4/9 1/9 1/36 1/9 4/9 1/9 1 1/9 4/9
|
|
- Βαριησού Χατζηιωάννου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Slack 7 המחלקה להנדסת מערכות מידע מבוא לניהול הייצור למערכות מידע 7-- אוניברסיטת בן גוריון בנגב - דר' ארמין שמילוביץ' בחינת מועד ב',.. זמן: דקות חומר עזר מותר: מחשבון, שלושה דפי נוסחאות כתובים משני צידיהם. אנא, כדי להקל על הבדיקה, נא להעביר התשובות למקומות המסומנים.. נתון תכנון פרוייקט הכפלת המסילה לבאר שבע של רכבת ישראל (הזמנים נתונים בחודשים): משימה קודמות משך אופטימי משך רגיל משך פסימי שונות תוחלת ארבעת הזמנים לפעולה ES EF LS LF 7 / / / / / / / / / PERT (עבור התוחלת) בשיטת AON בעמוד הבא A A A B, B, E,F E,F D,H G,I A B D E F G H I J K א. (%) שרטט רשת ב. (%) השלם בטבלה לכל פעולה את הזמנים (דיוק של ספרות יספיק) ג. (%) מה משך הפרוייקט הרגיל? ד. (%) מהן הפעולות הקריטיות? A--F-I-K ה. (%) אם הפרויקט יסתיים בפחות מ חודשים, הקבלן המבצע יקבל בונוס בסך מליון. חשב ההסתברות שזה יקרה. T project N(, ) Tproject P( Tproject < ) = P( < ) = φ(.) = φ(.) =.=.7 ו. (%) אם הפרויקט יסתיים ביותר מ חודש, הקבלן המבצע ישלם קנס בסך מיליון. פעולות E.F.H.I כרוכות ביציקות קורות בטון שעלולות להיסדק (בתסריט הפסימי). אפשר להחליף את יציקות קורות הבטון בהבאת קורות בטון מוכנות לשטח. במקרה כזה, משך הפעולה יהיה המשך האופטימי בלבד, אולם מחיר כל פעולה יעלה ב מיליון (לכל פעולה מקוצרת בלבד). אילו פעולות כדאי לקצר? H,F,I (הפעולות מהנתיב הקריטי הנוכחי והנתיב הקריטי החדש שנוצר), מה ההסתברות לתשלום הקנס?
2 אחרי שנקצר לפנינו המצב הבא: אנו יודעים בדיוק כמה זמן יימשכו הפעולות הנ"ל. נחשב את התוחלת של זמן הפרוייקט: הינה אורך הפרוייקט והיא עכשיו :. נשאר לחשב את השונות. מכייון שאנו יודעים את הזמן שייקח לבצע שתי משימות ) השונות שלהן כמובן!) ועל כן σ T project = + + = Tproject N(, ) Tproject P( Tproject < ) = P( < ) = φ(.) כלומר, ההסתברות שישולם קנס היא אפסית! שים לב שנוסחת השונות ה"אמיתית" מסובכת יותר כי כעת יש לנו שני נתיבים קריטייים שעשויים לגלוש D מקום לשרטוט רשת הפרויקט H J A E I finish F Start G K B
3 . ביציאה מחניון עירית ת"א שתי עמדות קופאים לגביית כסף מהלקוחות היוצאים מהחניון. הלקוחות יוצאים מהחניון בקצב של לקוחות לדקה. לקופאי נדרשים בממוצע שניות כדי לקחת כסף, להחזיר עודף וחשבונית, ולפתוח מחסום יציאה מהחניון. א. (%) עלות קופאי לשעה. לחניון נגרמת עלות של 7 לשעה למכונית משימוש בשטח החניון לתור ליציאה (במקום לחניית מכוניות). נא חשב עלות תפעול התור ניתן לקרב מערכת באמצעות תור מסוג / M M / כאשר =λ לקוחות לשעה, ו =µ לקוחות בשעה. נחשב את עלות תפעול התור: קודם כל נחשב את λ ρ = = = µ L q ρ = = ( + ρ) ( ρ). L q 7 Payment = *7+ *= 7 Nis Per Hour ב. (%) הוצע להחליף את שני הקופאים במכונה אוטומטית (יחידה) לווידוי התשלום ביציאה. בממוצע הזמן שלוקח מרגע שהנהג מכניס הכרטיס המשולם או הכסף ועד שהוא בחוץ הוא שניות. עלות השימוש במכונה (חשמל, ביטוח, וכו') לשעה. האם כדאי להתקין את המכונה כתחליף לקופאים? מה הרווח של בעל החניון מהמכונה? נמק!. : L q לפנינו תור ניתן לקרב מערכת באמצעות תור מסוג / M M / עם = λו =µ. נחשב λ ρ = = =. µ L q (.) ρ = = =. ρ. Payment=.*7+ = 7. מכאן ששווה לנו לוותר על הקופאיות ולעבור לעבוד עם מכונה! תוחלת החסכון לשעה מוערכת ב.7
4 . במפעל השעונים "עדי" מייצרים מחוגים לשעון חדש מדגם "אולטרה". בחודש אוגוסט היו ימי עבודה. בכל יום נלקח מדגם של מחוגים ונמדד משקל כל מחוג במיליגרם. להלן התוצאות שהתקבלו: מדגם X X X X X ממוצע טווח המדגם המדגם מספר לתרשים X א. (%) נא חשב גבול בקרה עליון.7 ותחתון מחשבים תוחלת ושונות מכל ה X ובאמצעות זה נקבעת סטיית תקן (במקרה זה מכיוון שיש תצפיות אין צורך במקדמי תיקון מהטבלא) R ב. (%) נא חשב גבול בקרה עליון.7 ותחתון לתרשים מחשבים תוחלת ושונות מכל ה R ובאמצעות טבלא מתאימה מחשבים גבולות הבקרה עבור תצפיות. ג. (%) נא שרטט את שני תרשימי הבקרה בצורה סכמטית (בעמוד הבא) ד. (%) האם התהליך היה יציב בחודש אוגוסט? נמק! התהליך אינו יציב ישנן ארבע חריגות בתרשים X וחריגה בתרשים R. חריגות אינו מגיע באקראי. מספר כזה גדול של
5 לשרטוט תרשימי הבקרה מקום
6 . (%) ליבואן של אגוזי קוקוס יש בעיית איכות כי הוא לעיתים מגלה שבמשלוח ישנם אגוזי קוקוס שבורים ורקובים שאינם ניתנים למכירה. הצע עבורו תוכנית דגימה חד שלבית כשסיכון היצרן הינו = α., רמת האיכות הבלתי רצויה היא = LTPD %, רמת האיכות הרצויה AQL = %, וסיכון הצרכן = β.. רשום להלן את פירטי תוכנית הבקרה LTPD. = =. = AQL. n.=.7 n=. n= תוכנית הדגימה היא: דגום באקראי אגוזי קוקוס לבדיקה מלאה, ופסול כל המשלוח אם יש יותר מ אגוזים פגומים. טבלה של = β,. = α. c LTPD/AQL n AQL c LTPD/AQL n AQL מפעל "המשקם" מספק עבודה ידנית פשוטה למוגבלים ונכים. לפניך נתוני התפוקה של נכה חדש שהגיע למפעל ועובר הכשרה בייצור, מילוי ואריזת קופסאות "נרות חנוכה": אלף קופסאות ראשונות הוא מייצר ואורז ב ימי עבודה. את אלף הקופסאות השני הוא מייצר ואורז ב ימי עבודה נוספים. את אלף הקופסאות השלישי הוא אורז ב ימי עבודה. (%) נא חזה כמה ימי עבודה ידרשו לו כדי לייצר ולארוז את אלף הקופסאות השביעי?. (%) נמק את חישוביך והנחותיך. מה מגבלות הפתרון? מודל החיזוי המתאים הוא מודל המשתמש בעקומת למידה. T( s) = as m F() ( m = = ) m.7 F(), F() ( m = = ) m. F() נבחר m מקורב כממוצע בן השניים ובערך.. כעת ניתן לחלץ את a מתוך הנוסחה. אומנם מקבלים a שונים אך קרובים זה לזה והממוצע. F(7) =.o שלהם בערך... 7 מגבלות הפתרון הוא שמודל זה מניח למידה אינסופית שברור שאינה מתקיימת, ובעקרון עבור הרבה מחזורים הלמידה צפויה להסתיים.
7 . (%) לפניך מפעל שעוסק בצביעת יאכטות. היאכטה מורמת תחילה למבדוק א', נצבעת שם, ולאחר מכן מועברת במנוף למבדוק ב' לצורך ליטוש עודפי צבע ויבוש וציפוי בחומר מגן. לפניך צבר הזמנות של המפעל. עליך לשבץ את ארבע הזמנות עבודה הבאות על גבי שני המבדוקים. להלן נתוני היאכטות לפי סדר קבלתן, וימי העבודה הנדרשים לכל משימה: ימים נדרשים נדרש לסיום להחזרת היאכטה לבעליה ימי עבודה במבדוק ב. ימי עבודה במבדוק א מספר יאכטה נא מלא את הטבלא הבאה המתארת את זימון תוכנית העבודה לפי שיטות שונות: הסבר הנחותיך אם נתקלת בבעיות כלשהן חוק זימון מועד הספקה EDD ערך קריטי R כלל ג'ונסון משך עיבוד כולל... סדר הזימון (מימין לשמאל),,,,,,,,, R שם לב שכלל ג'ונסון מחושב בנפרד לכל תהליך אולם מדדי EDD התהליכים ו מחושבים לסכום זמני 7
8 7. תרגיל בחיזוי לפניך נתוני הביקוש השנתי בישראל למטוסי נוסעים מסוגים שונים. בשנים ו חסרים נתוני שנת. עליך לתת תחזית לביקוש t: 7 Dt א. (%) תן תחזית לפי שיקול דעתך הסבר ונמק כיצד הגעת אליה מהנתונים רואים שהביקוש די קבוע ונע סביב ולכן נשתמש במודל קבוע ונקבע שהחיזוי הוא לשתי התקופות העתידיות הוא ב. (%) תן תחזית תוך שימוש בממוצע נע =K תקופות לשנת התחזית היא הממוצע של השנים,7, שהוא (מעוגל) ל לשנת התחזית היא הממוצע של השנים,7, שהוא (מעוגל) ל ג. (%) תן תחזית תוך שימוש בהחלקה אקספוננציאלית כאשר אלפא =.. הסבר כיצד התמודדת עם הנתון החסר בשנת על מנת להשלים את הנתון החסר רצוי לעשות מממוצע אחורה וקדימה, למשל לפי ממוצע נע עם =k ומקבלים שבשנת הביקוש היה כנראה. כעת אפשר לייצר התחזיות לשניים, אם מניחים שהביקוש לפני שנת היה קבוע (למשל ). התחזית ל היא בקירוב ולשנת היא בקירוב y y+ y+ y y+ y+ y7 + = = y = y +.( R y ) t+ t t t y = y = y =.=, y =.7, y =, y =, y7 =, y = y = ד. (%) הסבר כיצד משווים בין איכות שיטות חיזוי שונות מה עדיף לדעתך עבור בעייה זו? ישנם מדדים רבים כגון MSE MAD וכו על מנת לבדוק בין שיטות החיזוי. אפשר גם לבצע "אימות פנימי", כלומר להוריד בכל פעם מספר יחיד מהסידרה ולנסות לחזות אותו ולחשב שגיאת החיזוי עבורו. חוזרים על כך עבור כל המספרים בסידרה וממצעים את שגיאות החיזוי. למודל החיזוי הטוב ביותר שגיאת חיזוי קטנה ביותר
9 . ניהול מלאי חומרי הגלם בקיבוץ מעגן מיכאל המגדל דגי מאכל נוהגים להעשיר את מזונם של הדגים בתערובת מיוחדת של תולעים מיובשות המשפרות את עמידות הדגים למחלות. ספק התולעים מציע את המחירים הבאים לק"ג תולעים מיובשות (הנח שהנחת המחיר על כל הכמות).. < Q< >Q, =. > הצריכה השנתית ק"ג תולעים, הריבית השנתית הינה %. < Q ועלות ההזמנה הינה. זמן האספקה של התולעים הוא שבועיים. הביקוש השנתי הוא ק"ג. א. (%) הצע מדיניות להזמנת התולעים וחשב העלות השנתית שלה R Q G( Q) R, Q Q * = p + h + = R p h R= i=. p = KG < Q : * Q = = 7. 7.*. לא עומדים באילוץ * Q new = G( Q) = = < Q< : * Q = = 7. 7.*. עומדים באילוץ לא * Q new = G( Q) = = < Q< : * Q = = 7. 7.*. 7 G( Q) = = 7 מצאנו Q כוכב שעומד באילוץ ועל כן אין צורך להמשיך ולבדוק. אנו רואים כי יוסי יעדיף לקנות מנות של ק"ג תולעים ולשלם לכל הזמנה. P= L* R= = כלומר כאשר מלאי התולעים מגיע ל 77 ק"ג מבצעים הזמנה של ק"ג תולעים. NIS
10 * ב. לאחר ניתוח העלויות, הקיבוץ שוקל לגדל את התולעים הנחוצות בכוחות עצמו. הקיבוץ יכול לייצר תולעים מיובשות בקצב של טון לשנה ובעלות. לק"ג.. (%) מהי מדיניות הייצור העצמי האופטימלית?. (%) האם עדיף לקנות או עדיף לייצר? נמק תשובתך. לפנינו מודל ייצור עצמי. נציב בנוסחאות המתאימות על מנת למצוא כמות אופטימלית להזמנה ואת עלותה: R R Q G( Q) = p + h + R, Q q * pr Q = R h q R= i=. p = q= =. Q h KG kg NIS =..=. = =.. G( Q) = =, לפי העלות רואים שעדיף לקיבוץ לייצר את התולעים באופן עצמאי נייצר מנות של ק"ג תולעים ג. (%) מבדיקת נתוני הזנת הדגים התגלה כי כמות המזון שהדגים אוכלים תלוייה במזג האוויר, כמות האור היומית, ועוד גורמים אחרים שאינם בשליטת המגדל. והביקוש מתפלג בקירוב נורמלית עם שונות גבוהה יחסית של ק"ג תולעים יבשות לשבוע. הצע מדיניות מלאי שתתן רמת שירות של % בתקופת זמן האספקה. : kg per week כל החישובים יבוצעו על תקופת זמן אספקה של שבועיים. בשלב ראשון נחשב ביקוש ממוצע לשבוע: נחשב ביקוש ממוצע בזמן אספקה ואת השונות של הביקוש בזמן אספקה: D= * = 7 σ D = *= σ B= kσ D D עכשיו נוכל לחשב מלאי בטחון עבור.=k %: ולכן ונקודת ההזמנה היא: P= D+ B= 7+ = לסיכום, כאשר המלאי יגיע ל יחידות, נבצע הזמנה של ק"ג תולעים
11 כסא. (%) להלן הנתונים העיסקיים של נגריה לייצור עתיקות בשנים 7, נתוני 7 נתוני שעות עבודה ליחידה עלות שעת עבודה מ"ר עץ דרוש לייצור יחידה עלות מ"ר עץ מחיר מכירה ליחידה מכירות שנתיות שעות עבודה ליחידה עלות שעת עבודה מ"ר עץ דרוש לייצור יחידה עלות מ"ר עץ מחיר מכירה ליחידה מכירות שנתיות 77 שולחן. 77. האם הפיריון עלה בנגריה? הצע מדד פיריון טוב (נמק מדוע) וחשב את ערכו מדד פיריון טוב הוא מדד פיריון כולל. לצורך חישובו יש צורך להגיע ליחידת תפוקה פיזית שקולה (אחת) ואני בוחר זאת לפי השימוש בחומר הגלם העיקרי מ"ר עץ, שולחן שווה. כסאות וכל התפוקה תהיה בכיסאות. באופן דומה צריך לבחור גם יחידת תשומה (אחת) ואני בוחר שזה יהיה מ"ר עץ וצריך להמיר את שעות העבודה למ"ר עץ לפי השווי הכספי. כלומר לייצור כיסא משתמשים בשנת ב.7 מ"ר עץ לייצור כיסא (מתוכם.7 הם מ"ר עץ שהומרו משעות עבודה). בשנת 7 משתמשים ב.7 מ"ר עץ לייצור כיסא (מתוכם.7 מ"ר עץ מומרים משעות עבודה). P= =.7 R= באופן דומה מחשבים את R אולם במקרה זה אין צורך לעבור ליחידות מנורמלות כי מחשבים יחס הכנסות בכסף לחלק ליחס הוצאות (בכסף) ומתקבל 7 =. ו TOTP הוא מכפלת שני המדדים הללו.. (%) מהם היתרונות של שימוש בשיטת? J.I.T באילו נסיבות שיטה זו מסוכנת ליישום? שיטת JIT מביאה באופן ישיר לחיסכון משמעותי בניהול מלאי ובאופן עקיף היא חושפת בעיות בתהליך הייצור שהמלאי מסתיר ומאלצת הקטנת זמן הכינון (SETUP) ואי הוודאות של תהליכי הייצור, ושיפור האיכות. שיטה זו מסוכנת ליישום במצב בו ישנה אי-וודאות רבה בזמן האספקה של חומרי הגלם או כאשר לא ניתן לשלוט על אי הוודאות בתהליכי הייצור ולכן חוסר מלאי עלול לגרום להרעבת קוו הייצור ולעצירתו
שאלה 1 V AB פתרון AB 30 R3 20 R
תרגילים בתורת החשמל כתה יג שאלה א. חשב את המתח AB לפי משפט מילמן. חשב את הזרם בכל נגד לפי המתח שקיבלת בסעיף א. A 60 0 8 0 0.A B 8 60 0 0. AB 5. v 60 AB 0 0 ( 5.) 0.55A 60 א. פתרון 0 AB 0 ( 5.) 0 0.776A
ניהול תמיכה מערכות שלבים: DFfactor=a-1 DFt=an-1 DFeror=a(n-1) (סכום _ הנתונים ( (מספר _ חזרות ( (מספר _ רמות ( (סכום _ ריבועי _ כל _ הנתונים (
תכנון ניסויים כאשר קיימת אישביעות רצון מהמצב הקיים (למשל כשלים חוזרים בבקרת תהליכים סטטיסטית) נחפש דרכים לשיפור/ייעול המערכת. ניתן לבצע ניסויים על גורם בודד, שני גורמים או יותר. ניסויים עם גורם בודד: נבצע
חורף תש''ע פתרון בחינה סופית מועד א'
מד''ח 4 - חורף תש''ע פתרון בחינה סופית מועד א' ( u) u u u < < שאלה : נתונה המד''ח הבאה: א) ב) ג) לכל אחד מן התנאים המצורפים בדקו האם קיים פתרון יחיד אינסוף פתרונות או אף פתרון אם קיים פתרון אחד או יותר
פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur
פתרון תרגיל --- 5 מרחבים וקטורים דוגמאות למרחבים וקטורים שונים מושגים בסיסיים: תת מרחב צירוף לינארי x+ y+ z = : R ) בכל סעיף בדקו האם הוא תת מרחב של א } = z = {( x y z) R x+ y+ הוא אוסף הפתרונות של המערכת
תרגול פעולות מומצאות 3
תרגול פעולות מומצאות. ^ = ^ הפעולה החשבונית סמן את הביטוי הגדול ביותר:. ^ ^ ^ π ^ הפעולה החשבונית c) #(,, מחשבת את ממוצע המספרים בסוגריים.. מהי תוצאת הפעולה (.7,.0,.)#....0 הפעולה החשבונית משמשת חנות גדולה
תרגול מס' 6 פתרון מערכת משוואות ליניארית
אנליזה נומרית 0211 סתיו - תרגול מס' 6 פתרון מערכת משוואות ליניארית נרצה לפתור את מערכת המשוואות יהי פתרון מקורב של נגדיר את השארית: ואת השגיאה: שאלה 1: נתונה מערכת המשוואות הבאה: הערך את השגיאה היחסית
b 1 b 2 c 0 > c 1 > c 2 רציונל הפתרון: הגדרות: G j b j b j+1 *Q -גודל מנה אופטימלית.
תרגול - IV מודלים עם הנחה לכמויות הנחה על כל הכמות: המשמעות: בהתאם לגודל המנה, נקבע מחיר ליחידה c, ובמחיר זה נרכשת כל הכמות. TC מבחינה גרפית: b b b תחום תחום תחום c > c > c רציונל הפתרון: לכל תחום מחשבים
פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( )
פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד a d U c M ( יהי b (R) a b e ל (R M ( (אין צורך להוכיח). מצאו קבוצה פורשת ל. U בדקו ש - U מהווה תת מרחב ש a d U M (R) Sp,,, c a e
תאריך עדכון אחרון: 27 בפברואר ניתוח לשיעורין analysis) (amortized הוא טכניקה לניתוח זמן ריצה לסדרת פעולות, אשר מאפשר קבלת
תרגול 3 ניתוח לשיעורין תאריך עדכון אחרון: 27 בפברואר 2011. ניתוח לשיעורין analysis) (amortized הוא טכניקה לניתוח זמן ריצה לסדרת פעולות, אשר מאפשר קבלת חסמי זמן ריצה נמוכים יותר מאשר חסמים המתקבלים כאשר
תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשע"ב זהויות טריגונומטריות
תרגול חזרה זהויות טריגונומטריות si π α) si α π α) α si π π ), Z si α π α) t α cot π α) t α si α cot α α α si α si α + α siα ± β) si α β ± α si β α ± β) α β si α si β si α si α α α α si α si α α α + α si
[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m
Observabiliy, Conrollabiliy תרגול 6 אובזרווביליות אם בכל רגע ניתן לשחזר את ( (ומכאן גם את המצב לאורך זמן, מתוך ידיעת הכניסה והיציאה עד לרגע, וזה עבור כל צמד כניסה יציאה, אז המערכת אובזרוובילית. קונטרולביליות
תורת התורים תור לקוחות
תורת התורים מהו תור? שרת ב תור לקוחות שרת א שרת א תור לקוחות שרת ב שרת א דוגמא במחסן יש אפסנאים שמנפקים כלים לטכנאי אחזקת מטוסים, מצד אחד קיים לחץ של מנהלי העבודה להגדיל את מספר האפסנאיםבכדי להקטין זמני
ניהול סיכום הרבון ""ר ותמיכה באחזקה אחזקה MTBF = 1. t = i i MTTR זמינות BTBM. i i
הקשר בין אחזקה לבין אמינות: דד// אחזקה כדי למצוא משך פעולה בטרם יש צורך לבצע אחזקה במערכת בעלת אמינות או MTBF באמינות נדרשת (בין ל- ) יש לבצע את החישוב הבא: ln r( ln r( MTBF MTBF s MTTR s ( T ) זמן ממוצע
ל הזכויות שמורות לדפנה וסטרייך
מרובע שכל זוג צלעות נגדיות בו שוות זו לזו נקרא h באיור שלעיל, הצלעות ו- הן צלעות נגדיות ומתקיים, וכן הצלעות ו- הן צלעות נגדיות ומתקיים. תכונות ה כל שתי זוויות נגדיות שוות זו לזו. 1. כל שתי צלעות נגדיות
2 עלויות הקשורות במלאי עלות הזמנה / עלות כיוונון עלות רכישה )מחיר( עלות אחסנה עלות חוסר
1 ניהול המלאי מודלים דטרמיניסטים פשוטים EO( ונקודת הזמנה( מרצה: 2 עלויות הקשורות במלאי עלות הזמנה / עלות כיוונון עלות רכישה )מחיר( עלות אחסנה עלות חוסר 3 עלות הזמנה עלות חד פעמית המתייחסת להזמנה עלות הטיפול
gcd 24,15 = 3 3 =
מחלק משותף מקסימאלי משפט אם gcd a, b = g Z אז קיימים x, y שלמים כך ש.g = xa + yb במלים אחרות, אם ה כך ש.gcd a, b = xa + yb gcd,a b של שני משתנים הוא מספר שלם, אז קיימים שני מקדמים שלמים כאלה gcd 4,15 =
הסתברות שבתחנה יש 0 מוניות ו- 0 נוסעים. הסתברות שבתחנה יש k-t נוסעים ו- 0 מוניות. λ λ λ λ λ λ λ λ P...
שאלה תורת התורים קצב הגעת נוסעים לתחנת מוניות מפולג פואסונית עם פרמטר λ. קצב הגעת המוניות מפולג פואסונית עם פרמטר µ. אם נוסע מגיע לתחנה כשיש בה מוניות, הוא מייד נוסע במונית. אם מונית מגיעה לתחנה כשיש בתחנה
ההוצאה תהיה: RTS = ( L B, K B ( L A, K A TC C A L K K 15.03
15.01 o פונקצית הוצאות של הטווח ה ארוך על מנת למקס ם רו וחי ם על פירמה לייצר תפו קה נתונה במינימום הוצא ות. נניח שמחירי גורמי הייצור קבועים. נגדיר עק ומת שוות הוצאה: כל הק ומבינציות של ו- שעבורן רמת ההוצאת
תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן
תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, 635865 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1. סדרה חשבונית שיש בה n איברים...2 3. האיבר
= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin(
א. s in(0 c os(0 s in(60 c os(0 s in(0 c os(0 s in(0 c os(0 s in(0 0 s in(70 מתאים לזהות של cos(θsin(φ : s in(θ φ s in(θcos(φ sin ( π cot ( π cos ( 4πtan ( 4π sin ( π cos ( π sin ( π cos ( 4π sin ( 4π
הרצאה. α α פלוני, וכדומה. הזוויות α ל- β שווה ל-
מ'' ל'' Deprmen of Applied Mhemics Holon Acdemic Insiue of Technology PROBABILITY AND STATISTICS Eugene Knzieper All righs reserved 4/5 חומר לימוד בקורס "הסתברות וסטטיסטיקה" מאת יוג'ין קנציפר כל הזכויות
לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור
הרצאה מס' 1. תורת הקבוצות. מושגי יסוד בתורת הקבוצות.. 1.1 הקבוצה ואיברי הקבוצות. המושג קבוצה הוא מושג בסיסי במתמטיקה. אין מושגים בסיסים יותר, אשר באמצעותם הגדרתו מתאפשרת. הניסיון והאינטואיציה עוזרים להבין
סיכום- בעיות מינימוםמקסימום - שאלון 806
סיכום- בעיות מינימוםמקסימום - שאלון 806 בבעיותמינימום מקסימוםישלחפשאתנקודותהמינימוםהמוחלטוהמקסימוםהמוחלט. בשאלות מינימוםמקסימוםחובהלהראותבעזרתטבלה אובעזרתנגזרתשנייהשאכן מדובר עלמינימוםאומקסימום. לצורךקיצורהתהליך,
TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים
TECHNION Iael Intitute of Technology, Faculty of Mechanical Engineeing מבוא לבקרה (034040) גליון תרגילי בית מס 5 d e C() y P() - ציור : דיאגרמת הבלוקים? d(t) ו 0 (t) (t),c() 3 +,P() + ( )(+3) שאלה מס נתונה
תורת התורים תור שרת יחיד, תורים במקביל ובטור, רשתות תורים
הרצאה : תור תורת התורים תור שרת יחיד, תורים במקביל ובטור, רשתות תורים ) W t n t n : M/G/ נחשב את זמן השהיה הממוצע בתור צרכן שמגיע ברגע רואה לפניו את נניח שהשרות הוא שם אחר הוא FIFO first in first out אז
אלגברה מודרנית פתרון שיעורי בית 6
אלגברה מודרנית פתרון שיעורי בית 6 15 בינואר 016 1. יהי F שדה ויהיו q(x) p(x), שני פולינומים מעל F. מצאו פולינומים R(x) S(x), כך שמתקיים R(x),p(x) = S(x)q(x) + כאשר deg(q),deg(r) < עבור המקרים הבאים: (תזכורת:
גבול ורציפות של פונקציה סקלרית שאלות נוספות
08 005 שאלה גבול ורציפות של פונקציה סקלרית שאלות נוספות f ( ) f ( ) g( ) f ( ) ו- lim f ( ) ו- ( ) (00) lim ( ) (00) f ( בסביבת הנקודה (00) ) נתון: מצאו ) lim g( ( ) (00) ננסה להיעזר בכלל הסנדביץ לשם כך
מבוא לרשתות - תרגול מס 5 תורת התורים
מ( מבוא לרשתות - תרגול מס 5 תורת התורים M / M / תאור המערכת: תור שרת שירות פואסוני הגעה פואסונית הערות: במערכת M/M/ יש חוצץ אינסופי ולכן יכולים להיות בה אינסוף לקוחות, כאשר מקבל שירות והשאר ממתינים. קצב
יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012)
יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 6 נושא: תחשיב הפסוקים: הפונקציה,val גרירה לוגית, שקילות לוגית 1. כיתבו טבלאות אמת לפסוקים הבאים: (ג) r)).((p q) r) ((p r) (q p q r (p
ב ה צ ל ח ה! /המשך מעבר לדף/
בגרות לבתי ספר על יסודיים סוג הבחינה: מדינת ישראל קיץ תשע"א, מועד ב מועד הבחינה: משרד החינוך 035804 מספר השאלון: דפי נוסחאות ל 4 יחידות לימוד נספח: מתמטיקה 4 יחידות לימוד שאלון ראשון תכנית ניסוי )שאלון
הרצאה 10: תורת התורים נוסחאות כלליות ותורים של שרת יחיד
א ב ג ד ה לימודי מוסמך בלוגיסטיקה הרצאה 0: תורת התורים נוסחאות כלליות ותורים של שרת יחיד תרגיל בתחנת מוניות יש מקום ל מוניות ויש מקום לשלושה נוסעים ממתינים. כאשר נוסע מגיע ויש מוניות ממתינות הוא עוזב מיד,
בסל A רמת התועלת היא: ) - השקה: שיפוע קו תקציב=שיפוע עקומת אדישות. P x P y. U y P y A: 10>6 B: 9>7 A: 5>3 B: 4>3 C: 3=3 C: 8=8 תנאי שני : מגבלת התקציב
תנאי ראשון - השקה: שיפוע קו תקציב=שיפוע עקומת אדישות 1) MRS = = שיווי המשקל של הצרכן - מציאת הסל האופטימלי = (, בסל רמת התועלת היא: ) = התועלת השולית של השקעת שקל (תועלת שולית של הכסף) שווה בין המוצרים
הרצאה 9: CTMC מבוא לתורת התורים
הרצאה 9: CTMC מבוא לתורת התורים תורת התורים למערכת תורים שלושה מרכיבים עיקריים: -- זרם של צרכנים שזמני המופע שלהם הם תהליך נקודות T1, T1 + T2,, T1 + + T, -- דרישות שרות של הצרכנים, שהם סדרה של משתנים מקריים
תרגיל 13 משפטי רול ולגראנז הערות
Mthemtics, Summer 20 / Exercise 3 Notes תרגיל 3 משפטי רול ולגראנז הערות. האם קיים פתרון למשוואה + x e x = בקרן )?(0, (רמז: ביחרו x,f (x) = e x הניחו שיש פתרון בקרן, השתמשו במשפט רול והגיעו לסתירה!) פתרון
גמישויות. x p Δ p x נקודתית. 1,1
גמישויות הגמישות מודדת את רגישות הכמות המבוקשת ממצרך כלשהוא לשינויים במחירו, במחירי מצרכים אחרים ובהכנסה על-מנת לנטרל את השפעת יחידות המדידה, נשתמש באחוזים על-מנת למדוד את מידת השינויים בדרך כלל הגמישות
קורס: מבוא למיקרו כלכלה שיעור מס. 17 נושא: גמישויות מיוחדות ושיווי משקל בשוק למוצר יחיד
גמישות המחיר ביחס לכמות= X/ Px * Px /X גמישות קשתית= X(1)+X(2) X/ Px * Px(1)+Px(2)/ מקרים מיוחדים של גמישות אם X שווה ל- 0 הגמישות גם כן שווה ל- 0. זהו מצב של ביקוש בלתי גמיש לחלוטין או ביקוש קשיח לחלוטין.
דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות
יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות 1. מצאו צורה דיסיונקטיבית נורמלית קנונית לפסוקים הבאים: (ג)
מבוא לרשתות - תרגול מס 5 תורת התורים
מבוא לרשתות - תרגול מס 5 תורת התורים תאור המערכת: תור / M M / ( ) שרת שירות פואסוני הגעה פואסונית הערות: במערכת M/M/ יש חוצץ אינסופי ולכן יכולים להיות בה אינסוף לקוחות, כאשר מקבל שירות והשאר ממתינים. זמן
הרצאה 7: CTMC הסתברויות גבוליות, הפיכות בזמן, תהליכי לידה ומוות
הרצאה 7: CTMC הסתברויות גבוליות, הפיכות בזמן, תהליכי לידה ומוות משואות קולמוגורוב pi, j ( t + ) = pi, j ( t)( rj ) + pi, k ( t) rk, j k j pi, j ( + t) = ( ri ) pi, j ( t) + ri, k pk, j ( t) k j P ( t)
פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד
פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. לכל אחת מן הפונקציות הבאות, קבעו אם היא חח"ע ואם היא על (הקבוצה המתאימה) (א) 3} {1, 2, 3} {1, 2, : f כאשר 1 } 1, 3, 3, 3, { 2, = f לא חח"ע: לדוגמה
רחת 3 קרפ ( שוקיבה תמוקע)שוקיבה תיצקנופ
- 41 - פרק ג' התנהגות צרכן פונקצית הביקוש(עקומת הביקוש ( - 42 - פרק 3: תחרות משוכללת: התנהגות צרכן מתארת את הקשר שבין כמות מבוקשת לבין מחיר השוק. שיפועה השלילי של עקומת הביקוש ממחיש את הקשר ההפוך הקיים
3-9 - a < x < a, a < x < a
1 עמוד 59, שאלהמס', 4 סעיףג' תיקוני הקלדה שאלון 806 צריך להיות : ג. מצאאתמקומושלאיברבסדרהזו, שקטןב- 5 מסכוםכלהאיבריםשלפניו. עמוד 147, שאלהמס' 45 ישלמחוקאתהשאלה (מופיעהפעמיים) עמוד 184, שאלהמס', 9 סעיףב',תשובה.
משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ
משוואות רקורסיביות הגדרה: רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים למשל: T = Θ 1 if = 1 T + Θ if > 1 יונתן יניב, דוד וייץ 1 דוגמא נסתכל על האלגוריתם הבא למציאת
תרגיל 7 פונקציות טריגונומטריות הערות
תרגיל 7 פונקציות טריגונומטריות הערות. פתרו את המשוואות הבאות. לא מספיק למצוא פתרון אחד יש למצוא את כולם! sin ( π (א) = x sin (ב) = x cos (ג) = x tan (ד) = x) (ה) = tan x (ו) = 0 x sin (x) + sin (ז) 3 =
צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים
מבוא: קבוצות מיוחדות של מספרים ממשיים קבוצות של מספרים ממשיים צעד ראשון להצטיינות קבוצה היא אוסף של עצמים הנקראים האיברים של הקבוצה אנו נתמקד בקבוצות של מספרים ממשיים בדרך כלל מסמנים את הקבוצה באות גדולה
קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים.
א{ www.sikumuna.co.il מהי קבוצה? קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים. קבוצה היא מושג יסודי במתמטיקה.התיאור האינטואיטיבי של קבוצה הוא אוסף של עצמים כלשהם. העצמים הנמצאים בקבוצה הם איברי הקבוצה.
שם התלמיד/ה הכיתה שם בית הספר. Page 1 of 18
שם התלמיד/ה הכיתה שם בית הספר ה Page of 8 0x = 3x + שאלה פ תרו את המשוואה שלפניכם. x = תשובה: שאלה בבחירות למועצת תלמידים קיבל רן 300 קולות ונעמה קיבלה 500 קולות. מה היחס בין מספר הקולות שקיבל רן למספר
מתמטיקה שאלון ו' נקודות. חשבון דיפרנציאלי ואינטגרלי, טריגונומטריה שימוש במחשבון גרפי או באפשרויות התכנות עלול לגרום לפסילת הבחינה.
בגרות לבתי ספר על-יסודיים מועד הבחינה: תשס"ח, מספר השאלון: 05006 נספח:דפי נוסחאות ל- 4 ול- 5 יחידות לימוד מתמטיקה שאלון ו' הוראות לנבחן משך הבחינה: שעה ושלושה רבעים. מבנה השאלון ומפתח ההערכה: בשאלון זה
התפלגות χ: Analyze. Non parametric test
מבחני חי בריבוע לבדיקת טיב התאמה דוגמא: זורקים קוביה 300 פעמים. להלן התוצאות שהתקבלו: 6 5 4 3 2 1 תוצאה 41 66 45 56 49 43 שכיחות 2 התפלגות χ: 0.15 התפלגות חי בריבוע עבור דרגות חופש שונות 0.12 0.09 0.06
מודלים חישוביים תרגולמס 7
מודלים חישוביים תרגולמס 7 13 באפריל 2016 נושאי התרגול: מכונת טיורינג. 1 מכונת טיורינג נעבור לדבר על מודל חישוב חזק יותר (ובמובן מסוים, הוא מודל החישוב הסטנדרטי) מכונות טיורינג. בניגוד למודלים שראינו עד
סדרות - תרגילים הכנה לבגרות 5 יח"ל
סדרות - הכנה לבגרות 5 יח"ל 5 יח"ל סדרות - הכנה לבגרות איברים ראשונים בסדרה) ) S מסמן סכום תרגיל S0 S 5, S6 בסדרה הנדסית נתון: 89 מצא את האיבר הראשון של הסדרה תרגיל גוף ראשון, בשנייה הראשונה לתנועתו עבר
אלגברה ליניארית 1 א' פתרון 2
אלגברה ליניארית א' פתרון 3 4 3 3 7 9 3. נשתמש בכתיבה בעזרת מטריצה בכל הסעיפים. א. פתרון: 3 3 3 3 3 3 9 אז ישנו פתרון יחיד והוא = 3.x =, x =, x 3 3 הערה: אפשר גם לפתור בדרך קצת יותר ארוכה, אבל מבלי להתעסק
סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור
סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 5 שנכתב על-ידי מאיר בכור. חקירת משוואה מהמעלה הראשונה עם נעלם אחד = הצורה הנורמלית של המשוואה, אליה יש להגיע, היא: b
I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx
דפי נוסחאות I גבולות נאמר כי כך שלכל δ קיים > ε לכל > lim ( ) L המקיים ( ) מתקיים L < ε הגדרת הגבול : < < δ lim ( ) lim ורק ( ) משפט הכריך (סנדוויץ') : תהיינה ( ( ( )g ( )h פונקציות המוגדרות בסביבה נקובה
תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.
בB בB תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: 035804 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1 מכונית נסעה מעיר A לעיר B על כביש ראשי
פונקציית ההוצאות המשך היצע הפירמה מערכות ביקוש והיצע
פונקציית ההוצאות המשך היצע הפירמה מערכות ביקוש והיצע הוצאות בטווח הקצר והארוך טווח קצר חלק מגורמי הייצור קבועים טווח ארוך כל גורמי הייצור משתנים בטווח הקצר ישנן הוצאות שאינן תלויות ברמת התפוקה ונובעות
c>150 c<50 50<c< <c<150
מוצרים ציבוריים דוגמה ראובןושמעוןשותפיםלדירה. הםשוקליםלקנותטלוויזיהלסלוןהמשותף. ראובןמוכןלשלםעד 00 עבורהטלוויזיה. שמעוןמוכןלשלםעד 50 עבורהטלוויזיה. אפשרלקנותטלוויזיהב- c. האם כדאי להם לקנות אותה? תלוי
לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים:
לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( 2016 2015 )............................................................................................................. חלק ראשון: שאלות שאינן להגשה.1
{ : Halts on every input}
אוטומטים - תרגול 13: רדוקציות, משפט רייס וחזרה למבחן E תכונה תכונה הינה אוסף השפות מעל.(property המקיימות תנאים מסוימים (תכונה במובן של Σ תכונה לא טריביאלית: תכונה היא תכונה לא טריוויאלית אם היא מקיימת:.
לדוגמא : dy dx. xdx = x. cos 1. cos. x dx 2. dx = 2xdx לסיכום: 5 sin 5 1 = + ( ) הוכחה: [ ] ( ) ( )
9. חשבון אינטגרלי. עד כה עסקנו בבעיות של מציאת הנגזרת של פונקציה נתונה. נשאלת השאלה בהינתן נגזרת האם נוכל למצוא את הפונקציה המקורית (הפונקציה שנגזרתה נתונה)? זוהי שאלה קשה יותר, חשבון אינטגרלי דן בבעיה
פתרון תרגיל דוגמא מרחב המדגם הוא כל הקומבינציות של 20 חודשי הולדת. לכל ילד 12 אפשרויות,לכן. לכן -
פתרון תרגיל דוגמא מרחב המדגם הוא כל הקומבינציות של 0 חודשי הולדת לכל ילד אפשרויות,לכן לכן - 0 A 0 מספר קומבינציות שלא מכילות את חודש תשרי הוא A) המאורע המשלים ל- B הוא "אף תלמיד לא נולד באחד מהחודשים אב/אלול",
מדדים מכונה. .served) Time)
מדדים עמידה בלוחות זמנים מזעור רמת המלאי בתהליך (WIP) מזעור זמן הזרימה הממוצע במערכת מזעור זמן המתנה (חשוב כאשר נותנים שירות לאדם) מזעור זמן בטלה ניצולת גבוה הקטנת זמן הכינון מזעור עלויות דפוסי זרימה זרימה
השאלות..h(k) = k mod m
מבני נתונים פתרונות לסט שאלות דומה לשאלות מתרגיל 5 השאלות 2. נתונה טבלת ערבול שבה התנגשויות נפתרות בשיטת.Open Addressing הכניסו לטבלה את המפתחות הבאים: 59 88, 17, 28, 15, 4, 31, 22, 10, (מימין לשמאל),
מתמטיקה )שאלון שני לנבחנים בתכנית ניסוי, 5 יחידות לימוד( 1 מספרים מרוכבים 3#2 3 3
סוג הבחינה: בגרות לבתי ספר על יסודיים מדינת ישראל מועד הבחינה: חורף תשע"ב, 202 משרד החינוך מספר השאלון: 035807 דפי נוסחאות ל 5 יחידות לימוד נספח: א. משך הבחינה: שעתיים. מתמטיקה 5 יחידות לימוד שאלון שני
שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם
תזכורת: פולינום ממעלה או מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה p f ( m i ) = p m1 m5 תרגיל: נתון עבור x] f ( x) Z[ ראשוני שקיימים 5 מספרים שלמים שונים שעבורם p x f ( x ) f ( ) = נניח בשלילה ש הוא
Hash Tables (המשך) ערבול (Hashing)
מילון עם מפתחות שלמים Lecture of Geiger & Itai s slide brochure www.cs.technion.ac.il/~dang/courseds טבלאות ערבול הפעולות הבסיסיות של מילון הן כזכור חיפוש, הכנסה, והוצאה. אם המפתחות מספרים שלמים בתחום
חידה לחימום. כתבו תכappleית מחשב, המקבלת כקלט את M ו- N, מחליטה האם ברצוappleה להיות השחקן הפותח או השחקן השappleי, ותשחק כך שהיא תappleצח תמיד.
חידה לחימום ( M ש- N > (כך מספרים טבעיים Mו- N שappleי appleתוappleים בעלי אותה הזוגיות (שappleיהם זוגיים או שappleיהם אי - זוגיים). המספרים הטבעיים מ- Mעד Nמסודרים בשורה, ושappleי שחקappleים משחקים במשחק.
The No Arbitrage Theorem for Factor Models ג'רמי שיף - המחלקה למתמטיקה, אוניברסיטת בר-אילן
.. The No Arbitrage Theorem for Factor Models ג'רמי שיף - המחלקה למתמטיקה, אוניברסיטת בר-אילן 03.01.16 . Factor Models.i = 1,..., n,r i נכסים, תשואות (משתנים מקריים) n.e[f j ] נניח = 0.j = 1,..., d,f j
x = r m r f y = r i r f
דירוג קרנות נאמנות - מדד אלפא מול מדד שארפ. )נספחים( נספח א': חישוב מדד אלפא. מדד אלפא לדירוג קרנות נאמנות מוגדר באמצעות המשוואה הבאה: כאשר: (1) r i r f = + β * (r m - r f ) r i r f β - התשואה החודשית
טושפ הרעשה ןחבמ t ןחבמ
מבחן השערה פשוט מבחן t מבחן השערה על תוחלת חוקר מעוניין לבדוק את כמות הברגים הפגומים שמיוצרים ע"י מכונה לייצור ברגים. לשם האמידה מחליטים לקחת מדגם של n מכונות מאותו סוג ולאמוד את תוחלת מספר המוצרים הפגומים,
יווקיינ לש תוביציה ןוירטירק
יציבות מגבר שרת הוא מגבר משוב. בכל מערכת משוב קיימת בעיית יציבות מהבחינה הדינמית (ולא מבחינה נקודת העבודה). חשוב לוודא שהמגבר יציב על-מנת שלא יהיו נדנודים. קריטריון היציבות של נייקוויסט: נתונה נערכת המשוב
פתרון 4. a = Δv Δt = = 2.5 m s 10 0 = 25. y = y v = 15.33m s = 40 2 = 20 m s. v = = 30m x = t. x = x 0.
בוחן לדוגמא בפיזיקה - פתרון חומר עזר: מחשבון ודף נוסחאות מצורף זמן הבחינה: שלוש שעות יש להקפיד על כתיבת יחידות חלק א יש לבחור 5 מתוך 6 השאלות 1. רכב נוסע במהירות. 5 m s לפתע הנהג לוחץ על דוושת הבלם והרכב
תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME
הנדסת המישור - תרגילים הכנה לבגרות תרגילים הנדסת המישור - תרגילים הכנה לבגרות באמצעות Q תרגיל 1 מעגל העובר דרך הקודקודים ו- של המקבילית ו- חותך את האלכסונים שלה בנקודות (ראה ציור) מונחות על,,, הוכח כי
Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון.
Charles Augustin COULOMB (1736-1806) קולון חוק חוקקולון, אשרנקראעלשםהפיזיקאיהצרפתישארל-אוגוסטיןדהקולוןשהיהאחדהראשוניםשחקרבאופןכמותיאתהכוחותהפועלים ביןשניגופיםטעונים. מדידותיוהתבססועלמיתקןהנקראמאזניפיתול.
c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V )
הצגות של חבורות סופיות c ארזים 6 בינואר 017 1 משפט ברנסייד משפט 1.1 ברנסייד) יהיו p, q ראשוניים. תהי G חבורה מסדר.a, b 0,p a q b אזי G פתירה. הוכחה: באינדוקציה על G. אפשר להניח כי > 1 G. נבחר תת חבורה
משפטי בקרה ולולאות שעור מס. 3 כל הזכויות שמורות דר' דרור טובי המרכז האוניברסיטאי אריאל
משפטי בקרה ולולאות שעור מס. 3 דרור טובי דר' 1 כל הזכויות שמורות דר' דרור טובי המרכז האוניברסיטאי אריאל - הקדמה משפט התנאי if המשימה: ברצוננו לכתוב תוכנית המקבלת שני מספרים בסדר כל שהוא ולהדפיס אותם בסדר
- הסקה סטטיסטית - מושגים
- הסקה סטטיסטית - מושגים פרק נעסוק באכלוסיה שהתפלגותה המדויקת אינה ידועה. פרמטרים לא ידועים של ההתפלגות. מתקבלים מ"מ ב"ת ושווי התפלגות לשם כך,,..., סימון: התפלגות האכלוסיה תסומן בפרק זה המטרה לענות על
מחשוב ובקרה ט' למתמחים במחשוב ובקרה במגמת הנדסת חשמל אלקטרוניקה (כיתה י"ג) הוראות לנבחן
גמר לבתי ספר לטכנאים ולהנדסאים סוג הבחינה: מדינת ישראל אביב תשס"ו, 6 מועד הבחינה: משרד החינוך, התרבות והספורט 754 סמל השאלון: נספחים: א. נספח לשאלה ההנחיות בשאלון זה מנוסחות בלשון זכר, אך מכוונות לנבחנות
דיאגמת פאזת ברזל פחמן
דיאגמת פאזת ברזל פחמן הריכוז האוטקטי הריכוז האוטקטוידי גבול המסיסות של פריט היווצרות פרליט מיקרו-מבנה של החומר בפלדה היפר-אוטקטואידית והיפו-אוטקטוידית. ככל שמתקרבים יותר לריכוז האוטקטואידי, מקבלים מבנה
(ספר לימוד שאלון )
- 40700 - פתרון מבחן מס' 7 (ספר לימוד שאלון 035804) 09-05-2017 _ ' i d _ i ' d 20 _ i _ i /: ' רדיוס המעגל הגדול: רדיוס המעגל הקטן:, לכן שטח העיגול הגדול: / d, לכן שטח העיגול הקטן: ' d 20 4 D 80 Dd 4 /:
מבני נתונים מדעי המחשב שאלון: מועד ב' תשע"ו מדעי המחשב פתרון בחינת הבגרות. Java שאלה 1. blog.csit.org.
1 פתרון בחינת הבגרות פרק ראשון - )יסודות( Java שאלה 1 C# 6 Java שאלה 2 ב. פלט a a1 A A 4 + 5 = 9 4 + 5 = 9 n1 n2 n1 n2 8 + 9 = 17? 4? 5 4 8 5 9 3 :C# שאלה 2 פלט a a1 A A 4 + 5 = 9 4 + 5 = 9 n1 n2 n1 n2
אלגברה לינארית (1) - פתרון תרגיל 11
אלגברה לינארית ( - פתרון תרגיל דרגו את המטריצות הבאות לפי אלגוריתם הדירוג של גאוס (א R R4 R R4 R=R+R R 3=R 3+R R=R+R R 3=R 3+R 9 4 3 7 (ב 9 4 3 7 7 4 3 9 4 3 4 R 3 R R3=R3 R R 4=R 4 R 7 4 3 9 7 4 3 8 6
לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)
לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)............................................................................................................. חלק ראשון: שאלות שאינן להגשה 1. עבור
הגדרה: מצבים k -בני-הפרדה
פרק 12: שקילות מצבים וצמצום מכונות לעי תים קרובות, תכנון המכונה מתוך סיפור המעשה מביא להגדרת מצבים יתי רים states) :(redundant הפונקציה שהם ממלאים ניתנת להשגה באמצעו ת מצבים א חרים. כיוון שמספר רכיבי הזיכרון
תשובה תשובה כל הזכויות שמורות ל- 800 בית ספר לפסיכומטרי בע"מ
10 )( 9 )( 8 )3( 7 )( 6 )1( 5 )1( )( 3 )1( )1( 1 )( שאלה תשובה 0 )1( 19 )( 18 )3( 17 )( 16 )3( 15 )1( 1 )( 13 )3( 1 )( 11 )( שאלה תשובה השאלה: באיזו מהדחסניות ההפרש )בערך מוחלט( בין זמן הדחיסה של זבל ביתי
קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל "לוח" יש את אותה כמות מטען, אך הסימנים הם הפוכים.
קבל קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל "לוח" יש את אותה כמות מטען, אך הסימנים הם הפוכים. על לוח אחד מטען Q ועל לוח שני מטען Q. הפוטנציאל על כל לוח הוא
brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק
יום א 14 : 00 15 : 00 בניין 605 חדר 103 http://u.cs.biu.ac.il/ brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק 29/11/2017 1 הגדרת קבוצת הנוסחאות הבנויות היטב באינדוקציה הגדרה : קבוצת הנוסחאות הבנויות
Push versus Pull. Introductory Quotation. / MRP תד"ח Just in Time (JIT) TOC/OPT
ש יט ו ת לנ י ה ו ל ה י י צ ו ר ג יש ות ל ה ול כת מ ו צר ד רך מתקנ י ה י י צ ו ר תכנון דרישות חומרים תד"ח (Materials Requirement Planning MRP) אספקה בדיוק בזמן Time-JIT).(Just in MRP נחשבת מערכת דוחפת
מס' סטודנט מועד א' פתרון
ס הטכניון - מכון טכנולוגי לישראל הפקולטה להנדסת תעשייה וניהול מרצה : מתרגלת: פרופסור אבישי מנדלבאום גלית יום-טוב 11.2.2010 מס' סטודנט תאריך הבחינה: שם הנדסת מערכות שירות 096324 מועד א' מסטר חורף תש"ע 2010
רשימת בעיות בסיבוכיות
ב) ב) רשימת בעיות בסיבוכיות כל בעיה מופיעה במחלקה הגדולה ביותר שידוע בוודאות שהיא נמצאת בה, אלא אם כן מצוין אחרת. כמובן שבעיות ב- L נמצאות גם ב- וב- SACE למשל, אבל אם תכתבו את זה כתשובה במבחן לא תקבלו
א הקיטסי ' טטסל אובמ רלדנ הינור בג '
מבוא לסטטיסטיקה א' נדלר רוניה גב' מדדי פיזור Varablty Measures of עד עתה עסקנו במדדים מרכזיים. אולם, אחת התכונות החשובות של ההתפלגות, מלבד מיקום מרכזי, הוא מידת הפיזור של ההתפלגות. יכולות להיות מספר התפלגויות
f ( x, y) 1 5y axy x xy ye dxdy לדוגמה: axy + + = a ay e 3 2 a e a y ( ) במישור. xy ואז dxdy למישור.xy שבסיסם dxdy וגבהם y) f( x, איור 25.
( + 5 ) 5. אנטגרלים כפולים., f ( המוגדרת במלבן הבא במישור (,) (ראה באיור ). נתונה פונקציה ( β α f(, ) נגדיר את הסמל הבא dd e dd 5 + e ( ) β β איור α 5. α 5 + + = e d d = 5 ( ) e + = e e β α β α f (, )
עקומת שווה עליות איזוקוסט Isocost
עקומת שווה עליות איזוקוסט Isocost כפי שראינו בפרק הקודם, אומנם נוכל לראות את הבחירה האלטרנטיבית של היצרן אך לא נוכל לקבל תשובה מהו הייצור האופטימאלי של היצרן. ישנם גורמים טכניים רבים מידי כדי לקבל החלטה
1 תוחלת מותנה. c ארזים 3 במאי G מדיד לפי Y.1 E (X1 A ) = E (Y 1 A )
הסתברות למתמטיקאים c ארזים 3 במאי 2017 1 תוחלת מותנה הגדרה 1.1 לכל משתנה מקרי X אינטגרבילית ותת סיגמא אלגברה G F קיים משתנה מקרי G) Y := E (X המקיים: E (X1 A ) = E (Y 1 A ).G מדיד לפי Y.1.E Y
מתמטיקה בדידה תרגול מס' 5
מתמטיקה בדידה תרגול מס' 5 נושאי התרגול: פונקציות 1 פונקציות הגדרה 1.1 פונקציה f מ A (התחום) ל B (הטווח) היא קבוצה חלקית של A B המקיימת שלכל a A קיים b B יחיד כך ש. a, b f a A.f (a) = ιb B. a, b f או, בסימון
(להנדסאי מכונות) הוראות לנבחן פרק שני: בקרת תהליכים ומכשור לבקרה ולאלקטרוניקה תעשייתית 80 נקודות
גמר לבתי ספר לטכנאים ולהנדסאים סוג הבחינה: מדינת ישראל אביב תשס"ח, 2008 מועד הבחינה: משרד החינוך 710923 סמל השאלון: מערכות מכטרוניות ה' (להנדסאי מכונות) הוראות לנבחן א. משך הבחינה: ארבע שעות. ב. מבנה השאלון
Logic and Set Theory for Comp. Sci.
234293 - Logic and Set Theory for Comp. Sci. Spring 2008 Moed A Final [partial] solution Slava Koyfman, 2009. 1 שאלה 1 לא נכון. דוגמא נגדית מפורשת: יהיו } 2,(p 1 p 2 ) (p 2 p 1 ).Σ 2 = {p 2 p 1 },Σ 1 =
מבני נתונים 08a תרגול 8 14/2/2008 המשך ערמות ליאור שפירא
מבני נתונים 08a תרגול 8 14/2/2008 המשך ערמות ליאור שפירא ערמות פיבונאצ'י Operation Linked List Binary Heap Binomial Heap Fibonacci Heap Relaxed Heap make-heap 1 1 1 1 1 is-empty 1 1 1 1 1 insert 1 log
אינפי - 1 תרגול בינואר 2012
אינפי - תרגול 4 3 בינואר 0 רציפות במידה שווה הגדרה. נאמר שפונקציה f : D R היא רציפה במידה שווה אם לכל > 0 ε קיים. f(x) f(y) < ε אז x y < δ אם,x, y D כך שלכל δ > 0 נביט במקרה בו D הוא קטע (חסום או לא חסום,
אלקטרומגנטיות אנליטית תירגול #2 סטטיקה
Analytical Electromagnetism Fall Semester 202-3 אלקטרומגנטיות אנליטית תירגול #2 סטטיקה צפיפויות מטען וזרם צפיפות מטען נפחית ρ מוגדרת כך שאינטגרל נפחי עליה נותן את המטען הכולל Q dv ρ היחידות של ρ הן מטען