιφάνεια των ορθογωνίων θα είναι ίση με την μονάδα: F k = 1 = x x = F k x k f k Δx k Στη περίπτωση αυτή χρησιμοποιούμε σα Δx=0.04cm Αν αριθμός των μετρήσεων γίνει αρκετά μεγάλος τότε το ιστόγραμμα πέρνει τη μορφή της κατανομής από την οποία προέρχονται οι μετρήσεις. Η καμπύλη αποτελεί την οριακή κατανομή k

24 Ιστογράμματα - Οριακή κατανομή Η οριακή κατανομή είναι μια θεωρητική καμπύλη που δεν μπορεί να προκύψει ποτέ από τις μετρήσεις Το εμβαδό κάθε παρ/μου του ιστογράμματος είναι ισοδύναμο με τον αριθμό μετρήσεων που περιλαμβάνεται στο διάστημα αυτό. a + f (x)dx b f (x)dx πιθανότητα μια μέτρηση να περιλαμβάνεται μεταξύ x και x+δx ποσοστό μετρήσεων μεταξύ x=α και x=b, η πιθανότητα δηλαδή μια μέτρηση να «πέσει» στο διάστημα α,b f (x)dx = 1 Η πιθανότητα μια μέτρηση να βρίσκεται μεταξύ - και + Λέμε τότε ότι η f(x) είναι κανονικοποιημένη

25 Ιστογράμματα - Οριακή κατανομή πολλών μετρήσεων Αν ξέρουμε την οριακή κατανομή μπορούμε να υπολογίσουμε τη μέση τιμή + x = x k F k και ανάλογα σ x = x x lim Δx k x = xf (x)dx 0 + ( ) f (x)dx Αν οι μέτρησεις επηρεάζονται από πολλές πηγές μικρών τυχαίων σφαλμάτων τότε η οριακή κατανομή προσεγγιζει αυτή της κατανομής Gauss Για πολύ μεγάλο αριθμό μετρήσεων και για τυχαία μικρά σφάλματα οι τιμές που αποκλίνουν πολύ από τη μέση τιμή κατανέμονται συμμετρικά ως προς τη μέση τιμή τότε στην άθροιση της εύρεσης της μέσης τιμής αυτές οι τιμές αλληλοαναιρούνται και η τελική τιμή πλησιάζει την πιστή τιμή του μεγέθους f (x) = G(x) = + 1 σ π e (x µ) σ G(x)dx = 1 Η πιθανότητα να πάρουµε µια τιµή x στο διάστηµα x 1 και x 1 +dx είναι: P(x 1 ) σ 1 e (x 1 µ) σ Η πιθανότητα να πάρουµε µια τιµή x στο διάστηµα x και x +dx είναι: P(x ) σ 1 e (x µ) σ Αν συνεχίσουµε για όλες τις τιµές x τότε η πιθανότητα για την x : P(x ) σ 1 e (x µ) σ

26 Mέση τιµή σα καλύτερος υπολογισµός αληθινής τιµής H πιθανότητα να παρατηρήσουµε το συγκεκριµένο δείγµα των Ν µετρήσεων είναι το γινόµενο των πιθανοτήτων: P(x 1, x,, x ) = P(x 1 ) P(x 1 ) P(x ) P(x 1, x,, x ) 1 (xi µ) σ σ Ν e Δεδοµένων Ν παρατηρούµενων τιµών x 1, x,, x o καλύτερος υπολογισµός της πραγµατικής τιµής είναι αυτός που πέρνουµε αν µεγιστοποιήσουµε την πιθανότητα Αυτό θα συµβεί όταν το άθροισµα στον εκθέτη είναι ελάχιστο (x i µ) σ ( ) Εποµένως θα πρέπει: d (x i µ) σ dµ = 0 (x i µ) σ = 0 µ = x i Ανάλογα ο καλύτερος υπολογισµός της τυπικής απόκλισης βρίσκεται ότι είναι: dp(x 1, x,, x ) dσ = 0 σ = 1 Ν ( x i x )

27 Καλύτερη ευθείας προσαρμογής Μέθοδος ελαχίστων τετραγώνων (μέθοδος χ ) Όπως είδαμε στη γραφική εύρεση της καλύτερης ευθείας προσαρμογής, αυτό που ενδιαφερόμαστε είναι ο καθορισμός των παραμέτρων της συνάρτησης (π.χ. μιας ευθείας) που περιγράφει τα δεδομένα Δύο μεθόδοι: Ελαχίστων τετραγώνων ή χ Μέγιστης πιθανότητας - maximum likelihood Υποθέτουμε ότι έχουμε μια συνάρτηση y μιας μεταβλητής x και μια σειρά παραμέτρων θ = (θ 1,θ,,θ Ν ) y = y(x; θ ) Έστω ότι μετρήσαμε διάφορες τιμές του y για κάποιες τιμές της ανεξάρτητης μεταβλητής x. Επομένως θα έχουμε Ν ζεύγη τιμών Ορίζουμε σαν χ τη ποσότητα: χ ( x; θ ) = ( x i, y i ± σ yi ) όπου ι =1,,Ν Ν y i y(x i ; θ ) σ i H μέθοδος των ελαχίστων τετραγώνων δηλώνει ότι η καλύτερη εκτίμηση των παραμέτρων θ i επιτυγχάνεται όταν βρεθεί μια ομάδα τιμών θ i για τις οποίες η συνάρτηση χ είναι ελάχιστη

28 Μέθοδος ελαχίστων τετραγώνων - χ Αν οι αποκλίσεις κάθε μέτρησης, σ i, είναι ίσες τότε η σχέση απλουστεύεται χ = 1 σ Ν ( ) y i y x i ; θ Είναι σημαντικό να προσέξετε ότι η μέθοδος όπως ορίστηκε χρειάζεται τη γνώση των αβεβαιοτήτων σ i και ότι υποθέτει ότι δεν υπάρχουν αβεβαιότητες στη γνώση της ανεξάρτητης μεταβλητής x. Aβεβαιότητες στις τιμές x i μπορούν να αγνοηθούν εφόσον: σ xi x i << σ yk y k µε i = 1,,...,, k = 1,,..., Αγνοώντας τις αβεβαιότητες, η μέθοδος ελαχίστων τετραγώνων είναι απλά το άθροισμα των αποστάσεων κάθε μέτρησης y i από τα σημεία της θεωρητικής καμπύλης (x i,y i (x i )). Ελαχιστοποιώντας τη συνάρτηση ψάχνουμε τα σημεία της καλύτερης καμπύλης για τα οποία αυτή η απόσταση ελαχιστοποιείται H εισαγωγή των αβεβαιοτήτων είναι απαραίτητη αν θέλουμε να κάνουμε στατιστική ανάλυση των αποτελεσμάτων διαφορετικά είναι απλό γεωμετρικό πρόβλημα

29 Εφαρμογή χ - εύρεση παραμέτρων ευθείας Ας υποθέσουμε ότι η συνάρτηση την οποία θέλουμε να προσαρμόσουμε στα σημεία των μετρήσεων μας είναι της μορφής ( ) = ax + b y x Θα υποθέσουμε ακόμα ότι οι αβεβαιότητες σ i των y i είναι όλες ίσες μεταξύ τους Επομένως το πρόβλημα εύρεσης των παραμέτρων α και b έγγυται στην ελαχιστοποίησης της συνάρτησης χ ως προς α και b Η ελαχιστοποίηση γίνεται πέρνοντας τη μερική παράγωγο της χ ως προς α και b και εξισώνοντας με μηδέν: χ a = 0 χ και b = 0 και λύνοντας το σύστημα των γραμμικών εξισώσεων που προκύπτει προς α και b a b ( y i ax i b) = ( y i ax i b) x i = 0 ( y i ax i b) = ( y i ax i b) = 0 y i x i = a x i + b x i y i = a x i + b b = y i a x i Αντικαθιστούμε στην 1 η εξίσωση και λύνουμε ως προς α: y i x i = a x i + 1 y i x i a a x i x i x i x i = y i x i x i y i

30 Εύρεση παραμέτρων ευθείας με μέθοδο χ Από την τελευταία εξίσωση παίρνουμε το α και αντικαθιστώντας στην εξίσωση του b παίρνουμε το b a = y i x i x i y i x i x i = xy x Δ y και b = x i y i x i x i x i y i x i = x y Αν διαιρέσουμε με Ν τον αριθμητή και παρονομαστή στις παραπάνω σχέσεις Δ x xy a = yx x y x x ( ) και b = y x x xy x x ( ) όπου x = 1 x i y = 1 y i

31 Παράδειγµα Έστω ότι κάποιος φοιτητής θέλει να µετρήσει τις µάζες διαφόρων σωµάτων µε µια ζυγαριά ελατηρίου. Θα πρέπει πριν µετρήσει τις µάζες να βαθµονοµήσει τη ζυγαριά. Για να το κάνει αυτό χρησιµοποιεί 5 γνωστές µάζες των kgr τις οποίες τοποθετεί διαδοχικά πάνω στη ζυγαριά και µετρά κάθε φορά το αντίστοιχο µήκος του ελατηρίου l k. Υποθέτοντας ότι το ελατήριο υπακούει στο νόµο του Hooke, περιµένει ότι l = A + Bm Η σταθερά A είναι το φυσικό µήκος τους εκκρεµούς και Β είναι Β=g/k, k η σταθερά ελατηρίου Χρησιµοποιόντας την γραµµική σχέση l = A + Bm µπορεί µετρώντας το µήκος του ελατηρίου για µια άγνωστη µάζα m να βρει τη µάζα. Χρειάζεται εποµένως τις τιµές Α και Β. Μέτρηση Μάζα m Μήκος, l m m i l i =5 m i = 30 l i = 56.6 m i = 0 m i l i = 16 Η σταθερά Β θα είναι Β = ml Δ m l = Εποµένως: ( ) Δ = m m Δ = = 00 Η σταθερά Α είναι: m l m A = Δ A = A = 39.0cm B =.06cm / kgr 00 l

32 Γραφική παράσταση Το γράφηµα των προηγούµενων µετρήσεων θα είναι: 60 Μήκος, l (cm) Μάζες, m (kgr) l = m Εποµένως αν κάποια µάζα επιµηκύνει το ελατήριο κατά 53.cm τότε σύµφωνα µε την εξίσωση της χ ευθείας: m = = 6.9kg Χρειάζεται να υπολογίσουµε τις αβεβαιότητες των Α και Β. Αρχικά όµως ποια είναι η αβεβαιότητα των µετρήσεων y? Έχουµε 5 µετρήσεις αλλά η διασπορά τους δεν µας δίνει την αβεβαιότητα τους. Ωστόσο κάθε µέτρηση περιµένουµε να κατανέµεται σύµφωνα µε την Gaussian κατανοµή γύρω από την αληθινή τιµή y=a + Bx i µε εύρος σ i Εποµένως όλες οι αποκλίσεις y i A Bx i θα είναι κατανεµηµένες Gaussian µε κεντρική τιµή 0 και το ίδιο εύρος σ y. 1 Το εύρος σ y δίνεται από την σχέση σ y = ( y i A Bx)

33 Εύρεση αβεβαιότητας παραµέτρων ευθείας Οι αβεβαιότητες των α και b βρίσκονται από εφαρμογή διάδοσης σφαλμάτων και πολύ άλγεβρα ( x a = i x ) y ( i σ a x x ) a = σ yi y i σ x a = σ i x y x x Αλλά Αντικαταστούμε την τελευταία σχέση στον αριθμητή της εξίσωσης για σ a οπότε x i x σ a = σ y ( x x ) ( x x ) 1 = σ y x x x x x x x x ( ) = σ y ( ) = σ y ( ) σ a ( ) σ a = σ y Ανάλογα βρίσκουμε και την αβεβαιότητα του b σ b = σ y x σ y = ( ) ( x x ) x i + x xx i ( x x ) ( x i + x xx i ) = x i + x x x i = x i + x x x = x i x 1 i ( y i A Bx)

34 Περίπτωση με σφάλμα σε x και y Aν οι μετρήσεις έχουν σφάλμα σε x, σ x και y, σ y, τότε μπορούμε να βρούμε ένα ισοδύναμο σφάλμα στην διεύθυνση y που προκαλεί το ίδιο αποτέλεσμα Δx Δy new (x,y) Υποθέτοντας αρχικά ότι σ y = 0 Δy new = dy dx Δx σ y new = dy dx σ x Αν σ y δεν είναι 0 τότε το νέο σφάλµα µπορεί να γραφεί σ y new = σ y + dy dx σ x αφού οι δυό αβεβαιότητες είναι ανεξάρτητες µεταξύ τους

35 Περίληψη Μέθοδος χ Οπότε συνοψίζοντας τη μέθοδο των ελαχίστων τετραγώνων για την περίπτωση της ευθείας και υποθέτοντας ότι τα σφάλματα των επιμέρους μετρήσεων y i είναι ίσα μεταξύ τους ότι : κλίση τεταγμένη a = xy x y x x ( ) b = y x x xy x x ( ) σ a = σ y 1 x x ( ) σ b = σ y x ( ) x x Η συναλοίωτη σχέση μεταξύ των α και b και ο παράγοντας συσχετισμού είναι: όπου: cov( a,b) = x = 1 y = 1 x ( ) x x x i y i xy = 1 x = 1 ρ a,b = x x x i y i x i

36 Μέθοδος ελαχίστων τετραγώνων - σ yi άνισα Αν τα σφάλματα των μετρήσεων είναι διαφορετικά μεταξύ τους τότε η συνάρτηση που θα πρέπει να ελαχιστοποιήσουμε είναι χ = Ν y i ax i b σ i Η ελαχιστοποιήση δίνει τις ίδιες εξισώσεις μόνο που στη περιπτώση αυτή οι μέσες τιμές των μεγεθών αντιστοιχούν σε αυτές που προκύπτουν με το να ζυγίσουμε τις τιμές με τα ανάλογα βάρη (1/σ i ) και η κανονικοποίηση δεν γίνεται ως προς Ν αλλά ως προς το συνολικό βάρος Οι σχέσεις που δίνουν τις παραµέτρους α και b γίνονται (y = αx + b): b = a = wx wy wx wxy Δ wwxy wx Δ wy σ b = σ a = wx Δ w Δ Δ = 1 σ i ( ) wwx wx

Β Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής

Διαβάστε περισσότερα

!n k. Ιστογράμματα. n k. x = N = x k

!n k. Ιστογράμματα. n k. x = N = x k Ιστογράμματα Τα ιστογράμματα αποτελούν ένα εύχρηστο οπτικό τρόπο για να εξάγουμε την κατανομή που ακολουθούν μια σειρά μετρήσεων ενός μεγέθους αλλά και παράλληλα δίνουν τη δυνατότητα για εύκολη στατιστική

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ

ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ Δημήτρης Στεφανάκης Η Μέθοδος των Ελαχίστων Τετραγώνων (ΜΕΤ) χρησιμοποιείται για την κατασκευή της γραφικής παράστασης που περιγράφει ένα φαινόμενο,

Διαβάστε περισσότερα

,, δηλαδή στο σημείο αυτό παρουσιάζει τη μέγιστη τιμή της αν α < 0 2α 4α και την ελάχιστη τιμή της αν α > 0. β Στο διάστημα,

,, δηλαδή στο σημείο αυτό παρουσιάζει τη μέγιστη τιμή της αν α < 0 2α 4α και την ελάχιστη τιμή της αν α > 0. β Στο διάστημα, Γενικής Παιδείας 1.4 Εφαρμογές των παραγώγων Το κριτήριο της πρώτης παραγώγου Στην Άλγεβρα της Α Λυκείου μελετήσαμε τη συνάρτηση f(x) = αx + βx + γ, α 0 και είδαμε ότι η γραφική της παράσταση είναι μία

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1 ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Πότε µια συνάρτηση f σε ένα διάστηµα του πεδίου ορισµού της λέγεται γνησίως αύξουσα και πότε γνησίως φθίνουσα; 2. Να αποδείξετε ότι η παράγωγος

Διαβάστε περισσότερα

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα. Εισαγωγή Μετρήσεις-Σφάλματα Πολλές φορές θα έχει τύχει να ακούσουμε τη λέξη πείραμα, είτε στο μάθημα είτε σε κάποια είδηση που αφορά τη Φυσική, τη Χημεία ή τη Βιολογία. Είναι όμως γενικώς παραδεκτό ότι

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Γραφικές παραστάσεις, κλίση καµπύλης Μέθοδος των ελαχίστων τετραγώνων

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Γραφικές παραστάσεις, κλίση καµπύλης Μέθοδος των ελαχίστων τετραγώνων ΘΕ ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Γραφικές παραστάσεις, κλίση καµπύλης Μέθοδος των ελαχίστων τετραγώνων 1. Σκοπός Πρόκειται για θεωρητική άσκηση που σκοπό έχει την περιληπτική αναφορά σε θεµατολογίες που αφορούν την

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΜΗΧΑΝΙΚΗ

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΜΗΧΑΝΙΚΗ ΦΥΣ 114 ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΜΗΧΑΝΙΚΗ Φθινόπωρο 2014 Διδάσκων/Υπεύθυνος: Φώτης Πτωχός e-mail: fotis@ucy.ac.cy Τηλ: 22.89.2837 Γραφείο: B235 web-page: http://www2.ucy.ac.cy/~fotis/phy114/phy114.htm ΦΥΣ

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ.

ΠΑΡΑΡΤΗΜΑ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ. ΠΑΡΑΡΤΗΜΑ Α ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ. Αρκετές φορές τα πειραματικά δεδομένα πρέπει να απεικονίζονται υπό μορφή γραφικών παραστάσεων σε ορθογώνιο σύστημα αξόνων καρτεσιανών συντεταγμένων. Με τις γραφικές παραστάσεις

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

Εισαγωγή στη θεωρία σφαλμάτων. Μαθηματικός ορισμός του σφάλματος : σφάλμα=x-x όπου x & X είναι η μετρούμενη και η πραγματική τιμή αντίστοιχα.

Εισαγωγή στη θεωρία σφαλμάτων. Μαθηματικός ορισμός του σφάλματος : σφάλμα=x-x όπου x & X είναι η μετρούμενη και η πραγματική τιμή αντίστοιχα. Ε. Κ. Παλούρα 00 Ε. Κ. Παλούρα 00 Εισαγωγή στη θεωρία σφαλμάτων Εισαγωγή στη θεωρία σφαλμάτων Πείραμα Συστηματική παρατήρηση & μέτρηση φυσικών φαινομένων Επαλήθευση απλών νόμων Εκπαίδευση στον υπολογισμό

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3

ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3 Ασκηση 1 ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3 Δίνεται η συνάρτηση α. Να εξετάσετε την f ως προς τα ακρότατα. β. Να βρείτε την εξίσωση της εφαπτομένης της C f στο (1,f(1)). γ. Αν το α παίρνει τιμές που προκύπτουν από

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ Ευθύγραμμη Ομαλή Κίνηση Επιμέλεια: ΑΓΚΑΝΑΚΗΣ.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός https://physicscorses.wordpress.com/ Βασικές Έννοιες Ένα σώμα καθώς κινείται περνάει από διάφορα σημεία.

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4_095. Δίνονται οι ευθείες ε 1: λx + y = 1 και ε : x + λy = λ α) Να βρείτε για ποιες τιμές του λ οι δύο ευθείες τέμνονται και να γράψετε τις συντεταγμένες του κοινού τους σημείου συναρτήσει

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Κεφάλαιο Β.: Η Παράγωγος Συνάρτησης Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Β.: Η Παράγωγος

Διαβάστε περισσότερα

ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ

ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Γραφικές παραστάσεις Μαρία Κατσικίνη E-mail: katsiki@auth.gr Web: users.auth.gr/katsiki Παρουσίαση αποτελεσμάτων με τη μορφή πινάκων Πίνακας : χρόνος και ταχύτητα του κινητού

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ A A. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι f g f g,. Μονάδες 7 Α. Σε ένα πείραμα με ισοπίθανα αποτελέσματα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Ι Β ΜΕΡΟΣ

ΜΑΘΗΜΑΤΙΚΑ Ι Β ΜΕΡΟΣ ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι Περιληπτικές Σημειώσεις-Ασκήσεις Β ΜΕΡΟΣ ΦΩΤΟΥΛΑ ΑΡΓΥΡΟΠΟΥΛΟΥ KAΘ. ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑΤΟΣ ΔΕΟ Msc. Θεωρητικά Μαθηματικά ΚΑΛΑΜΑΤΑ 2016 0 ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ

ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΣΧΟΛ. ΕΤΟΣ 2014-15 1. Εισαγωγή ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ Οι γραφικές παραστάσεις (ή διαγράμματα) χρησιμεύουν για την απεικόνιση της εξάρτησης

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

Εργαστήριο Δομής της Ύλης και Φυσικής Λέιζερ

Εργαστήριο Δομής της Ύλης και Φυσικής Λέιζερ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Εργαστήριο Δομής της Ύλης και Φυσικής Λέιζερ Παρουσίαση οργάνωσης των Εργαστηρίων Φυσικής Ι Ακαδ. Έτους 2013-14 http://www.physicslab.tuc.gr physicslab@isc.tuc.gr

Διαβάστε περισσότερα

ΛΧ1004 Μαθηματικά για Οικονομολόγους

ΛΧ1004 Μαθηματικά για Οικονομολόγους ΛΧ1004 Μαθηματικά για Οικονομολόγους Μάθημα 1 ου Εξαμήνου 2Θ+2Φ(ΑΠ) Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΠΡΟΤΕΙΝΟΜΕΝΟ ΒΙΒΛΙΟ ΕΦΑΡΜΟΓΕΣ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ Έννοια συνάρτησης Παραγώγιση Ακρότατα Ασκήσεις Βασικές έννοιες Στην Οικονομία, τα περισσότερα από τα μετρούμενα μεγέθη, εξαρτώνται από άλλα μεγέθη. Π.χ η ζήτηση από την τιμή,

Διαβάστε περισσότερα

Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις

Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις 1. Σκοπός Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις Σκοπός της άσκησης είναι να εξοικειωθούν οι σπουδαστές με τη γραφική απεικόνιση των δεδομένων τους, την χρήση των γραφικών παραστάσεων για την εξαγωγή

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο, να αποδείξετε ότι (f() + g ()) f () + g (),. Μονάδες 7 Α. Σε ένα πείραµα µε ισοπίθανα

Διαβάστε περισσότερα

ΤΑΞΙΝΟΜΗΣΗ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1.1

ΤΑΞΙΝΟΜΗΣΗ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1.1 ΤΑΞΙΝΟΜΗΣΗ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1.1 ΘΕΜΑ ο ΘΕΜΑ 16950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 3: Ολοκληρωτικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μαθηματικά. Ενότητα 3: Ολοκληρωτικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μαθηματικά Ενότητα 3: Ολοκληρωτικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ Κοίταξε τις µεθόδους, τις λυµένες ασκήσεις και τις ασκήσεις προς λύση των ενοτήτων 6, 7 του βοηθήµατος Μεθοδολογία Άλγεβρας και Στοιχείων Πιθανοτήτων Α Γενικού Λυκείου των Ευσταθίου Μ. και Πρωτοπαπά Ελ.

Διαβάστε περισσότερα

f(x) = και στην συνέχεια

f(x) = και στην συνέχεια ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση. Στις συναρτήσεις μπορούμε να μετασχηματίσουμε πρώτα τον τύπο τους και μετά να βρίσκουμε το πεδίο ορισμού τους; Όχι. Το πεδίο ορισμού της συνάρτησης το βρίσκουμε πριν μετασχηματίσουμε

Διαβάστε περισσότερα

ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ Ορισμός εφαπτομένης καμπύλης Αν μία συνάρτηση f είναι παραγωγίσιμη στο x, τότε ορίζουμε ως εφαπτομένη της γραφικής παράστασης της f στο σημείο Α(x, f(x )) την

Διαβάστε περισσότερα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα q Θεωρία: Η απάντηση που ζητάτε είναι αποτέλεσμα μαθηματικών πράξεων και εφαρμογή τύπων. Το αποτέλεσμα είναι συγκεκριμένο q Πείραμα: Στηρίζεται

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε γραφικά

Διαβάστε περισσότερα

i) Αν (,, ) είναι μια πυθαγόρεια τριάδα και είναι ένας θετικός ακέραιος, να αποδείξετε ότι και η τριάδα (,,

i) Αν (,, ) είναι μια πυθαγόρεια τριάδα και είναι ένας θετικός ακέραιος, να αποδείξετε ότι και η τριάδα (,, 1. i) Να αποδείξετε την ταυτότητα 1 ( ) ( ) ( ) + + = + +. ii) Να αποδείξετε ότι για όλους τους,, ισχύει Πότε ισχύει ισότητα; + + + +.. Λέμε ότι μια τριάδα θετικών ακεραίων (,, ) είναι όταν είναι πλευρές

Διαβάστε περισσότερα

Α. 1. Μετρήσεις και Σφάλµατα

Α. 1. Μετρήσεις και Σφάλµατα Α. 1. Μετρήσεις και Σφάλµατα Κάθε πειραµατική µέτρηση υπόκειται σε πειραµατικά σφάλµατα. Με τον όρο αυτό δεν εννοούµε λάθη τα οποία γίνονται κατά την εκτέλεση του πειράµατος ή τη λήψη των µετρήσεων, τα

Διαβάστε περισσότερα

ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. 5 Μαίου 2012

ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. 5 Μαίου 2012 ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική 5 Μαίου 2012 Συµπληρώστε τα στοιχεία σας στο παρακάτω πίνακα τώρα Ονοµατεπώνυµο Αρ. Ταυτότητας Username Password Δηµιουργήστε ένα φάκελο στο home directory σας µε

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΩΝ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΤΗΣ ΚΙΝΗΜΑΤΙΚΗΣ. Κίνηση Εξίσωση της α Εξίσωση της U Εξίσωση της Δx Ευθύγραμμη Ομαλή

ΜΕΛΕΤΗ ΤΩΝ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΤΗΣ ΚΙΝΗΜΑΤΙΚΗΣ. Κίνηση Εξίσωση της α Εξίσωση της U Εξίσωση της Δx Ευθύγραμμη Ομαλή 1 ΜΕΛΕΤΗ ΤΩΝ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΤΗΣ ΚΙΝΗΜΑΤΙΚΗΣ Μπορούμε να περιγράψουμε κάθε κίνηση με διάφορους ισοδύναμους τρόπους. Ένας απ αυτούς είναι να γράψουμε τις κατάλληλες εξισώσεις, δηλαδή τους νόμους που

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

Κεφάλαιο 1. Κίνηση σε μία διάσταση

Κεφάλαιο 1. Κίνηση σε μία διάσταση Κεφάλαιο 1 Κίνηση σε μία διάσταση Κινηματική Περιγράφει την κίνηση, αγνοώντας τις αλληλεπιδράσεις με εξωτερικούς παράγοντες που ενδέχεται να προκαλούν ή να μεταβάλλουν την κίνηση. Προς το παρόν, θα μελετήσουμε

Διαβάστε περισσότερα

Σύνολα. 1) Με αναγραφή των στοιχείων π.χ. 2) Με περιγραφή των στοιχείων π.χ.

Σύνολα. 1) Με αναγραφή των στοιχείων π.χ. 2) Με περιγραφή των στοιχείων π.χ. Σύνολα Ορισµός συνόλου (κατά Cantor): Σύνολο είναι κάθε συλλογή αντικειµένων, που προέρχεται από το µυαλό µας ή την εµπειρία µας, είναι καλά ορισµένο και τα αντικείµενα ξεχωρίζουν το ένα από το άλλο, δηλαδή

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 4 Χάραξη Καμπύλης, Ελάχιστα Τετράγωνα

ΑΣΚΗΣΗ 4 Χάραξη Καμπύλης, Ελάχιστα Τετράγωνα Σκοπός ΑΣΚΗΣΗ 4 Χάραξη Καμπύλης, Ελάχιστα Τετράγωνα Σκοπός της άσκησης αυτής είναι ο σπουδαστής να μπορέσει να παρουσιάζει τα αποτελέσματα πειραματικών μετρήσεων σε μορφή καμπυλών και να μπορέσει εν τέλει

Διαβάστε περισσότερα

11 Το ολοκλήρωµα Riemann

11 Το ολοκλήρωµα Riemann Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την

Διαβάστε περισσότερα

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Ορισμός: Έστω Α, Β R. Πραγματική συνάρτηση πραγματικής μεταβλητής από το σύνολο Α στο σύνολο Β ονομάζουμε την διαδικασία κατά την οποία κάθε στοιχείο του συνόλου

Διαβάστε περισσότερα

Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό.

Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό. Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό. Φυσική 1. Επεξεργασία πειραματικών δεδομένων: α) Καταγραφή δεδομένων σε πίνακα μετρήσεων, β) Επιλογή συστήματος αξόνων με τις κατάλληλες κλίμακες και

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

14 Εφαρµογές των ολοκληρωµάτων

14 Εφαρµογές των ολοκληρωµάτων 14 Εφαρµογές των ολοκληρωµάτων 14.1 Υπολογισµός εµβαδών µε την µέθοδο των παράλληλων διατοµών Θεωρούµε µια ϕραγµένη επίπεδη επιφάνεια A µε οµαλό σύνορο, δηλαδή που περιγράφεται από µια συνεχή συνάρτηση.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Σχολικό έτος: 014-015 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων από το Ι.Ε.Π. Γ ε ν ι κ ή Ε π ι μ έ λ ε ι

Διαβάστε περισσότερα

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Η συνάρτηση y = αχ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y = αχ με α 0 Μια συνάρτηση της μορφής y = α + β + γ με α 0 ονομάζεται τετραγωνική συνάρτηση.

Διαβάστε περισσότερα

α) Στο ίδιο σύστημα αξόνων να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων

α) Στο ίδιο σύστημα αξόνων να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Άλγεβρα Β-Λυκείου (2ο πακέτο ασκήσεων) 1 22630 Δίνεται η γραφική παράσταση της συνάρτησης f(x) = 3 x με x R. α) Στο ίδιο σύστημα αξόνων να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ 1 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΘΕΜΑ ο GI_V_ALG 16950 1.1 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β)

Διαβάστε περισσότερα

ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΟ-ΦΥΣΙΚΗ Ι, 2013-14

ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΟ-ΦΥΣΙΚΗ Ι, 2013-14 ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ Με τη λέξη σφάλμα στις θετικές επιστήμες αναφερόμαστε στην αβεβαιότητα που υπάρχει στην εύρεση του αποτελέσματος που προκύπτει από μια μέτρηση. Το να εκτιμήσουμε και να βρούμε τα σφάλμα

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή ΣΥΝΑΡΤΗΣΕΙΣ (ΕΙΣΑΓΩΓΗ)-ΘΕΩΡΕΙΑ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμώv αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ www.apodeiis.gr ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ 1 1. Να βρείτε το πεδίο ορισμού των συναρτήσεων: 1 i. ii. 1. Να βρείτε τα πεδία ορισμού των συναρτήσεων: i. 1 1 ii. ln. Δίνεται η συνάρτηση g, i. Να αποδείξετε

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις.

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ : ΣΥΝΑΡΤΗΣΗ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ [Υποκεφάλαιο. Μονότονες συναρτήσεις Αντίστροφη συνάρτηση του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα.

Διαβάστε περισσότερα

Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης. Διάστημα εμπιστοσύνης

Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης. Διάστημα εμπιστοσύνης Σφάλματα Μετρήσεων 4.45 Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης Διάστημα εμπιστοσύνης βρίσκονται εκτός του Διαστήματος Εμπιστοσύνης 0.500 X 0.674σ 1 στις 0.800 X 1.8σ 1 στις

Διαβάστε περισσότερα

II. Συναρτήσεις. math-gr

II. Συναρτήσεις. math-gr II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική

Διαβάστε περισσότερα

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΦΥΕ10 (Γενικά Μαθηματικά Ι) ΠΕΡΙΕΧΕΙ ΤΙΣ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας 07 3. Να αποδείξετε την ταυτότητα + + αβ βγ γα = Να αποδείξετε ότι για όλους τους α, β, γ ισχύει + + αβ + βγ + γα Πότε ισχύει ισότητα; = = + + =

Διαβάστε περισσότερα

Κεφάλαιο 4 Εισαγωγή στη στατιστική ανάλυση μετρήσεων

Κεφάλαιο 4 Εισαγωγή στη στατιστική ανάλυση μετρήσεων Κεφάλαιο 4 Εισαγωγή στη στατιστική ανάλυση μετρήσεων Σύνοψη Στο κεφάλαιο αυτό παρουσιάζονται οι βασικές έννοιες της στατιστικής ανάλυσης των μετρήσεων που υπόκεινται σε τυχαία σφάλματα. Παρουσιάζεται μέσω

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ 000 ΘΕΜΑ ο Α.α) Δίνεται η συνάρτηση F f g αποδείξετε ότι: F f g. cf,. Αν οι συναρτήσεις

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Συνοπτική Θεωρία Ασκήσεις της Τράπεζας Θεμάτων Ερωτήσεις Σωστού-Λάθους Διαγωνίσματα Επιμέλεια: Συντακτική ομάδα mathp.gr Συντονισμός

Διαβάστε περισσότερα

A2. Θεωρήστε ότι d << r. Να δώσετε μια προσεγγιστική έκφραση για τη δυναμική ενέργεια συναρτήσει του q,d, r και των θεμελιωδών σταθερών.

A2. Θεωρήστε ότι d << r. Να δώσετε μια προσεγγιστική έκφραση για τη δυναμική ενέργεια συναρτήσει του q,d, r και των θεμελιωδών σταθερών. Γ Λυκείου 26 Απριλίου 2014 ΟΔΗΓΙΕΣ: 1. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε τετράδιο που θα σας δοθεί (το οποίο θα παραδώσετε στο τέλος της εξέτασης). Εκεί θα σχεδιάσετε και όσα

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

ΘΕΜΑ 2 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο.

ΘΕΜΑ 2 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. (Μονάδες 10) β) Να παραστήσετε γραφικά στο επίπεδο τις δυο εξισώσεις

Διαβάστε περισσότερα

1,y 1) είναι η C : xx yy 0.

1,y 1) είναι η C : xx yy 0. ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό.

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Η ταχύτητα (υ), είναι το πηλίκο της μετατόπισης (Δx)

Διαβάστε περισσότερα

τριώνυμο Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι:

τριώνυμο Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι: κεφάλαιο 4 Α τριώνυμο επίλυση της εξίσωσης δευτέρου βαθμού Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι: αx + βx + γ

Διαβάστε περισσότερα

Η συνάρτηση y = αχ 2 + βχ + γ

Η συνάρτηση y = αχ 2 + βχ + γ Η συνάρτηση y αχ + βχ + γ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y αx + βx + γ με α 0 Μια συνάρτηση της μορφής y αx + βx + γ με α 0 ονομάζεται τετραγωνική

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο ρ πε α εμ των α ματ ών 2014 Γ Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον

Διαβάστε περισσότερα

Ασκήσεις κέντρου μάζας και ροπής αδράνειας. αν φανταστούμε ότι το χωρίζουμε το στερεό σώμα σε μικρά κομμάτια, μόρια, μάζας m i και θέσης r i

Ασκήσεις κέντρου μάζας και ροπής αδράνειας. αν φανταστούμε ότι το χωρίζουμε το στερεό σώμα σε μικρά κομμάτια, μόρια, μάζας m i και θέσης r i Κέντρο μάζας Ασκήσεις κέντρου μάζας και ροπής αδράνειας Η θέση κέντρου μάζας ορίζεται ως r r i i αν φανταστούμε ότι το χωρίζουμε το στερεό σώμα σε μικρά κομμάτια, μόρια, μάζας i και θέσης r i. Συμβολίζουμε

Διαβάστε περισσότερα

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2 ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ - ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ - ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

1ο τεταρτημόριο x>0,y>0 Ν Β

1ο τεταρτημόριο x>0,y>0 Ν Β ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ( 6.2 ) Καρτεσιανό σύστημα συντεταγμένων ονομάζεται ένα επίπεδο εφοδιασμένο με δύο κάθετους άξονες οι οποίοι έχουν κοινή αρχή Ο και είναι αριθμημένοι με τις ίδιες μονάδες μήκους.

Διαβάστε περισσότερα

Κεφάλαιο 3 Παρουσίαση πειραματικών αποτελεσμάτων

Κεφάλαιο 3 Παρουσίαση πειραματικών αποτελεσμάτων Κεφάλαιο 3 Παρουσίαση πειραματικών αποτελεσμάτων Σύνοψη Πέραν από την ιδιαίτερη προσοχή που θα πρέπει να επιδείξουμε κατά τη λήψη μετρήσεων σε ένα πείραμα, μεγάλη σημασία έχει ο τρόπος που θα παρουσιάσουμε

Διαβάστε περισσότερα

8. Σύνθεση και ανάλυση δυνάμεων

8. Σύνθεση και ανάλυση δυνάμεων 8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα

Διαβάστε περισσότερα

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines Κεφ. 3: Παρεμβολή 3. Εισαγωγή 3. Πολυωνυμική παρεμβολή 3.. Παρεμβολή Lagrage 3.. Παρεμβολή Newto 3.3 Παρεμβολή με κυβικές splies 3.4 Μέθοδος ελαχίστων τετραγώνων 3.5 Παρεμβολή με ορθογώνια πολυώνυμα 3.

Διαβάστε περισσότερα

Μελέτη της κίνησης σώματος πάνω σε πλάγιο επίπεδο. Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός

Μελέτη της κίνησης σώματος πάνω σε πλάγιο επίπεδο. Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός Εργαστήριο Φυσικής Λυκείου Επιμέλεια: Κ. Παπαμιχάλης Μελέτη της κίνησης σώματος πάνω σε πλάγιο επίπεδο Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός Βασικές έννοιες, σχέσεις και διαδικασίες Αδρανειακό

Διαβάστε περισσότερα

16 Ασύμπτωτες. όπως φαίνεται στα παρακάτω σχήματα. 1. Κατακόρυφη ασύμπτωτη. Η ευθεία x = x0

16 Ασύμπτωτες. όπως φαίνεται στα παρακάτω σχήματα. 1. Κατακόρυφη ασύμπτωτη. Η ευθεία x = x0 6 Ασύμπτωτες Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορίζουμε μια ευθεία ( ε ) ως ασύμπτωτη της γραφικής παράστασης της αν η απόσταση ενός μεταβλητού σημείου Ρ της γραφικής παράστασης από την ευθεία ( ε ) γίνεται

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ

ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμών αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών

Διαβάστε περισσότερα

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2). ΜΑΣ 37: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ Να βρεθεί το πολυώνυμο Lagrage για τα σημεία (, ), (, ) και (4, ) Να βρεθεί το πολυώνυμο παρεμβολής Lagrage που προσεγγίζει τη συνάρτηση 3 f ( x) si x στους κόμβους

Διαβάστε περισσότερα

lim f ( x) x + f ( x) x a x a x a 2x 1

lim f ( x) x + f ( x) x a x a x a 2x 1 Ασύµπτωτες γραφικής παραστάσεως συναρτήσεως Ασύµπτωτες της γραφικής παραστάσεως συναρτήσεως y f ( ) ονοµάζονται οι ευθείες που για πολύ µικρές ή µεγάλες τιµές των, y προσεγγίζουν ικανοποιητικά την γραφική

Διαβάστε περισσότερα