Ασκήσεις Ανάλυση Ι Λύσεις ασκήσεων Οµάδας 1

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ασκήσεις Ανάλυση Ι Λύσεις ασκήσεων Οµάδας 1"

Transcript

1 Ασκήσεις Ανάλυση Ι Λύσεις ασκήσεων Οµάδας Λουκάς Βλάχος και Χάρης Σκόκος ) ύο καράβια αναχωρούν από το ίδιο λιµάνι. Το ένα κινείται µε 5 Km/h προς τα νότια και το άλλο µε Km/h προς τα ανατολικά. Να εκϕράσετε την απόσταση µεταξύ των πλοίων σαν συνάρτηση του χρόνου t από την ώρα της αναχώρησης (η απόσταση να εκϕραστεί σε χιλιόµετρα Km, και ο χρόνος σε ώρες h). Λύση : Μετά από απλές πράξεις καταλήγουµε σε µια γραµµική σχέση S(t)(Km) = 5t(Hours). ) Να ϐρεθεί το πεδίο ορισµού των συναρτήσεων :. f () = (3 ) 4. f () = ln(4 56) 3. f 3 () = ln [ ln ( )] f 4 () = Λύση :. Πρέπει 3 > 3( 4) > ( )( + ) > { < ή > }. Εποµένως το πεδίο ορισµού είναι D(f ) = (, ) (, + ).. Πρέπει 4 56 > 56 >. Θέτοντας y = έχουµε y y 56 > {y < 7 ή y > 8} < 7 (αδύνατη), και > 8 > 3 > 3. Εποµένως D(f ) = (3, + ). 3. Πρέπει ln [ ln ( ln e e )] ln [ ln ( e (6+3e)+(5 7e) 3+7 )] ( ln ln 6+5 ) ( 3+7 ln 6+5 [(6+3e)+(5 7e)]( 3+ 7) και e 5 6+3e < 7 3. Άρα D(f 3) = [ 7e 5 6+3e, 7 3). 3+7) 4. Πρέπει { ή } { ή } {( ή 3) ή 5 3}. Εποµένως το πεδίο ορισµού είναι D(f 4 ) = (, ] [ 5, 3] (3, + ).

2 3) Να ϐρεθεί (αν υπάρχει) η αντίστροϕη συνάρτηση των :. f () = + +. f () = 3 +3 Λύση :. Για το πεδίο ορισµού της συνάρτησης έχουµε : D(f ) = R. Για κάθε, R µε f( ) = f( ) έχουµε + + = = ( + )( + ) = + + = ( + )( + ) + + = = ( ) = =. Εποµένως η συνάρτηση είναι -, οπότε και αντιστρέϕεται. Θέτουµε y = + + y = + και επειδή + > για κάθε R έχουµε y > y >, οπότε (y ) = + = y για y. y Εχουµε επίσης y > y > y y y + > (y + )y > y >. y y Άρα ο τύπος της αντίστροϕης συνάρτησης είναι f () = µε πεδίο ορισµού D(f ) = (, + ).. Για το πεδίο ορισµού της συνάρτησης έχουµε : D(f ) = R. Για κάθε, R µε 3 f( ) = f( ) έχουµε = = = 3 =. Εποµένως η συνάρτηση είναι -, οπότε και αντιστρέϕεται. Θέτουµε y = 3 3 = y +3 y y > < y < y µε y. Επειδή 3 > έχουµε. Εποµένως για την αντίστροϕη συνάρτηση έχουµε 3 y = y ln 3 = ln ( f () = ln( ), µε πεδίο ορισµού D(f ln 3 ) = (, ) αϕού πρέπει >. ) 4) Να υπολογιστούν τα όρια : lim lim lim lim 4 Λύση : Σε όλες τις περιπτώσεις έχουµε απροσδιοριστία.

3 . Το πεδίο ορισµού D(f) της συνάρτησης f() = είναι D(f) = R { 3, + 3 }. Για κάθε D(f) έχουµε f() = ( 3)( ) = ( 3)(+). Οπότε lim f() = ( )(+3) (+3) ( 3)( + ) lim ( + 3) = 5 = Το πεδίο ορισµού D(f) της συνάρτησης f() = +8+6 είναι D(f) = R { 4}. +4 { (+4) Για κάθε D(f) έχουµε f() = = +4, αν < 4 = Επειδή =4 =4, αν > 4 lim 4 f() = lim 4 + f() = δεν υπάρχει το όριο lim 4 f(). 3. Το πεδίο ορισµού D(f) της συνάρτησης f() = Για κάθε D(f) έχουµε f() = Οπότε lim f() = lim 4+ είναι D(f) = (, + ). = + + ( )( + ) ( ) ( + = ) ( ) + + = 4 + = Το πεδίο ορισµού D(f) της συνάρτησης f() = 4 {}. Για κάθε D(f) έχουµε f() = ( )(+ ) ( 4)(+ = ) (+)(+. Οπότε lim f() = ) 8. είναι D(f) = [, + ) ( ) ( )(+)(+ ) = 5) Να υπολογιστούν τα όρια :. lim sin(a + ) + sin( a). lim tan sin 3 cos 3. lim cos 4. lim + Λύση : Σε όλες τις περιπτώσεις έχουµε απροσδιοριστία.. Εχουµε sin(a + ) + sin( a) sin lim cos a = cos a = cos a. = sin cos a sin(a + ) + sin( a). Άρα lim = 3

4 . Εχουµε fractan sin 3 sin ( cos ) = [ ( ] 3 cos sin ) tan sin. Άρα lim = cos 3 lim = 3. Εχουµε cos + cos. Άρα lim cos = ( cos )( + cos ) ( + = cos ) [ ( sin ) = lim = sin ( ) sin 3 cos [ ( sin ) sin lim sin ( ) ( + cos ) = ] lim = sin ] lim cos = [ ( ] sin ) + cos = = 4. cos sin ( ) sin ( ) 4. Εχουµε = =. Επειδή + έχουµε >, sin ( ) οπότε = sin ( ( ) cos. Άρα lim = lim + + lim sin ) + = (+ ) = +. 6) Μία µπάλα εκτοξεύεται κατακόρυϕα από ύψος m µε αρχική ταχύτητα u = + m/sec. Να παρασταθεί γραϕικά η τροχιά της (το ύψος σαν συνάρτηση του χρόνου για πέντε ανακλάσεις) υποθέτοντας ότι η ανάκλασή της στο έδαϕος είναι ελαστική (χωρίς απώλειες ενέργειας) ή µη-ελαστική (µε απώλειες). Λύση : Αρχικά η µπάλα έχει µια γνωστή αρχική ενέργεια (δυναµική και κινητική) και εκτοξεύεται προς τα πάνω. Το µέγιστο ύψος που µπορεί να φτάσει το υπολογίζουµε από την µετατροπή της αρχικής ενέργειας σε δυναµική. Το δεύτερο στοιχείο είναι ο χρόνος που ϑα κάνει για να φτάσει στο µέγιστο. Από εκεί πέρα µας ενδιαϕέρει ο χρόνος που ϑα χρειαστεί να φτάσει στο έδαϕος και να επανέλθει στο ίδιο ύψος. Με ϐάση αυτές τις πληροϕορίες τοποθετούµε τα χαρακτηριστικά σηµεία στη καµπύλη (h(t), t) και το µόνο που µένει είναι να Ϲωγραϕίσουµε (µε ϐάση τη εξίσωση h(t) vs. t που την ϐρίσκουµε αναλυτικά την µορϕή της). (Αγνοήστε την αντίσταση του αέρα ή υπολογίστε την για να αποδείξετε ότι είναι µάλλον αµελητέα. ) Στη δεύτερη περίπτωση αποϕασίστε, εµπειρικά, την ενέργεια που ϑα χάση στην επαϕή µε το έδαϕος και σε κάθε αναπήδηση ξεκινήστε µε νέα κινητική ενέργεια από το έδαϕος και προσδιορίστε τα χαρακτηριστικά σηµεία εκ νέου (µέγιστο ύψος και χρόνο πορείας από το έδαϕος στο έδαϕος)... στη νέα καµπύλη το µέγιστο ύψος ϑα είναι µεταβαλλόµενο αλλά και ο συνολικός χρόνος για την επιστροϕή στο έδαϕος ϑα αλλάζει (δουλέψτε µόνοι σας τις λεπτοµέρειες). 4

5 Ασκήσεις Ανάλυση Ι Λύσεις ασκήσεων Οµάδας Λουκάς Βλάχος και Χάρης Σκόκος ) Υπολογίστε την πρώτη παράγωγο των συναρτήσεων. y = sin. y = ln[ 3 7 4] ln[( + ) 4 ] 3. y = sin 3 Λύση :. y() = e sin ln y () = sin ( cos ln + sin ), >. y() = ln[ 3 7 4] ln[( + ) 4 ] y () = / + 7/(3(7 4)) 8/( + ), > 3. y() = arcsin 3 y () = 3 / 6, < < ) Υπολογίστε την δεύτερη παράγωγο των συναρτήσεων. y = cos (3). 3 + y 3 () = Λύση :. y = arccos(3) y () = 7 ( 9 ) 3/, / y 3 () = y () = 3) ίνεται η συνάρτηση f() = ( 4 + 6)ϕ(),

6 όπου ϕ() = 6 και lim {[ϕ() 6]/} = 4. Να ϐρεθεί η εξίσωση της εϕαπτοµένης της καµπύλης της συνάρτησης στο σηµείο =. Λύση : Η εϕαπτοµένη ϑα προσδιοριστεί από τη σχέση y = f() + f () µε ϐάση τα δεδοµένα f() = 36 και f () = ϕ() + 6ϕ () = + 4 = άρα y = ) Σύρµα κρέµεται, σε σχήµα παραβολής, από δύο κολώνες ύψους m που απέχουν 4m. Αν το χαµηλότερο σηµείο του σύρµατος ακουµπά στο έδαϕος, να προσδιοριστεί η γωνία σύρµατος - κολώνας. Λύση : Με ϐάση την εκϕώνηση συµπεραίνουµε ότι µαθηµατική απεικόνιση της καµπύλης του σύρµατος ϑα είναι y() = (/), [, ]. Υπολογίζουµε την εϕαπτοµένη στο σηµείο (,) και ϐρίσκουµε ότι η Ϲητούµενη γωνία ϑα είναι 45. (ϐλέπε Σχ. ) Σχήµα : Η γραϕική παράσταση για την άσκηση 4 5) Να ϐρεθεί η εξίσωση της εϕαπτοµένης της καµπύλης µε παραµετρικές εξισώσεις (t) = t t και y(t) = 3t 4t, στο σηµείο Ρ µε t =. Λύση : Το σηµείο Ρ έχει συντεταγµένες (3, 7). Βρίσκουµε ότι dy της εϕαπτοµένης είναι y = 5. = 6t 4 d t, οπότε η εξίσωση

7 6) Να προσδιοριστούν τα a, b R, ώστε η συνάρτηση { + a, ( αν f() = π ) + b sin, αν < 4 να είναι παραγωγίσιµη στο =. Λύση : Αναγκαία συνθήκη ώστε η συνάρτηση να είναι παραγωγίσιµη στο = είναι να είναι συνεχής στο σηµείο αυτό. Η συνέχεια εξασϕαλίζεται όταν a = b. Απαιτώντας την ισότητα της δεξιάς µε την αριστερή παράγωγο στο = οδηγούµαστε στην σχέση + b π = + a. Από τις δυο αυτές σχέσεις ϐρίσκουµε τελικά a = 4 8 π 4 και b = 4 π 4. 3

8 Ασκήσεις Ανάλυση Ι Οµάδα 3 Λουκάς Βλάχος και Χάρης Σκόκος Λύσεις ) Η αντίδραση y ενός οργανισµού στην χορήγηση ενός φαρµάκου εξαρτάται από την ποσότητα του χορηγούµενου φαρµάκου. Αν η σχέση που συνδέει τα και y είναι y = (a ), όπου a > σταθερά, να ϐρεθεί η ποσότητα για την οποία η αντίδραση γίνεται µέγιστη. Λύση : Η πρώτη παράγωγος της συνάρτησης είναι y () = a 3, οπότε τα κρίσιµα σηµεία είναι τα = (αποκλείεται) και = a 3. Επειδή y ( a ) = a < καταλαβαίνουµε 3 ότι για = a η αντίδραση του οργανισµού γίνεται µέγιστη. 3 ) Μια ϐιοµηχανία πρόκειται να κατασκευάσει ένα κυλινδρικό δοχείο σταθερού όγκου V, το οποίο είναι ανοικτό στο επάνω µέρος του. Να ϐρεθεί το πηλίκο του ύψους δια της ακτίνας της ϐάση του δοχείου προκειµένου το κόστος κατασκευής να είναι ελάχιστο, γνωρ ιζοντας ότι η µονάδα επιϕάνειας της ϐάσης κοστίζει το διπλάσιο από τη µονάδα επιϕάνειας της παράπλευρης επιϕάνειας. Λύση : Εστω r η ακτίνα της ϐάσης, h το ύψος του δοχείου, V = πr h ο όγκος του, k το κόστος της µονάδας επιϕάνειας της παράπλευρης επιϕάνειας και k το κόστος της µονάδας επιϕάνειας της ϐάσης. Εποµένως το συνολικό κόστος είναι C = kπr +kπrh C(r) = k ( ) πr + V r. Εύκολα ϐρίσκουµε ότι C (r) = k ( ) πr V r = kπ(r h) και C (r) = 4k ( ) π + V r = 4kπ( + h 3 r ). Εποµένως το κόστος γίνεται ελάχιστο όταν r = h h = r. 3) ίνεται η συνάρτηση f() = e 3 e +.. Να µελετηθεί η f() ως προς τη µονοτονία, τα ακρότατα, την καµπυλότητα, τα σηµεία καµπής της και τις ασύµπτωτες που τυχόν έχει.. Να γίνει πρόχειρη γραϕική παράσταση της f(). Λύση : Η f() έχει πεδίο ορισµού D f = R. Για την πρώτη και δεύτερη παράγωγο έχουµε αντίστοιχα : f () = 5e και f () = 5e ( e ). Επειδή f () >, R η f() είναι (e +) (e +) 3

9 γνησίως αύξουσα στο R και δεν παρουσιάζει ακρότατα. Ακόµη f () >, (, ln ), ενώ f () <, (ln, + ), άρα η f() στρέϕει τα κοίλα άνω (, ln ), ενώ στρέϕει τα κοίλα κάτω (ln, + ) και παρουσιάζει καµπή στο σηµείο M(ln, 4 ). Επίσης, αϕού D f = R, η f() δεν έχει κατακόρυϕη ασύµπτωτη, ενώ επειδή lim f() = + και lim f() = 3, η γραϕική παράσταση της f() έχει οριζόντια ασύµπτωτη την y = για + και την y = 3 για. Στο Σχ. φαίνεται ο πίνακας τιµών των f (), f () και στο Σχ. η γραϕική παράσταση της f(). Σχήµα : Ο πίνακας τιµών των f () και f () και για την άσκηση 3. Σχήµα : Η γραϕική παράσταση για την άσκηση 3. 4) Να ϐρεθεί κλίση της εϕαπτοµένης της καµπύλης µε εξίσωση y +y = 5 στο σηµείο Α(, 3), και της καµπύλης µε εξίσωση y 3 + 3y y = στο σηµείο Β( 3, ). Λύση : Για την πρώτη καµπύλη έχουµε dy = y d +y Οπότε οι κλίσεις είναι αντίστοιχα m = και m = 5., και για την δεύτερη dy d = 4y 3y. 3y +6y 5) ύο ποδηλάτες ξεκίνησαν ταυτόχρονα από δύο πόλεις που απέχουν 4km και κινούνται προς την αντίθετη κατεύθυνση µε ταχύτητα km/h. Μια µύγα ξεκινώντας επίσης από το

10 τιµόνι του ενός ποδηλάτη πέτάει µέχρι το τιµόνι του δεύτερου ποδηλάτη και επιστραϕεί στον πρώτο. Επαναλαµβάνει αυτή την πορεία, µπρος πίσω συνεχώς µέχρι να συναντηθούν οι δύο ποδηλάτες. Πόσα χιλιόµετρα ταξίδεψε η µύγα αν κινείται µε ταχύτητα 3km/h. Λύση : Οι ποδηλάτες ϑα συναντηθούν µετά από µία ώρα, άρα η µύγα ϑα καλύψει συνολικά 3km. 6) Μια κυρία ύψους.7m ϐαδίζει µε ϱυθµό m/sec προς το σηµείο που ϐρίσκεται ένας στύλος της ΕΗ ύψους 5.5m. Πόσο γρήγορα το µήκος της σκιάς της αλλάζει Λύση : Απο το Σχ. 3, κάνοντας χρήση των οµοίων τριγώνων έχουµε = (t) + (t). (t) Ο ϱυθµός µεταβολής της σκιάς dy/dt υπολογίζεται απο την σχέση (t) = (t) ή d dt = d dt = ( cm/sec) Σχήµα 3: Η κυρία και η σκιά της 3

11 Ασκήσεις Ανάλυση Ι Λύσεις ασκήσεων Οµάδας 4 Λουκάς Βλάχος και Χάρης Σκόκος ) Χρησιµοποιώντας το ϑεώρηµα µέσης τιµής του διαϕορικού λογισµού αποδείξτε ότι : e < ln < e. Λύση : Θεωρούµε τη συνάρτηση f() = ln, µε πεδίο ορισµού D f = (, + ) και το κλειστό διάστηµα [, e]. Η f είναι συνεχής στο [, e] και παραγωγίσιµη στο (, e) µε f () =. Άρα ικανοποιούνται οι υποθέσεις του Θεωρήµατος Μέσης Τιµής του ιαϕορικού Λογισµού οπότε ξ (, e) : f f(e) f() (ξ) = e ξ = ln e. Αλλά < ξ < e > ξ > e > ln e > e e < ln < e. ) Τρία σηµεία A, B, C σχηµατίζουν γωνία ˆB = 6 o. Ενα αυτοκίνητο φεύγει από το A ενώ ταυτόχρονα ένα τρένο φεύγει από το B. Το αυτοκίνητο κινείται ευθύγραµµα προς το B µε σταθερή ταχύτητα 8km/h ενώ το τρένο κινείται επίσης ευθύγραµµα προς το C µε σταθερή ταχύτητα 5km/h. Αν AB = km και BC = 5 km, να ϐρεθεί πότε η απόσταση µεταξύ αυτοκινήτου και τρένου γίνεται ελάχιστη. Λύση : Τα δύο οχήµατα φθάνουν στο τέλος της διαδροµής τους την ίδια χρονική στιγµή t = = 5 =, 5h. Χρησιµοποιώντας τον νόµο των συνηµιτόνων έχουµε ότι το τετράγωνο 8 5 της απόστασης των κινητών είναι ακόλουθη συνάρτηση του χρόνου : f(t) = 9t 4t + 4. Εύκολα ϐρίσκουµε ότι αυτή η συνάρτηση παρουσιάζει ελάχιστο για t = 7 43 h. 3) Να υπολογιστούν τα όρια : + + sin. lim + e +. lim ln + 3. lim ) +(sin

12 Λύση :. Παρατηρούµε ότι sin + +, οπότε ο αριθµητής φράσσεται από πάνω και κάτω από δύο συναρτήσεις ( που ) απειρίζονται οπότε το όριό + + sin + ( + + sin ) του είναι το άπειρο. Άρα lim = lim = + e ( ) (e + ) + + cos + sin lim = lim = + e e.. lim lim ( ) ( ) = lim = lim (ln + ) ln + (ln + ) + =. (ln + ) ( ) = [ ] ln(sin ) 3. lim +(sin ) = lim e ln(sin ) = e lim [ ln(sin )] lim + = e + / = [ ] + [ ] [ ] (ln(sin )) cos cos + sin lim lim lim e + (/) = e + sin = e + cos = e =. 4) ύο πόλεις ϐρίσκονται στα νότια ενός ποταµού (ϐλέπε σχήµα). Για τις ανάγκες ύδρευσης των πόλεων πρόκειται να κατασκευαστεί στον ποταµό ένας σταθµός αντλήσεως ύδατος, άπ όπου ϑα ξεκινούν δύο αγωγοί που ϑα φέρουν το νερό στην κάθε πόλη. Κάθε αγωγός ϑα κατασκευαστεί επί της ευθείας που συνδέει τον σταθµό µε την αντίστοιχη πόλη. Να εκφραστεί το µήκος του αγωγού σαν συνάρτηση µιας µεταβλητής και να ϐρεθεί η ελάχιστη τιµή του. Λύση : Από το σηµείο Α φέρουµε την κάθετο (ΑΟ)=χιλ. και από το Β την κάθετό (ΒΚ)=Km. Η απόσταση (ΟΚ)=(ΟΡ)+(ΡΚ)=Km. Εστω =(ΟΡ). Τότε (ΡΚ)=. Θέλουµε να ϐρούµε τη συνταγµένη του σηµείου Ρ έτσι ώστε το µήκος L=(ΑΡ)+(ΡΒ) να είναι ελάχιστο. Επειδή L = ( ) ()

13 η άκρα τιµή (ή τιµές) του µήκους L ϑα είναι η ϱίζα (ή ϱίζες) που ϑα ϐρεθεί (ή ϐρεθούν) από την µηδενισµένη πρώτη παράγωγο του L ως προς και η οποία (η οποίες) καθιστά (ή καθιστούν) τη τιµή (ή τις τιµές) της δευτέρας παραγώγου του αρνητική ή ϑετική αν έχουµε µέγιστο ή ελάχιστο, αντίστοιχα. Πράγµατι dl d = 5 + ( ) + ( ) + + = () 5 + ( ) ή ή ή 5 + ( ) = ( ) + (3) (5 + ( ) ) = ( ) ( + ) (4) 5 = 4( ) 5 = ( ) = 7 (5) Η τιµή του µήκους L γίνεται ελάχιστη όταν η συντεταγµένη του σηµείου Ρ είναι ( = /7) και αυτή είναι : L = L( = /7) = 49. 5) Ενα αεροπλάνο της τροχαίας παρακολουθεί την κίνηση σε ένα µεγάλο αυτοκινητόδροµο των ΗΠΑ πετώντας περίπου 5m πάνω από το δρόµο µε σταθερή ταχύτητα Km/h. Χρησιµοποιώντας το ϱαντάρ ο πιλότος ανακαλύπτει ένα αυτοκίνητο πιθανά να έχει υπερβεί το όριο ταχύτητας και είναι σε αποστάτη 4m από το αεροπλάνο και για να µπορέσει να σταθεί ακριβώς από πάνω από το αυτοκίνητο χρειάζεται να ελαττώσει την ταχύτητα του µε ϱυθµό Km/h. Υπολογίστε την ταχύτητα του αυτοκινήτου. Λύση : Την χρονική στιγµή t = το αυτοκίνητο κινείται µε σταθερά ταχύτητα v που είναι το Ϲητούµενο και το αεροπλάνο απέχει s =.5Km από το αυτοκίνητο. Οταν συγχρονίζονται οι ταχύτητες του αεροπλάνου v a µε αυτή του αυτοκινήτου v = v a = v t at (6) Η απόσταση που ϑα διανύσει το αεροπλάνο για να συναντηθεί µε το αυτοκίνητο ϑα είναι Αντικαθιστώντας την ταχύτητα από την Εξ. 6 ϑα έχουµε s = s + v t = v t /(at ) (7) v = v s a = Km/h.5Km (Km/h ) 75Km/h. Άρα µάλλον ο οδηγός πρέπει να ετοιµάζεται για εκπλήξεις... 3

14 Ασκήσεις Ανάλυση Ι Λύσεις ασκήσεων Οµάδας 5 Λουκάς Βλάχος και Χάρης Σκόκος ) Να περιγράψετε την κίνηση ενός σώµατος στο επίπεδο (, y) (σχεδιάζοντας και την τροχιά του) οι συντεταγµένες του οποίου δίνονται από τις σχέσεις = sin t, y = cos t, όπου t είναι ο χρόνος κίνησης του σώµατος. Λύση : Το σώµα εκτελεί περιοδική κίνηση µε περίοδο T = π κινούµενο στο τµήµα της παραβολής = y που ορίζετε από τις ανισώσεις, y. Ξεκινά από 4 το σηµείο (,), φτάνει στο (,-) σε χρόνο t = π επιστρέϕει στο αρχικό σηµείο για t = π, όπως φαίνεται στο Σχ. Σχήµα : Η τροχιά του κινητού της άσκησης. ) Να σχεδιάσετε τις καµπύλες που δίνονται από τις εξισώσεις :. r = + sin θ, θ < π.. = 3 + cos θ, y = 5 + sin θ, θ < π. Λύση :. Η καρδιοειδής καµπύλη του Σχ..

15 Σχήµα : Η καρδιοειδής καµπύλη του ερωτήµατος... Κύκλος µε κέντρο το σηµείο ( 3, 5) και ακτίνα r =. 3) Να δείξετε ότι για τη συνάρτηση ισχύει f () =. f() = { e για για = Λύση : Για ισχύει f () = 3 e. Επίσης, f () = lim lim e =. Οπότε ισχύει f () = { e 3 για για =. f () f () Για τη δεύτερη παράγωγο στο έχουµε lim 4 lim =. Οπότε f () =. e e = lim 4 e = lim ( ) + = + e 4 e ( ) + = + ( ) + = + 4) Εστω = t + /t και y = t + /t να αποδειχτεί ότι η δεύτερη παράγωγος d y/d είναι σταθερή και να προσδιοριστεί η παράσταση K = ( 4) d y d + dy d 4y.

16 Λύση : Η παράγωγος d y d = και επειδή y = και (dy/d) = η παράσταση K = ( 4) + () 4( ) =. 5) Υπολογίστε τα σηµεία της καµπύλης y = + που είναι πλησιέστερα στο σηµείο (,). Λύση : Η συνάρτηση που περιγράϕει το τετράγωνο της απόστασης είναι f() = d = 4 + άρα η πρώτη παράγωγο (( )) µηδενίζεται στα σηµεία (, ±/ ) και η δεύτερη παράγωγο είναι ϑετική ( > ) (τοπικό ελάχιστο) στα σηµεία A( /, 3/), B(/, 3/) που είναι και τα πλησιέστερα στο σηµείο (, ) και τοπικό µέγιστο στο σηµείο (, ). Σχήµα 3: Η καµπύλη για την άσκηση 5 (Σχεδίαση Γ. Ζαχαρέγκας) 6) Ενα οµοίωµα ϱουκέτας αρχικά εκτοξεύεται από την ηρεµία κατακόρυϕα µε επιτάχυνση a(t) = 6t m/sec και κινείται µε αυτή την επιτάχυνση για τρία δευτερόλεπτα. Στη συνέχεια τελειώνουν τα καύσιµα και κινείται σαν ελεύθερο σώµα. Μετά από 7sec ανοίγει το αλεξίπτωτο και η ταχύτητα του προς το έδαϕος ελαττώνεται γραµµικά στο ϱυθµό 5cm/sec για 5sec. Στη συνέχεια πέϕτει στο έδαϕος µε το ϱυθµό που απέκτησε µετά τα 5sec. (α) Να υπολογισθεί η ϑέση s(t) και η ταχύτητα u(t) για κάθε χρονική στιγµή και να γίνει η γραϕική παράταση τους. (ϐ) Να υπολογισθεί η χρονική στιγµή που ϑα φτάσει στο µέγιστο ύψος και να προσδιορισθεί το ύψος αυτό. (γ) Να υπολογισθεί η διάρκεια της πτήσης της ϱουκέτας. Λύση : Θα προχωρήσουµε σταδιακά µε ϐάση τα δεδοµένα της εκϕώνησης Για το χρονικό διάστηµα t : 3s το οµοίωµα της ϱουκέτας κινείται µε επιτάχυνση a(t) = 6t και µε ταχύτητα u(t) = 3t +c και s(t) = t 3 +c t+c. Από τις αρχικές 3

17 συνθήκες ταχύτητας και ϑέσης ϐρίσκουµε ότι u(t) = 3t 3 και s(t) = t 3 άρα µετά από τα 3sec κινείται µε ταχύτητα 7m/s και ϑα έχει ανέλθει σε ύψος 7m. Για το χρονικό διάστηµα t : 3 3s το οµοίωµα κινείται επιβραδυνόµενο µε g = m/s και s(t) = 7(t 3) 5(t 3) και s(t) = 7 (t 3). Αρα µετά από 7sec ϑα έχει διανύσει επιπλέον 3645m Για τα επόµενα 5sec το οµοίωµα πέϕτει προς το έδαϕος µε επιτάχυνση 5m/s. ηλαδή u(t) = 5t και s(t) = (5/)t. Μετά από 5sec ϑα έχει ταχύτητα 5m/sec και ϑα έχει κατέβει 6.5m µετά κινείται οµαλά µε ταχύτητα 5m/sec για να καλύψει το υπόλοιπο της απόστασης που του αποµένει µέχρι το έδαϕος, δηλαδή 385, 5m σε 54, sec. (ϐ) Το οµοίωµα ϑα φτάσει στο µέγιστο ύψος των 395m τη χρονική στιγµή 3sec και (γ) η συνολική του πτήση ϑα διαρκέσει 89, sec. (Να προσπαθήσετε να Ϲωγραϕίσετε την καµπύλη). 4

18 Ασκήσεις Ανάλυση Ι Λύσεις ασκήσεων Ομάδας 6 Λουκάς Βλάχος και Χάρης Σκόκος ) ίνεται η συνάρτηση f () e. Βρείτε τους τέσσερις πρώτους όρους του αναπτύγματος Taylor της f με κέντρο και υπολογίστε προσεγγιστικά την τιμή της στο σημείο,. Λύση: Ο τύπος της σειράς με κέντρο το είναι f () n f (n) () n. n! Υπολογίζουμε τις επιμέρους ποσότητες: f () e, f (), f () e e, f (), f () e + e, f (), f () 3e e, f () 3. Οπότε χρησιμοποιώντας τους τέσσερις πρώτους όρους του αναπτύγματος Taylor της f έχουμε ότι e + 3. Αντικαθιστώντας τη τιμή, συμπεραίνουμε ότι f (, ).64. Αντικαθιστώντας τη τιμή. στη συνάρτηση στο Ματηεματιςα παίρνουμε την τιμή ) Αναπτύξτε σε σειρά Taylor κέντρου τη συνάρτηση f () e ( ). Χρησιμοποιώντας το παραπάνω ανάπτυγμα υπολογίστε το όριο lim f (). Λύση: f () e ( ) ( ) + + +! 3 3! + 4 4! +... ( 3! Οπότε lim f () lim 4! ) 3! + 4! (! 3 3! + 4 4! ) Να υπολογιστεί κατά προσέγγιση το ημίτονο γωνίας, ακτινίων με τη χρήση των τεσσάρων πρώτων όρων του αναπτύγματος Taylor της συνάρτησης f () sin() στο σημείο. Εκτιμήστε επίσης το σϕάλμα στον υπολογισμό του sin(, ). Λύση: Από τη σειρά Taylor του ημιτόνου sin 3 3! έχουμε την προσέγγιση sin(, ), (,)3 6, Η εκτίμηση του σϕάλματος αυτής της προσέγγισης είναι R f (4) (ξ) 4! (, ) 4 sin(ξ) 4! (, ) 4 (,)4 4!,6 4, 67, όπου ξ τυχαίος αριθμός στο διάστημα (,, ). ) 4) Ο καϕές μέσα σε ένα ϕλιτζάνι βρίσκεται σε ϑερμοκρασία T(t ) την χρονική στιγμή t σε ένα δωμάτιο με ϑερμοκρασία T C. Η ϑερμοκρασία του καϕέ μεταβάλλεται με

19 το χρόνο T(t) (T(t ) T )e t t + T, t t Θα προσθέσουμε γάλα, ώστε στο ϕλιτζάνι να περιέχει 9% καϕέ και % γάλα. Η ϑερμοκρασία του καϕέ την χρονική στιγμή t είναι C και σχεδιάζουμε να πιούμε το καϕέ την χρονική στιγμή t. (Η μονάδα του χρόνου είναι παντού η ίδια, λεπτά). Το γάλα στο ψυγείο έχει ϑερμοκρασία 5 C. Ποια είναι η καλλίτερη στιγμή να προσθέσουμε το γάλα για να έχει ο καϕές την υψηλότερη ϑερμοκρασία όταν αποϕασίσουμε να τον πιούμε; Λύση: Η ϑερμοκρασία του καϕέ την χρονική στιγμή t ϑα είναι Το μείγμα ϑα έχει ϑερμοκρασία T (t ) 8 e t / + 9 T + T 7 e t / / όπου T είναι η ϑερμοκρασία του καϕέ και T η ϑερμοκρασία του γάλατος. διάστημα t t η ϑερμοκρασία του μείγματος είναι Y(t) τότε Αν στο Y(t) [Y(t ) ]e (t t )/ + [ 7 e t /.5 ] e (t t )/ + και η τελική ϑερμοκρασία T Y() e [ 7 (.5)e t / ] + dt dt (.5/ ( e) ) e t / < (ϕθίνουσα) Η συνάρτηση συνεχώς ϕθίνει, δεν παρουσιάζει ελάχιστο και έχει την υψηλότερη ϑερμοκρασία τη στιγμή που ρίχνουμε μέσα το γάλα!!! 5) Αν η ανακλαστική επιϕάνεια ενός τηλεσκοπίου περιγράϕεται από τη σχέση S 8π ( ) d 3/ 3 c 6c + και για τα περισσότερα τηλεσκόπια d / 6c << δείξτε ότι η επιϕάνεια του τηλεσκοπίου μπορεί να προσεγγιστεί από τη σχέση πd / 4. Λύση: Αν d / 6c, αναπτύσσω σε σειρά τη σχέση ( + ) 3/ + (3/ ) [ 8π 3 c + 3 ( ) ] d 6c πd 4

20 6) Να υπολογισθεί η τετραγωνική προσέγγιση της συνάρτησης στη περιοχή. f () sec Λύση: Αναπτύσσουμε και το sec αλλά και το ( ) /, και έχουμε sec cos ( / )( / ) + 3

21 Ασκήσεις Ανάλυση Ι Ομάδα 7 Λύσεις Λουκάς Βλάχος και Χάρης Σκόκος ) Ενας παραγωγός μπορεί και πουλάει προϊόντα την εβδομάδα στην τιμή P, το καθένα. Το συνολικό κόστος για την παραγωγή των αυτών προϊόντων είναι y 5 + ευρώ. Πόσα προϊόντα πρέπει να παράγει ο παραγωγός για να έχει το μέγιστο δυνατό κέρδος; Να βρεθεί το κέρδος αυτό. Λύση: Τα συνολικά εβδομαδιαία έσοδα του παραγωγού από την πώληση των προϊόντων του είναι P (.),. Το κέρδος T του παραγωγού είναι τα έσοδά του μείον το κόστος του. ηλαδή T P y. 5. Παραγωγίζουμε ως προς και έχουμε T dt d 5,. Οπότε T Επίσης T, < (μέγιστο). ηλαδή, ο παραγωγός ϑα πρέπει να παράγει 75 προϊόντα εβδομαδιαίως για να έχει το μέγιστο κέρδος. Επομένως το μέγιστο κέρδος του παραγωγού ϑα είναι T 5(75), (75) 585 ευρώ. ) Να υπολογιστούν τα όρια: tan. lim π + tan. lim sin ln + 3. lim π 4 ( tan ) sec() 4. lim Λύση: (. lim π. lim + sin ) ( tan + tan ) ( ln lim / sin ) + lim π sec () sec () 3. lim π 4 ( tan ) sec() lim π 4 / sin tan lim / sin + tan / sec() lim tan π 4 cos() lim tan + ) ( lim π 4 sec sin()

22 ( 4. lim sin ) lim ( sin sin ) ( ) lim ( 3) Υπολογίστε την πρώτη παράγωγο των συναρτήσεων. e sin ( ) sin. ln cos 3. cos 3 [sin()] 4. 3 sin (5) Λύση:. e sin cos. sin 3. 6 cos [sin()] sin[sin()] cos() 4. 3 sin(5) cos(5) + 3 sin (5) ) cos ( ) lim sin + cos ( ) sin cos sin 4) Αν στη μέτρηση του (κοντά στην αρχή των αξόνων) κάνουμε λάθος κατά 3%, πόσο λάθος κάνουμε στον υπολογισμό της ϑερμοκρασίας που περιγράϕεται αναλυτικά από την συνάρτηση ( + )3/ T() + Λύση: Το λάθος στη μέτρηση της ϑερμοκρασίας είναι [ ] dt() T d Υπολογίζουμε το την παράγωγο της ϑερμοκρασίας dt() ( + )3/ + 3 d ( + ) ( + ) T( ) (/ ).3.5% 5) (α) Να βρεθούν δύο ϑετικοί αριθμοί των οποίων το γινόμενο είναι και το άθροισμα γίνεται μέγιστο. (β) Να βρεθεί το σημείο της καμπύλης 73 7y + 5y 5, που είναι πλησιέστερο στην αρχή των αξόνων.

23 Λύση: (α) Οι ϑετικοί αριθμοί που δίνουν ακρότατα στο άθροισμα είναι, y αλλά δεν δίνουν μέγιστο, οπότε η απάντηση στο ερώτημα, όπως έχει τεθεί, είναι αρνητική. (β) Η απόσταση από την αρχή των αξόνων είναι g() d + y () και τα σημεία, y ακολουθούν την καμπύλη 73 7y() + 5y () 5. () Άρα για να γίνει η απόσταση ελάχιστη ϑα πρέπει g () y / y. Παραγωγίζουμε την Εξ. (), λύνουμε και αντικαθιστούμε τα σημεία που μηδενίζεται η g () και στη συνέχεια λύνουμε ως προς y Στο σημείο y (4/ 3) η Εξ. γράϕεται y 4 3, y (4/ 3) + 5(6/ 9) 5 και έχει λύσεις 8, 8 και αντίστοιχα το y 6, 6. Για y (3/ 4) έχουμε δύο ακόμα ζευγάρια τιμών (4, 4) για το και (3, 3) για το y. Οπότε έχουμε τέσσερα σημεία από τα οποία τα δύο (4, 3), ( 4, 3) είναι τα πλησιέστερα στην αρχή των αξόνων. (Η καμπύλη είναι έλλειψη με αντεστραμμένους άξονες οπότε τα σημεία είναι συμμετρικά ως προς την αρχή των αξόνων). 6) Υπολογίστε την περίμετρο ενός πολυγώνου με n γωνίες που είναι εγγεγραμμένο σε κύκλο ακτίνας μήκους και στη συνέχεια υπολογίστε την περίμετρο όταν το n. (Χρησιμοποιήστε την τετραγωνική προσέγγιση του cos θ στη γειτονιά του θ.) Λύση: Από το νόμο του συνημιτόνου στο τρίγωνο με πλευρές a, b και c με γωνία θ απέναντι από την πλευρά c c a + b ab cos θ και για a b και θ π/ n έχουμε c cos(π/ n) Η περίμετρος n cos(π/ n) και με την προσέγγιση cos θ θ /. Αν το n και θ π/ n ϑα έχουμε n cos(π/ n) n (π/ n) n(π/ n) π. 3

24 Ασκήσεις Ανάλυση Ι Ομάδα 8 Λουκάς Βλάχος και Χάρης Σκόκος Ημερομηνία Παράδοσης 3-- ) Να υπολογισθεί το ολακλήρωμα d 8 Λύση: d c ) Να υπολογισθούν τα ολοκληρώματα. cos d sin 3. tan 6 sec d 3. d +5 Λύση:. cos d sin 3 cot + c. tan 6 sec d tan7 7 + c 3. d +5 5 ln(5 + ) + c 3) Να υπολογισθεί το ολοκλήρωμα + + d Λύση: Αντικαθιστούμε το u + και έχουμε + + d u du

25 Θέτω t u + u (t u ) du t 3 dt ( + )( + ) ln c 4) Να υπολογισθούν τα ολοκληρώματα. ln d. cos d Λύση:.. ln d cos d sin + cos () ln d ln (sin ) d sin (ln ) d ln d ln + c. sin d sin + cos d sin + cos sin + c. (cos ) d 5) Να υπολογισθούν τα ολοκληρώματα. 3 cos( 4 ) d. sin d Λύση:. Θέτοντας y 4 έχουμε 3 cos( 4 ) d cos(y) dy 4 4 sin y + c 4 sin(4 ) + c.. Επειδή I sin cos(), έχουμε sin d cos() d. Θέτοντας y έχουμε I cos y dy 4 + sin() + c. 4 6) Να υπολογισθούν τα ολοκληρώματα. sin(ln ) d. cos d Λύση:

26 . I sin(ln ) d () sin(ln ) d sin(ln ) (sin(ln )) d sin(ln ) cos(ln ) d sin(ln ) () cos(ln ) d. sin(ln ) cos(ln ) I I [ sin(ln ) cos(ln )] + c. cos d (tan ) d tan (cos ) tan + d tan + ln cos + c. cos tan d tan sin cos d 3

27 Ασκήσεις Ανάλυση Ι Οµάδα 9 Λύσεις Λουκάς Βλάχος και Χάρης Σκόκος ) Να υπολογισθεί το ολακλήρωµα d 8 + Λύση : Μετά την διαίρεση των πολυωνύµων ϐρίσκουµε = Επειδή = ( + 3)( ) έχουµε την ανάλυση σε µερικά κλάσµατα Οπότε τελικά παίρνουµε d = = ( ). = 3 ) Να υπολογισθούν τα ολοκληρώµατα d. +. d (3 )d + 3d ln ln + + c. d d ( ) = Λύση :. Θέτοντας t = + + παίρνουµε = ( ) t t, + = ( ) ( ) t + t, d = t + t dt. ( ) d Οπότε έχουµε + = t + t dt ( dt ) ( ) 4 t t t + = t t = dt t dt t + = + ln t ln t + + c = ln c.

28 . Θέτοντας t = παίρνουµε = ( tdt t t (t + ) = t ( ) t + arctan ( ) + c. t t +, d = ) = t t + + tdt (t +). Οπότε έχουµε d = dt t + = t t + + arctan t + c = 3) Να υπολογισθούν τα ολοκληρώµατα d. e + e d Λύση : d e + e = dt t t + t =. Θέτοντας t = e έχουµε dt t + = ln t t + ln t + + c = e + ln(e + ) + c.. Επειδή 4+3 = ( ) +3 ϑέτουµε 3z =, οπότε παίρνουµε 6z + z + dz = 3 z z + dz + dz z + = 6 z + + dt dt dt t (t + ) = t + t d = dz z +. ολοκλήρωµα υπολογίζεται µε την αντικατάσταση t = z+ z + οπότε γίνεται dt t = ln t +c = ln z+ z + +c. Εποµένως τελικά παίρνουµε ln c. Το τελευταίο dz z + = d = 4) Να υπολογισθούν τα ολοκληρώµατα.. ln d ( + ) d Λύση :. lim ε + ε ln d = lim ε + [ ln ] ε =

29 . Αντικαθιστούµε το = u 5) Να υπολογισθεί το ολοκλήρωµα d = lim d + lim ( + ) k + k ( + ) l = lim k + [ arctan ] k + lim l 9 8 d l ( + ) d [ arctan ] l = π Λύση : Αντικαθιστούµε το 7 = z 9 8 d = dz z = / 6) Να υπολογισθεί το ολοκλήρωµα Λύση : Για είναι και εϕόσον d l 3 = lim d l 3 = lim l d 3 ( + ) 3 > 3 ( + ) ) l ( οπότε το ολοκλήρωµα υπολογίζεται προσεγγιστικά από τη σχέση, d 3 ( + ) < d 3 = /8 = ( lim l 4 ) l = 8 3

30 Ασκήσεις Ανάλυση Ι Ομάδα Λύσεις Λουκάς Βλάχος και Χάρης Σκόκος ) Να υπολογιστεί το εμβαδό της περιοχής του επιπέδου που περικλείεται από τις γραϕικές παραστάσεις y + και (y ). Λύση: Αρχικά βρίσκουμε τα σημεία τομής των δυο καμπυλών (Σχ. ): y + (y ) y 4y 6 y, y 3. Επομένως για το εμβαδό A έχουμε: A 3 ( [ y + (y ) ] dy 3 y3 + y + 6y) Σχήμα : Το σχήμα της άσκησης. ) Να υπολογιστεί ο όγκος V του στερεού το οποίο παράγεται από την περιστροϕή γύρω από την ευθεία y 4 της περιοχής του επιπέδου που περικλείεται από τις γραϕικές παραστάσεις y και y. Λύση: Το στερεό ϕαίνεται στο Σχ.. Οι δυο καμπύλες τέμνονται στα σημεία με και 3. Θα υπολογίσουμε τον όγκο χρησιμοποιώντας τη μέθοδο των δακτυλίων. Από το Σχ. βλέπουμε ότι η εσωτερική ακτίνα του δακτυλίου είναι 4 και η εξωτερική

31 Σχήμα : Το σχήμα της άσκησης. 4 ( ) Οπότε ο όγκος V είναι: V π 3 π [ ( + + 4) (4 ) ] 3 d π ( )d ) 3 ( π ) Να υπολογιστεί ο όγκος V του στερεού το οποίο παράγεται από την περιστροϕή γύρω από τον άξονα y της περιοχής του επιπέδου που περικλείεται από τη γραϕική παράσταση y ( )( 3) και τον άξονα. Λύση: Το στερεό ϕαίνεται στο Σχ. 3. Θα υπολογίσουμε τον όγκο χρησιμοποιώντας τη μέθοδο των κυλίνδρων. Από το Σχ. 3 βλέπουμε ότι η ακτίνα του κυλίνδρου είναι και το ύψος του ( )( 3). Οι οριακές ϑέσεις του κυλίνδρου βρίσκονται για και 3. Οπότε ο όγκος V είναι: V π 3 π[] [ ( )( 3) ] 3 d π ( )d ) 3 ( π 4 5.

32 Σχήμα 3: Το σχήμα της άσκησης 3. 4). Να υπολογισθεί το μήκος της καμπύλης t, y t 3 για t.. Να υπολογισθεί η περίμετρος της έλλειψης. Λύση:. S (d dt ) ( dy ) dt + dt (4 + 9t ) / tdt 8 7 ( + ). Ο υπολογισμός της περιμέτρου της έλλειψης περιέργως δεν είναι καθόλου απλός. Ας ορίσουμε το πρόβλημα χρησιμοποιώντας τις παραμετρικές εξισώσεις a cos t και y b sin t τότε η περίμετρος υπολογίζεται από τη σχέση π/ S (d dt ) ( dy ) dt + dt 3

33 όπου e a b b E(e ) S 4aE(e ) π/ η εκκεντρότητα της έλλειψης. ( e cos t) / dt Το ολοκλήρωμα αυτό λύνεται μόνο προσεγγιστικά ή αριθμητικά. Αναζητήστε μόνοι σας την προσέγγιση των λύσεων κάνοντας υποθέσεις για την εκκεντρότητα e, για να ανακαλύψετε και αυτή τη διάσταση στα ολοκληρώματα. 5) Να υπολογισθεί η επιϕάνεια και ο όγκος του στερεού που προκύπτει από την περιστροϕή της έλλειψης γύρω από τον άξονα O. Λύση: Ο όγκος του ελλειψοειδούς που δημιουργείται από την περιστροϕή της έλλειψης γύρω από τον άξονα O είναι a V π y d πb a Η επιϕάνεια υπολογίζεται από τη σχέση + οπότε, E 4π a [ ] d 4 3 πb a y() a + (dy/ d) d a + y y(dy/ d) b b a dy d b a y ( dy ) b 4 + d a 4 y b4 + a 4 y a 4 y b4 + a 4 b ( / a ) a 4 b ( / a a4 b + b 4 a b ) a 4 b a b 4πb a a a E πy + a 4 (a b ) d 4πb a a4 + b a a4 (a b ) a 4 a a (a ) ( dy ) d a 4π d a a b b a a a 4 (a b ) a d a a 4 u du a a b [u b ] [ u a 4 u + a4 u ] a a b sin a 4πb a a b 4πb a a a b a a b 4 a (a b ) + a4 a b sin a π b + a b sin a b a b a 4

34 6). Βρείτε το μήκος του τόξου του καδιοειδούς r + cos θ.. Να υπολογισθεί το εμβαδόν του κοινού τόπου μεταξύ του κύκλου r 3/ και της καρδιοειδούς καμπύλης r + cos θ. 3. Να βρεθεί το εμβαδόν του τόπου, που ορίζεται από τον άξονα O και ένα τόξο της κυκλοειδούς καμπύλης που ορίζεται από τις παραμετρικές εξισώσεις θ sin θ, y cos θ. Λύση:. Υπολογίζουμε το οπότε dr dθ sin θ, π π S ( + cos θ) + sin θ dθ ( + cos θ) dθ π 4 cos θ/ dθ 8. Το ζητούμενο εμβαδό Ε είναι διπλάσιο του εμβαδού E του τόπου OABΓ (βλέπε Σχ. 4 ) που αποτελείται από δύο τμήματα. Το ένα διαγράϕεται από την πολική ακτίνα r 3/ από θ ως θ π/ 3, ενώ το δεύτερο από την r + συνθ από θ π/ 3 ως θ π. Σχήμα 4: Σχήμα για την άσκηση 6. 5

35 Συνεπώς Οπότε Συνεπώς E π/ 3 (3/ ) dθ + π π/ 3 E 9 4 θ π/ 3 + [θ + sin θ]π π/ 3 + π π/ 3 3π 8 + [π π/ 3 sin π/ 3] + E E 7π/ 4 9 3/ 8 ( + cos θ) dθ. + cos θ dθ sin θ [θ/ + ] π 4 π/ 3 7π Ενα τόξο της κυκλοειδούς διαγράϕεται, όταν η θ μεταβάλλεται από ως π, διάστημα κατά το οποίο μεταβάλλεται και η. Συνεπώς E π yd π ( cos θ)( cos θ)dθ [ 3 θ sin θ 4 π sin θ]π 3 π 3π ( 3 + cos θ cos θ)dθ 6

Εκφωνήσεις και Λύσεις των Θεμάτων

Εκφωνήσεις και Λύσεις των Θεμάτων ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Δευτέρα 8 Μαΐου 0 Εκφωνήσεις και Λύσεις των Θεμάτων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας ΚΕΦΑΛΑΙΑ,4. Συστήµατα ενός Βαθµού ελευθερίας. Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα ' O για την απωστική δύναµη F, > και για ενέργεια Ε. (α) Είναι V και οι επιτρεπτές περιοχές της κίνησης

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ).

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ). 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1 ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ Α. Βλέπε σχολικό βιβλίο σελίδα 194, το θεώρηµα ενδιάµεσων τιµών. Β. Βλέπε τον ορισµό στη σελίδα 279 του σχολικού βιβλίου. Γ. Βλέπε

Διαβάστε περισσότερα

Γενικά Μαθηµατικά Ι Θέµατα Ιανουαρίου 2015

Γενικά Μαθηµατικά Ι Θέµατα Ιανουαρίου 2015 Γενικά Μαθηµατικά Ι Θέµατα Ιανουαρίου 215 Άσκηση 1: (α) Να υπολογισθεί το γενικευµένο ολοκλήρωµα (ax+b)(x 2 +1) αν το a είναι ϑετικός αριθµός. (ϐ) Το µεσηµέρι, ένα σαλιγκάρι που ϐρίσκεται στο κέντρο ενός

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο A. Έστω µια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστηµα. Αν f () > σε κάθε εσωτερικό σηµείο του, τότε να αποδείξετε ότι η f είναι γνησίως

Διαβάστε περισσότερα

17 Μαρτίου 2013, Βόλος

17 Μαρτίου 2013, Βόλος Συνήθεις ιαφορικές Εξισώσεις 1ης Τάξης Σ Ε 1ης τάξης, Πεδία κατευθύνσεων, Υπαρξη και μοναδικότητα, ιαχωρίσιμες εξισώσεις, Ολοκληρωτικοί παράγοντες, Αντικαταστάσεις, Αυτόνομες εξισώσεις Μανόλης Βάβαλης

Διαβάστε περισσότερα

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος ιαφορικές Εξισώσεις Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Ατελείς ιδιοτιμές Εκθετικά πινάκων Μανόλης Βάβαλης Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας 9 Απριλίου

Διαβάστε περισσότερα

Εκφωνήσεις και Λύσεις των Θεμάτων

Εκφωνήσεις και Λύσεις των Θεμάτων ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Τετάρτη 23 Μαΐου 2012 Εκφωήσεις και Λύσεις

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

Μαθηματικά Γ Λυκείου. Έκδοση Α. 120 Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων. Αθήνα 2012 (λίγο πριν τις εκλογές) 5/5/2012

Μαθηματικά Γ Λυκείου. Έκδοση Α. 120 Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων. Αθήνα 2012 (λίγο πριν τις εκλογές) 5/5/2012 Μαθηματικά Γ Λυκείου Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων 5/5/ Έκδοση Α Θετική και Τεχνολογική Κατεύθυνση ( mac964@gmail.com) Αθήνα (λίγο πριν τις εκλογές) Επαναληπτικές ασκήσεις που φιλοδοξούν

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΟΜΑΔΑ Α Για τις προτάσεις Α1 μέχρι και Α6 να

Διαβάστε περισσότερα

1. Ένας ποδηλάτης διαγράφει την περιφέρεια ενός κύκλου (OR). Το διάστηµα που έχει διανύσει είναι ίσο µε : α) 2πR β) πr. γ) πr 2.

1. Ένας ποδηλάτης διαγράφει την περιφέρεια ενός κύκλου (OR). Το διάστηµα που έχει διανύσει είναι ίσο µε : α) 2πR β) πr. γ) πr 2. 1. Ένας ποδηλάτης διαγράφει την περιφέρεια ενός κύκλου (OR). Το διάστηµα που έχει διανύσει είναι ίσο µε : α) 2πR β) πr γ) πr 2 δ) καµία από τις παραπάνω τιµές Το µέτρο της µετατόπισης που έχει υποστεί

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

για τις οποίες ισχύει ( )

για τις οποίες ισχύει ( ) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΜΗΤΑΛΑΣ ΓΙΑΝΝΗΣ, ΔΡΟΥΓΑΣ ΑΘΑΝΑΣΙΟΣ ΕΠΙΜΕΛΕΙΑ . Έστω οι συναρτήσεις f, g: για κάθε. α) Να αποδείξετε ότι η g είναι -. β) Να αποδείξετε ότι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α A. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα. Αν F είναι μια παράγουσα της στο, τότε να αποδείξετε ότι:

Διαβάστε περισσότερα

ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ

ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ Ο κύριος στόχος αυτού του κεφαλαίου είναι να δείξουµε ότι η ολοκλήρωση είναι η αντίστροφη πράξη της παραγώγισης και να δώσουµε τις βασικές µεθόδους υπολογισµού των ολοκληρωµάτων

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 16 ΜΑΪΟΥ 2011 ΑΠΑΝΤΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 16 ΜΑΪΟΥ 2011 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑΛ Β 6 ΜΑΪΟΥ ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία (Θεώρ Frmat) σχολικό βιβλίο σελ 6-6 Α Θεωρία (Ορισµός) σχολικό βιβλίο σελ 8 Α3 ΘΕΜΑ Β α β γ δ ε Σ Σ Λ Λ Σ B Έχουµε από υπόθεση

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν Η f είναι συνεχής στο Δ και f = για κάθε εσωτερικό σημείο του Δ τότε να αποδείξετε

Διαβάστε περισσότερα

Ερωτήσεις ανάπτυξης. α) να βρείτε το σηµείο x 0. β) να αποδείξετε ότι η κλίση της εφαπτοµένης της

Ερωτήσεις ανάπτυξης. α) να βρείτε το σηµείο x 0. β) να αποδείξετε ότι η κλίση της εφαπτοµένης της Ερωτήσεις ανάπτυξης. ** Η συνάρτηση είναι παραγωγίσιµη στο R και η ευθεία (ε) είναι εφαπτοµένη της C στο σηµείο (0, (0)). Μετακινούµε τη C παράλληλα προς τους άξονες, όπως φαίνεται στο σχήµα, και ονοµάζουµε

Διαβάστε περισσότερα

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ. Mια συνάρτηση λέμε ότι είναι παραγωγίσιμη σε ένα σημείο του πεδίου ορισμού ( της, αν υπάρει το lim και είναι πραγματικός αριθμός. Το όριο αυτό λέγεται παράγωγος της στο και συμβολίζεται

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1.

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1. Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1.Δίνεται η συνάρτηση f()= 4 1 α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; β) Αν χ=, ποια είναι η τιμή της f; γ) Αν f()=1, ποια είναι

Διαβάστε περισσότερα

Οι γέφυρες του ποταμού... Pregel (Konigsberg)

Οι γέφυρες του ποταμού... Pregel (Konigsberg) Οι γέφυρες του ποταμού... Pregel (Konigsberg) Β Δ Β Δ Γ Γ Κύκλος του Euler (Euler cycle) είναι κύκλος σε γράφημα Γ που περιέχει κάθε κορυφή του γραφήματος, και κάθε ακμή αυτού ακριβώς μία φορά. Για γράφημα

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν η f είναι συνεχής στο Δ και f για κάθε εσωτερικό σημείο

Διαβάστε περισσότερα

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κεφάλαιο M6 Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κυκλική κίνηση Αναπτύξαµε δύο µοντέλα ανάλυσης στα οποία χρησιµοποιούνται οι νόµοι της κίνησης του Νεύτωνα. Εφαρµόσαµε τα µοντέλα αυτά

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 25/5/2015 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ Α: ΘΕΜΑ Β:

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 25/5/2015 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ Α: ΘΕΜΑ Β: . Σχολικό βιβλίο σελ.9. Σχολικό βιβλίο σελ.88 3. Σχολικό βιβλίο σελ.5. α) Λ Β. β) Σ γ) Λ δ) Σ ε) Σ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 5/5/5 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ Α: ΘΕΜΑ Β: Έστω z=+yi. Κάνοντας πράξεις στη

Διαβάστε περισσότερα

ΑΣΕΠ 2000 ΑΣΕΠ 2000 Εμπορική Τράπεζα 1983 Υπουργείο Κοιν. Υπηρ. 1983

ΑΣΕΠ 2000 ΑΣΕΠ 2000 Εμπορική Τράπεζα 1983 Υπουργείο Κοιν. Υπηρ. 1983 20 Φεβρουαρίου 2010 ΑΣΕΠ 2000 1. Η δεξαμενή βενζίνης ενός πρατηρίου υγρών καυσίμων είναι γεμάτη κατά τα 8/9. Κατά τη διάρκεια μιας εβδομάδας το πρατήριο διέθεσε τα 3/4 της βενζίνης αυτής και έμειναν 4000

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 2007 ΕΚΦΩΝΗΣΕΙΣ. Α.3 Πότε η ευθεία y = l λέγεται οριζόντια ασύµπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 2007 ΕΚΦΩΝΗΣΕΙΣ. Α.3 Πότε η ευθεία y = l λέγεται οριζόντια ασύµπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3 ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 7 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Α.1 Αν z 1, z είναι µιγαδικοί αριθµοί, να αποδειχθεί ότι: z 1 z = z 1 z. Α. Πότε δύο συναρτήσεις f, g λέγονται ίσες; Μονάδες 4 Α.3 Πότε η ευθεία y

Διαβάστε περισσότερα

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ A Ε B Ζ Η Γ K Θ Δ Ι Ορισμός Ένα (μη κατευθυνόμενο) γράφημα (non directed graph) Γ, είναι μία δυάδα από σύνολα Ε και V και συμβολίζεται με Γ=(Ε,V). Το σύνολο

Διαβάστε περισσότερα

εάν F x, x οµόρροπα εάν F x, x αντίρροπα B = T W T = W B

εάν F x, x οµόρροπα εάν F x, x αντίρροπα B = T W T = W B 4 Εργο και Ενέργεια 4.1 Εργο σε µία διάσταση Το έργο µιας σταθερής δύναµης F x, η οποία ασκείται σε ένα σώµα που κινείται σε µία διάσταση x, ορίζεται ως W = F x x Εργο ύναµης = ύναµη Μετατόπιση Εχουµε

Διαβάστε περισσότερα

Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 2000-2015

Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 2000-2015 Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 000-05 Περιεχόµενα Θέµατα Επαναληπτικών 05............................................. 3 Θέµατα 05......................................................

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Τι ονομάζουμε κίνηση ενός κινητού; 2. Τι ονομάζουμε τροχιά ενός κινητού; 3. Τι ονομάζουμε υλικό σημείο; 4. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6.

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6. ΜΙΓΑ ΙΚΟΙ 1 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 1 2 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 3 Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2 4 Για κάθε z C ισχύει z z 2 z 5 Για κάθε µιγαδικό z ισχύει:

Διαβάστε περισσότερα

ÅéêïóéäùäåêÜåäñïí. www.mathematica.gr. Ìáèçìáôéêü Äåëôßï. Ôåý ïò 13ï. Ïêôþâñéïò 2014 ISSN: 2241-7133

ÅéêïóéäùäåêÜåäñïí. www.mathematica.gr. Ìáèçìáôéêü Äåëôßï. Ôåý ïò 13ï. Ïêôþâñéïò 2014 ISSN: 2241-7133 ÅéêïóéäùäåêÜåäñïí Ìáèçìáôéêü Äåëôßï Ôåý ïò 3ï Ïêôþâñéïò 04 www.mathematica.gr ISSN: 4-733 Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mathematica.gr. Η επιλογή

Διαβάστε περισσότερα

Φυσική Β Λυκειου, Γενικής Παιδείας 1ο Φυλλάδιο - Οριζόντια Βολή

Φυσική Β Λυκειου, Γενικής Παιδείας 1ο Φυλλάδιο - Οριζόντια Βολή Φυσική Β Λυκειου, Γενικής Παιδείας - Οριζόντια Βολή Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, M Sc Φυσικός http://perifysikhs.wordpress.com 1 Εισαγωγικές Εννοιες - Α Λυκείου Στην Φυσική της Α Λυκείου κυριάρχησαν

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ο δείγμα ΘΕΜΑ ο Α. Έστω μία συνάρτηση f συνεχής σε ένα διάστημα α,β. Αν G είναι μία παράγουσα της f στο α,β τότε να αποδείξετε ότι

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν η f είναι συνεχής στο Δ και f ()= για κάθε εσωτερικό σημείο του Δ, τότε

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 4 Λύσεις των θεμάτων Έκδοση η

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

Γραμμική Ανεξαρτησία. Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας. 17 Μαρτίου 2013, Βόλος

Γραμμική Ανεξαρτησία. Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας. 17 Μαρτίου 2013, Βόλος Γραμμικές Συνήθεις ιαφορικές Εξισώσεις Ανώτερης Τάξης Γραμμικές Σ Ε 2ης τάξης Σ Ε 2ης τάξης με σταθερούς συντελεστές Μιγαδικές ρίζες Γραμμικές Σ Ε υψηλότερης τάξης Γραμμική Ανεξαρτησία Μανόλης Βάβαλης

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα

α) Το έλλειμμα ή το πλεόνασμα του εμπορικού ισοζυγίου δεν μεταβάλλεται

α) Το έλλειμμα ή το πλεόνασμα του εμπορικού ισοζυγίου δεν μεταβάλλεται 1. Ο πληθωρισμός ορίζεται ως εξής: (Δ= μεταβολή, Ρ= επίπεδο τιμών, Ρ e = προσδοκώμενο επίπεδο τιμών): α) Δ Ρ e /Ρ β) Ρ e / Ρ γ) Δ Ρ/Ρ δ) (Ρ Ρ e )/Ρ 2. Όταν οι εξαγωγές αυξάνονται: α) Το έλλειμμα ή το πλεόνασμα

Διαβάστε περισσότερα

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημερομηνία: 25 Μαΐου 2015

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημερομηνία: 25 Μαΐου 2015 Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημερομηνία: 5 Μαΐου 5 Απαντήσεις Θεμάτων Θέμα Α Α. Θεωρία, βλ. σχολικό βιβλίο σελ. 94

Διαβάστε περισσότερα

Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ

Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ 0 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΑΣΚΗΣΕΙΣ Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ 0 1 Στρατηγική επίλυσης προβλημάτων Α. Κάνε κατάλληλο σχήμα,τοποθέτησε τα δεδομένα στο σχήμα και ονόμασε

Διαβάστε περισσότερα

ΘΕΜΑ Β Παράδειγμα 1. Να δικαιολογήσετε την επιλογή σας. (Μονάδες 8)

ΘΕΜΑ Β Παράδειγμα 1. Να δικαιολογήσετε την επιλογή σας. (Μονάδες 8) ΘΕΜΑ Β Παράδειγμα 1 Β1. Στο σχολικό εργαστήριο μια μαθήτρια περιεργάζεται ένα ελατήριο και λέει σε συμμαθητή της: «Θα μπορούσαμε να βαθμολογήσουμε αυτό το ελατήριο και με τον τρόπο αυτό να κατασκευάσουμε

Διαβάστε περισσότερα

1. Ας υποθέσουμε ότι η εισοδηματική ελαστικότητα ζήτησης για όσπρια είναι ίση με το μηδέν. Αυτό σημαίνει ότι:

1. Ας υποθέσουμε ότι η εισοδηματική ελαστικότητα ζήτησης για όσπρια είναι ίση με το μηδέν. Αυτό σημαίνει ότι: 1. Ας υποθέσουμε ότι η εισοδηματική ελαστικότητα ζήτησης για όσπρια είναι ίση με το μηδέν. Αυτό σημαίνει ότι: α) Ανεξάρτητα από το ύψος της τιμής των οσπρίων, ο καταναλωτής θα δαπανά πάντα ένα σταθερό

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΚΗΣ ΕΝΤΡΟΠΙΑΣ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ ΚΑΙ ΤΗ ΣΚΕ ΑΣΗ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

ΕΦΑΡΜΟΓΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΚΗΣ ΕΝΤΡΟΠΙΑΣ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ ΚΑΙ ΤΗ ΣΚΕ ΑΣΗ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΠΥΡΗΝΙΚΗΣ ΦΥΣΙΚΗΣ ΚΑΙ ΦΥΣΙΚΗΣ ΣΤΟΙΧΕΙΩ ΩΝ ΣΩΜΑΤΙ ΙΩΝ ΒΑΣΙΛΕΙΟΣ Π. ΨΩΝΗΣ ΕΦΑΡΜΟΓΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΚΗΣ ΕΝΤΡΟΠΙΑΣ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ ΚΑΙ ΤΗ ΣΚΕ

Διαβάστε περισσότερα

Φυσική Β Γυμνασίου - Κεφάλαιο 2: Κινήσεις ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ. Φυσική Β Γυμνασίου

Φυσική Β Γυμνασίου - Κεφάλαιο 2: Κινήσεις ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ. Φυσική Β Γυμνασίου ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ Φυσική Β Γυμνασίου Εισαγωγή Τα πάντα γύρω μας κινούνται. Στο διάστημα όλα τα ουράνια σώματα κινούνται. Στο μικρόκοσμο συμβαίνουν κινήσεις που δεν μπορούμε να τις αντιληφθούμε άμεσα.

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 19 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ A ΛΥΚΕΙΟΥ Κυριακή, 3 Απριλίου, 5 Ώρα: 1: - 13: Προτεινόµενες Λύσεις ΘΕΜΑ 1 (1 µονάδες) (α) Το διάστηµα που διανύει ο κάθε αθλητής είναι: X A = υ Α

Διαβάστε περισσότερα

1. Ένας κασκαντέρ θέλει με το αυτοκίνητό του, να πηδήξει πάνω από

1. Ένας κασκαντέρ θέλει με το αυτοκίνητό του, να πηδήξει πάνω από 1. Ένας κασκαντέρ θέλει με το αυτοκίνητό του, να πηδήξει πάνω από 8 αυτοκίνητα σταθμευμένα ένα μετά το άλλο κάτω από μια οριζόντια πλατφόρμα. Το κάθε αυτοκίνητο έχει μήκος d = 3 m και ύψος h = 1,2 m. Τo

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΟΥ ΤΡΟΧΟΥ MAXWELL

ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΟΥ ΤΡΟΧΟΥ MAXWELL ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ &ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤ/ΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΟΥ ΤΡΟΧΟΥ MAXWELL ΒΑΡΗ 01-013 Μπίλιας Κων/νος Φυσικός

Διαβάστε περισσότερα

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΡΙΣΜΟΙ ΑΠΟΔΕΙΞΕΙΣ ΕΡΩΤΗΣΕΙΣ : ΣΩΣΤΟ ΛΑΘΟΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ : ΜΙΓΑΔΙΚΟΙ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. D x D / h x D δηλαδή. ισχύει για x 1, e ln x 1 e. e ln x e ln x e ln x e ln x 1 e ln x 1 f x f x

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. D x D / h x D δηλαδή. ισχύει για x 1, e ln x 1 e. e ln x e ln x e ln x e ln x 1 e ln x 1 f x f x Λύση (ΘΕΜΑ ο ) Γ. Έστω οι συναρτήσεις : h ln με D 0, h f με D, h h h με 3 0, 0, ln h h D D / h D δηλαδή h3 h h ή D 0, h h h με 4 f,, h 3 D D / h D δηλαδή h4 h h ή D, Έτσι η εξίσωση h ln h f h 4 ισχύει

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ

ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο

Διαβάστε περισσότερα

Τα Προγράµµατα υναµικής Γεωµετρίας και η Χρήση τους στη ιδασκαλία της Άλγεβρας και της Ανάλυσης στη Μέση Εκπαίδευση

Τα Προγράµµατα υναµικής Γεωµετρίας και η Χρήση τους στη ιδασκαλία της Άλγεβρας και της Ανάλυσης στη Μέση Εκπαίδευση Τα Προγράµµατα υναµικής Γεωµετρίας και η Χρήση τους στη ιδασκαλία της Άλγεβρας και της Ανάλυσης στη Μέση Εκπαίδευση Αριστοτέλης Μακρίδης Μαθηµατικός, Επιµορφωτής των Τ.Π.Ε Αποσπασµένος στην ενδοσχολική

Διαβάστε περισσότερα

Φροντιστήριο 2: Ανάλυση Αλγόριθμου. Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10

Φροντιστήριο 2: Ανάλυση Αλγόριθμου. Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10 Φροντιστήριο 2: Ανάλυση Αλγόριθμου Εκλογής Προέδρου με O(nlogn) μηνύματα Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10 Περιγραφικός Αλγόριθμος Αρχικά στείλε μήνυμα εξερεύνησης προς τα δεξιά

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

Ψηφιακή Εικόνα. Σημερινό μάθημα!

Ψηφιακή Εικόνα. Σημερινό μάθημα! Ψηφιακή Εικόνα Σημερινό μάθημα! Ψηφιακή Εικόνα Αναλογική εικόνα Ψηφιοποίηση (digitalization) Δειγματοληψία Κβαντισμός Δυαδικές δ έ (Binary) εικόνες Ψηφιακή εικόνα & οθόνη Η/Υ 1 Ψηφιακή Εικόνα Μια ακίνητη

Διαβάστε περισσότερα

Κεφάλαιο 15 Κίνηση Κυµάτων. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 15 Κίνηση Κυµάτων. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 15 Κίνηση Κυµάτων Περιεχόµενα Κεφαλαίου 15 Χαρακτηριστικά των Κυµάτων Είδη κυµάτων: Διαµήκη και Εγκάρσια Μεταφορά ενέργειας µε κύµατα Μαθηµατική Περιγραφή της Διάδοσης κυµάτων Η Εξίσωση του Κύµατος

Διαβάστε περισσότερα

Δ 4. Το ποσοστό της αρχικής κινητικής ενέργειας του βέλους που μεταφέρεται στο περιβάλλον του συστήματος μήλο-βέλος κατά τη διάρκεια της διάτρησης.

Δ 4. Το ποσοστό της αρχικής κινητικής ενέργειας του βέλους που μεταφέρεται στο περιβάλλον του συστήματος μήλο-βέλος κατά τη διάρκεια της διάτρησης. Σε οριζόντιο επίπεδο βρίσκεται ακίνητο ένα μήλο μάζας Μ = 200 g. Ένα μικρό βέλος μάζας m = 40 g κινείται οριζόντια με ταχύτητα μέτρου, υ 1 = 10 m / s, χτυπά το μήλο με αποτέλεσμα να το διαπεράσει. Αν γνωρίζετε

Διαβάστε περισσότερα

Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ

Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ 33 Θ Ε Μ Α Τ Α με λύση Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ Επιμέλεια: Νίκος Λέντζος Καθηγητής Μαθηματικών Δ/θμιας Εκπαίδευσης Από το βιβλίο ΜΑΘΗΜΑΤΙΚΑ (έκδοση 4) Γ ΛΥΚΕΙΟΥ τεύχος Α Αναστάσιου Χ. Μπάρλα μα προσφορά του

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΗ ΛΥΕΙΟΥ ΘΕΤΙΗΣ Ι ΤΕΧ/ΗΣ ΤΕΥΘΥΝΣΗΣ ΘΕΜ : Στις ερωτήσεις - να γράψετε στο φύλλο απαντήσεων τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Στις ερωτήσεις -5 να γράψετε

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 Α) Τί είναι µονόµετρο και τί διανυσµατικό µέγεθος; Β) Τί ονοµάζουµε µετατόπιση και τί τροχιά της κίνησης; ΘΕΜΑ 2 Α) Τί ονοµάζουµε ταχύτητα ενός σώµατος και ποιά η µονάδα

Διαβάστε περισσότερα

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα.

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. ΘΕΜΑ Α Παράδειγμα 1 Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. Α2. Για τον προσδιορισμό μιας δύναμης που ασκείται σε ένα σώμα απαιτείται να

Διαβάστε περισσότερα

Διευθύνοντα Μέλη του mathematica.gr

Διευθύνοντα Μέλη του mathematica.gr Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mathematica.gr. Η επιλογή και η φροντίδα του περιεχομένου γίνεται από τους Επιμελητές του mathematica.gr. Μετατροπές

Διαβάστε περισσότερα

ΘΕΜΑ Β. διπλανό διάγραμμα. Αν t 2 =2 t 1 και t 3 =3 t 1 τότε -F

ΘΕΜΑ Β. διπλανό διάγραμμα. Αν t 2 =2 t 1 και t 3 =3 t 1 τότε -F ΘΕΜΑ Β Β 1. Ένας μικρός μεταλλικός κύβος βρίσκεται αρχικά ακίνητος σε λείο οριζόντιο δάπεδο. Στον κύβο ασκείται την χρονική στιγμή t= 0 s οριζόντια δύναμη της οποίας η τιμή σε συνάρτηση με το χρόνο παριστάνεται

Διαβάστε περισσότερα

Αθ.Κεχαγιας. Σηµειωσεις Αναλυτικης Γεωµετριας. Θ. Κεχαγιας. Σεπτεµβρης 2009, υ.0.95

Αθ.Κεχαγιας. Σηµειωσεις Αναλυτικης Γεωµετριας. Θ. Κεχαγιας. Σεπτεµβρης 2009, υ.0.95 Σηµειωσεις Αναλυτικης Γεωµετριας Θ. Κεχαγιας Σεπτεµβρης 2009, υ.0.95 Περιεχόµενα Εισαγωγη 1 Επιπεδα στον Τρισδιαστατο Χωρο 1 1.1 Θεωρια.................................... 1 1.2 Λυµενες Ασκησεις..............................

Διαβάστε περισσότερα

(t) x (t) t t t t. ΘΕΜΑ Α Α 1. Σχολικό βιβλίο σελ. 150 Α 2. Σχολικό βιβλίο σελ. 56 Α 3. Σχολικό βιβλίο σελ. 149 Α 4. i) Λ ii) Σ iii) Λ iv) Λ v) Σ

(t) x (t) t t t t. ΘΕΜΑ Α Α 1. Σχολικό βιβλίο σελ. 150 Α 2. Σχολικό βιβλίο σελ. 56 Α 3. Σχολικό βιβλίο σελ. 149 Α 4. i) Λ ii) Σ iii) Λ iv) Λ v) Σ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ Α Α Σχολικό βιβλίο σελ Α Σχολικό βιβλίο σελ 6 Α Σχολικό βιβλίο σελ 9 Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΚΥΡΙΑΚΗ // - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

β) το αυτοκίνητο τη χρονική στιγμή t = 2 s έχει ταχύτητα μέτρου υ 4. s γ) στο αυτοκίνητο ασκείται σταθερή συνισταμένη δύναμη μέτρου 1 Ν.

β) το αυτοκίνητο τη χρονική στιγμή t = 2 s έχει ταχύτητα μέτρου υ 4. s γ) στο αυτοκίνητο ασκείται σταθερή συνισταμένη δύναμη μέτρου 1 Ν. ΘΕΜΑ Β Β 1. Ένα παιγνίδι - αυτοκινητάκι μάζας 1 Kg είναι ακίνητο στη θέση x = 0 m. Την χρονική στιγμή t = 0 s ξεκινά να κινείται ευθύγραμμα. Στον παρακάτω πίνακα φαίνονται οι τιμές της θέσης του αυτοκινήτου

Διαβάστε περισσότερα

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ Κοίταξε τις µεθόδους, τις λυµένες ασκήσεις και τις ασκήσεις προς λύση των ενοτήτων 6, 7 του βοηθήµατος Μεθοδολογία Άλγεβρας και Στοιχείων Πιθανοτήτων Α Γενικού Λυκείου των Ευσταθίου Μ. και Πρωτοπαπά Ελ.

Διαβάστε περισσότερα

ΕΠΙΜΕΛΕΙΑ : Γεώργιος Καλοπίτας.

ΕΠΙΜΕΛΕΙΑ : Γεώργιος Καλοπίτας. 22 Φεβρουαρίου 2010 ΔΙΑΓΩΝΙΣΜΑ ΑΡΙΘΜΗΤΙΚΩΝ ΔΕΞΙΟΤΗΤΩΝ ΕΠΙΜΕΛΕΙΑ : Γεώργιος Καλοπίτας. 1. Ποιος από τους παρακάτω αριθμούς διαιρείται ακριβώς με το 4; α) 1334. β) 1354. γ) 1374. δ) 1384. 2. Στη σειρά αυτή

Διαβάστε περισσότερα

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Φυσική Α Λυκείου

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Φυσική Α Λυκείου Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων Μάθημα: Φυσική Α Λυκείου Στο παρών παρουσιάζουμε συνοπτικές λύσεις σε επιλεγμένα Θέματα («Θέμα 2 ο, 4 ο») από την Τράπεζα θεμάτων. Το αρχείο αυτό τις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f () σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι

Διαβάστε περισσότερα

Θέµατα προς ανάλυση: Κινηµατική ΕΠΕΑΕΚ: ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΤΟΥ ΤΕΦΑΑ, ΠΘ - ΑΥΤΕΠΙΣΤΑΣΙΑ

Θέµατα προς ανάλυση: Κινηµατική ΕΠΕΑΕΚ: ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΤΟΥ ΤΕΦΑΑ, ΠΘ - ΑΥΤΕΠΙΣΤΑΣΙΑ ΕΠΕΑΕΚ: ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΤΟΥ ΤΕΦΑΑ, ΠΘ - ΑΥΤΕΠΙΣΤΑΣΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ & ΑΘΛΗΤΙΣΜΟΥ «Αρχές Βιοκινητικής» Μάθηµα του βασικού κύκλου σπουδών (Γ εξάµηνο)

Διαβάστε περισσότερα

ΟΡΓΑΝΩΣΗ ΜΑΘΗΜΑΤΟΣ. Εκπαιδευτικό υλικό. Τρόπος βαθµολόγησης. http://www.pi-schools.gr/lessons/physics/ Βαθµολογία Φυσικά.

ΟΡΓΑΝΩΣΗ ΜΑΘΗΜΑΤΟΣ. Εκπαιδευτικό υλικό. Τρόπος βαθµολόγησης. http://www.pi-schools.gr/lessons/physics/ Βαθµολογία Φυσικά. ΟΡΓΑΝΩΣΗ ΜΑΘΗΜΑΤΟΣ Να έχετε: Τετράδιο εργαστηρίου (Physics book) File για φυλλάδια Απλό υπολογιστή (calculator) Οι σηµειώσεις του µαθήµατος βρίσκονται στην προσωπική µου ιστοσελίδα:http://www.pantelis.net

Διαβάστε περισσότερα

Κεφάλαιο 14 Ταλαντώσεις. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 14 Ταλαντώσεις. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 14 Ταλαντώσεις Ταλαντώσεις Ελατηρίου Απλή αρµονική κίνηση Ενέργεια απλού αρµονικού ταλαντωτή Σχέση απλού αρµονικού ταλαντωτή και κυκλικής κίνησης Το απλό εκκρεµές Περιεχόµενα 14 Το φυσικό εκκρεµές

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

6. Να βρείτε ποια είναι η σωστή απάντηση.

6. Να βρείτε ποια είναι η σωστή απάντηση. 12ΑΣΚΗΣΕΙΣ ΔΥΝΑΜΙΚΗΣ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Να βρείτε ποια είναι η σωστή απάντηση. Το όργανο μέτρησης του βάρους ενός σώματος είναι : α) το βαρόμετρο, β) η ζυγαριά, γ) το δυναμόμετρο, δ) ο αδρανειακός ζυγός.

Διαβάστε περισσότερα

3 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

3 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ 1 2 3 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ 31 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΟΡΙΣΜΟΣ: Έστω δύο σύνολα Α και Β ΑΠΕΙΚΟΝΙΣΗ του συνόλου Α στο Β είναι η διμελής σχέση f A B για την οποία A αντιστοιχεί ένα και μόνο ένα y B δηλαδή

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός)

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) 4 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) Κυριακή, 5 Απριλίου, 00, Ώρα:.00 4.00 Προτεινόμενες Λύσεις Άσκηση ( 5 μονάδες) Δύο σύγχρονες πηγές, Π και Π, που απέχουν μεταξύ τους

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΜΑΘΗΜΑ 4. ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονία συνάρτησης Ακρότατα συνάρτησης Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Ορισµός Συνάρτηση f λέγεται γνησίως αύξουσα σε διάστηµα, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ

2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ Κυριακή, 16 Απριλίου, 2006 Ώρα: 10:30-13:00 Οδηγίες: 1) Το δοκίµιο αποτελείται από τρία (3) µέρη µε σύνολο δώδεκα (12) θέµατα. 2) Επιτρέπεται

Διαβάστε περισσότερα

1. Σε περίπτωση κατά την οποία η τιμή ενός αγαθού μειωθεί κατά 2% και η ζητούμενη

1. Σε περίπτωση κατά την οποία η τιμή ενός αγαθού μειωθεί κατά 2% και η ζητούμενη Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υ- πουργείου Οικονομικών και στοχεύοντας στην όσο το δυνατό πληρέστερη

Διαβάστε περισσότερα

Αδρανειακά συστήµατα αναφοράς, µετασχηµατισµός Γαλιλαίου. Περιστρεφόµενα συστήµατα αναφοράς, δύναµη Coriolis

Αδρανειακά συστήµατα αναφοράς, µετασχηµατισµός Γαλιλαίου. Περιστρεφόµενα συστήµατα αναφοράς, δύναµη Coriolis 3 Αδρανειακά συστήµατα αναφοράς, µετασχηµατισµός Γαλιλαίου. Περιστρεφόµενα συστήµατα αναφοράς, δύναµη Coriolis 3.1 Αδρανειακά και επιταχυνόµενα συστήµατα αναφοράς Οι δύο πρώτοι νόµοι του Νεύτνα ισχύουν

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ-ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ

ΜΑΘΗΜΑ: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ-ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ ΜΑΘΗΜΑ: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ-ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, MSc, PhD Candidate Κατηγορίες οφέλους και κόστους που προέρχονται από τις δημόσιες δαπάνες Για την αξιολόγηση

Διαβάστε περισσότερα

Παραδείγµατα δυνάµεων

Παραδείγµατα δυνάµεων ΥΝΑΜΕΙΣ Παραδείγµατα Ορισµός της δύναµης Χαρακτηριστικά της δύναµης Μάζα - Βάρος Μέτρηση δύναµης ράση - αντίδραση Μέτρηση δύναµης Σύνθεση - ανάλυση δυνάµεων Ισορροπία δυνάµεων 1 Ανύψωση βαρών Παραδείγµατα

Διαβάστε περισσότερα

M m l B r mglsin mlcos x ml 2 1) Να εισαχθεί το µοντέλο στο simulink ορίζοντας από πριν στο MATLAB τις µεταβλητές Μ,m,br

M m l B r mglsin mlcos x ml 2 1) Να εισαχθεί το µοντέλο στο simulink ορίζοντας από πριν στο MATLAB τις µεταβλητές Μ,m,br ΑΣΚΗΣΗ 1 Έστω ένα σύστηµα εκκρεµούς όπως φαίνεται στο ακόλουθο σχήµα: Πάνω στη µάζα Μ επιδρά µια οριζόντια δύναµη F l την οποία και θεωρούµε σαν είσοδο στο σύστηµα. Έξοδος του συστήµατος θεωρείται η απόσταση

Διαβάστε περισσότερα

1 Απλή Αρµονική Ταλάντωση

1 Απλή Αρµονική Ταλάντωση ,Θετικής & Τεχνολογικής Κατεύθυνσης Καραδηµητρίου Ε. Μιχάλης http://perifysikhs.wordpress.com mixalis.karadimitriou@gmail.com Πρόχειρες Σηµειώσεις 2011-2012 1 Απλή Αρµονική Ταλάντωση 1.1 Περιοδικά Φαινόµενα

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2008 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2008 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. Θεωρητικό Μέρος Θέμα 1o A Λυκείου 22 Μαρτίου 28 Στις ερωτήσεις Α,Β,Γ,Δ,E μια μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής απάντησης.

Διαβάστε περισσότερα

Κεφάλαιο 8 Διατήρηση της Ενέργειας

Κεφάλαιο 8 Διατήρηση της Ενέργειας Κεφάλαιο 8 Διατήρηση της Ενέργειας ΔΥΝΑΜΗ ΕΡΓΟ ΕΝΕΡΓΕΙΑ µηχανική, χηµική, θερµότητα, βαρυτική, ηλεκτρική, µαγνητική, πυρηνική, ραδιοενέργεια, τριβής, κινητική, δυναµική Περιεχόµενα Κεφαλαίου 8 Συντηρητικές

Διαβάστε περισσότερα

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Α ΣΧΟΛΙΚΟ ΕΤΟΣ 2010-2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΑΡ.:...

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Α ΣΧΟΛΙΚΟ ΕΤΟΣ 2010-2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΑΡ.:... ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Α ΣΧΟΛΙΚΟ ΕΤΟΣ 2010-2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 ΜΑΘΗΜΑ: Φυσική ΤΑΞΗ: Α ΗΜΕΡΟΜΗΝΊΑ: 27 Μαίου 2011 ΧΡΟΝΟΣ: 2 ώρες ΩΡΑ: 11.00 1.00 ΒΑΘΜΟΣ: Αριθμητικά:... Ολογράφως:...

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα που αντιστοιχεί στην σωστή απάντηση

ΕΚΦΩΝΗΣΕΙΣ. Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα που αντιστοιχεί στην σωστή απάντηση B' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΖΗΤΗΜΑ 1 ΕΚΦΩΝΗΣΕΙΣ Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα που αντιστοιχεί στην σωστή απάντηση

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙ 3 ο : KΩΝΙΚΕΣ ΤΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΥ ( 3.) ΚΥΚΛΣ Γνωρίζουµε ότι ένας κύκλος (, ρ) είναι ο γεωµετρικός τόπος των σηµείων του επιπέδου τα οποία απέχουν µια ορισµένη απόσταση ρ από ένα

Διαβάστε περισσότερα

ΘΕΜΑ: Aποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία

ΘΕΜΑ: Aποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία ΘΕΜΑ: ποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία Σύνταξη: Μπαντούλας Κων/νος, Οικονομολόγος, Ms Χρηματοοικονομικών 1 Η πρώτη θεωρία σχετικά με τον αυτόματο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 010 ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 4 Ιουνίου 010 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 4 ώρες (40 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΒΟΗΘΗΜΑΤΑ Ευρωπαικό τυπολόγιο Μη προγραμματιζόμενος υπολογιστής, χωρίς γραφικά

Διαβάστε περισσότερα