Poglavlje 1. Diferencijalni operatori. 1.1 Pojam derivacije

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Poglavlje 1. Diferencijalni operatori. 1.1 Pojam derivacije"

Transcript

1 Poglavlje Diferencijalni operatori U ovom uvodu donosimo neke elemente diferencijalnog računa koje koristimo kasnije. Većinu ovdje iznesenog sadržaja može se naći u [3], a ostale korisne reference su [] i [2].. Pojam derivacije Ovdje ćemo uvesti pojam derivacije funkcije u širem kontekstu koji će nam omogućiti deriviranje vektorskih i matričnih funkcija. Pri tome ćemo, radi jednostavnosti, promatrati samo realne prostore. Kroz cijelo poglavlje X i Y su normirani vektorski prostori, a Ω X je otvoren skup. Prostor svih linearnih i neprekidnih operatora iz X u Y označavamo s L(X, Y ), dok u slučaju X = Y pišemo L(X). Prostor L(X, Y ) je normiran na prirodan način pomoću operatorske norme Ax Y A L(X,Y ) = sup. x X x X Za funkciju f : Ω X Y derivaciju u točki definiramo na sljedeći način: Definicija. Za funkciju f : Ω X Y kažemo da je Gâteaux derivabilna u točki x Ω ako postoji linearan i neprekidan operator Df(x) L(X, Y ), takav da je za svako h X vrijedi lim (f(x + th) f(x)) = Df(x)[h], (.) t pri čemu smo djelovanje linearnog operatora Df(x) na vektor h označili s Df(x)[h]. Izraz Df(x)[h] nazivamo usmjerenom derivacijom funkcije f u točki x (u smjeru vektora h). t 0 Sama definicija zaslužuje nekoliko napomena. ) Konvergencija u jednadžbi (.) je konvergencija u normi prostora Y. Da bismo razlikovali norme u prostorima X i Y uvest ćemo za njih oznake X i Y. Sada (.) znači: lim t 0 t f(x + th) f(x) tdf(x)[h] Y = 0,

2 dif-op 2 za svako h X. 2) Gâteauxova derivacija je linearan operator, odnosno za svako α, β R te h, k X vrijedi Df(x)[αh + βk] = αdf(x)[h] + βdf(x)[k]. 3) Neprekidnost linearnog operatora ekvivalentna je njegovoj ograničenosti. To znači da postoji konstanta C takva da je za svako h X, Df(x)[h] Y C h X. Minimalna se takva konstanta označava s Df(x) i predstavlja (operatorsku) normu derivacije u točki x. Ako su X i Y konačnodimenzionalni prostori, onda je svaki linearni operator na njima ujedno i ograničen (neprekidan), pa uvjet neprekidnosti ne figurira u definiciji derivacije. Ako je X beskonačnodimenzionalan prostor, onda ograničenost derivacije treba posebno zahtijevati te je stoga i uvrštena u definiciju. 4) Gâteaux-ova derivacija se ponekad naziva i slaba derivacija. Funkcija je Gâteaux derivabilna na Ω ako je Gâteaux derivabilna u svakj točki x Ω. 5) Uočimo da je izraz na lijevoj strani u (.) derivaciju u smjeru koju računamo po formuli d dt f(x + th) t=0 = Df(x)[h]. Nadalje, birajući za h vektore kanonske baze dobivamo parcijalne derivacije. Na primjer, za X = R d u standardnim oznakama imamo Iz definicije slijedi: d dt f(x + te i) t=0 = f(x). x i Teorem. Ako Gâteauxova derivacija u točki postoji ona je jedinstvena. Samo deriviranje je linearna operacija, što se dokazuje kao u slučaju realnih funkcija realne verijable. Lema. Neka su f, g : Ω X Y Gâteaux derivabilne u točki x Ω i α, β R, tada je i funkcija αf + βg Gâteaux derivabilna u točki x Ω i vrijedi D(αf + βg)(x) = αdf(x) + βdg(x). Primjer. Funkcija f : R 2 R zadana formulom { x 2 y za (x, y) (0, 0) x f(x, y) = 4 +y 2 0 za (x, y) = (0, 0) ima usmjerenu derivaciju u točki (0, 0) u svakom smjeru h = (h, h 2 ) i ta je derivacija zadana formulom: { h 2 Df(0, 0)[h] = h 2 za h 2 0, 0 za h 2 = 0. Ta funkcija ipak nije Gâteaux derivabilna u (0, 0) budući da derivacija nije linearan operator. M. Jurak, Radna verzija 2 3. listopada 204.

3 dif-op 3 Primjer 2. Funkcija f : R 2 R zadana formulom { x 3 y za (x, y) (0, 0) x f(x, y) = 6 +y 2 0 za (x, y) = (0, 0) ima Gâteauxovu derivaciju u točki (0, 0) koja je jednaka nuli. Lako se provjerava da ta funkcija ipak nije neprekidna u (0, 0). Gâteauxova derivabilnost u točki ne povlači neprekidnost u točki, što je korisno svojstvo na koje smo navikli kod realnih funkcija realne varijable. Stoga moramo uvesti jači pojam derivabilnosti. Brzina konvergencije u (.) može ovisiti o vektoru h. Ukoliko u definiciji derivacije zahtjevamo odredenu uniformnost obzirom na h dolazimo da jačeg pojma derivacije, tzv. Fréchetove derivacije: Definicija 2. Za funkciju f : Ω X Y kažemo da je Fréchet derivabilna u točki x Ω ako postoji linearan i neprekidan operator Df(x) L(X, Y ), takav da vrijedi: ε > 0, δ > 0, h X, h X < δ f(x + h) f(x) Df(x)[h] Y < ε h X. (.2) Za funkciju koja je Fréchet derivabilna u točki kažemo jednostavno da je derivabilna u točki. U ovoj definiciji, kao i u prethodnoj, h mora biti dovoljno mali da x+h ostane u Ω. Ona predstavlja generalizaciju uobičajene derivacije realne funkcije realne varijable. Notaciju možemo pojednostaviti ako uočimo da (.2) ustvari tvrdi da je f(x + h) f(x) Df(x)[h] Y lim = 0. h 0 h X Stoga ćemo uvesti malo-o notaciju : Za funkciju F, definirani u okolini nule normiranog prostora X (i s vrijednostima u normiranom prostoru Y ) kažemo da je o(h) kada h 0 i pišemo F = o(h), ako vrijedi F(h) Y lim = 0. h 0 h X S tom notacijom (.2) možemo ekvivalentno zapisati u obliku: Iz definicije neposredno slijedi: f(x + h) = f(x) + Df(x)[h] + o(h). Teorem 2. Ako je funkcija Fréchet derivabilna u točki, onda je ona u njoj i Gâteaux derivabilna i neprekidna. Buduću da Gâteaux derivabilna funkcija u točki ne mora biti i neprekidna u točki vidimo da Gâteauxova derivabilnost ne povlači Fréchetovu derivabilnost. Fréchetova derivacija je evidentno jedinstvena kada postoji. K tome, Lema se prenosi i na Fréchetovu derivaciju odnosno D(αf + βg)(x) = αdf(x) + βdg(x) kad god Fréchetove derivacije Df(x) i Dg(x) postoje. M. Jurak, Radna verzija 3 3. listopada 204.

4 dif-op 4 Napomena. Pored malo-o notacije korisna je i veliko-o notacija: Kažemo da je funkciju F O(h) kada h 0 i pišemo F = O(h), ako je izraz ograničen kada h teži u nulu. F(h) Y h X Uvedimo u d-dimenzionalni vektorski prostor X jednu ortonormiranu bazu koju ćemo označavati s {e,..., e d } i njoj pridruženi koordinatni sustav (x,..., x d ). Tada uvodimo pojam parcijalne derivacije funkcije f : Ω X Y na sljedeći način: za x Ω, f(x) x i f(x + te i ) f(x) = Df(x)[e i ] = lim. t 0 t Uočimo da je parcijalna derivacija vektor ukoliko funkcija f nije skalarna. Ako je X = R, odnosno imamo funkciju realne varijable f (ali s vrijednostima općenito u nekom vektorskom prostoru Y ), onda je derivacije derivacija linearan operator s R u Y. Lako se vidi da su svi takvi linearni operatori A: R X oblika Aα = αa, gdje je a Y fiksan vektor (a = A). To nam omogućava da derivaciju po jednoj varijabli tradicionalno (u mehanici) označavamo s točkom, koristeći sljedeći zapis: α R, Df(t)[α] = α f(t). Ovdje je f(t) Y vektor u Y koji reprezentira derivaciju (koja je linearan operator). Nela je L L(X, Y ) linearan i neprekida operator. Tada iz L(x + h) L(x) Lh = 0 slijedi da je DL(x)[h] = Lh, odnosno DL(x) = L za svako x X. Na primjer, ako je X konačnodimenzionalan prostor i A L(X) ogovarajuća kvadratna matrica, onda je φ(a) = tr(a) linearni funkcional iz L(X) u R. Tada je za svaku matricu H L(X) Dtr(A)[H] = tr(h), odnosno derivacija operatora trage je ponovo operator traga: Dtr(A) = tr, za svako A L(X). Zadatak. Neka je X unitaran prostori te φ: X R dano formulom φ(v) = v v, gdje točka označava skalarni produkt. Pokažite da je Dφ(v)[h] = 2v h. Zadatak 2. Neka je X unitaran prostori, A L(X) te φ: X R dano formulom φ(v) = Av v, gdje točka označava skalarni produkt. Pokažite da je Dφ(v)[h] = (A + A τ )v h. Zadatak 3. Neka je G: L(X) L(X) dano formulom G(A) = A 2. DG(A)[H] = AH + HA. Pokažite da je M. Jurak, Radna verzija 4 3. listopada 204.

5 dif-op 5 Zadatak 4. Neka je G: L(X) L(X) dano formulom G(A) = A 3. DG(A)[H] = A 2 H + AHA + HA 2. Pokažite da je Ako derivacija funkcije f : Ω X Y postoji u svakoj točki skupa Ω (ili nekog njegovog otvorenog podskupa) onda možemo promatrati preslikavanje x Df(x) koje ide iz Ω X u normirani prostor L(X, Y ). To preslikavanje možemo ponovo derivirati i tako dolazimo do pojma druge derivacije, i iterativno, treće i viših derivacija. Druga derivacija je linearan operator iz X u L(X, Y ) pa može biti predstavljen kao bilinearan operator. Nadalje se nećemo služiti višim derivacijama osim u nekim posebnim slučajevima. Napomena 2. Na konačnodimenzionalnom prostoru X sve su norme ekvivalentne, pa je stoga konvergencija matrica i vektora u svakoj normi jednaka konvergenciji po komponentama. Stoga izlazi da su podskupovi simetričnih odnosno antisimetričnih operatora u L(X), gdje je X konačnodimenzionalan vektorski prostor, zatvoreni u normi prostora L(X). U računanju s determinantom matrice od velike je koristi karakteristični polinom matrice. Radi jednostavnosti zapisa pogledajmo samo slučaj d = 3. Imamo: det(a ωi) = ω 3 + i (A)ω 2 i 2 (A)ω + i 3 (A), pri čemu su koeficijenti polinoma tzv. glavne invarijante linearnog operatora: i (A) = tr(a), i 2 (A) = 2 [(tra)2 tr(a 2 )], i 3 (A) = det(a). Zadatak 5. Koristeći karakteristični polinom pokažite da je skup regularnih operatora u L(V ), gdje je V konačnodimenzionalan vektorski prostor, otvoren u normi prostora L(V ). Zadatak 6. Koristeći karakteristični polinom pokažite da je derivacija preslikavanja A det(a) na skupu regularnih operatora u L(V ) dana formulom: D det(a)[h] = det(a)tr(a H). (.3) Kofaktor matrica. Za kvadratnu matricu A reda d kofaktor matricu definiramo na sljedeći način: Cof(A) = (d i,j ), gdje je d i,j = ( ) i+j det(a i,j) i gdje je A i,j matrica reda d koja se dobiva brisanjem i-tog retka i j-tog stupca matrice A. Za kofaktor matricu vrijedi Cof(A) τ A = A Cof(A) τ = det(a)i. Ako je matrica A regularna, onda je Cof(A) = det(a)a τ, gdje je A τ = (A ) τ. Derivaciju determinante možemo stoga izraziti kao D det(a)[h] = tr(cof(a) τ H) = Cof(A) : H; (vidi (.4) za definiciju skalarnog produkta linearnih operatora). M. Jurak, Radna verzija 5 3. listopada 204.

6 dif-op 6 Definicija 3. Neka su Y, Z i W normirani prostori. Preslikavanje π : Y Z W je neprekidna bilinearna forma ako zadovoljava: Za svako fiksirano y 0 Y i z 0 Z preslikavanja su linearna. Postoji konstanta C, takva da je y π(y, z 0 ), w π(y 0, z) y Y, z Z, π(y, w) W C y Y z Z. Kao i kod linearnih operatora vidimo da je neprekidnost ustvari ograničenost i u slučaju konačnodimenzionalnih prostora ona je posljedica bilinearnosti. Pretpostavimo da su X, Y, Z i W normirani prostori, Ω X otvoren skup i da imamo dvije funkcije f : Ω X Y, g : Ω X Z, te neprekidnu bilinearnu formau π : Y Z W. Tada možemo formirati funkciju φ(x) = π(f(x), g(x)), φ: Ω X W, koja je definirana u Ω X i ima vrijednosti u W. Uz gornje oznake i pretpostavke imamo sljedeći zaključak: Teorem 3. Neka su funkcije f i g derivabilne u točki x Ω X. derivabilna u točki x i vrijedi: Tada je i funkcija φ Dφ(x)[h] = π(df(x)[h], g(x)) + π(f(x), Dg(x)[h]). Dokaz. Zbog jedinstvenosti derivacije u točki dovoljno je provjeriti da tražena formula daje derivaciju. φ(x + h) φ(x) Dφ(x)[h] = π(f(x + h), g(x + h)) π(f(x), g(x)) π(df(x)[h], g(x)) π(f(x), Dg(x)[h]) Izraz možemo rastaviti na sljedeći način koristeći bilinearnost produkta: φ(x + h) φ(x) Dφ(x)[h] = π(f(x + h) f(x) Df(x)[h], g(x + h)) Sada možemo ocijeniti + π(f(x), g(x + h) g(x) Dg(x)[h]) + π(df(x)[h], g(x + h) g(x)). φ(x + h) φ(x) Dφ(x)[h] W C f(x + h) f(x) Df(x)[h] Y g(x + h) Z + C f(x) Y g(x + h) g(x) Dg(x)[h] Z + C Df(x)[h] Y g(x + h) g(x) Z. M. Jurak, Radna verzija 6 3. listopada 204.

7 dif-op 7 Sada za svako ε > 0 možemo naći δ = min(δ, δ 2 ) takav da h X < δ povlači f(x + h) f(x) Df(x)[h] Y < ε h X, g(x + h) g(x) Dg(x)[h] Z < ε h X. Time dobivamo φ(x + h) φ(x) Dφ(x)[h] W Cε h X g(x + h) Z + Cε h X f(x) Y + C Df(x) L(X,Y ) h X g(x + h) g(x) Z. Uzimajući u obzir neprekidnost funkcije g u točki x možemo za dani ε > 0 naći δ 3, takav da h X < δ 3 povlači Time za δ = min(δ, δ 2, δ 3 ) i h X < δ izlazi g(x + h) g(x) Z < ε, g(x + h) Z. φ(x + h) φ(x) Dφ(x)[h] W C[ + f(x) Y + Df(x) L(X,Y ) ]ε h X. Uzimajući sada umjesto ε, ε/c[ + f(x) Y + Df(x) L(X,Y ) ] dobivamo tvrdnju. Dokaz pokazuje da tvrdnja općenito ne vrijedi za Gâteauxove derivacije jer se koristi neprekidnost jedne od dviju funkcija. Može se ipak pokazati da je produkt Gâteaux derivabilne funkcije i Fréchet derivabilne funkcije jedna Gâteaux derivabilna funkcija. Zadatak 7. Koristeću Lemu 3 dokažite da je funkcija G: L(V ) L(V ) definirana formulom G(A) = A derivabilna na skupu regularnih operatora te da vrijedi DG(A)[H] = A HA. Pogledajmo sada neke primjere različitih produkata. Imat ćemo sljedeće oznake: α, β R (skalari); u, v X = R d vektori; A, B L(X) operatori (odn. matrice u nekoj bazi, R d d. Neki primjeri produkata su sljedeći: π(α, u) = αu, π(α, A) = αa π(u, v) = u v, (skalarni produkt) π(a, u) = Au, (primjena operatora na vektor) π(a, B) = AB, (kompozicija operatora) π(u, v) = u v, (tenzorski produkt vektora) π(a, B) = A : B, (skalarni produkt operatora). Tenzorski produkt vektora je linearan operator definiran formulom: a V, (u v)a = (v a)u. Nadalje, lako se pokazuje da zadovoljava (u v) τ = v u, (u v)(w z) = (v w)(u z), tr(u v) = u v. M. Jurak, Radna verzija 7 3. listopada 204.

8 dif-op 8 Ako je e i ortonormirana baza u X = R d i A L(X) operator, onda definiramo A i,j = e i Ae j i imamo prikaz d A = A i,j e i e j. i,j= Pored toga (u v) i,j = u i v j i tr(u v) = u v. Zadatak 8. A(u v) = (Au) v, (u v)a = u (A τ v). Skalarni produkt dva linearna operatora A, B L(V ) definiramo sljedećom formulom: A : B = tr(a τ B). (.4) Zadatak 9. Dokažite da skalarni produkt linearnih operatora (.4) ima sva svojstva skalarnog produkta te da u ortonormiranoj (kanonskoj) bazi ima sljedeći zapis po komponentama: d A : B = A i,j B i,j. i,j= Zadatak 0. Dokažite da su simetrični i antisimetrični operatori medusobno ortogonalni u gornjem skalarnom produktu. Nadalje, svaki operator koji je ortogonalan na sve simetrične operatore nužno je antisimetričan. Vrijedi i suprotna tvrdnja: operator ortogonalan na sve antisimetrične operatore nužno je simetričan. Za d = 3 imamo još i vektorski produkt vektora u v, definiran na uobičajeni način. Taj je produkt vezan uz antisimetrične matrice na sljedeći način: Svaka se antisimetrična matrica W L(R 3 ) = R 3 3 može na jedinstven način prikazati pomoću nekog vektora w R 3 formulom u R 3, W u = w u. Matrica operatora W ima oblik 0 w 3 w 2 W = w 3 0 w w 2 w 0 Zadatak. Neka su φ, u, v te A i B glatke funkcije s R u skalare, vektore i linearne operatore, respektivno. Tada vrijedi: d dt (φu) = φu + φ u d (u v) = u v + u v dt d (AB) = ȦB + AḂ dt d (A : B) = Ȧ : B + A : Ḃ dt d (Au) = Ȧu + A u dt M. Jurak, Radna verzija 8 3. listopada 204.

9 dif-op 9 Teorem 4. Neka su X, Y i Z normirani prostori i Ω X, Ω Y otvoreni skupovi. Zadana su preslikavanja f : Ω X Y i g : Ω Y Z, pri čemu je slika of f(ω) Ω, tako da je kompozicija φ = g f dobro definirana. Ako je f derivabilno u x Ω, a g derivabilno u y = f(x), onda je φ derivabilno u x i vrijedi: Formulu (.5) možemo zapisati u obliku Dφ(x) = Dg(y) Df(x). (.5) Dφ(x)[h] = Dg(f(x))[Df(x)[h]]. Na primjer, ako je f realna funkcija, onda imamo d g(f(t)) = Dg(f(t))[ f(t)]. dt Dokaz. Neka je x Ω i y = f(x) Ω. Znamo da je f(x + h) f(x) Df(x)[h] = R f (x, h), g(y + k) g(y) Dg(y)[k] = R g (y, k), R f (x, h) 0 kada h 0; h X (.6) R g (y, k) 0 kada k 0. k Y (.7) Uvedimo oznaku u = f(x + h) f(x) = Df(x)[h] R f (x, h). Tada imamo, φ(x + h) φ(x) = g(f(x + h)) g(f(x)) = g(y + u) g(y) = g(y) + Dg(y)[u] R g (y, u) g(y) = Dg(y)[Df(x)[h]] Dg(y)[R f (x, h)] R g (y, u). Ostatak je R φ (x, h) = Dg(y)[R f (x, h)] + R g (y, u). Očito je Dg(y)[R f (x, h)] Z h X Drugi dio nije toliko očit. Imamo Dg(y) L(Y,Z) R f (x, h) Y h X 0 kada h 0. R g (y, u) Z h X = R g(y, u) Z u Y u Y R g(y, u) Z h X u Y Dakle za dovoljno male h imamo, na primjer, ( Df(x)[h] Y h X + R f(x, h) Y h X ). R g (y, u) Z h X 2 Df(x) L(X,Y ) R g (y, u) Z u Y. Da bismo pokazali da je član R g (y, u) Z / u Y po volji mali kada je h dovoljno malo uočimo da prema (.7) za svaki ε > 0 možemo odabrati σ > 0 takav da je ta sve k Y, k Y < σ, vrijedi R g (y, k) Z < ε. k Y M. Jurak, Radna verzija 9 3. listopada 204.

10 dif-op 0 S druge strane, prema (.6), znamo da je za h dovoljno malo i stoga je Zbog proizvoljnosti ε slijedi da u Y Df(x) L(X,Y ) h X + R f (x, h) Y < σ R g (y, u) Z h X 2 Df(x) L(X,Y ) ε. R g (y, u) Z h X 0 kada h 0 i time je dokaz gotov. Može se pokazati da ako je g Fréchet derivanilna, a f Gâteaux derivabilna, onda je g g Gâteaux derivabilna. Zadatak 2. Neka je X = R d i G: R L(X) zadana derivabilna funkcija. Pokažite da je G τ (t) = Ġ(t)τ = Ġτ (t). Derivacije deriviranja i transponiranja komutiraju pa je zadnja oznaka korektna. Zadatak 3. Neka je t A(t) glatka realna funkcija s vrijednostima u L(V ). Tada je d dt det(a) = det(a)tr(a Ȧ). (.8).2 Gradijent, divergencija, rotacija U ovoj sekciji normirani prostor X je konačnodimenzionalan vektorski prostor sa skalarnim produktom. Odabirom ortonormirane baze on se može identificirati s R d za d = dim(x). Isto tako, L(X) se može indentificirati s prostorom kvadratnih matrica dimenzije d. Neka je φ skalarna funkcija, derivabilna u točki x X. Tada je njena derivacija Dφ(x) linearan funkcional na X i prema Rieszovom teoremu o reprezentaciji linearnog funkcionala postoji jedinstveni vektor iz X koji dozvoljava da se taj funkcional prikaže kao skalarni umnožak s tim vektorom. Taj ćemo vektor označavati s φ(x) i zvati gradijenom funkcije φ u točki x. Drugim riječima, gradijent je definiran relacijom: h V, Dφ(x)[h] = φ(x) h, ili h V, φ(x + h) = φ(x) + φ(x) h + o(h). Posve se analogno definira gradijent vektorske funkcije u: X Y, relacijom h X, Du(x)[h] = u(x)h, M. Jurak, Radna verzija 0 3. listopada 204.

11 dif-op s time da je sada gradijent naprosto sinonim za derivaciju. Nas će posebno zanimati funkcije u: Ω X X za koje je u L(X). Tada definiramo divergenciju kao skalarni polje div(u) = tr( u). (.9) Ta je definicija neovisna o koordinatnim sustavima jer je trag invarijanta linearnog operatora. Zbog invarijantnosti oparatora traga u svakoj bazi {e i } imamo div(u(x)) = d Du(x)[e i ] e i = i= d i= u i (x) x i. Zadatak 4. Zadano je tenzorskog polja A: Ω X L(X). Pokažite da vrijedi: a, b X, a X, (DA(x)[b])[a] = D(A(x)a)[b], (DA(x)[a]) τ = D(A(x) τ )[a]. Koristeći prethodni zadatak lako je vidjeti da divergenciju glatkog tenzorskog polja A: Ω V L(V ) možemo definirati na sljedeći način: a V, div(a) a = div(a τ a). (.0) Uočimo da (.0) definira jedinstveni vektor div(a) neovisno o izabranom koordinatnom sustavu. Sljedeći zadatak pokazuje da je ta definicija ekvivalentna sa standardnom. Zadatak 5. Za tenzorsko polje A: Ω V L(V ) možemo divergenciju definirati kao trag derivacije, na sljedeći način: d div(a(x)) = (DA(x)[e i ])[e i ] (.) i= gdje je {e i } proizvoljna baza. Pokažite da su definicije (.0) i (.) medusobno ekvivalentne. Za skalarnu funkciju definiramo Laplaceov operator: φ = div( φ). Posve ista definicija u = div( u) koristi se i za vektorsku funkciju i tada daje vektor. Skalarna i vektorska polja koja zadovoljavaju u = 0 nazivaju se harmonijskim. Lema 2. Neka su φ, u, v i A respektivno glatka skalarna, vektorska i tenzorska polja. Dokažite da vrijedi: (φu) = φ u + u φ (.2) div(φu) = φ div(u) + u φ (.3) (u v) = ( u) τ v + ( v) τ u (.4) div(u v) = u div(v) + ( u)v (.5) div(a τ v) = A : v + v div(a) (.6) div(φa) = φ div(a) + A φ. (.7) M. Jurak, Radna verzija 3. listopada 204.

12 dif-op 2 Dokaz. Koristeći pravilo za deriviranje produkta dobivamo: D(φ(x)u(x))[h] = Dφ(x)[h]u(x) + φ(x)du(x)[h] = ( φ(x) h)u(x) + φ(x)( u(x))h = (u(x) φ(x))h + φ(x)( u(x))h, što dokazuje (.2). Formula (.3) dobiva se primjenom operatora traga na (.2). Po pravilu za deriviranje produkta D(u(x) v(x))[h] = Du(x)[h] v(x) + u(x) Dv(x)[h] = u(x)h v(x) + u(x) v(x)h = ( u(x)) τ v(x) h + ( v(x)) τ u(x) h što dokazuje (.4). Za konstantan vektor a, prema (.0) imamo a div(u v) = div((v u)a) = div((u a)v) = (u a) div v + (u a) v, gdje smo iskoristili (.3). Iz (.4) izlazi (u a) = ( u) τ a pa dobivamo a div(u v) = (u a) div v + ( u) τ a v = (u div v + ( u)v) a, što dokazuje (.5) zbog proizvoljnosti vektora a. Dokaz od (.6) je zanimljiviji. Prvo uočimo da za svaku konstantni operator A vrijedi To se lako dokazuje iz definicije derivacije: Množenje s operatorom A daje (Av(x)) = A (v(x)). (.8) v(x + h) = v(x) + ( v(x))h + o(h). Av(x + h) = Av(x) + A( v(x))h + o(h), iz čega nepostredno slijedi (.8). Uzimanjem traga u (.8) dobivamo po definiciji (.4) div(av) = A τ : v. Sada možemo dokazati (.6). Prvo uočimo da je div(a τ v) = tr( (A τ v)). Po teoremu o derivaciji produkta funkcija možemo pisati (A τ v)(x 0 ) = (A τ 0v)(x 0 ) + (A τ v 0 )(x 0 ), gdje su A τ 0 = A τ (x 0 ) i v 0 = v(x 0 ) konstantni operator i konstantan vektor. Koristeći (.8), uzimanjem operatora traga dobivamo div(a τ v)(x 0 ) = tr(a τ 0 v(x 0 )) + div(a τ v 0 )(x 0 ) = A 0 : v(x 0 ) + div A(x 0 ) v 0, M. Jurak, Radna verzija 2 3. listopada 204.

13 dif-op 3 što dokazuje (.6). Za dokaz (.7) odaberimo proizvoljan konstantan vektor a. Tada je prema (.3) div(φa) a = div(φa τ a) = φ div(a τ a) + φ A τ a = φ div(a) a + A φ a, što dokazuje (.7). Neke odnose medu diferencijalnim operatorima najlakše je dokazati u kartezijevom koordinatnom sustavu. Kako su sami operatori neovisni o koordinatnom sustavu na taj način dolazimo do odnosa koji vrijede neovisno njemu. Takav je sljedeći primjer. Zadatak 6. Dokažite div(( u) τ ) = (div u). Rotacija vektorskog polja u se definira relacijom: a R 3, ( u u τ )a = rot(u) a. To je dakle aksijalni vektor za tenzor u u τ. Zadatak 7. Ako je u glatko vektorsko polje koje zadovoljava div u = 0 i rot u = 0, onda je u = 0. Koordinatni prikaz svih operatora u kanonskoj bazi u R d (d = 3 za rotaciju) je lako naći iz definicije tih operatora. Ako je φ skalarno polje, u vektorski i T tenzorsko, imamo: Rotacija ima zapis ( φ) i = φ x i, div u = φ = d i= d i= u i x i, (div T) i = ( u) i,j = u i x j d T i,j x j j= 2 φ, ( u) x 2 i = u i. i rot(u) = ( u 3 x 2 u 2 x 3, u x 3 u 3 x, u 2 x u x 2 ) koji se formalno može napusato pomoću determinante: e e 2 e 3 rot(u) = x x 2 x 3 u u 2 u 3 Zadatak 8. Dokažite da za sva glatka polja vrijedi: (a) rot φ = 0; M. Jurak, Radna verzija 3 3. listopada 204.

14 dif-op 4 (b) div rot u = 0; (c) div{( u)u} = u : u τ + u (div u); (d) u : u τ = div{( u)u (div u)u} + (div u) 2 ; (e) div(u v) = v rot(u) u rot(v)..3 Teorem o divergenciji Teorem o divergenciji vrijedi za ograničena glatka područja. Glatkoću, pri tome nećemo precizirati budući da su ti zahtjevi dosta tehnički. Recimo samo da granica područja mora biri orijentabilna, tj. na njoj se na jedinstven način može definirati polje jedinične vanjske normale i lokalno se može prikazati kao graf dovoljno glatke funkcije, nakon eventualne translacije i rotacije koordinatnog sustava. Takvo ćemo područje Ω zvati regularnom domenom. Teorem 5. Neka je Ω R d regularna ograničena domena i φ: Ω R glatka funkcija. Tada vrijedi: φ n ds = φ dx, gdje je n polje jedinične vanjske normale na Ω. Ω Posljedica. Neka je Ω R d regularna ograničena domena te u: Ω R d, A: Ω L(R d ) dva glatka polja. Tada vrijedi: u n ds = div u dx, (.9) Ω Ω An ds = div A dx, (.20) Dokaz. Iz Teorema 5 slijedi da za sve i =,..., d vrijedi: φ φ n i ds = dx. x i Ω Ω Stavljanjem φ = u i i sumacijom po i dobivamo (.9). Da bismo dokazali (.20) uzmimo konstantan vektor a. Koristeći (.9) dobivamo, a An ds = A τ a n ds = div(a τ a) dx = a div A dx Ω Ω Ω Ω Ω Ω Ω M. Jurak, Radna verzija 4 3. listopada 204.

15 dif-op 5 Zadatak 9. Dokažite sljedeća dva teorema o divergenciji za glatko vektorska polja u, v i glatko tenzorsko polje A: u n ds = u dx, Ω Ω An u ds = Ω Ω Ω u An ds = Ω v(u n) ds = Ω [(div A) u + A u τ ] dx, [u div A + A u] dx, Ω [v div u + ( v)u] dx. Diferencijalne jednadžbe izvodimo iz globalnih zakona sačuvanja putem teorema o lokalizaciji Teorem 6. (Teorem o lokalizaciji) Ako je φ neprekidno skalarno polje na domeni Ω i x 0 Ω, onda je φ(x 0 ) = lim φ dx, r 0 K(x 0, r) K(x 0,r) gdje je K(x 0, r) kugla oko x 0 radijusa r, a K(x 0, r) njen volumen. Dokaz. φ(x 0) φ(x) dx K(x 0, r) = K(x 0,r) K(x 0, r) K(x 0, r) K(x 0,r) K(x 0,r) (φ(x 0 ) φ(x)) dx φ(x 0 ) φ(x) dx. Neprekidnost funkcije φ nam govori da za svako ε > 0 možemo naći δ > 0 takvo da za sve x K(x 0, δ) vrijedi φ(x 0 ) φ(x) < ε. Stoga za r < δ imamo φ(x 0) φ(x) dx K(x 0, r) < ε K(x 0,r) i tvrdnja je dokazana. Na osnovu teorema o lokalizaciji imamo za glatko vektorska polja u i glatko tenzorsko polje A: div u(x 0 ) = lim u n ds, r 0 K(x 0, r) div A(x 0 ) = lim r 0 K(x 0, r) K(x 0,r) K(x 0,r) An ds. Koja mehanička interpretacija divergencije slijedi iz tih formula? M. Jurak, Radna verzija 5 3. listopada 204.

16 dif-op 6.4 Ortogonalni krivolinijski koordinatni sustavi Neka je u trodimenzionalni normiran vektorski prostor V uvedena ortonormirana baza (e, e 2, e 3 ) i pripadni (pravokutni) koordinatni sustav (x, x 2, x 3 ). Tada svaku točku x V možemo identificirati s trojkom koordinata (x, x 2, x 3 ) koje joj pripadaju. Neka su Ω R 3 i Ω V otvoreni skupovi i neka je ˆx: Ω Ω glatka bijekcija sa svojstvom da je ˆx = ˆq takoder glatka funkcija (difeomorfizam). Neka preslikavanje ˆx ima koordinatni zapis x = ˆx (q, q 2, q 3 ), x 2 = ˆx 2 (q, q 2, q 3 ), x 3 = ˆx 3 (q, q 2, q 3 ), (.2) gdje je s (q, q 2, q 3 ) označena točka iz skupa Ω. Pomoću gornje formule svakoj točki x Ω možemo na jedinstven način pridružiti trojku koordinata (q, q 2, q 3 ). Stoga kažemo da je pomoću formula (.2) u skup Ω uveden krivolinijski ili generalizirani koordinatni sustav, a koordinate q, q 2 i q 3 nazivamo krivolinijskim ili generaliziranim koordinatama. Svaka funkcija φ definirana na skupu Ω V može se promatrati kao funkcija tri varijable tako da se stavi da je φ(x, x 2, x 3 ) = φ(x) gdje su (x, x 2, x 3 ) Kartezijeve koordinate točke x. Koristeći formule (.2) možemo φ promatrati kao funkciju generaliziranih koordinata uzimajući da je φ(q, q 2, q 3 ) = φ(ˆx (q, q 2, q 3 ), ˆx 2 (q, q 2, q 3 ), ˆx 3 (q, q 2, q 3 )) = φ ˆx(q, q 2, q 3 ); odnosno φ = φ ˆx. Neka je x 0 Ω neka točka i neka su (q 0, q 0 2, q 0 3) njene generalizirane koordinate. Preslikavanje (.2), ˆx(q, q 2, q 3 ) = ˆx (q, q 2, q 3 )e + ˆx 2 (q, q 2, q 3 )e 2 + ˆx 3 (q, q 2, q 3 )e 3. (ovdje zapisano vektorski) definira tri koordinatne linije kroje prolaze kroz točku x 0 i dane su parametrizacijama: q ˆx(q, q 0 2, q 0 3), q 2 ˆx(q 0, q 2, q 0 3), q 3 ˆx(q 0, q 0 2, q 3 ), (.22) gdje se q i, (i =, 2, 3), kreće u nekom intervalu oko q 0 i. U slučaju da je x i (q, q 2, q 3 ) = q i za i =, 2, 3 krivolinijski sustav je ponovo Kartezijev i koordinatne linije kroz točku x 0 su pravci paralelni s koordinatnim osima x, x 2 i x 3. U općenitom slučaju koordinatne linije nisu pravci i zato govorimo o krivolinijskim koordinatama. Tangencijalni vektori u točki x 0 na krivulje (.22) dani su formulama r = ˆx q (x 0 ), r 2 = ˆx q 2 (x 0 ), r 3 = ˆx q 3 (x 0 ). M. Jurak, Radna verzija 6 3. listopada 204.

17 dif-op 7 Ova tri vektora čine bazu u pripadnom vektorskom prostoru budući da je ˆx ˆx ˆx r [r 2, r 3 ] = (x q q 2 q 3, x 2, x 3 ) (q, q 2, q 3 ) = det(dˆx(q, q 2, q 3 )) = ˆx 2 ˆx 2 ˆx 2 q q 2 q 3 0 (.23) ˆx 3 ˆx 3 ˆx 3 q q 2 q 3 zbog difeomorfnosti funkcije ˆx. Prema tome, uvodenjem krivolinijskih koordinata u skup Ω u svakoj točki x Ω dobivamo bazu vektorskog prostora. Jedinične vektore te baze označavamo s q 0 = h r, q 0 2 = h 2 r 2, q 0 3 = h 3 r 3, gdje su h = r, h 2 = r 2, h 3 = r 3, tzv. Laméovi parametri. Važno je uočiti da su vektori q 0 i funkcije koordinata (q, q 2, q 3 ) i da se općenito mijenjaju od točke do točke. Kažemo da je koordinatni sustav u skupu Ω ortogonalan ako su vektori q 0 i, i =, 2, 3 medusobno ortogonalni u svakoj točki skupa Ω. U tom slučaju je matrica operatora T koji preslikava bazu (e i ) u bazu (q 0 i ) ortogonalna. Budući da je T e i = q 0 i za i =, 2, 3 imamo da je matrica tog operatora u bazi (e i ): ˆx ˆx ˆx h q h 2 q 2 h 3 q 3 T = ˆx 2 ˆx 2 ˆx 2 h q h 2 q 2 h 3 q 3. (.24) ˆx 3 ˆx 3 ˆx 3 h q h 2 q 2 h 3 q 3 Zbog ortogonalnosti matrica (.24) može se čitati i po stupcima i po recima: tako je npr. q 0 j = h j i= ˆx i q j e i, e i = Radi lakšeg pamćenja zapisat ćemo (.24) u slijedećem obliku: j= h j ˆx i q j q 0 j. (.25) q 0 q 0 2 q 0 3 e ˆx ˆx ˆx h q h 2 q 2 h 3 q 3 e 2 ˆx 2 ˆx 2 ˆx 2 h q h 2 q 2 h 3 q 3 e 3 ˆx 3 ˆx 3 ˆx 3 h q h 2 q 2 h 3 q 3 (.26) M. Jurak, Radna verzija 7 3. listopada 204.

18 dif-op 8 Zadatak 20. U ortogonalnom koordinatnom sustavu je det( ˆx) = h h 2 h 3. Uočimo sada da definiciju baznih vektora možemo zapisati u sljedećem kompaktnom obliku: za i =, 2, 3 vrijedi: (Dˆx)e i = h i q 0 i. (.27) Koristeći teorem o inverznoj funkciji koji kaže da je (Dˆx(q)) = Dˆq(x) za x = ˆx(q), dobivamo: e i = h i Dˆq(x)q 0 i. (.28) Odatle pak slijedi: (Dˆq(x)) τ e i = = q 0 j (q 0 j (Dˆq(x)) τ e i ) = j= q 0 j ( e j e i ) = q 0 i. h j h i j= q 0 j (Dˆq(x)q 0 j e i ) j= Time smo dobili: (Dˆq) τ e i = h i q 0 i. (.29) Sada možemo izračunati gradijent skalarne funkcije u krivolinijskim koordinatama. Neka nam je zadana funkcija φ: Ω R te označimo φ = φ ˆx U primjenama krivolinijskih koordinata mi redovito znamo funkciju φ i htjeli bismo gradijent funkcije φ izraziti preko parcijalnih derivacija funkcije φ i krivolinijskih baznih vektora q 0 i. Za x = ˆx(q) imamo: odnosno Dφ(x)[h] = D( φ ˆq(x))[h] = D( φ(q))[dˆq(x))[h]] φ(x) h = q φ(q) ( xˆq(x))h = ( xˆq(x)) τ q φ(q) h. Time smo dobili φ(x) = ( xˆq(x)) τ q φ(q). Raspišimo sada q φ(q) kao q φ(q) = i= φ(q) e i q i i iskoristimo (.29) da bismo dobili za x = ˆx(q): φ(x) = i= φ(q) q 0 i. (.30) h i q i Zadana je vektorska funkcija v(x). Imamo v(x) = ṽ ˆq(x) i stoga za x = ˆx(q), v(x) = ( q ṽ(q))( xˆq(x)) M. Jurak, Radna verzija 8 3. listopada 204.

19 dif-op 9 Uzmimo ṽ u obliku Tada je prema formuli (.2) ṽ = v i (q)q 0 i. i= q ṽ(q) = = stoga korištenjem (.29) slijedi v k (q) q q 0 k + k= v k (q) q q 0 k + i= q 0 i q v i (q) i= i= 2 j= v i (q) q 0 i e j q j v(x) = = v k (q)( q q 0 k)( xˆq(x)) + k= v k (q)( q q 0 k)( xˆq(x)) + k= i= i= j= j= v i (q) q 0 i ( xˆq(x)) τ e j q j v i (q) q 0 i q 0 j h j q j Raspisujemo koristeći (.28), ( q q 0 k)( xˆq(x)) = = = [( q q 0 k)( xˆq(x))q 0 j q 0 i ](q 0 i q 0 j ) i,j= i,j= i,j= gdje smo uveli Christoffelove simbole: h j [( q q 0 k)e j q 0 i ](q 0 i q 0 j ) h j [ q0 k q j q 0 i ](q 0 i q 0 j ) = i,j= h j Γ i j,k(q 0 i q 0 j ), Sada je v(x) = h i,j= j Γ i j,k = q 0 i q0 k q j (.3) [ k= ] Γ i j,kv k (q) + v i(q) (q 0 i q 0 j ). (.32) q j Uočimo da Christoffelovi simboli čine koeficijente u rastavu derivacija vektora baze: q 0 k q j = Γ i j,kq 0 i (.33) i= M. Jurak, Radna verzija 9 3. listopada 204.

20 dif-op 20 Zadatak 2. Pokažite sljedeća svojstva Christoffelovih simbola:. Γ i j,k = Γk j,i za k i i za sve j; 2. Γ i j,i = 0 za sve i, j; 3. Za sve i j vrijedi 4. Za sve i, j, k za koje i / {j, k} vrijedi Γ i i,j = h j h i q j ; h k Γ i j,k = h j Γ i k,j; 5. Γ i j,k = 0 ako su i, j i k medusobno različiti. Zadatak 22. Na osnovu prethodnog zadatka pokažite da su matrice Γ i = (Γ i j,k ) dane sljedećim izrazima: h 0 h Γ h 2 q 2 h 3 q 3 h = 0 h 2 h q 0, Γ 2 h 2 q h h = 2 h 0 0 h q 0 2 h 3 q 3, Γ 3 h 3 q = 0 h 2 h 3 h q 0 0 h 3 q 3 0 h 3 h 3 h 3 h 2 q 2 h q h 2 q 2 0 Uputa: Točku iz prošlog zadatka treba iskoristiti za k = j, što daje dijagonalne članove: Γ i j,j = Γ j j,i = h i h j q i. Izračunajmo divergenciju vektorskog polja. Iz formule (.32) slijedi [ ] tr( v) = Γ i h i,kv k (q) + v i(q) i= i q i k= h i = v k (q) + v i(q) h i h k q k q i = i= k= h k ( Za prvi član na desnoj strani imamo: h i ( )v k (q) h k h i q k k= = h ( i= i k i= i h i h i q )v (q) + h 2 ( i= i 2 k= k i i= i k h i h i q k )v k (q) + h i h i q 2 )v 2 (q) + h 3 ( i= i 3 i= h i v i (q) q i (.34) h i h i q 3 )v 3 (q) = h ( h 2 h 2 q + h 3 h 3 q )v (q) + h 2 ( h h q 2 + h 3 h 3 q 2 )v 2 (q) + h 3 ( h h q 3 + h 2 h 2 q 3 )v 3 (q) M. Jurak, Radna verzija listopada 204.

21 dif-op 2 Odavdje je, h h 2 h 3 k= h k ( i= i k h i h i q k )v k (q) = (h 3 h 2 q + h 2 h 3 q )v (q) + (h 3 h q 2 + h h 3 q 2 )v 2 (q) + (h 2 h q 3 + h h 2 q 3 )v 3 (q) = (h 2h 3 ) v (q) + (h h 3 ) v 2 (q) + (h h 2 ) v 3 (q). q q 2 q 3 Drugi član u izrazu (.34) daje i= h i v i (q) q i = v (q) + v 2 (q) h q h 2 q 2 ( v (q) = h 2 h 3 h h 2 h 3 q ( = h h 2 h 3 h h 2 h 3 + h 3 v 3 (q) q 3 + h h 3 v 2 (q) q 2 ) v 3 (q) + h h 2 q 3 (h 2 h 3 v (q)) + (h h 3 v 2 (q)) + ) (h h 2 v 3 (q)) q q 2 q ( 3 v (q) (h 2 h 3 ) + v 2 (q) (h h 3 ) + v 3 (q) ) (h h 2 ) q q 2 q 3 Zbrajanjem dobivenih izraza izlazi: ( div v = (h 2 h 3 v ) + (h h 3 v 2 ) + ) (h h 2 v 3 ). (.35) h h 2 h 3 q q 2 q 3 Zadatak 23. Pokažite da za laplasijan skalarne funkcije vrijedi: φ= ( ( h 2h 3 φ ) + ( h h 3 φ ) + ( h ) h 2 φ ). (.36) h h 2 h 3 q h q q 2 h 2 q 2 q 3 h 3 q 3 Zadatak 24. Ispitajte cilindričan koordinatni sustav i izračunajte osnovne diferencijalne operatore u cilindričnom sustavu. Rješenje. Neka je u prostoru E postavljen Kartezijev koordinatni sustav (O; e, e 2, e 3 ). Tada su svakoj točki prostora pridružene koordinate (x, x 2, x 3 ) i baza pridruženog vektorskog prostora (e, e 2, e 3 ). S druge strane svakoj točki prostora možemo pridružiti uredenu trojku brojeva q = (r, ϕ, z), r [0, ), ϕ [0, 2π), z R, prema slici. Veza s Kartezijevim koordinatama točke je x = r cos ϕ, x 2 = r sin ϕ, x 3 = z. (.37) Inverzno preslikavanje je dano s r = x 2 + x 2 2, z = x 3, a kut ϕ je jednoznačno odreden formulama x x cos ϕ =, sin ϕ = 2. x 2 + x 2 2 x 2 + x 2 2 M. Jurak, Radna verzija 2 3. listopada 204.

22 dif-op 22 Odavde vidimo da se cilindrični koordinatni sustav ne može uvesti u cijeli prostor budući da preslikavanje (.37) nije injektivno pri r = 0. Stoga za skup Ω treba uzeti R 3 \{(0, 0, x 3 ): x 3 R}, a za Ω skup (0, ) [0, 2π) R. S praktičnog stajališta ovaj nedostatak cilindričnog sustava ne pravi poteškoće budući da su točke na x 3 -osi posve odredene z-koordinatom; koordinata ϕ za te točke ostaje nedefinirana. Neka je x 0 točka prostora s koordinatama (r 0, ϕ 0, z 0 ), koja se ne nalazi na x 3 -osi tj. z-osi. Kroz nju prolaze tri koordinatne linije odredene preslikavanjima: r (r, ϕ 0, z 0 ), ϕ (r 0, ϕ, z 0 ), z (r 0, ϕ 0, z). Jedinične tangencijalne vektore na koordinatne linije u točki x 0 označimo respektivno s r 0, ϕ 0 i k. Lako je vidjeti da su r-koordinatna linija i z-koordinatna linija pravci, a da je ϕ- linija kružnica. Kako je z-koordinatna linija pravac paralelan x 3 -osi to je njen tangencijalni vektor k = e 3. Nadalje, ϕ-linija ima parametrizaciju: Deriviranjem po kutu ϕ dobivamo Analogno se dobiva ˆx(ϕ) = r 0 cos ϕe + r 0 sin ϕe 2 + z 0 e 3. dˆx dϕ (ϕ) = r 0 sin ϕe + r 0 cos ϕe 2 ϕ 0 = sin ϕe + cos ϕe 2. a Laméovi parametri su r 0 = cos ϕe + sin ϕe 2, h = h r =, h 2 = h ϕ = r, h 3 = h z =. S lakoćom se vidi da je baza (r 0, ϕ 0, k) ortogonormirana u svakoj točki prostora (osim, naravno na z-osi, gdje nije definirana). Christoffelovi simboli su dani sljedećim izrazima: Γ = 0 0, Γ 2 = 0 0, Γ 3 = Gradijent skalarne funkcije: φ(x) = φ r r 0 + φ r ϕ ϕ 0 + φ k. (.38) z Matrica gradijenta vektorske funkcije zapisan u bazi (r 0, ϕ 0, k): v r v r r v v r r ϕ r ϕ z v v = ϕ v ϕ + v v ϕ r r ϕ r r z. (.39) v z r r v z ϕ Ovako definiran skup Ω nije otvoren, no to ne pravi poteškoće. v z z M. Jurak, Radna verzija listopada 204.

23 dif-op 23 Posebno slijedi: r 0 = 0 r 0, φ r 0 = 0 0 0, k = (.40) Divergencija vektorske funkcije : Laplace skalarne funkcije: div v = r φ= r Divergenciju tenzorskog polja možemo izračunati iz formula r (rv r) + v ϕ r ϕ + v z z. (.4) φ (r r r ) + 2 φ r 2 ϕ + 2 φ 2 z. (.42) 2 div T r 0 = div(t τ r 0 ) T r 0 div T ϕ 0 = div(t τ ϕ 0 ) T ϕ 0 div T k = div(t τ k) Pri tome uzimamo da T ima u bazi (r 0, ϕ 0, k) matricu: T rr T rϕ T rz T = T ϕr T ϕϕ T ϕz T zr T zϕ T zz Vektor komponenti od div T u bazi (r 0, ϕ 0, k): div T = r r r (rt rr) + r r (rt ϕr) + r r r (rt zr) + r T rϕ + Trz ϕ z T ϕϕ + Tϕz ϕ z T zϕ ϕ T r ϕϕ + T r rϕ (.43) + Tzz z Budući da imamo ortonormiranu bazu trag matrice u njoj računamo kao sumu elemenata na dijagonali pa Laplace vektorske funkcije računamo po formuli: u = div( u); vektor komponenti u bazi (r 0, ϕ 0, k): v = vr (r ) + 2 v r r r 2 ϕ 2 ) + 2 v ϕ r r 2 ϕ 2 r r vϕ (r r r r r vz (r ) + 2 v z r r 2 ϕ v r z 2 2 r 2 v ϕ ϕ vr r v ϕ z r 2 v r + 2 v z z 2 vϕ ϕ r 2. (.44) Zadatak 25. Ispitajte sferni koordinatni sustav i izračunajte osnovne diferencijalne operatore u sfernom sustavu. M. Jurak, Radna verzija listopada 204.

24 dif-op 24 Rješenje. Neka je u prostoru E postavljen Kartezijev koordinatni sustav (O; e, e 2, e 3 ). Tada su svakoj točki prostora pridružene koordinate (x, x 2, x 3 ) i baza pridruženog vektorskog prostora (e, e 2, e 3 ). Svakoj točki prostora, koja se ne nalazi na x 3 -osi možemo pridružiti uredenu trojku brojeva (r, θ, ϕ), r [0, ), θ [0, π], ϕ [0, 2π), kao na slici. Tada je veza s Kartezijevim koordinatama točke: x = r sin θ cos ϕ, x 2 = r sin θ sin ϕ, x 3 = r cos θ. (.45) Lako se provjerava da je preslikavanje (.45) injektivno, odnosno da je svaka točka prostora E koja ne leži na x 3 -osi jedinstveno odredena koordinatama (r, θ, ϕ). Formule kojima se (r, θ, ϕ) odreduju iz (x, x 2, x 3 ) su r = x 2 + x x 2 3, cos θ = x 3 r, cos ϕ = x r sin θ, sin ϕ = x 2 r sin θ. Prva jednakost jedinstveno odreduje r, pa je onda drugom jedinstveno odreden kut θ [0, π]; kut ϕ je odreden s posljednje dvije jednakosti. Točke koje se nalaze na x 3 -osi posve su odredene r-koordinatom i kutem θ. Koordinata ϕ za te točke ostaje nedefinirana; u ishodištu koordinatnog sustava nije definirana niti koordinata θ. Dakle, vidimo da sferni koordinatni sustav ne možemo uvesti u cijeli prostor već samo u skup Ω = R 3 \{(0, 0, x 3 ): x 3 R}. Za skup 2 Ω treba uzeti (0, ) (0, π) [0, 2π). S praktičnog stajališta ovaj nedostatak sfernog sustava ne pravi poteškoće. Neka je x 0 proizvoljna točka prostora s koordinatama (r 0, θ 0, ϕ 0 ), koja se ne nalazi na x 3 -osi. Kroz nju prolaze tri koordinatne linije odredene preslikavanjima: r (r, θ 0, ϕ 0 ), θ (r 0, θ, ϕ 0 ), ϕ (r 0, θ 0, ϕ). Jedinične tangencijalne vektore na koordinatne linije u točki x 0 označimo respektivno s r 0, θ 0 i ϕ 0. Lako je vidjeti da je r-koordinatna linija pravac, a da su θ-koordinatna linija i ϕ-linija kružnice (vidi sliku). Za ϕ-liniju imamo parametrizaciju deriviranjem po kutu ϕ dobivamo ˆx(ϕ) = r 0 sin θ 0 cos ϕe + r 0 sin θ 0 sin ϕe 2 + r 0 cos θ 0 e 3 ; dˆx dϕ (ϕ) = r 0( sin θ 0 sin ϕe + sin θ 0 cos ϕe 2 ) ϕ 0 = sin ϕe + cos ϕe 2. Analogno se dobiva θ 0 = cos θ cos ϕe + cos θ sin ϕe 2 sin θe 3, (.46) r 0 = sin θ cos ϕe + sin θ sin ϕe 2 + cos θe 3. (.47) 2 Ovako definiran skup Ω nije otvoren, no to ne pravi poteškoće. M. Jurak, Radna verzija listopada 204.

25 dif-op 25 Odavde je lako vidjeti da su Laméovi parametri h = h r =, h 2 = h θ = r, h 3 = h ϕ = r sin θ, (.48) da je baza (r 0, θ 0, ϕ 0 ) ortonormirana u svakoj točki prostora u kojoj je definirana. Gradijent skalarne funkcije: φ(x) = φ r r 0 + φ r θ θ 0 + φ r sin θ ϕ ϕ 0. (.49) Matrica gradijent vektorske funkcije zapisana u bazi (r 0, θ 0, ϕ 0 ): v r v r r v v r r θ r θ v r sin θ ϕ r ϕ v v = θ v θ + v v θ r r θ r r ctg θ v r sin θ ϕ r ϕ. (.50) v ϕ v ϕ v ϕ + v r r θ r sin θ ϕ r r + ctg θ v r θ Divergencija vektorske funkcije: div v = r Laplace skalarne funkcije: r (rv r) + v θ r θ + v ϕ r sin θ ϕ + r v r + r ctg θ v θ. (.5) φ= φ r 2 (r2 r r ) + 2 φ r 2 θ + 2 φ 2 r 2 sin 2 θ ϕ + φ ctg θ 2 r2 θ. (.52) Neka T ima u bazi (r 0, θ 0, ϕ 0 ) matricu: T rr T rθ T rϕ T= T θr T θθ T θϕ T ϕr T ϕθ T ϕϕ Vektor komponenti od div T u bazi (r 0, θ 0, ϕ 0 ): (rt r r rr) + T rθ + T rϕ + (T r θ r sin θ ϕ r rr + ctg θ T rθ T θθ T ϕϕ ) div T= (rt r r θr) + T θθ + T θϕ + (T r θ r sin θ ϕ r θr + T rθ ) + ctg θ (T r θθ T ϕϕ ) (.53) (rt r r ϕr) + T ϕθ + T ϕϕ + (T r θ r sin θ ϕ r ϕr + T rϕ ) + ctg θ (T r ϕθ + T θϕ ) Vektor komponenti od u = div( u) u bazi (r 0, θ 0, ϕ 0 ): vr r 2 (r2 ) + 2 v r + 2 v r 2 v θ 2 r r r 2 θ 2 r 2 sin 2 θ ϕ 2 r 2 θ r 2 sin θ v= r 2 r (r2 v θ ) + 2 v θ + 2 v θ + 2 v r r r 2 θ 2 ϕ 2 r 2 θ r 2 r 2 sin 2 θ r (r2 v ϕ r ) + r 2 2 v ϕ θ 2 + r 2 sin 2 θ 2 v ϕ ϕ r 2 sin θ v ϕ ϕ + + ctg θ v θ r 2 θ v r + 2 ctg θ ϕ r 2 sin θ 2vr 2 r 2 2 ctg θ v ϕ v r 2 sin θ ϕ r 2 sin 2 θ θ v θ + ctg θ ϕ r 2 ctg θ vr r 2 θ ctg θ v r 2 θ. v ϕ θ r 2 sin 2 θ v ϕ (.54) M. Jurak, Radna verzija listopada 204.

26 dif-op 26 Bibliografija [] Ibrahim Aganović. Uvod u rubne zadaće mehanike kontinuuma. Element, Zagreb, [2] Philippe G. Ciarlet. Mathematical Elasticity, Volume I: Three-Dimensional Elasticity. North-Holland, 988. [3] Morton E. Gurtin. An Introduction to Continuum Mechanics. Academic Press, 98. M. Jurak, Radna verzija listopada 204.

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

1 Diferencijabilnost Motivacija. Kažemo da je funkcija f : a, b R derivabilna u točki c a, b ako postoji limes f f(x) f(c) (c) = lim.

1 Diferencijabilnost Motivacija. Kažemo da je funkcija f : a, b R derivabilna u točki c a, b ako postoji limes f f(x) f(c) (c) = lim. 1 Diferencijabilnost 11 Motivacija Kažemo da je funkcija f : a, b R derivabilna u točki c a, b ako postoji es f f(x) f(c) (c) x c x c Najbolja linearna aproksimacija funkcije f je funkcija l(x) = f(c)

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Dijagonalizacija operatora

Dijagonalizacija operatora Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

LINEARNA ALGEBRA 1, ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ, VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ

LINEARNA ALGEBRA 1, ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ, VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ LINEARNA ALGEBRA 1 ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ 2. VEKTORSKI PROSTORI - LINEARNA (NE)ZAVISNOST SISTEM IZVODNICA BAZA Definicija 1. Neka je F

Διαβάστε περισσότερα

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a. Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

Linearna algebra I, zimski semestar 2007/2008

Linearna algebra I, zimski semestar 2007/2008 Linearna algebra I, zimski semestar 2007/2008 Predavanja: Nenad Bakić, Vježbe: Luka Grubišić i Maja Starčević 22. listopada 2007. 1 Prostor radijvektora i sustavi linearni jednadžbi Neka je E 3 trodimenzionalni

Διαβάστε περισσότερα

6 Polinomi Funkcija p : R R zadana formulom

6 Polinomi Funkcija p : R R zadana formulom 6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

Gauss, Stokes, Maxwell. Vektorski identiteti ( ),

Gauss, Stokes, Maxwell. Vektorski identiteti ( ), Vektorski identiteti ( ), Gauss, Stokes, Maxwell Saša Ilijić 21. listopada 2009. Saša Ilijić, predavanja FER/F2: Vektorski identiteti, nabla, Gauss, Stokes, Maxwell... (21. listopada 2009.) Skalarni i

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum

16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum 16 Lokalni ekstremi Važna primjena Taylorovog teorema odnosi se na analizu lokalnih ekstrema (minimuma odnosno maksimuma) relanih funkcija (više varijabli). Za n = 1 i f : a,b R ako funkcija ima lokalni

Διαβάστε περισσότερα

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE 1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

MJERA I INTEGRAL 2. kolokvij 30. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!)

MJERA I INTEGRAL 2. kolokvij 30. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) JMBAG IM I PZIM BOJ BODOVA MJA I INTGAL 2. kolokvij 30. lipnja 2017. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (ukupno 6 bodova) Neka je (, F, µ) prostor mjere i neka je (

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

Poglavlje 1 GRAM-SCHMIDTOV POSTUPAK ORTOGONALIZACIJE. 1.1 Ortonormirani skupovi

Poglavlje 1 GRAM-SCHMIDTOV POSTUPAK ORTOGONALIZACIJE. 1.1 Ortonormirani skupovi Poglavlje 1 GRAM-SCHMIDTOV POSTUPAK ORTOGONALIZACIJE 1.1 Ortonormirani skupovi Prije nego krenemo na sami algoritam, uvjerimo se koliko je korisno raditi sa ortonormiranim skupovima u unitarnom prostoru.

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Linearna algebra za fizičare, zimski semestar Mirko Primc

Linearna algebra za fizičare, zimski semestar Mirko Primc Linearna algebra za fizičare, zimski semestar 006. Mirko Primc Sadržaj Poglavlje 1. Vektorski prostor R n 5 1. Vektorski prostor R n 6. Geometrijska interpretacija vektorskih prostora R i R 3 11 3. Linearne

Διαβάστε περισσότερα

k a k = a. Kao i u slučaju dimenzije n = 1 samo je jedan mogući limes niza u R n :

k a k = a. Kao i u slučaju dimenzije n = 1 samo je jedan mogući limes niza u R n : 4 Nizovi u R n Neka je A R n. Niz u A je svaka funkcija a : N A. Označavamo ga s (a k ) k. Na primjer, jedan niz u R 2 je dan s ( 1 a k = k, 1 ) k 2, k N. Definicija 4.1. Za niz (a k ) k R n kažemo da

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

M086 LA 1 M106 GRP Tema: Uvod. Operacije s vektorima.

M086 LA 1 M106 GRP Tema: Uvod. Operacije s vektorima. M086 LA 1 M106 GRP Tema:.. 5. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 2 M086 LA 1, M106 GRP.. 2/17 P 1 www.fizika.unios.hr/grpua/

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos . KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..

Διαβάστε περισσότερα

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )

Διαβάστε περισσότερα

Matrice linearnih operatora i množenje matrica. Franka Miriam Brückler

Matrice linearnih operatora i množenje matrica. Franka Miriam Brückler Matrice linearnih operatora i množenje matrica Franka Miriam Brückler Kako je svaki vektorski prostor konačne dimenzije izomorfan nekom R n (odnosno C n ), pri čemu se ta izomorfnost očituje odabirom baze,

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

1 Aksiomatska definicija skupa realnih brojeva

1 Aksiomatska definicija skupa realnih brojeva 1 Aksiomatska definicija skupa realnih brojeva Definicija 1 Polje realnih brojeva je skup R = {x, y, z...} u kojemu su definirane dvije binarne operacije zbrajanje (oznaka +) i množenje (oznaka ) i jedna binarna

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se

Διαβάστε περισσότερα

1 / 79 MATEMATIČKA ANALIZA II REDOVI

1 / 79 MATEMATIČKA ANALIZA II REDOVI / 79 MATEMATIČKA ANALIZA II REDOVI 6.. Definicija reda Promatrajmo niz Definicija reda ( ) n 2 :, 2 2 3 2 4 2,... Postupno zbrajajmo elemente niza: = + 2 2 = 5 4 + 2 2 + 3 2 = 49 36 + 2 2 + 3 2 + 4 2 =

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA. Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.

Διαβάστε περισσότερα

Uvod u teoriju brojeva

Uvod u teoriju brojeva Uvod u teoriju brojeva 2. Kongruencije Borka Jadrijević Borka Jadrijević () UTB 2 1 / 25 2. Kongruencije Kongruencija - izjava o djeljivosti; Teoriju kongruencija uveo je C. F. Gauss 1801. De nicija (2.1)

Διαβάστε περισσότερα

1. Vektorske i skalarne funkcije

1. Vektorske i skalarne funkcije VEKTORSKE I SKALARNE FUNKCIJE 1 1. Vektorske i skalarne funkcije 1.1. Što su to skalarne i vektorske funkcije? Ako svakoj točki u nekom dijelu prostora pridružimo broj, ili drugim riječima skalar zadali

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

4 Funkcije. 4.1 Pojam funkcije

4 Funkcije. 4.1 Pojam funkcije 4 Funkcije 4.1 Pojam unkcije Neka su i neprazni skupovi i pravilo koje svakom elementu skupa pridružuje točno jedan element skupa. Tada se uredena trojka (,, ) naziva preslikavanje ili unkcija sa skupa

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

IZRAČUNAVANJE KONAČNIH SUMA METODIMA DIFERENTNOG RAČUNA

IZRAČUNAVANJE KONAČNIH SUMA METODIMA DIFERENTNOG RAČUNA IZRAČUNAVANJE KONAČNIH SUMA METODIMA DIFERENTNOG RAČUNA Izlaganje - Seminar za matematičare, Fojnica 2017.g. Prof. dr. MEHMED NURKANOVIĆ Prirodno-matematički fakultet Univerziteta u Tuzli 13.01.2015. godine

Διαβάστε περισσότερα

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo:

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: 2 Skupovi Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: A B def ( x)(x A x B) Kažemo da su skupovi A i

Διαβάστε περισσότερα

5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα

Analitička geometrija i linearna algebra

Analitička geometrija i linearna algebra 1. VEKTORI POJAM VEKTORA Svakodnevno se susrećemo s veličinama za čije je određivanje potrean samo jedan roj. Na primjer udaljenost, površina, volumen,. Njih zovemo skalarnim veličinama. Međutim, postoje

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

1. Topologija na euklidskom prostoru R n

1. Topologija na euklidskom prostoru R n 1 1. Topologija na euklidskom prostoru R n Euklidski prostor R n je okruženje u kojem ćemo izučavati realnu analizu. Kao skup R n se sastoji od svih uredenih n-torki realnih brojeva: R n = {(x 1,...,x

Διαβάστε περισσότερα

Četrnaesto predavanje iz Teorije skupova

Četrnaesto predavanje iz Teorije skupova Četrnaesto predavanje iz Teorije skupova 27. 01. 2006. Kratki rezime prošlog predavanja: Dokazali smo teorem rekurzije, te primjenom njega definirali zbrajanje ordinalnih brojeva. Prvo ćemo navesti osnovna

Διαβάστε περισσότερα

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka 1 Afina geometrija 11 Afini prostor Definicija 11 Pod afinim prostorom nad poljem K podrazumevamo svaku uređenu trojku (A, V, +): A - skup taqaka V - vektorski prostor nad poljem K + : A V A - preslikavanje

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Geometrija (I smer) deo 1: Vektori

Geometrija (I smer) deo 1: Vektori Geometrija (I smer) deo 1: Vektori Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo

Διαβάστε περισσότερα

Zadatak 1 Dokazati da simetrala ugla u trouglu deli naspramnu stranu u odnosu susednih strana.

Zadatak 1 Dokazati da simetrala ugla u trouglu deli naspramnu stranu u odnosu susednih strana. Zadatak 1 Dokazati da simetrala ugla u trouglu deli naspramnu stranu u odnosu susednih strana. Zadatak 2 Dokazati da se visine trougla seku u jednoj tački ortocentar. 1 Dvostruki vektorski proizvod Važi

Διαβάστε περισσότερα

Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku Preddiplomski studij matematike. Monika Jović. Skalarni produkt.

Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku Preddiplomski studij matematike. Monika Jović. Skalarni produkt. Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku Preddiplomski studij matematike Monika Jović Skalarni produkt Završni rad Osijek, 2012. Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

3 Funkcije. 3.1 Pojam funkcije

3 Funkcije. 3.1 Pojam funkcije 3 Funkcije 3.1 Pojam unkcije Neka su i neprazni skupovi i pravilo koje svakom elementu skupa pridružuje točno jedan element skupa. Tada se uredena trojka (,, ) naziva preslikavanje ili unkcija sa skupa

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

8 Tangencijalna ravnina plohe

8 Tangencijalna ravnina plohe 8 Tangencijalna ravnina plohe Sferu kao plohu pokrili smo sa šest, odnosno sa dvije karte u Primjeru 2. Dakle, općenito, neka točka sfere ležat će u slikama od više karata. Proučimo stoga što se dogada

Διαβάστε περισσότερα

Diferencijalni račun

Diferencijalni račun ni račun October 28, 2008 ni račun Uvod i motivacija Točka infleksije ni račun Realna funkcija jedne realne varijable Neka je X neprazan podskup realnih brojeva. Ako svakom elementu x X po postupku f pridružimo

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcija 8 Pojam funkcije, grafa i inverzne funkcije Poglavlje 1 Funkcije Neka su X i Y dva neprazna skupa. Ako je po nekom pravilu, ozna imo ga

Διαβάστε περισσότερα

6. Poopćenja Newton Leibnizove formule

6. Poopćenja Newton Leibnizove formule STOKES 5 6. oopćenja Newton Leibnizove formule 6.. Još neki važni operatori Doasad smo naučili operator ili grad, koji od skalarnog polja radi vektorsko polje: ( U gradu U(x, y, z) x,, ). z Sada ćemo upoznati

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Matematiqki fakultet. Univerzitet u Beogradu. Domai zadatak

Matematiqki fakultet. Univerzitet u Beogradu. Domai zadatak Matematiqki fakultet Univerzitet u Beogradu Domai zadatak Zlatko Lazovi 30. decembar 2016. verzija 1.1 Sadraj 1 METRIQKI PROSTORI 2 1 1 METRIQKI PROSTORI a) Neka je (M, d) metriqki prostor i neka je (x

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα