6.4. AERODINAMICA TURBINELOR EOLIENE

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "6.4. AERODINAMICA TURBINELOR EOLIENE"

Transcript

1 6.4. AERODINAMICA TURBINELOR EOLIENE Lucrul mecanic, energia cinetică şi puterea vântului Asemănător altor forme de energie şi cea eoliană poate fi transformată în alte forme de energie, de exemplu mecanică, sau electrică. În condiţii ideale, se poate considera că aceste transformări se produc fară pierderi, dar în situaţiile reale, întotdeauna se poate defini un randament al transformării energiei dintr-o formă în alta. În continuare va fi determinat potenţialul energetic eolian, respectiv potenţialul de putere, care ar putea să fie dezvoltate în condiţii ideale, de energia eolienă. Pentru efectuarea acestui calcul, va fi analizat pentru început, cazul celebrului personaj Marry Poppins, care în romanul lui P. L. Travers, apare în zbor, deplasându-se cu ajutorul unei umbrele, datorită energiei dezvoltate de vântul de primăvară, fenomen prezentat în figura 6.7. Fig Marry Poppins se deplasează sub acţiunea energiei eoliene Considerând că viteza vântului este w, presiunea dinamică p, datorată deplasării aerului, poate fi calculată cu relaţia: w p = ρ unde ρ [kg/m 3 ] este densitatea aerului. La rândul ei, densitatea aerului, depinde de presiunea atmosferică (deci de latitudine, longitudine, altitudine şi condiţiile meteorologice), respectiv de umiditatea aerului. În contact cu suprataţa umbrelei, presiunea vântului, produce forţa care determină deplasarea lui Marry Poppins. Cu cât suprafaţa asupra căreia acţionează vântul este mai mare, cu atât şi forţa produsă de vânt este mai mare. Aceasta este şi explicaţia faptului că atât panzele corăbiilor, cât şi paletele morilor de vânt aveau suprafeţe foarte mari, necesare dezvoltării unor forţe cât mai mari. În contact cu suprafeţele asupra cărora acţionează (umbrela, pânzele corăbiilor, paletele morilor de vânt, etc.), vântul este frânat, iar energia cinetică a acestuia, se transformă în energie potenţială de presiune, respectiv în energie mecanică şi este transferată suprafeţei care realizează frânarea. Frânarea se produce pe orice suprafaţă normală (perpendiculară) la direcţia vântului. În cazul în care suprafaţa nu este perpendiculară pe această direcţie, vântul va acţiona pe proiecţia suprafeţei, în planul normal la direcţia vântului.

2 Notând cu S, proiecţia suprafeţei umbrelei lui Marry Poppins, în planul normal la direcţia vântului, forţa F, dezvoltată de vânt asupra umbrelei, se poate calcula cu relaţia: w F = p S = ρ S Considerând că deplasarea se produce pe distanţa x, poate fi calculat lucrul mecanic L, produs de forţa dezvoltată de vânt: w L = F x = ρ S x Putearea P, dezvoltată de vânt, pentru a produce deplasarea, în intervalul de timp τ, poate fi determinată cu relaţia: 3 L w x w P = = ρ S = ρ S τ τ x deoarece = w. τ Aceeasi relaţie de calcul pentru puterea dezvoltată de vânt, poate fi determinată considerând că energia cinetică a vântului, reprezintă tocmai potenţialul energetic al acestuia. Fig Schema de calcul pentru energia cinetică a vântului Pentru a calcula energia cinetică a vântului, se va considera ca în figura 6.8, un volum oarecare de aer V, închis de o suprafaţă oarecare S, pe o lungime oarecare x. Lungimea x se consideră pe direcţia vântului, iar suprafaţa S, este considerată normală la direcţia vântului. În aceste condiţii, volumul de aer se determină cu relaţia: V = S x Considerând că aerul are densitatea ρ, se poate calcula cantitatea (masa) de aer m, care se deplasează sub acţiunea vântului: m = ρ V = ρ S x Energia cinetică E c, a masei de aer m, se determină cu relaţia: w w E c = m = ρ S x Puterea pe care o poate dezvolta vântul, datorită energiei sale cinetice, în intervalul de timp τ, se calculează cu relaţia: 3 E c x w w P = = ρ S = ρ S τ τ adică aceeaşi relaţie determinată cu ajutorul lucrului mecanic pentru deplasarea lui Marry Poppins. Atât în cazul lui Marry Poppins, cât şi în cazul analizei energiei cinetice a vântului, au fost considerate situaţii ideale, fără pierderi făra şi ireversibilităţi, astfel încât marimile calculate, reprezintă

3 potenţialul de dezvoltare a lucrului mecanic, potenţialul de dezvoltare a energiei cinetice, respectiv potenţialul de dezvoltare a unei puteri de către vânt. În cazul aplicaţiilor reale, se va lua în considerare randamentul η, de conversie a energiei eoliene în energie mecanică, care depinde de performanţele tehnice ale echipamentului utilizat. L r E cr Pr η = = = L E c P unde indicele r, a fost utiliza pentru a desemna mărimile reale, faţă de mărimile fără acest indice, considerate mărimi teoretice, sau potenţiale. În cazul turbinelor eoliene, suprafaţa S, utilizată pentru conversia energiei eoliene, este suprafaţa rotorului turbinei, de rază r, respectiv de diametru d: d S = π r = π 4 Analizând relaţiile de calcul prezentate anterior, se observă că puterea pe care o pot dezvolta echipamnetele eoliene, în particular turbinele eoliene, depinde în principal de viteza vântului w, proporţional cu puterea a treia a acestei mărimi, dar şi de diametrul d, respectiv raza r, a rotorului, proporţional cu puterea a doua a acestor mărimi. Puterea pe care o pot dezvolta echipamentele eoliene, mai depinde şi de densitatea ρ, a aerului în locul în care este amplasat echipamentul respectiv. La rândul ei, densitatea aerului depinde de presiunea atmosferică în locul pe care este amplasat echipamentul şi de umiditatea absolută a aerului. Presiunea atmosferică a aerului, depinde de latitudine, longitudine, altitudine, temperatură şi condiţiile meteo, iar umiditatea aerului depinde de condiţiile meteo Noţiuni introductive de aerodinamică Aerodinamica este o ştiinţă derivată din dinamica fluidelor, care studiază mişcarea, respectiv curgerea gazelor în general şi a aerului în particular, precum şi interacţiunea aerului, respectiv a gazelor în curgere, cu corpurile solide. Aplicaţiile acestei ştiinţe în aeronautică sunt evidente, iar în continuare se va observa că şi în cazul turbinelor eoliene, forma paletelor ca şi funcţionarea acestora, reprezintă tot consecinţe ale aplicării legilor aerodinamicii, la procesele de curgere a aerului în jurul paletelor. Din punct de vedere geometric, în secţiune longitudinală, paletele au forma relativ apropiată de a unor dreptunghiuri alungite, mărginite de muchiile frontală şi posterioară (faţă de direcţia de rotaţie a paletelor), respectiv de butucul şi de vârful paletelor. Uneori, vârfurile paletelor sunt mobile, ceea ce permite funcţionarea acestor părţi ale paletelor ca regulator de turaţie, prin frânarea paletelor în cazul în care viteza vântului depăşeşte anumite limite. Raza (sau lungime paletelor), este reprezentată de distanţa dintre axa butucului şi vârful paletelor. În secţiune transversală, forma paletelor este asimetrică, astfel încât aerul în curgere (datorită mişcării de rotaţie a paletelor), să atingă paletele mai întâi în zona îngroşată, care reprezintă zona frontală a paletelor. Aceste forme ale profilelor paletelor, poartă denumirea de profile aerodinamice datorită proprietăţilor particulare pe care le prezintă şi care vor fi evidenţiale în continuare.

4 În figura 6.9 sunt prezentate două profile aerodinamice. Fig Profile ale paletelor Forma profilelor aerodinamice ale paletelor este fundamentală pentru performanţele turbinelor eoliene, astfel încât chiar şi cele mai mici abateri ale formei profilelor, pot genera atât alterarea considerabilă a performanţelor, cât şi probleme legate de nivelul de zgomot care poate să crească semnificativ. Din aceste motive, forma profilelor paletelor este aleasă pe baza experienţei anterioare considerabile, obţinută în urma cercetărilor efectuate asupra formei aripilor şi elicelor de avioane. În cataloagele NACA (The United States National Advisory Commitee for Aeronautics), cele două profile prezentate în figura 9, sunt denumite NACA44, respectiv NACA63 şi reprezintă profilele folosite în mod uzual la paletele turbinelor eoliene de pâna la 95kW inclusiv (NACA44), respectiv de la turbinele peste 150kW (NACA63). Primul profil a fost elaborat în jurul anilor 1930 şi are proprietăţi globale foarte bune fiind şi destul de tolerant la imperfecţiuni minore ale suprafeţelor, cum sunt cele datorate depunerilor de impurităţi în timpul exploatării. Al doilea profil a fost elaborat în jurul anilor 1940 şi are proprietăţi diferite. Astfel asigură puteri mai mari la viteze mici şi medii ale vântului, dar nu este utilizabil la viteze mari ale vântului şi este foarte sensibiul la depunerile de impurităţi în timpul exploatării. Pentru turbinele mai noi, cu puteri de peste 500kW, profilul aerodinamic al paletelor reprezintă rezultatul unor cercetări mai noi şi diferă de cele două profile prezentate. Asemenea profile au fost cercetate şi testate de exemplu în Suedia, Danemarca şi SUA, ţări cu tradiţie în domeniul turbinelor eoliene.

5 Aerodinamica biciclistului Pentru a descrie cât mai precis aspectele aerodinamice ale turbinelor eoliene, evitând deocamdată elementele complexe şi pentru a asigura un cadru intuitiv de înţelegere a fenomenelor care se manifestă, se va descrie pentru început comportarea aerodinamică a unui biciclist, apelându-se la experinţa mersului pe bicicletă care este foarte comună şi uşor de înţeles. În figura 30 sunt prezentate foarte schematic şi simplificat, câteva procese de curgere a aerului în jurul unui biciclist, direcţia de deplasare a acestuia fiind de la stânga spre dreapta. Fig Schema proceselor de curgere a aerului în jurul lunui biciclist În figura 6.30.a, este prezentată situaţia în care biciclistul staţionează, iar vântul suflă din lateral cu viteza v. În vederea prezentării unui exemplu numeric, se va considera valoarea vitezei vântului: v = 10 m/s = 36 km/h, ceea ce reprezintă o viteză apropiată de a unei brize marine răcoritoare. Deoarece aerul curge (se deplasează) în jurul bicilcistului, asupra acestuia se va exercita presiunea dinamică a aerului: v p d = ρ [ Pa] unde ρ este densitatea aerului şi pentru această mărime se va considera valoarea ρ=1, kg/m 3. Pentru viteza considerată a vântului se obţine: p d = 1, 10 / = 60 Pa. Atunci când loveşte suprafaţa S a biciclistului şi a bicicletei, vântul (aerul în curgere) exercită o forţă datorată presiunii: F = p d S [N] Pentru exemplul analizat, considerând S=0,6m, se obţine F = 60 0,6 = 36 N, ceea ce considerând valoarea acceleraţiei gravitaţionale de 10m/s, este echivalent cu greutatea unei mase de 3,6kg. În figura 6.30.b, este prezentată situaţia în care biciclistul se deplasează cu viteza u, iar vântul suflă din lateral cu aceeaşi viteză v. Datorită propriei deplasări, biciclistul se simte ca şi cum ar fi lovit din faţă de un vânt care suflă cu aceeaşi viteză u cu care se deplasează biciclistul. Se va considera că biciclistul se deplasează cu viteza: u = 5 m/s = 18 km/h.

6 Cele două viteze de curgere a aerului se compun, iar viteza rezultantă de curgere a aerului w, se poate calcula astfel: m w = v + u s Astfel se obţine w = 11,18 m/s, iar această viteză de curgere a aerului care se va manifesta pe direcţia w produce o presiune dinamică p d 75 Pa, care produce pe suprafaţa biciclistului şi a bicicletei, o forţă F 45 N, echivalentă cu greutatea unei mase de 4,5kg. În figura 6.30.c este prezentat modul în care se descompune forţa F care acţionează asupra biciclistului în situaţia prezentată anterior, în forţa F v datorată vântului şi forţa F m datorată mişcării biciclistului. Practic biciclistul resimte acţiunea aceleiaşi forţe datorate vântului ca şi în cazul 8.a, la care se adaugă forţa F m datorată propriei deplasări. Cu cât viteza de deplasare este mai mare, cu atât mai mare va fi şi rezistenţa aerului, resimţită ca o forţă F m Aerodinamica paletei turbinei Modul de comportare al paletei turbinei eoliene, la curgerea aerului în jurul acesteia, va fi analizat cu ajutorul schemelor din figura 31, în care este prezentat profilul paletei într-o secţiune apropiată de vârful paletei. Se consideră paleta unei turbine de 450kW, având raza rotorului (lungimea paletei) de cca. 50m. Fig Schema unor procese de curgere a aerului în jurul paletei turbinei În figura 6.31.a este reprezentată situaţia în care se consideră că paleta este fixă, iar direcţia vântului este perpendiculară pe suprafaţa planului de rotaţie, adică suprafaţa descrisă de rotor în timpul deplasării acestuia. Se consideră de asemenea că viteza vântului are aceeaşi valoare v = 10 m/s = 36 km/h. Această viteză a vântului produce asupra paletelor, o presiune dinamică având valoarea p d = 60 Pa exact ca în cazul bicilcistului, analizat anterior. Direcţia acestei presiuni este aceeaşi cu direcţia vântului, adică perpendiculară pe planul de rotaţie al paletelor, respectiv pe faţa laterală a acestora. Datorită formei particulare a profilului paletei, pe faţa frontală a acesteia (faţă de direcţia de curgere a aerului), presiunea dinamică a aerului produce două efecte diferite asupra paletei. Astfel, pe de-o parte paleta va fi supusă unei acţiuni care va tinde să flambeze (îndoaie) paleta înspre pilon, iar pe de altă parte, paleta va fi supusă unei acţiuni motoare, care va tinde să rotească paleta. În consecinţă, datorită formei particulare a profilului paletei, forţa rezultantă care acţionează asupra paletei, are direcţia uşor diferită de direcţia vitezei vântului, aşa cum se observă şi în figura 6.31.a.

7 După ce începe să se producă rotaţia paletei, sub acţiunea motoare descrisă anterior, datorată formei particulare a profilului, paleta va fi supusă atât acţiunii datorate vitezei vântului, cât şi acţiunii aerului, datorate propriei deplasări a paletei. Această acţiune este echivalentă cu cea care s-ar produce dacă paleta ar rămâne fixă şi aerul s-ar deplasa spre aceasta, cu aceeaşi viteză, dar în sens contrar deplasării paletei. Această situaţie este reprezentată în figura 31.b, pe care s-a notat viteza relativă de deplasare a aerului în planul de rotaţie al paletei, cu u. Trebuie menţionat faptul că viteza u de deplasare a aerului datorită rotaţiei (având direcţia tangenţială la traiectoria circulară a paletei), este diferită în lungul paletei, fiind mai redusă înspre butuc şi mai mare înspre vârful paletei. Această viteză poate fi calculată cu relaţia: n r m u = r 60 s unde n r [rot/min] este turaţia rotorului, respectiv a paletelor, iar r este raza pentru care se determină valoarea vitezei tangenţiale u. Se observă că viteza u, prezintă o variaţie liniară între zona butucului, unde este minimă (deoarece valoarea razei r este minimă) şi vârf, unde este maximă (deoarece şi valoarea razei r este maximă). Având în vedere că domeniul uzual de valori pentru turaţia paletelor este de 0 400rot/min, în funcţie de tipul paletelor, iar în cazul turbinelor cu diametrul mare al rotorului, această turaţie are valori reduse (0 40rot/min), se va considera o valoare a turaţiei n r = 30 rot/min, care reprezintă o valoare normală. În consecinţă, viteza tangenţială datorată rotaţiei paletelor, va avea valori între u = 0,5 m/s = 0,18 km/h în zona butucului, considerând că raza acestuia este de 1m şi u = 5 m/s = 90 km/h la vârful paletei, considerând lungimea acesteia de 50m. Cele două viteze de curgere a aerului se compun, iar viteza rezultantă de curgere a aerului w, se poate calcula: m w = v + u s Astfel se obţine w = 10,01 m/s, la baza paletei, respectiv w = 6,9 m/s la vârful paletei. Viteza de curgere a aerului care se va manifesta pe direcţia w produce o presiune dinamică p d 60 Pa, la baza paletei, respectiv p d 466 Pa, la vârful paletei. Aceste presiuni dinamice, mai ales în zonele apropiate de vârful paletei, se manifestă sub forma unor forţe considerabile asupra paletei. Datorită formei particulare a profilului paletei, acţiunea forţelor de presiune asupra acesteia se manifestă diferit pe cele două feţe ale acesteia. Astfel se produce fenomenul de portanţă care va fi descris ulterior. Efectul complex al profilului paletei asupra forţei rezultante, se concretizează, aşa cum se observă în figura 6.31.b, în faptul că direcţia după care se manifestă forţa rezultantă F, diferă substanţial faţă de direcţia vântului, fiind perpendiculară pe aceasta. În figura 6.31.c se observă maniera în care forţa rezultantă F se descompune după cele două direcţii importante şi anume după direcţia vântului în componenta F a (indicele a, provine din limba engleza, de la termenul air care înseamna aer) şi după direcţia de rotaţie în componenta F d (indicele d, provine din limba engleza, de la termenul drag care înseamnă tracţiune). Figura 31 prezintă atât vitezele cât şi forţele, în zona de la vârful paletei. Forţa F a care acţionează perpendicular pe planul de rotaţie, tinde să deformeze paleta prin flambare, spre pilonul de susţinere a acesteia. Forţa F d, care

8 acţionează pe direcţia de rotaţie, va genera un moment motor, care asigură antrenarea paletei în mişcarea de rotaţie. Există două diferenţe majore între forţele care se manifestă asupra paletei turbinei şi cele care se manifestă asupra biciclistului. Prima diferenţă este aceea că forţele care acţionează asupra paletei sunt mult mai mari decât cele care acţionează asupra biciclistului, datorită vitezelor rezultante ale vântului, mult mai mari în cazul paletelor turbinei eoliene, decât în cazul biciclistului. În aceste condiţii, acţiunea rezistentă a vântului, se manifestă în cazul paletei, mult mai puternic decât în cazul biciclistului. A doua diferenţă este aceea că datorită formei particulare a profilului paletei, forţa rezultantă, se manifestă asupra paletei, pe o direcţie aproximativ perpendiculară pe direcţia vântului. Acest efect este datorat fenomenului de portanţă, care prezintă o importanţă deosebită asupra funcţionării turbinelor eoliene, pentru că asigură manifestarea forţei de tracţiune asupra paletei. Faţă de cazul biciclistului, care resimte acţiunea vântului ca pe o rezistenţă care trebuie învinsă printr-un efort suplimentar, în cazul paletei, efectul vântului este favorabil, deoarece produce antrenarea paletei în mişcarea de rotaţie. Portanţa este datorată formei particulare a paletei, care determină comportarea complet diferită, din punct de vedere aerodinamic, a paletei faţă de biciclist Portanţa Portanţa este fenomenul aerodinamic de susţinere a unui corp în aer (plutire), datorită deplasării corpului în aer sau a aerului în jurul corpului. Portanţa se manifestă şi în alte fluide decât în aer, dar cele mai numeroase aplicaţii tehnice sunt întâlnite pentru cazul în care fluidul considerat este aerul, iar în continuare va fi analizat exclusiv cazul aerului. Câteva dintre cele mai cunoscute aplicaţii ale fenomenului de portanţă sunt: aripile de avion, paletele elicelor de avion, paletele rotoarelor de elicopter, paletele de ventilator, paletele turbinelor eoliene, dar şi elicele de propulsie ale vaselor fluviale şi maritime. Forţa de susţinere a unui corp în aer, datorită deplasării acestuia în aer sau datorită deplasării aerului în jurul corpului, poartă tot denumirea de portanţă. Forţa de portanţă, sau simplu portanţa, se manifestă pe direcţie perpendiculară faţă de direcţia de deplasare a corpului în aer, sau a aerului în jurul corpului. Manifestarea fenomenului de portanţă, poate fi explicată prin aplicarea unei legi fundamentale a curgerii şi anume legea lui Bernouli, cunoscută atât în mecanica fluidelor, unde este dedusă din considerente mecanice, cât şi în termotehnică unde este dedusă din ecuaţia principiului întâi al termodinamicii. Din punct de vedere matematic, această lege se exprimă prin ecuaţia lui Bernouli, care poate fi scrisă sub forma: w1 w p 1 + ρ + ρgh1 = p + ρ + ρgh unde: - p reprezintă presiunea statică; - ρ reprezintă densitatea fluidului (în cazul considerat aer); - w reprezintă viteza de curgere a fluidului (în cazul considerat aer); - h reprezintă înălţimea faţă de poziţia considerată de referinţă; - indicii 1 respectiv, reprezintă poziţiile sau stările între care se aplică ecuaţia considerată. În cazul tuturor aplicaţiilor fenomenului de portanţă menţionate anterior, deci şi în cazul turbinelor eoliene, înălţimea poate fi considerată constantă, deci ecuaţia lui Bernouli se va scrie sub forma: w1 w p1 + ρ = p + ρ w Termenul ρ are semnificaţia de presiune dinamică, aşa cum s-a mai arătat anterior în cadrul acestui capitol.

9 Analizând ecuaţia lui Bernouli, scrisă sub ultima forma prezentată, se constată că suma dintre presiunea statică şi dinamică este constantă, ceea ce înseamnă că pe măsură ce creşte presiunea dinamică, deci viteza de curgere a aerului în jurul corpului, scade presiunea statică. Presiunea dinamică se manifestă pe direcţia de curgere, iar presiunea statică se manifestă cu egală intensitate în toate direcţiile. Astfel, la curgerea cu viteză a unui fluid, se va manifesta creşterea presiunii pe direcţia curgerii, datorită componentei dinamicii a presiunii, dar şi scăderea presiunii pe direcţie perpendiculară faţă de direcţia curgerii. Fenomenul scăderii presiunii statice, care însoţeşte curgerea aerului cu viteză, în lungul unor suprafeţe, este evidenţiat de experimentul simplu ilustrat în figura Fig Experienţă pentru evidenţierea manifestării legii lui Bernouli Dacă se apropie una de alta, două foi de hârtie îndoite, ca în figura 6.3 şi se suflă aer printre acestea, în zona de ieşire a aerului dintre foi, datorită vitezei ridicate de curgere a aerului, creşte presiunea dinamică (manifestată pe direcţia de curgere), dar scade presiunea statică (manifestată perpendicular pe direcţia de curgere). Astfel, asupra celor două foi de hârtie, pe feţele exterioare şi interioare se vor manifesta forţe de presiune diferite. Pe feţele exterioare va acţiona presiunea atmosferică (neafectată de curgerea aerului în spaţiul dintre foi), iar pe feţele interioare va acţiona presiunea statică (micşorată datorită curgerii aerului). Efectul vizibil, va fi că cele două foi de hârtie se vor apropia aşa cum este sugerat în figura Analizând cu atenţie acest fenomen se constată că forţele care determină apropierea celor două foi de hârtie, se manifestă asupra unor corpuri (cele două foi de hârtie) în jurul cărora se deplasează aerul, iar direcţia pe care se manifestă aceste forţe este perpendiculară pe direcţia curgerii. În consecinţă se poate spune că forţele care determină apropierea celor două foi de hârtie prezintă caracteristicile forţei de portanţă, iar fenomenul care se manifestă este tocmai cel de portanţă. Analizând separat fiecare foaie de hârtie în parte, se poate considera că pentru fiecare din acestea, fenomenul de portanţă este determinat de deplasarea aerului cu viteze diferite pe cele două feţe. Pe faţa unde viteza de curgere este mai mare, presiunea statică scade în conformitate cu legea lui Bernouli, iar diferenţa de presiune dintre cele două feţe dă naştere fenomenului de portanţă. Forţa de portanţă se manifestă, aşa cum s-a enunţa deja, perpendicular pe direcţia de curgere.

10 În cazul unui profil aerodinamic, aşa cum sunt profilele după care sunt construite paletele turbinelor eoliene, dar şi aripile de avion, elicele de avion, paletele rotorului de elicopter, etc., modul în care se manifestă fenomenul de portanţă va fi analizat cu ajutorul figurii Fig Curgerea aerului în jurul unui profil aerodinamic Corpurile care prezintă profile aerodinamice sunt compuse din două suprafeţe, una denumită extrados, reprezentată în figura 6.33 prin partea superioară a profilului şi una denumită intrados, reprezentată în figura 6.33 prin partea inferioară a profilului. Pentru a se manifesta fenomenul de portanţă, profilul aerodinamic trebuie să fie amplasat în curentul de aer, aproximativ ca în figura Aerul curge cu un debit constant, pe direcţia A-B, dinspre A spre B. După ce întâlnesc profilul aerodinamic, moleculele care compun curentul de aer se distribuie pe cele două feţe ale profilului. Deoarece extradosul prezintă o curbură mult mai mare decât intradosul, moleculele de aer care înconjoară profilul aerodinamic prin zona în zona extradosului au de parcurs un traseu mai lung decât cele care înconjoară profilul erodinamic prin zona intradosului. Din acest motiv, viteza curentului de aer din zona extradosului este mai mare decât viteza curentului de aer din zona intradosului. Aşa cum s-a arătat în experienţa anterioară, datorită manifestării legii lui Bernouli, asupra extradosului profilului, unde viteza de curgere este mai mare, va acţiona o presiune statică mai mică decât asupra intradosului, unde viteza de curgere este mai mică. În consecinţă, datorită diferenţei dintre presiunile statice, care se manifestă pe cele două feţe ale profilului aerodinamic, asupra acestui profil se va manifesta, perpendicular pe direcţia de curgere a aerului o forţă, denumită portanţă, care va acţiona puternic asupra profilului aerodinamic. Datorită manifestării fenomenului de portanţă, este posibil zborul avionelor având greutate mai mare decât a aerului. În cazul paletelor turbinelor eoliene, fenomenul de portanţă determină rotirea paletelor sub acţiunea vântului, într-un plan perpendicular pe direcţia acestuia, aşa cum s-a arătat şi în paragraful referitor la aerodinamica paletelor de turbină. În exploatarea turbinelor eoliene, se constată că la pornire, paletele se rotesc încet, dar pe măsură ce intră în regim normal de funcţionare, viteza de rotaţie creşte substanţial fiind evidentă acceleraţia la care sunt supuse paletele. Această comportare poate fi explicată tocmai prin faptul că pe măsură ce viteza de rotaţie creşte, comportarea aerodinamică a paletelor, determină manifestarea tot mai accentuată a fenomenului de portanţă.

11 Modificarea forţelor în lungul paletei Aerodinamica paletei şi portanţa, aşa cum au fost prezentate în paragrafele anterioare, se referă în principal la fenomenele care se manifestă în zona de la vârful paletei. În continuare va fi analizată şi aerodinamica zonei de la baza paletei (în zona butucului). Comportarea acestei zone este uşor diferită de cea de la vârf, deoarece atât geometria cât şi dimensiunile profilului sunt diferite. În figura 6.34, este prezentat schematic, efectul comportării aerodinamice a paletei turbinei în zona, din apropierea butucului. Fig Schema efectului curgerii a aerului în zona de la baza paletei turbinei O primă observaţie care trebuie menţionată, este aceea că în zona de la baza paletei, profilul acesteia este uşor răsucit faţă de zona de la vârf, aşa cum se observă şi în figura 6.34, faţă de figura În plus, dimensiunile paletei în zona de la bază sunt mult mai mari decât în zona de la vârf, deoarece în acesată zonă rezistenţa mecanică a paletei trebuie să fie mult mai mare decât la vârf, pentru ca aici trebuie preluate forţele care acţionează asupra paletei şi care tind să producă deformaţii ale acesteia. Când paleta turbinei este în repaus, ca în fig a, sub acţiunea vântului care suflă cu viteza v, se manifestă forţa F. Direcţia acestei forţe este diferită faţă de direcţia vântului, deoarece profilul aerodinamic al paletei este răsucit, astfel încât chiar şi în absenţa rotaţiei paletei, se manifestă într-o oarecare măsură, efectul de portanţă. Chiar dacă viteza vântului este relativ redusă (în situaţiile analizate a fost considerată o viteză a vântului de 10m/s, ceea ce corespunde unei brize marine răcoroase), forţa care se manifestă asupra profilului paletei în această zonă este destul de importantă, deoarece dimensiunile profilului paletei sunt mult mai mari în această zonă, decât la vârf. Datorită răsucirii profilului paletei, în zona de la bază şi datorită dimensiunilor considerabile ale profilului în această zonă a paletei, este posibilă manifestarea unei forţe de portanţă, capabile să antreneze paleta în mişcare de rotaţie, deci să scoată paleta din starea de repaus. Antrenarea paletei în mişcarea de rotaţie devine posibilă la viteze ale vântului de peste 4 5m/s. Simultan cu antrenarea paletei în mişcarea de rotaţie, faţă de paletă, aerul se va deplasa cu viteza relativă u, reprezentată în figura 6.34.b, egală şi de sens contrar cu viteza tangenţială a paletei în zona de la baza acesteia. Evident, în această zonă viteza tangenţială a paletei, este mult mai mică decât la vârful acesteia. Prin compunerea celor două viteze, v şi u, se va obţine viteza rezultantă w, a aerului care curge în jurul profilului aerodinamic al paletei. Viteza vântului u, este aceeaşi atât la vârf cât şi la bază, dar deoarece u este mult mai mică la bază decât la vârf, viteza rezultantă w, are la bază o direcţie mai apropiată de v, decât în zona de la vârf. Deoarece direcţia rezultantă a aerului în zona bazei paletei, este diferită de direcţia viteze rezultante a aerului la vârf, este evident că pentru a obţine o comportare aerodinamică favorabilă şi în zona de la baza paletei, este necesar ca aceasta să fie răsucită, aproximativ după direcţia rezultantă a vântului. Analizând cele prezentate anterior, este evident că pentru a fi posibilă scoaterea paletei din repaus şi antrenarea acesteia în mişcarea de rotaţie, necesară conversiei energiei eoliene în energie electrică, paleta trebuie să fie mai răsucită în zona bazei, decât în zona vârfului. Pentru ca şi comportarea aerodinamică a paletei în zona de la bază să fie cât mai corectă, unghiul de răsucire al paletei trebuie să corespundă cu viteza rezultantă a aerului în jurul profilului paletei în această zonă. În figura 6.34.b, se observă că forţa de portanţă rezultată la baza paletei turbinei eoliene este perpendiculară pe direcţia rezultantă de curgere a aerului.

12 În figura 6.34.c, forţa de portanţă F, este descompusă după direcţia vântului (spre pilonul turbinei eoliene) F a şi după direcţia de rotaţie F d, această comonentă fiind denumită forţă de tracţiune drag force în limba engleză. Cu toate că vitezarezultantă a aerului în jurul paletei este mai redusă decât la vârf, dimensiunile paletei în zona de la baza acesteia sunt considerabil mai mari decât în zona de la vârf şi din acest motiv, forţele rezultate în zona de la bază, sunt comparabile cu cele manifestate la vârful paletei. În consecinţă, datorită răsucirii continue a paletei, pe toată lunginea acesteia se manifestă forţe de tracţiune, care contribuie la rotirea paletei. Momentul motor, determinat de manifestarea aceste forţe, este cu atât mai mare cu cât zona de acţiune a forţelor este mai apropiată de vârful paletei, deoarece spre vârf creşte braţul forţei Geometria profilului paletei Câteva elemente ale geometriei profilului paletei sunt prezentate în figura Astfel, unghiul dintre direcţia dată de planul de rotaţie şi coarda profilului, notat cu a, este denumit unghi de atac. Fig Geometria profilului paletei Valoarea acestui unghi are o importanţă deosebită asupra comportării aerodinamice a profilului. În cazul paletelor turbinelor eoliene, valoarea unghiului de atac este mult mai mare în zona de la baza paletei, decât în zona de la vârf. Modificarea acestui unghi în lungul paletei, crează aspectul răsucit al paletelor turbinelor eoliene. Unghiul dintre coardă şi viteza rezultantă w, a aerului în jurul profilului paletei, notat cu b, în figura 6.35, are o valoare relativ constantă în lungul paletei, purtând denumirea de unghi setat ( seted angle în limba engleză). Paleta este răsucită în lungul acesteia, prin modificarea continuă a unghiului de atac, tocmai pentru a se asigura o valoare constantă a unghiului b, deci pentru a se asigura aceleaşi caracteristici ale curgerii aerului în jurul profilului aerodinamic, prin valoarea constantă a unghiului b. Faptul că paletele turbinelor eoliene sunt răsucute, reprezintă doar una din particularităţile geometrice ale acestora. Pentru a avea o comportare aerodinamică, mai bine adaptată la vitezele variabile ale vântului, paletele turbinelor eoliene prezintă posibilitatea de a pivota în jurul locaşului de fixare în butuc, ceea ce permite ajustarea unghiului de atac în funcţie de viteza vântului, în timpul funcţionării turbinei eoliene.

Sistem hidraulic de producerea energiei electrice. Turbina hidraulica de 200 W, de tip Power Pal Schema de principiu a turbinei Power Pal

Sistem hidraulic de producerea energiei electrice. Turbina hidraulica de 200 W, de tip Power Pal Schema de principiu a turbinei Power Pal Producerea energiei mecanice Pentru producerea energiei mecanice, pot fi utilizate energia hidraulica, energia eoliană, sau energia chimică a cobustibililor în motoare cu ardere internă sau eternă (turbine

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

2. STATICA FLUIDELOR. 2.A. Presa hidraulică. Legea lui Arhimede

2. STATICA FLUIDELOR. 2.A. Presa hidraulică. Legea lui Arhimede 2. STATICA FLUIDELOR 2.A. Presa hidraulică. Legea lui Arhimede Aplicația 2.1 Să se determine ce masă M poate fi ridicată cu o presă hidraulică având raportul razelor pistoanelor r 1 /r 2 = 1/20, ştiind

Διαβάστε περισσότερα

1. PROPRIETĂȚILE FLUIDELOR

1. PROPRIETĂȚILE FLUIDELOR 1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Lucrul mecanic şi energia mecanică.

Lucrul mecanic şi energia mecanică. ucrul mecanic şi energia mecanică. Valerica Baban UMC //05 Valerica Baban UMC ucrul mecanic Presupunem că avem o forţă care pune în mişcare un cărucior şi îl deplasează pe o distanţă d. ucrul mecanic al

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3 SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

Clasa a IX-a, Lucrul mecanic. Energia

Clasa a IX-a, Lucrul mecanic. Energia 1. LUCRUL MECANIC 1.1. Un resort având constanta elastică k = 50Nm -1 este întins cu x = 0,1m de o forță exterioară. Ce lucru mecanic produce forța pentru deformarea resortului? 1.2. De un resort având

Διαβάστε περισσότερα

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4 SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

Lucrul mecanic. Puterea mecanică.

Lucrul mecanic. Puterea mecanică. 1 Lucrul mecanic. Puterea mecanică. In acestă prezentare sunt discutate următoarele subiecte: Definitia lucrului mecanic al unei forţe constante Definiţia lucrului mecanic al unei forţe variabile Intepretarea

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie)

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie) Caracteristica mecanică defineşte dependenţa n=f(m) în condiţiile I e =ct., U=ct. Pentru determinarea ei vom defini, mai întâi caracteristicile: 1. de sarcină, numită şi caracteristica externă a motorului

Διαβάστε περισσότερα

Capitolul 14. Asamblari prin pene

Capitolul 14. Asamblari prin pene Capitolul 14 Asamblari prin pene T.14.1. Momentul de torsiune este transmis de la arbore la butuc prin intermediul unei pene paralele (figura 14.1). De care din cotele indicate depinde tensiunea superficiala

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener

Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener 1 Caracteristica statică a unei diode Zener În cadranul, dioda Zener (DZ) se comportă ca o diodă redresoare

Διαβάστε περισσότερα

Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25

Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 LAGĂRELE CU ALUNECARE!" 25.1.Caracteristici.Părţi componente.materiale.!" 25.2.Funcţionarea lagărelor cu alunecare.! 25.1.Caracteristici.Părţi componente.materiale.

Διαβάστε περισσότερα

15. Se dă bara O 1 AB, îndoită în unghi drept care se roteşte faţă de O 1 cu viteza unghiulară ω=const, axa se rotaţie fiind perpendiculară pe planul

15. Se dă bara O 1 AB, îndoită în unghi drept care se roteşte faţă de O 1 cu viteza unghiulară ω=const, axa se rotaţie fiind perpendiculară pe planul INEMTI 1. Se consideră mecanismul plan din figură, compus din manivelele 1 şi 2, respectiv biela legate intre ele prin articulaţiile cilindrice şi. Manivela 1 se roteşte cu viteza unghiulară constantă

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB 1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul

Διαβάστε περισσότερα

Exemple de probleme rezolvate pentru cursurile DEEA Tranzistoare bipolare cu joncţiuni

Exemple de probleme rezolvate pentru cursurile DEEA Tranzistoare bipolare cu joncţiuni Problema 1. Se dă circuitul de mai jos pentru care se cunosc: VCC10[V], 470[kΩ], RC2,7[kΩ]. Tranzistorul bipolar cu joncţiuni (TBJ) este de tipul BC170 şi are parametrii β100 şi VBE0,6[V]. 1. să se determine

Διαβάστε περισσότερα

I. Forţa. I. 1. Efectul static şi efectul dinamic al forţei

I. Forţa. I. 1. Efectul static şi efectul dinamic al forţei I. Forţa I. 1. Efectul static şi efectul dinamic al forţei Interacţionăm cu lumea în care trăim o lume în care toate corpurile acţionează cu forţe unele asupra altora! Întrebările indicate prin: * 1 punct

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

Lucrul si energia mecanica

Lucrul si energia mecanica Lucrul si energia mecanica 1 Lucrul si energia mecanica I. Lucrul mecanic este produsul dintre forta si deplasare: Daca forta este constanta, atunci dl = F dr. L 1 = F r 1 cos α, unde r 1 este modulul

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

1. (4p) Un mobil se deplasează pe o traiectorie curbilinie. Dependența de timp a mărimii vitezei mobilului pe traiectorie este v () t = 1.

1. (4p) Un mobil se deplasează pe o traiectorie curbilinie. Dependența de timp a mărimii vitezei mobilului pe traiectorie este v () t = 1. . (4p) Un mobil se deplasează pe o traiectorie curbilinie. Dependența de timp a mărimii vitezei mobilului pe traiectorie este v () t.5t (m/s). Să se calculeze: a) dependența de timp a spațiului străbătut

Διαβάστε περισσότερα

FIZICĂ. Oscilatii mecanice. ş.l. dr. Marius COSTACHE

FIZICĂ. Oscilatii mecanice. ş.l. dr. Marius COSTACHE FIZICĂ Oscilatii mecanice ş.l. dr. Marius COSTACHE 3.1. OSCILAŢII. Noţiuni generale Oscilaţii mecanice Oscilaţia fenomenul fizic în decursul căruia o anumită mărime fizică prezintă o variaţie periodică

Διαβάστε περισσότερα

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili Anexa 2.6.2-1 SO2, NOx şi de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili de bioxid de sulf combustibil solid (mg/nm 3 ), conţinut de O 2 de 6% în gazele de ardere, pentru

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

Capitolul 30. Transmisii prin lant

Capitolul 30. Transmisii prin lant Capitolul 30 Transmisii prin lant T.30.1. Sa se precizeze domeniile de utilizare a transmisiilor prin lant. T.30.2. Sa se precizeze avantajele si dezavantajele transmisiilor prin lant. T.30.3. Realizati

Διαβάστε περισσότερα

V O. = v I v stabilizator

V O. = v I v stabilizator Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,

Διαβάστε περισσότερα

ENUNŢURI ŞI REZOLVĂRI 2013

ENUNŢURI ŞI REZOLVĂRI 2013 ENUNŢURI ŞI REZOLVĂRI 8. Un conductor de cupru ( ρ =,7 Ω m) are lungimea de m şi aria secţiunii transversale de mm. Rezistenţa conductorului este: a), Ω; b), Ω; c), 5Ω; d) 5, Ω; e) 7, 5 Ω; f) 4, 7 Ω. l

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

Ministerul Educaţiei, Cercetării şi Inovării Centrul Naţional pentru Curriculum şi Evaluare în Învăţământul Preuniversitar

Ministerul Educaţiei, Cercetării şi Inovării Centrul Naţional pentru Curriculum şi Evaluare în Învăţământul Preuniversitar A. SUBIECTUL III Varianta 001 (15 puncte) O locomotivă cu puterea P = 480 kw tractează pe o cale ferată orizontală o garnitură de vagoane. Masa totală a trenului este m = 400 t. Forţa de rezistenţă întâmpinată

Διαβάστε περισσότερα

Algebra si Geometrie Seminar 9

Algebra si Geometrie Seminar 9 Algebra si Geometrie Seminar 9 Decembrie 017 ii Equations are just the boring part of mathematics. I attempt to see things in terms of geometry. Stephen Hawking 9 Dreapta si planul in spatiu 1 Notiuni

Διαβάστε περισσότερα

3. DINAMICA FLUIDELOR. 3.A. Dinamica fluidelor perfecte

3. DINAMICA FLUIDELOR. 3.A. Dinamica fluidelor perfecte 3. DINAMICA FLUIDELOR 3.A. Dinamica fluidelor perfecte Aplicația 3.1 Printr-un reductor circulă apă având debitul masic Q m = 300 kg/s. Calculați debitul volumic şi viteza apei în cele două conducte de

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

Curs 2 DIODE. CIRCUITE DR

Curs 2 DIODE. CIRCUITE DR Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

CURS MECANICA CONSTRUCŢIILOR

CURS MECANICA CONSTRUCŢIILOR CURS 10+11 MECANICA CONSTRUCŢIILOR Conf. Dr. Ing. Viorel Ungureanu CINEMATICA SOLIDULUI RIGID In cadrul cinematicii punctului material s-a arătat ca a studia mişcarea unui punct înseamnă a determina la

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

VII.2. PROBLEME REZOLVATE

VII.2. PROBLEME REZOLVATE Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

Stabilizator cu diodă Zener

Stabilizator cu diodă Zener LABAT 3 Stabilizator cu diodă Zener Se studiază stabilizatorul parametric cu diodă Zener si apoi cel cu diodă Zener şi tranzistor. Se determină întâi tensiunea Zener a diodei şi se calculează apoi un stabilizator

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

METODA IMPULSULUI PENTRU ESTIMAREA PERFOMANTELOR UNEI TURBINE CU AX ORIZONTAL

METODA IMPULSULUI PENTRU ESTIMAREA PERFOMANTELOR UNEI TURBINE CU AX ORIZONTAL METODA IMPULSULUI PENTRU ESTIMAREA PERFOMANTELOR UNEI TURBINE CU AX ORIZONTAL Turbinele eoliene sunt dispozitive care extrag energia dintr-un curent de aer cu scopul de a o transforma apoi in energie mecanica

Διαβάστε περισσότερα

Seminar 5 Analiza stabilității sistemelor liniare

Seminar 5 Analiza stabilității sistemelor liniare Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1 Aparate de măsurat Măsurări electronice Rezumatul cursului 2 MEE - prof. dr. ing. Ioan D. Oltean 1 1. Aparate cu instrument magnetoelectric 2. Ampermetre şi voltmetre 3. Ohmetre cu instrument magnetoelectric

Διαβάστε περισσότερα

Studiu privind soluţii de climatizare eficiente energetic

Studiu privind soluţii de climatizare eficiente energetic Studiu privind soluţii de climatizare eficiente energetic Varianta iniţială O schemă constructivă posibilă, a unei centrale de tratare a aerului, este prezentată în figura alăturată. Baterie încălzire/răcire

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

CUPRINS 5. Reducerea sistemelor de forţe (continuare)... 1 Cuprins..1

CUPRINS 5. Reducerea sistemelor de forţe (continuare)... 1 Cuprins..1 CURS 5 REDUCEREA SISTEMELOR DE FORŢE (CONTINUARE) CUPRINS 5. Reducerea sistemelor de forţe (continuare)...... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 5.1. Teorema lui Varignon pentru sisteme

Διαβάστε περισσότερα

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument: Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

5.1. Noţiuni introductive

5.1. Noţiuni introductive ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul

Διαβάστε περισσότερα

Dinamica. F = F 1 + F F n. si poarta denumirea de principiul suprapunerii fortelor.

Dinamica. F = F 1 + F F n. si poarta denumirea de principiul suprapunerii fortelor. Dinamica 1 Dinamica Masa Proprietatea corpului de a-si pastra starea de repaus sau de miscare rectilinie uniforma cand asupra lui nu actioneaza alte corpuri se numeste inertie Masura inertiei este masa

Διαβάστε περισσότερα

CUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1

CUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1 CURS 3 SISTEME DE FORŢE (continuare) CUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 3.1. Momentul forţei în raport cu un punct...2 Test de autoevaluare

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

ALGEBRĂ ŞI ELEMENTE DE ANALIZĂ MATEMATICĂ FIZICĂ

ALGEBRĂ ŞI ELEMENTE DE ANALIZĂ MATEMATICĂ FIZICĂ Sesiunea august 07 A ln x. Fie funcţia f : 0, R, f ( x). Aria suprafeţei plane delimitate de graficul funcţiei, x x axa Ox şi dreptele de ecuaţie x e şi x e este egală cu: a) e e b) e e c) d) e e e 5 e.

Διαβάστε περισσότερα

Esalonul Redus pe Linii (ERL). Subspatii.

Esalonul Redus pe Linii (ERL). Subspatii. Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste

Διαβάστε περισσότερα

TEST GRILĂ DE VERIFICARE A CUNOŞTINŢELOR LA MATEMATICĂ-FIZICĂ VARIANTA 1 MATEMATICĂ

TEST GRILĂ DE VERIFICARE A CUNOŞTINŢELOR LA MATEMATICĂ-FIZICĂ VARIANTA 1 MATEMATICĂ ROMÂNIA MINISTERUL APĂRĂRII NAŢIONALE ŞCOALA MILITARĂ DE MAIŞTRI MILITARI ŞI SUBOFIŢERI A FORŢELOR TERESTRE BASARAB I Concurs de admitere la Programul de studii postliceale cu durata de 2 ani (pentru formarea

Διαβάστε περισσότερα

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt.

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt. liberi 1 liberi 2 3 4 Segment orientat liberi Fie S spaţiul geometric tridimensional cu axiomele lui Euclid. Orice pereche de puncte din S, notată (A, B) se numeşte segment orientat. Dacă A B, atunci direcţia

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

Forme de energie. Principiul I al termodinamicii

Forme de energie. Principiul I al termodinamicii Forme de energie. Principiul I al termodinamicii Există mai multe forme de energie, care se pot clasifica după natura modificărilor produse în sistemele termodinamice considerate şi după natura mişcărilor

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

Capitolul 1. Noțiuni Generale. 1.1 Definiții

Capitolul 1. Noțiuni Generale. 1.1 Definiții Capitolul 1 Noțiuni Generale 1.1 Definiții Forța este acțiunea asupra unui corp care produce accelerația acestuia cu condiția ca asupra corpului să nu acționeze şi alte forțe de sens contrar primeia. Forța

Διαβάστε περισσότερα

2. NOŢIUNI SUMARE ASUPRA DEPLASĂRII AUTOMOBILULUI

2. NOŢIUNI SUMARE ASUPRA DEPLASĂRII AUTOMOBILULUI 2. NOŢIUNI SUMARE ASUPRA DEPLASĂRII AUTOMOBILULUI 2.1. Consideraţii generale Utilizarea automobilului constă în transportul pe drumuri al pasagerilor, încărcăturilor sau al utilajului special montat pe

Διαβάστε περισσότερα

Tranzistoare bipolare şi cu efect de câmp

Tranzistoare bipolare şi cu efect de câmp apitolul 3 apitolul 3 26. Pentru circuitul de polarizare din fig. 26 se cunosc: = 5, = 5, = 2KΩ, = 5KΩ, iar pentru tranzistor se cunosc următorii parametrii: β = 200, 0 = 0, μa, = 0,6. a) ă se determine

Διαβάστε περισσότερα

145. Sã se afle acceleraţiile celor trei corpuri din figurã. Ramurile firului care susţin scripetele mobil sunt verticale.

145. Sã se afle acceleraţiile celor trei corpuri din figurã. Ramurile firului care susţin scripetele mobil sunt verticale. Tipuri de forţe 127. Un corp cu masa m = 5 kg se află pe o suprafaţã orizontalã pe care se poate deplasa cu frecare (μ= 0,02). Cu ce forţã orizontalã F trebuie împins corpul astfel încât sã capete o acceleraţie

Διαβάστε περισσότερα

8 Intervale de încredere

8 Intervale de încredere 8 Intervale de încredere În cursul anterior am determinat diverse estimări ˆ ale parametrului necunoscut al densităţii unei populaţii, folosind o selecţie 1 a acestei populaţii. În practică, valoarea calculată

Διαβάστε περισσότερα

CURS 9 MECANICA CONSTRUCŢIILOR

CURS 9 MECANICA CONSTRUCŢIILOR CURS 9 MECANICA CONSTRUCŢIILOR Conf. Dr. Ing. Viorel Ungureanu CINEMATICA NOŢIUNI DE BAZĂ ÎN CINEMATICA Cinematica studiază mişcările mecanice ale corpurilor, fără a lua în considerare masa acestora şi

Διαβάστε περισσότερα

BARDAJE - Panouri sandwich

BARDAJE - Panouri sandwich Panourile sunt montate vertical: De jos în sus, îmbinarea este de tip nut-feder. Sensul de montaj al panourilor trebuie să fie contrar sensului dominant al vântului. Montaj panouri GAMA ALLIANCE Montaj

Διαβάστε περισσότερα

13. Grinzi cu zăbrele Metoda izolării nodurilor...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...

13. Grinzi cu zăbrele Metoda izolării nodurilor...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate... SEMINAR GRINZI CU ZĂBRELE METODA IZOLĂRII NODURILOR CUPRINS. Grinzi cu zăbrele Metoda izolării nodurilor... Cuprins... Introducere..... Aspecte teoretice..... Aplicaţii rezolvate.... Grinzi cu zăbrele

Διαβάστε περισσότερα

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu,

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, vidiu Gabriel Avădănei, Florin Mihai Tufescu, Capitolul 6 Amplificatoare operaţionale 58. Să se calculeze coeficientul de amplificare în tensiune pentru amplficatorul inversor din fig.58, pentru care se

Διαβάστε περισσότερα

Laborator 5 INTERFEROMETRE

Laborator 5 INTERFEROMETRE Laborator 5 INTERFEROMETRE Scopul lucrarii În lucrarea de fańă sunt prezentate unele aspecte legate de interferometrie. Se prezinta functionarea unui modulator optic ce lucreaza pe baza interferentei dintre

Διαβάστε περισσότερα

prin egalizarea histogramei

prin egalizarea histogramei Lucrarea 4 Îmbunătăţirea imaginilor prin egalizarea histogramei BREVIAR TEORETIC Tehnicile de îmbunătăţire a imaginilor bazate pe calculul histogramei modifică histograma astfel încât aceasta să aibă o

Διαβάστε περισσότερα

Tranzistoare bipolare cu joncţiuni

Tranzistoare bipolare cu joncţiuni Tranzistoare bipolare cu joncţiuni 1. Noţiuni introductive Tranzistorul bipolar cu joncţiuni, pe scurt, tranzistorul bipolar, este un dispozitiv semiconductor cu trei terminale, furnizat de către producători

Διαβάστε περισσότερα