Μαθηματικά Γ Λυκείου. Έκδοση Α. 120 Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων. Αθήνα 2012 (λίγο πριν τις εκλογές) 5/5/2012

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μαθηματικά Γ Λυκείου. Έκδοση Α. 120 Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων. Αθήνα 2012 (λίγο πριν τις εκλογές) 5/5/2012"

Transcript

1 Μαθηματικά Γ Λυκείου Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων 5/5/ Έκδοση Α Θετική και Τεχνολογική Κατεύθυνση ( Αθήνα (λίγο πριν τις εκλογές)

2 Επαναληπτικές ασκήσεις που φιλοδοξούν να γίνουν θέµατα εξετάσεων αφιερωµένο σε όλα τα παιδιά και ιδιαίτερα στην κόρη µου Ραφαέλα

3 Επαναληπτικές ασκήσεις που φιλοδοξούν να γίνουν θέµατα εξετάσεων. ίνεται συνάρτηση ορισµένη στο Rκαι για κάθε, y R ισχύει: (+ y) = () (y) ηµ ηµy i. Να δείξετε ότι: () = Αν η είναι παραγωγίσιµη στο =, να δείξετε ότι η είναι παραγωγίσιµη στο R. Βρείτε την '() i Αν το = είναι και τοπικό ακρότατο της, τότε να υπολογίσετε τον τύπο της συνάρτησης.. Να δείξετε ότι: a. + ( ) ln( ) ln b. Αν >, y> και + y= τότε y y. Μια συνάρτηση είναι ορισµένη και δύο φορές παραγωγίσιµη στο R και για κάθε R ισχύει: Να αποδείξετε τα εξής: (+ ) ( + + ) i. Υπάρχει ένα τουλάχιστον ξ (, 4) τέτοιο ώστε: '(ξ) = Η συνάρτηση δεν αντιστρέφεται i '() = '(4) iv. Η εξίσωση ''() = έχει µια τουλάχιστον ρίζα στο R 4. ίνεται παραγωγίσιµη συνάρτηση µε συνεχή πρώτη παράγωγο η οποία στρέφει τα κοίλα άνω στο R και υπάρχει ξ R : '(ξ) = λ i. Αν (ξ) > λξ+ β,λ,β R, να δείξετε ότι η γραφική παράσταση της συνάρτησης δεν έχει κοινά σηµεία µε την ευθεία (ε): y= λ+ β Να δείξετε ότι: e > e,για κάθε R Θεωρούµε την δυο φορές παραγωγίσιµη συνάρτηση :[α,β] R,α > µε συνεχή την δεύτερη παράγωγο και (α) = (β) =. i. Να δείξετε ότι, αν ξ (α,β) : ξ '(ξ) = (ξ) Αν ''(), (α,β) τότε να δείξετε ότι το ξ είναι µοναδικό i Να δείξετε ότι η εφαπτοµένη της C στο σηµείο M(ξ, (ξ)) διέρχεται από την αρχή των αξόνων. 6. ίνεται η συνάρτηση: () = e + i. Να αποδείξετε ότι η είναι αντιστρέψιµη

4 i Επαναληπτικές ασκήσεις που φιλοδοξούν να γίνουν θέµατα εξετάσεων Να λύσετε την εξίσωση: e + ηµ = e+ e π Να αποδείξετε ότι: e + e< e + π ηµ iv. Να λύσετε την εξίσωση: ( ()) = 7. Α) Έστω συνάρτηση η οποία για κάθε R ικανοποιεί τη σχέση: i. Να αποδείξετε ότι η συνάρτηση αντιστρέφεται () + 5 () + = Βρείτε και ορίστε την συνάρτηση i Να βρείτε τα κοινά σηµεία των C,C Β) Αν η συνάρτηση είναι παραγωγίσιµη στο R τότε να δείξετε ότι: i. Η συνάρτηση είναι γνησίως µονότονη εν υπάρχει οριζόντια εφαπτοµένη της C 8. Έστω συνάρτηση η οποία για κάθε R ικανοποιεί τη σχέση Α) Να δείξετε ότι: i. είναι αντιστρέψιµη ( ) = ( ()),για κάθε R Β) i. Να λύσετε την εξίσωση: () = (o )() = Να δείξετε ότι: [ ( )] + [ ()] = () i Αν (8) = 64 τότε να υπολογίσετε την τιµή () = ; 9. Μια συνάρτηση είναι ορισµένη στο R και ισχύει: i. Υπολογίστε το όριο: lim () () lim = Αν η συνάρτηση είναι συνεχής στο =, τότε να υπολογίσετε την εφαπτοµένη της C στο σηµείο (, ()) iυπολογίστε το όριο: lim (). Έστω συνάρτηση : R R συνεχής στο R µε : z z 5 4 () + z z () + () = + 4 R, όπου z, z σταθεροί µιγαδικοί αριθµοί οι εικόνες των οποίων είναι εσωτερικά σηµεία του κύκλου + y = 4

5 Επαναληπτικές ασκήσεις που φιλοδοξούν να γίνουν θέµατα εξετάσεων Να δείξετε ότι: i. z z < z z Η εξίσωση () = έχει µια τουλάχιστον ρίζα στο (, ). ίνεται η συνάρτηση Α) Να αποδείξετε ότι: i. () <, R () = 4 + είναι αντιστρέψιµη Β) Να βρεθούν: i. H =; Οι ασύµπτωτες της συνάρτησης. Α) Έστω µια συνάρτηση h συνεχής στο [α,β] και παραγωγίσιµη στο (α,β). Αν h(α) = h(β) = και h '() για κάθε (α,β), να δείξετε ότι: h() = για κάθε [α,β]. Β) Η συνάρτηση είναι συνεχής [α,β], παραγωγίσιµη στο (α, β) και ισχύει: '() 4,για κάθε (α, β) Αν (α) = α + 6α και i. α = και β = () = 4,για κάθε (α, β) (β) = β + 4, να δείξετε ότι:. ίνεται ότι η συνάρτηση :[α,β] R είναι παραγωγίσιµη µε σύνολο τιµών [α, β], όπου Αν (α)=β και (β)=α και α = ηµα, να αποδείξετε ότι: β ηµβ π α,β,. i. Υπάρχει ένα τουλάχιστον (α, β) ώστε: '( )εφ + ( ) = Υπάρχει ένα τουλάχιστον ξ (α, β) ώστε: '(ξ) '( (ξ)) = 4. Η συνάρτηση είναι συνεχής στο [α, β] και παραγωγίσιµη στο (α, β). Αν (α) = β και (β) = α,να αποδείξετε ότι: i. Υπάρχουν, (α, β) µε ώστε: '( ) + '( ) = Υπάρχει ένα τουλάχιστον χ (α, β) ώστε: ( ) = i Υπάρχουν ξ, ξ (α, β) µε ξ ξ ώστε: '(ξ ) '(ξ ) = 5

6 Επαναληπτικές ασκήσεις που φιλοδοξούν να γίνουν θέµατα εξετάσεων 5. Αν η συνάρτηση είναι παραγωγίσιµη στο R και η ' συνεχής στο R και ισχύουν: () =, () =, () =. i. Να δείξετε ότι υπάρχει τουλάχιστον ένα ξ (, ): Να δείξετε ότι υπάρχει ένα τουλάχιστον ρ (, ) : '(ξ) = '(ρ) = 6. Αν : (, + ) R µε () είναι παραγωγίσιµη και και z + z = z z. i. Να δείξετε ότι: α β = (α) (β) Να δείξετε ότι υπάρχει: '( ) = ( ) z = α + i (α), z = i β + (β) (µε α, β > ) 7. ίνεται ο µιγαδικός: z = (ηµα ) + ( συνα)i,µε α R i. Να αποδείξετε ότι οι εικόνες των σηµείων M(z), είναι σηµεία κύκλου. i Να βρεθούν οι µιγαδικοί z που έχουν το µέγιστο και το ελάχιστο µέτρο Να βρεθούν τα µέτρα των µιγαδικών του ερωτήµατος (β) iv. Να αποδείξετε ότι: z 4+ i 7 8. ίνεται z C για τον οποίο ισχύει: z 5+ i = z i i. Να βρεθεί ο γεωµετρικός τόπος των σηµείων M(z) Να βρεθεί το ελάχιστο z i Να βρεθεί ο µιγαδικός z µε το ελάχιστο µέτρο 9. Για µια παραγωγίσιµη στο R συνάρτηση µε συνεχή παράγωγος µε '() < δεχόµαστε ότι: Να αποδείξετε ότι: i. () = και () = Υπάρχει ξ (, ): '(ξ) = i Υπάρχει χ (, ): '( ) = (t)dt,για κάθε R 6

7 Επαναληπτικές ασκήσεις που φιλοδοξούν να γίνουν θέµατα εξετάσεων k k. ίνεται ο µιγαδικός z= 4 + i,µε k R. 4 i. Να βρεθεί ο γεωµετρικός τόπος των εικόνων του z Να βρεθεί η ελάχιστη τιµή του z i Να βρεθεί ο µιγαδικός z µε το ελάχιστο µέτρο. Για τον µιγαδικό z ισχύει: z 4 i = i. Να βρεθεί ο γεωµετρικός τόπος των εικόνων του z Να βρεθεί η ελάχιστη και η µέγιστη τιµή του z i Βρείτε τους µιγαδικούς z που έχουν µέγιστο και ελάχιστο µέτρο. ίνεται ο µιγαδικός αριθµός z =α + βi,µε α, β R και η εξίσωση: ln z = z i. Να δείξετε ότι η παραπάνω εξίσωση έχει µοναδική λύση i Να βρείτε το γεωµετρικό τόπο της εικόνας Μ(α, β) του µιγαδικού z Από τους παραπάνω µιγαδικούς z να βρείτε εκείνον του οποίου η εικόνα απέχει την µικρότερη απόσταση από την εικόνα του µιγαδικού w = + i. ίνεται η συνάρτηση συνεχής στο διάστηµα [, ] και οι µιγαδικοί αριθµοί z = () + i και z = + ()i. Αν ισχύει: z + z = z z i. Να αποδείξετε ότι: () + () = Να αποδείξετε ότι η εξίσωση () = έχει µια τουλάχιστον ρίζα στο [, ] 4. ίνεται η συνάρτηση συνεχής στο [α, β] και παραγωγίσιµη στο (α, β) µε (α) > α>. ίνεται και ο β+ i (β) µιγαδικός z=. Αν ο z είναι φανταστικός αριθµός, να δείξετε ότι: α i (α) i. α β= (α) (β) Η εξίσωση () = έχει µια τουλάχιστον λύση στο (α, β) 5. ίνεται η συνάρτηση Αν η συνάρτηση είναι συνεχής τότε: + z +, < () = z+ i +, 7

8 i. Να αποδείξετε ότι: z = z+ i Επαναληπτικές ασκήσεις που φιλοδοξούν να γίνουν θέµατα εξετάσεων Βρείτε τον γεωµετρικό τόπο των εικόνων του µιγαδικού z i Βρείτε την ελάχιστη τιµή του µέτρου z iv. Ποιος µιγαδικός έχει το ελάχιστο µέτρο του ερωτήµατος iii; 6. ίνεται συνάρτηση παραγωγίσιµη στο [, ] και µε συνεχή παράγωγο στο [, ]. Επίσης ισχύουν: 7 () = () και '() > 4 Να δείξετε ότι: i. Υπάρχει ένα τουλάχιστον χ (, ) τέτοιο ώστε: '( ) = Υπάρχει ένα τουλάχιστον ξ (, ) τέτοιο ώστε: '(ξ) = 4ξ 7. Έστω οι συναρτήσεις, g ορισµένες και παραγωγίσιµες στο διάστηµα [α, β] µε g() g '() για κάθε χ (α, β). Αν w = (α) + g(β)i, z= g(α) + (β)i και ισχύει: Να δείξετε ότι: i. (α)g(α) = (β)g(β) w+ z = w z '( ) ( ) Υπάρχει ένα τουλάχιστον χ (α, β) για το οποίο ισχύει: + = g '( ) g( ) 8. Α) Έστω στο σύνολο των µιγαδικών αριθµών C η εξίσωση: όπου z άγνωστος και ο λ R z λ z+ λ= () i. Να βρείτε τα λ ώστε η εξίσωση () να µην έχει πραγµατικές λύσεις Να λύσετε την εξίσωση () για την τιµή του λ= Β) Αν z,z οι ρίζες του προηγούµενου ερωτήµατος: α) Να δείξετε ότι: z + z = 7 β) Αν η συνάρτηση είναι παραγωγίσιµη στο [, 4] και ισχύουν: δείξετε ότι: i. () = και (4) = () = z + z και (4) = z + z,τότε να 8

9 Επαναληπτικές ασκήσεις που φιλοδοξούν να γίνουν θέµατα εξετάσεων Υπάρχει ένα τουλάχιστον ξ (, 4) τέτοιο ώστε: '(ξ) = 4 α 9. Θεωρούµε τη συνάρτηση () = ln + α µε > και α R. Αν () για κάθε > τότε: i. Να αποδείξετε ότι: α = - Να δείξετε ότι: () = i Να λυθεί η εξίσωση: () = iv. Να λυθεί η ανίσωση: ln(k + ) > ln(k + ) + k + k +. ίνεται η συνάρτηση δύο φορές παραγωγίσιµη στο [, e] µε () =, (e) = e+ και σύνολο τιµών [-, 4]. Να δείξετε ότι: i. Υπάρχουν τουλάχιστον δύο, (,e) µε ώστε: '( ) = '( ) = Υπάρχει ένα τουλάχιστον ξ (, e) τέτοιο ώστε: ''(ξ) = i Υπάρχει ένα τουλάχιστον (, e) τέτοιο ώστε: ( ) [ '( ) 4( ( )) ] = 4 iv. Η ευθεία ε: y= + e+ τέµνει τη γραφική παράσταση της σε ένα τουλάχιστον σηµείο µε τετµηµένη c (, e) v. Υπάρχουν ξ,ξ (, e) µε ξ ξ για τα οποία ισχύει: '(ξ ) '(ξ ) =. ίνεται συνάρτηση : R R παραγωγίσιµη και για την οποία ισχύουν: i. Να δείξετε ότι: () = 6 Να βρείτε την εξίσωση της εφαπτοµένης της C στο χ= () lim = i Να δειχθεί ότι η y= + τέµνει την C σε ένα τουλάχιστον σηµείο µε τετµηµένη χ (, 5) και (5) = 6 iv. Αν η στρέφει τα κοίλα προς τα κάτω στο [, 5] να βρεθεί το πλήθος των ριζών της εξίσωσης '() = στο διάστηµα (, 5). ίνεται η συνάρτηση () = ln i. Βρείτε το σύνολο τιµών της συνάρτησης i iv. Να µελετηθεί ως προς την κοιλότητα και τα σηµεία καµπής Να βρείτε την εξίσωση της εφαπτοµένης στα σηµεία καµπής Να δείξετε ότι: α) ln για κάθε χ (, ) 9

10 Επαναληπτικές ασκήσεις που φιλοδοξούν να γίνουν θέµατα εξετάσεων β) ln για κάθε [, + ). ίνεται η συνάρτηση () = k+ λ + µ µε πεδίο ορισµού το R και κ, λ, µ > πραγµατικοί αριθµοί. Αν η συνάρτηση έχει ασύµπτωτες την y= + στο +, και την y= στο. Υπολογίστε τα κ, λ, µ. 4. Έστω συνάρτηση παραγωγίσιµη στο [α, β] µε <α<β τέτοια ώστε για τους µιγαδικούς z= α+ i (α) και w = β+ i (β) να ισχύει: z w R i. Να δείξετε ότι: α (β) = (α)β Αν ισχύει: (+ α t) lim dt α =, να αποδείξετε ότι υπάρχει ένα τουλάχιστον ξ (α, β) για το οποίο α ( α)(+ α t) ισχύει: '(ξ) = 5. ίνεται συνάρτηση συνεχής στο R και η συνάρτηση g που ορίζεται στο Rκαι έχει τύπο: + g() = (t )dt + (t )dt i. Να δείξετε ότι η g είναι παραγωγίσιµη στο R και να βρείτε την g '() Αν η g παρουσιάζει ακρότατο στο χ = τότε να δείξετε ότι: () = ( ) i Να δείξετε ότι υπάρχει ξ (, ) έτσι ώστε να ισχύει: 6. ίνεται συνάρτηση () = t dt t + t i. Να βρεθεί το πεδίο ορισµού της συνάρτησης i Να βρεθεί η παράγωγος της όπου ορίζεται Να µελετηθεί η ως προς τη µονοτονία (ξ ) = ( ξ ) iv. Αν z C είναι ένας µιγαδικός και ισχύει ( z ) = για, βρείτε τον γεωµετρικό του z στο µιγαδικό επίπεδο. 7. ίνεται συνάρτηση παραγωγίσιµη στο R µε '() = e και η C διέρχεται από το σηµείο (, -). i. Βρείτε την συνάρτηση

11 Επαναληπτικές ασκήσεις που φιλοδοξούν να γίνουν θέµατα εξετάσεων Να υπολογίσετε το εµβαδόν του χωρίου που περικλείεται από τις γραφικές παραστάσεις των συναρτήσεων (),g όπου g() = τον άξονα y ' y και την ευθεία =. 8. Οι συναρτήσεις, g είναι παραγωγίσιµες στο R µε συνεχή παράγωγο και ισχύουν: '() > και g '() '(t)dt = για κάθε χ R. i. Αποδείξτε ότι: g '() = ( ) (), R Μελετήστε την g ως προς την µονοτονία i Αποδείξτε ότι υπάρχει ξ (,): '(ξ) '(ξ ) = ξ 9. Η είναι συνεχής στο R µε (t)dt= (t)dt. Αποδείξτε ότι: i. (t)dt= (t)dt ] Η συνάρτηση φ () = (t)dt ικανοποιεί τις προϋποθέσεις του θεωρήµατος του Rolle στο διάστηµα [, ]. i Υπάρχει ξ (, ) τέτοιο ώστε: () = (t)dt 4. Α) Να δείξετε ότι για κάθε R ισχύει Β) Θεωρούµε την συνάρτηση e e () = e e + i. Να βρείτε την εξίσωση της εφαπτοµένης της C στο σηµείο A(, ()) Εξετάστε αν η έχει σηµεία καµπής i Να δείξε ότι για κάθε R ισχύει: () + 4. ίνεται συνάρτηση παραγωγίσιµη στο [, ] µε συνεχή παράγωγο στο [, ] µε την ιδιότητα: '()d = () 4 και () +, [,] i. Να αποδείξετε ότι: ()d = 4 Να δείξετε ότι: (t)dt= +

12 Επαναληπτικές ασκήσεις που φιλοδοξούν να γίνουν θέµατα εξετάσεων i Να βρείτε το εµβαδόν του χωρίου που περικλείεται από την C τον ' και τις ευθείες = και =λ όπου λ (,) iv. Υπολογίστε τον τύπο της συνάρτησης () για κάθε [, ]. 4. ίνονται οι παραγωγίσιµες συναρτήσεις,gστο R για τις οποίες ισχύει: g '() = () + () + 4 (4) και '() >, R i. Να δείξετε ότι υπάρχει ξ (, ) : 8 ()d= g '(ξ) Να δείξετε ότι η g είναι κυρτή () (4) (8) i Αν () = = = = και Ε το εµβαδόν του χωρίου που περικλείεται από την C και τις 4 8 ευθείες χ= και χ=8, τότε να δείξετε ότι: < Ε < 4. Έστω συνάρτηση παραγωγίσιµη στο R µε την ιδιότητα ( ()) =, R µε () = και () = () i. Να αποδείξετε ότι η είναι Να αποδείξετε ότι υπάρχει ένα τουλάχιστον ξ (, ) τέτοιο ώστε: '(ξ) =. Υπολογίστε και την τιµή του '( (ξ)) i Υπολογίστε το ολοκλήρωµα ()d 4. ίνεται η συνάρτηση συνεχής στο σύνολο των πραγµατικών αριθµών για την οποία ισχύει: i. Να βρείτε το () () e + lim = 5 ηµ Να δείξετε ότι η συνάρτηση είναι παραγωγίσιµη στο = i Αν h() e () = να δείξετε ότι οι εφαπτόµενες των γραφικών παραστάσεων,h στα σηµεία A(, ()) και B(,h()) αντίστοιχα είναι παράλληλες. («Θέµα εξετάσεων»)(μονάδες ) 44. («ΘΕΜΑ 4 Ο ΕΞΕΤΑΣΕΙΣ ) Έστω συνάρτηση ορισµένη στο R και ισχύουν οι σχέσεις: () για κάθε R

13 Επαναληπτικές ασκήσεις που φιλοδοξούν να γίνουν θέµατα εξετάσεων () = t (t)dt,για κάθε R Έστω η συνάρτηση g που ορίζεται από τον τύπο g() () =,για κάθε R i. Να δείξετε ότι: '() = () Να δείξετε ότι η g είναι σταθερή i Να δείξετε ότι ο τύπος της συνάρτησης είναι: () = + iv. Να βρείτε το όριο: lim [ ()ηµ] + (Μονάδες ) 45. («ΘΕΜΑ 4 Ο ΕΞΕΤΑΣΕΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ») Έστω συνάρτηση συνεχής στο (, + ) για την οποία ισχύει: i. Να δείξετε ότι η είναι παραγωγίσιµη στο (, + ) i iv. + ln Να δείξετε ότι ο τύπος της συνάρτησης είναι () =, χ > Να βρείτε το σύνολο τιµών της Να βρείτε τις ασύµπτωτες της γραφικής παράστασης της t (t) () = + dt µε χ> v. Να υπολογίσετε το εµβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση της συνάρτησης, τον άξονα ' και τις ευθείες =, = e 46. («ΘΕΜΑ 4 Ο ΕΞΕΤΑΣΕΩΝ») (Μονάδες ) Α) Έστω συναρτήσεις h, g συνεχείς στο [α, β]. Να αποδείξετε ότι: αν h() > g() για κάθε [α, β] τότε και β h()d> g()d Β) ίνεται η παραγωγίσιµη στο R συνάρτηση, που ικανοποιεί τις σχέσεις: i. Να εκφραστεί η ' ως συνάρτηση της () () e Να δείξετε ότι: < () < '() για κάθε > i α β α =, R και () = Αν Ε είναι το εµβαδόν του χωρίου Ω που ορίζεται από τη γραφική παράσταση της, τις ευθείες =, = και τον άξονα χ χ, να δείξετε ότι: < E< () 4 (Μονάδες )

14 Επαναληπτικές ασκήσεις που φιλοδοξούν να γίνουν θέµατα εξετάσεων 47. («ΘΕΜΑ Ο ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ») ίνεται συνάρτηση () = +, R e e i. Να δείξετε ότι η αντιστρέφεται και να βρείτε την αντίστροφη συνάρτηση Να δείξετε ότι η εξίσωση () = έχει µοναδική ρίζα το µηδέν. i Να υπολογίσετε το ολοκλήρωµα ()d (Μονάδες + 5+ ) 48. («ΘΕΜΑ 4 Ο ΕΞΕΤΑΣΕΩΝ 4») ίνεται συνεχής συνάρτηση : R R τέτοια ώστε: () =. Αν για κάθε R, ισχύει: όπου z = α+ βi,µε * α,β R, τότε: g() = z (t)dt z + ( ) z i. Να αποδείξετε ότι η συνάρτηση g είναι παραγωγίσιµη στο R και να βρείτε τη g ' Να αποδείξετε ότι: z = z+ z i Με δεδοµένη τη σχέση του ερωτήµατος β να αποδείξετε ότι: Re(z ) = iv. Αν επιπλέον () = α>, () = β και α > β,να αποδείξετε ότι υπάρχει (, ) τέτοιο, ώστε: ( ) = 49. («ΘΕΜΑ Ο ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 4») (Μονάδες ) Έστω συνάρτηση :[α,β] R συνεχής στο διάστηµα [α, β], µε () για κάθε χ [α, β] και µιγαδικός z µε Re(z), Im(z) και Re(z) > Im(z). Αν z+ = (α) και z i. z = z + = (β), να αποδείξετε ότι: z (β) < (α) i Η εξίσωση (α) + (β) = έχει µια τουλάχιστον ρίζα στο διάστηµα (-, ) 5. («ΘΕΜΑ 4 Ο ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 4») Έστω η συνεχής συνάρτηση :[, + ) R, τέτοια ώστε : 4 (Μονάδες +6+9)

15 Επαναληπτικές ασκήσεις που φιλοδοξούν να γίνουν θέµατα εξετάσεων () = + i. Να αποδείξετε ότι η είναι παραγωγίσιµη στο (,+ ) Να αποδείξετε ότι: () = e (+ ) i Να αποδείξετε ότι η () έχει µοναδική ρίζα στο [, + ) iv. Να βρείτε τα όρια: lim (), lim () + (t)dt 5. Έστω Α και Β οι εικόνες των µιγαδικών αριθµών z και w για τους οποίους ισχύει: 4 w = iz. z (Μονάδες ) i. Να δείξετε ότι, αν το Α κινείται σε κύκλο κέντρου Ο(,) και ακτίνας ρ=, τότε το Β κινείται σε κύκλο Βρείτε την µέγιστη και ελάχιστη τιµή του µέτρου z w ( ιαγώνισµα στο «Αρσάκειο») 5. ίνεται το σύνολο των µιγαδικών z, w για τους οποίους ισχύει: z i και w i i. Να δείξετε ότι υπάρχει µοναδικό ζευγάρι τέτοιο ώστε: z= w Να βρείτε την µέγιστη τιµή του z w 5. Έστω παραγωγίσιµη στο R µε () = και συν i. Να δείξετε ότι: () = για κάθε R + e Να δείξετε ότι: () + ( ) = συν,για κάθε e ( () + '()) + ηµ = '() ( ιαγώνισµα στο «Αρσάκειο») i Να υπολογίστε το π π συν d + e iv. Να αποδείξετε ότι η συνάρτηση είναι γνησίως φθίνουσα στο διάστηµα: π, v. Να δείξετε ότι: π ()d π 4 vi. Να δείξετε ότι: 4 π 4 π ()d ( ιαγώνισµα στο «Αρσάκειο») 5

16 Επαναληπτικές ασκήσεις που φιλοδοξούν να γίνουν θέµατα εξετάσεων 54. Έστω συνάρτηση ƒ τέτοια ώστε: () = + t i. Να υπολογίστε την µονοτονία και το πρόσηµο της για R Να δείξετε ότι: () + = για > dt i Να υπολογίστε το εµβαδόν του χωρίου Ε που περικλείεται µεταξύ της C του άξονα και των ευθειών = και =. ( ιαγώνισµα στο «Αρσάκειο») 55. ίνεται η παραγωγίσιµη συνάρτηση µε : R R τέτοια ώστε: () ηµ () =,για R και (π) = π i. Να δείξετε ότι είναι γνησίως αύξουσα στο R Βρείτε το σύνολο τιµών της i Να αποδείξετε ότι: () = iv. Υπολογίστε το ολοκλήρωµα: I π = ()d v. Αν <α<β να αποδείξετε ότι: β α () β α d ( ιαγώνισµα στο «Αρσάκειο») 56. Αν για την συνάρτηση ƒ:r R ισχύουν για κάθε R και ƒ()=, να αποδείξετε: α. Η συνάρτηση ƒ είναι δύο φορές παραγωγίσιµη στο R '() + 4 () = 5 '() β. Η συνάρτηση g µε τύπο: g() = είναι σταθερή και να βρεθεί ο τύπος της g. γ. Να βρεθεί η συνάρτηση ƒ e δ. Να υπολογισθεί το εµβαδόν του χωρίου που δηµιουργείται από την γραφική παράσταση της ƒ, του άξονα y y και τις ευθείες 5 y= και χ = Αν η συνάρτηση ƒ είναι ορισµένη και συνεχής στο (, + ) και επιπλέον ισχύει ότι για κάθε > : t (t) () = dt e 6

17 Επαναληπτικές ασκήσεις που φιλοδοξούν να γίνουν θέµατα εξετάσεων i. Να αποδείξετε ότι, η ƒ είναι παραγωγίσιµη στο (,+ ) Να αποδείξετε ότι, για κάθε > ισχύει () + '() = i Βρείτε τον τύπο της ƒ iv. Μελετήστε την µονοτονία και τα ακρότατα της συνάρτησης ƒ. v. Να αποδείξετε ότι για κάθε > ισχύει: () e 58. Έστω ότι η ευθεία y=+5 είναι ασύµπτωτη της γραφικής παράστασης µιας συνάρτησης ƒ στο +. Να βρείτε τα όρια: () i. lim και lim [ () ] + + Να βρείτε τον πραγµατικό αριθµό µ, αν µ () + 4 lim = + () ίνονται ƒ,g συναρτήσεις συνεχείς στο διάστηµα [α, β] και παραγωγίσιµες στο ανοικτό διάστηµα (α, β) έτσι ώστε: g(χ) g (χ). Αν z, w µιγαδικοί αριθµοί και λ πραγµατικός αριθµός διάφορος του µηδενός µε z = λ ƒ(α) ί g(β) και w= g(α) - ί λ ƒ(β) Για του οποίους ισχύει: λ z+w = λ z - w i. Να αποδείξετε ότι: Re(z w) = Να αποδείξετε ότι: ƒ(α) g(α)=ƒ(β) g(β) i Έστω η συνάρτηση G() = ƒ() g(), να αποδείξετε ότι ικανοποιούνται οι προϋποθέσεις του θεωρήµατος του Rolle στο [α, β]. iv. Να αποδείξετε ότι υπάρχει ένα τουλάχιστον χ ο (α, β) τέτοια ώστε: '( ) ( ) o o + = g '( ) g( ) o o 6. Θεωρούµε τη συνάρτηση µε τύπο: () = 4 α. Βρείτε το πεδίο ορισµού και σύνολο τιµών της συνάρτησης. β. Να αποδείξετε ότι η συνάρτηση είναι «-» γ. Να βρείτε την µονοτονία της ƒ στο πεδίο ορισµού της. δ. Να βρείτε την αντίστροφη συνάρτηση της ƒ, την ƒ -. ε. Να γίνει η γραφική παράσταση της ƒ -, ƒ. 7

18 Επαναληπτικές ασκήσεις που φιλοδοξούν να γίνουν θέµατα εξετάσεων () Αν η συνάρτηση ƒ είναι συνεχής στο R και ισχύει: lim = 5 α. Να αποδείξετε ότι: ƒ()= - β. Να αποδείξετε ότι η ƒ είναι παραγωγίσιµη στο χ ο= και να βρείτε το ƒ () e () () e γ. Να υπολογίσετε το όριο: lim ln 6. Θεωρούµε την συνάρτηση : () = + α. Να αποδείξετε ότι η συνάρτηση: g() = ln + είναι θετική στο (, + ). α. Να δείξετε ότι η ƒ είναι γνησίως αύξουσα στο πεδίο ορισµού της. β. Να βρείτε τις ασύµπτωτες της γραφικής παράστασης της ƒ. γ. Να εξετάσετε ως προς την κυρτότητα την συνάρτηση ƒ. δ. Βρείτε την εφαπτοµένη της συνάρτησης ƒ στο σηµείο A(, ƒ()) ε. Να βρείτε το εµβαδόν του χωρίου που περικλείεται µεταξύ της γραφικής παράστασης της ƒ, της εφαπτοµένης του σκέλους (δ) και τις ευθείες =, = ίνεται ο µιγαδικός αριθµός z τέτοιο ώστε: z i = z 7+ i i. Να βρείτε στο µιγαδικό επίπεδο τον γεωµετρικό τόπο που ανήκουν οι εικόνες του µιγαδικού z Να βρείτε τις τιµές των παραµέτρων έτσι ώστε η γραφική παράσταση της συνάρτησης () = α + 5β + να έχει στο - πλάγια ασύµπτωτη την ευθεία του ερωτήµατος (i). i. 64. Να προσδιορίσετε τον γεωµετρικό τόπο των σηµείων Μ του µιγαδικού επιπέδου, των οποίων οι αντίστοιχοι µιγαδικοί αριθµοί z είναι τέτοιοι ώστε τα παρακάτω όρια να είναι συγκεκριµένοι πραγµατικοί αριθµοί. lim lim z i z (5 ) z + i ύο σηµεία Α, Β κινούνται στους ηµιάξονες Οχ, Οψ αντίστοιχα ξεκινώντας ταυτόχρονα από το σηµείο Ο µε ταχύτητες υ Α = m/sec, υ B =5 m/sec. Να βρεθούν: i. O ρυθµός µεταβολής της µεταξύ τους απόστασης σε 6sec αργότερα. O ρυθµός µεταβολής του εµβαδού του τριγώνου ΟΑΒ την ίδια χρονική στιγµή. 8

19 Επαναληπτικές ασκήσεις που φιλοδοξούν να γίνουν θέµατα εξετάσεων 66. Αν ένα σηµείο Α(χ(t),y(t)) κινείται πάνω στην γραφική παράσταση της συνάρτησης y 5 = και την χρονική στιγµή t o διέρχεται από το σηµείο µε τετµηµένη -m και η ταχύτητα της τετµηµένης πάνω στον άξονα των χ είναι 5 m/sec ενώ η επιτάχυνσή του είναι m/sec τότε βρείτε: i. Την τεταγµένη του σηµείου την χρονική στιγµή t o i Την ταχύτητα της τεταγµένης την χρονική στιγµή t o Την επιτάχυνση της τεταγµένης την χρονική στιγµή t o 67. ίνονται οι παραγωγίσιµες συναρτήσεις,g στο R για τις οποίες ισχύουν: () = g() =. g() i. Να δείξετε ότι: () = για κάθε πραγµατικό αριθµό χ e e '() = g '() g() και Αν η γραφική παράσταση της συνάρτησης έχει πλάγια ασύµπτωτη στο + την ευθεία: y=,να βρείτε g() το όριο: lim + g() e 68. Αν δύο φορές παραγωγίσιµη στοr, κυρτή στο R και () = '() =, τότε: i. Να δείξετε ότι: () για κάθε πραγµατικό αριθµό χ Να δείξετε ότι: η συνάρτηση πραγµατικό αριθµό g() = ( + ) είναι κυρτή στο R και g() g '(ξ)( ξ) + g(ξ) για κάθε 69. Έστω δύο φορές παραγωγίσιµη στο [,4] µε σύνολο τιµών το [,7] και συνεχή δεύτερη παράγωγο. Αν () = 7, (4) = και η συνάρτηση i. Υπάρχει κ (,4) ώστε: '(k) = ''() < '() για κάθε χ στο [,4] g() e () i Υπάρχουν ξ,ξ στο (,4) µε '(ξ ) '(ξ ) < iv. Η εξίσωση ''() = έχει τουλάχιστον ρίζες στο (,4) = είναι κοίλη στο [,4], τότε να δείξετε ότι: 7. ίνονται οι µιγαδικοί αριθµοί z για τους οποίους ισχύει: z = και Re(z) i. Να περιγραφή γεωµετρικά το σύνολο εικόνων των παραπάνω µιγαδικών αριθµών και να βρεθεί εκείνος του οποίου η εικόνα έχει την µικρότερη απόσταση από τον + i Αν w = z+ 4 z, z να δείξετε ότι η εικόνα του wκινείται στον άξονα σε ευθύγραµµο τµήµα µήκους 9

20 Επαναληπτικές ασκήσεις που φιλοδοξούν να γίνουν θέµατα εξετάσεων i Να δείξετε ότι: z i + z+ i = 4 και να ερµηνεύσετε γεωµετρικά το αποτέλεσµα αυτό. ( ιαγώνισµα «Αρσάκειο») 7. ίνεται συνάρτηση παραγωγίσιµη στο [, + ) µε σύνολο τιµών το [, + ) για την οποία ισχύει: () e () e + =,για i. Να δείξετε ότι η είναι γνησίως αύξουσα και ότι: () = Να δείξετε ότι: (),για i Αν F() (t)dt = + για χ (, ) να δείξετε ότι υπάρχει µία τουλάχιστον εφαπτοµένη ευθεία στην C F που διέρχεται από το σηµείο A, iv. Να δείξετε ότι η αντίστροφη της έχει τύπο () ln( e ) = +, είναι γνησίως αύξουσα στο πεδίο ορισµού της και να υπολογίσετε το + lim (t)dt + 7. Ένας µιγαδικός z ικανοποιεί τη σχέση: z 4 =( ) z. α) Να αποδειχθεί ότι z = ή z =. β) Αν z να αποδειχθεί ότι z =. z γ) Αν z να αποδειχθεί ότι z 6 =. δ) Να βρεθούν όλοι οι µιγαδικοί z µε z 4 =( ) z. ε) Σε ποια γραµµή βρίσκονται οι εικόνες των παραπάνω µιγαδικών z, αν z ; z+ i 7. ίνεται ο µιγαδικός C w=, µε z = χ + ψi και χ, ψ R. z + α) Να γραφεί ο w στη µορφή α + βi όπου α, β R. β) Να βρεθεί ο γεωµετρικός τόπος της εικόνας Μ του z, όταν w R. γ) Να βρεθεί ο γεωµετρικός τόπος της εικόνας Ν του z, όταν ο w είναι φανταστικός. δ) Να βρεθεί ο γεωµετρικός τόπος της εικόνας Μ του z, όταν Re(w)=Im(w). ε) Αν η εικόνα Μ του z κινείται στον κύκλο χ +ψ =4, να αποδειχθεί ότι η εικόνα του w κινείται στην ευθεία ψ = χ. 74. ίνεται ο µιγαδικός z µε z + z =. α) Να βρεθούν οι δυνατές τιµές του z. β) Να λυθεί η εξίσωση z + z =.

21 Επαναληπτικές ασκήσεις που φιλοδοξούν να γίνουν θέµατα εξετάσεων γ) Αν z και z είναι οι ρίζες µε µη µηδενικό φανταστικό µέρος, να βρεθούν οι z και z. δ) Να υπολογιστεί η παράσταση A= z + z Μια συνάρτηση : R R έχει την ιδιότητα: (o)()=- για κάθε R. είξτε ότι: α) ()=, β) η αντιστρέφεται, γ) η έχει σύνολο τιµών το R, δ) - ()=-(), R. 76. Να βρεθούν οι συνεχείς συναρτήσεις : R R µε την ιδιότητα: [()-ηµ][()+ηµ]=()συν για κάθε R. 77. Μια συνάρτηση : R R έχει την ιδιότητα: () + (-)+ για κάθε R. α) Να βρεθεί ο τύπος της. β) Να βρεθούν οι εξισώσεις των εφαπτοµένων της C οι οποίες διέρχονται από το σηµείο Μ(,5). 78. Έστω : [α, β] R συνάρτηση που είναι συνεχής στο [α, β] και παραγωγίσιµη στο (α, β), µε (α)=β και (β)=α.. Να αποδειχθεί ότι: α) η εξίσωση ()= έχει µια τουλάχιστον ρίζα στο (α, β), β) υπάρχουν ξ, ξ (α,β) τέτοια ώστε: (ξ ) (ξ )= Μια συνάρτηση : R R έχει την ιδιότητα: ()=() για κάθε R και ()= ()=. () + () α) Να αποδειχθεί ότι η συνάρτηση g() = είναι σταθερή στο R. e β) Να αποδειχθεί ότι ()+()=e, R. γ) Να βρεθεί ο τύπος της. 8. ίνεται η συνάρτηση ()=e + e Να αποδειχθεί ότι: Α. α) η έχει ελάχιστο το µηδέν, β) η είναι κυρτή, γ) η είναι κοίλη στο (-,] και κυρτή στο [, + ). Β. α) Να λυθεί η εξίσωση ()=. β) Να αποδειχθεί ότι e +e - + για κάθε R. 8. ίνεται η συνάρτηση ()= (+α) +β. Αν η παρουσιάζει τοπικό ακρότατο στο = µε τιµή -, τότε: α) να βρεθούν οι τιµές των α, β, β) να µελετηθεί η ως προς τη µονοτονία, γ) να βρεθούν όλα τα τοπικά ακρότατα της, δ) να βρεθεί το πλήθος των πραγµατικών ριζών της εξίσωσης ()=, ε) να βρεθεί το σύνολο τιµών της F,

22 στ) να βρεθούν τα ολικά ακρότατα της, Επαναληπτικές ασκήσεις που φιλοδοξούν να γίνουν θέµατα εξετάσεων ζ) να αποδειχθεί ότι για κάθε R. 8. Μια παραγωγίσιµη συνάρτηση : R R έχει την ιδιότητα: ()+()= ++e - για κάθε R. α) Να αποδειχθεί ότι η δεν έχει κρίσιµα σηµεία. β) Να βρεθεί η µονοτονία της (). γ) Να λυθεί η εξίσωση ()=. δ) Να βρεθεί το πρόσηµο της. ε) Να εξεταστεί αν η έχει τοπικά ακρότατα ίνεται η συνάρτηση () =. α) Να βρεθεί το πεδίο ορισµού της. β) Να βρεθούν τα κοινά σηµεία της C µε τον άξονα. γ) Να βρεθούν τα διαστήµατα στα οποία η C είναι πάνω από τον άξονα. δ) Να εξεταστεί αν η C έχει κέντρο ή άξονα συµµετρίας. ε) Να µελετηθεί η ως προς την µονοτονία. στ) Να βρεθεί το σύνολο τιµών της σε καθένα από τα διαστήµατα του πεδίου ορισµού της καθώς και το σύνολο τιµών της. ζ) Να βρεθεί το πλήθος των ριζών της εξίσωσης -α -4+α=., όπου α R. 84. Μια παραγωγίσιµη συνάρτηση : R R έχει την ιδιότητα: ()+ ()= για κάθε R. α) Να βρεθεί το (). β) Να µελετηθεί η ως προς την µονοτονία. γ) Να αποδειχθεί ότι ()> για κάθε >. δ) Να αποδειχθεί ότι ()<()< για κάθε >. 85. Μια συνάρτηση : R R* έχει την ιδιότητα: + = () () e για κάθε R. Aν ()=, τότε: I= () + () e d. α) να βρεθεί το ( ) β) να αποδειχθεί ότι ()=e, R. 86. Έστω F µια αρχική της συνεχούς συνάρτησης : R R, µε την ιδιότητα: F () F()F(α-) για κάθε R, όπου α. Να αποδειχθεί ότι: α) F()=F(α), β) η εξίσωση ()= έχει µια τουλάχιστον ρίζα στο R. 87. Μια συνάρτηση : (, + ) R έχει την ιδιότητα: (y)=()+(y)+y--y για κάθε,y >. Α. α) Να βρεθεί το ().

23 Επαναληπτικές ασκήσεις που φιλοδοξούν να γίνουν θέµατα εξετάσεων β) Αν η είναι συνεχής στο, να αποδειχθεί ότι είναι συνεχής στο (, + ). γ) Αν η είναι συνεχής στο α>, να αποδειχθεί ότι είναι συνεχής στο (, + ). Β. Αν η είναι παραγωγίσιµη στο χ =, µε ()=, τότε: α) να αποδειχθεί ότι η είναι παραγωγίσιµη στο (, + ), β) να βρεθεί ο τύπος της, =. γ) να βρεθεί το ολοκλήρωµα I ()d 88. Έστω µια συνεχής και άρτια συνάρτηση : R R και η συνάρτηση: α) Να βρεθεί η παράγωγος της g. β) Να αποδειχθεί ότι g(α)=g(β). γ) Να αποδειχθεί ότι υπάρχει ξ (α, β) τέτοιο, ώστε (ξ-α)=(ξ-β). β g() = ( t)dt, R, α<β α 89. Έστω µια συνεχής συνάρτηση στο R και α<β. Αν β α β (+ t)dt ()d για κάθε R, τότε: α α) να αποδειχθεί ότι: β+ α+ β (t)dt ()d για κάθε R α β) να βρεθεί η παράγωγος της συνάρτησης g() = (+ t)dt (t)dt γ) να εξεταστεί αν η g έχει ελάχιστο, δ) να αποδειχθεί ότι (α)=(β), ε) αν η είναι παραγωγίσιµη, να αποδειχθεί ότι υπάρχει ξ R τέτοιο, ώστε (ξ)=. β α β α 9. ίνεται η συνάρτηση: () = α) Να βρεθεί η (χ). t e + συνt dt, R t + e β) Να αποδειχθεί ότι ()=+ηµ για κάθε R. γ) Να αποδειχθεί ότι ορίζεται η - :[, π] [, π]. δ) Να αποδειχθεί ότι το εµβαδόν του χωρίου µεταξύ των C και C και των ευθειών = και =π είναι Ε=4 τ.µ. z 4i w + 6i + 9. ίνονται οι µιγαδικοί z, w, για τους οποίους ισχύει: lim = α) Να βρεθεί ο γεωµετρικός τόπος των εικόνων του µιγαδικού z. β) Να βρεθεί ο γεωµετρικός τόπος των εικόνων του µιγαδικού w. γ) Να βρεθεί η ελάχιστη τιµή του z-w.

24 Επαναληπτικές ασκήσεις που φιλοδοξούν να γίνουν θέµατα εξετάσεων 9. ίνεται ο µιγαδικός z=α + βi και η εξίσωση ln z =- z (). α) είξτε ότι η εξίσωση () έχει µοναδική λύση την z =. β) Να βρείτε το γεωµετρικό τόπο της εικόνας Μ(α, β) του µιγαδικού z. γ) Από τους παραπάνω µιγαδικούς z να βρείτε εκείνο του οποίου η εικόνα απέχει τη µικρότερη δυνατή απόσταση από την εικόνα του µιγαδικού w=+i. 9. ίνεται η συνάρτηση, συνεχής στο διάστηµα [, ] και οι µιγαδικοί αριθµοί z =()+i και z =+()i. Αν ισχύει z +z = z -z, να δείξετε ότι η εξίσωση ()= έχει µια τουλάχιστον ρίζα στο [, ]. 94. ίνεται η συνάρτηση, συνεχής στο διάστηµα [α, β] και παραγωγίσιµη στο (α, β) µε (α) > α >. ίνεται και ο β+ i (β) µιγαδικός z=. Αν ο z είναι φανταστικός να δείξετε ότι η εξίσωση () = έχει µια τουλάχιστον λύση α i (α) στο διάστηµα (α, β). + z +, < 95. ίνεται η συνάρτηση: () = z+ i +, Αν η είναι συνεχής να δείξετε ότι η εικόνα του µιγαδικού z κινείται σε ευθεία της οποίας να βρείτε την εξίσωση. 96. Έστω οι συναρτήσεις, g ορισµένες και παραγωγίσιµες στο διάστηµα [α, β] µε g()g (), για κάθε (α, β). Αν w=(α)+g(β)i, z=g(α)+(β)i και ισχύει w+ z = w z, να δείξετε ότι υπάρχει o (α, β) για το οποίο ισχύει: ( ) ( ) + =. g ( ) g( ) 97. Έστω στο σύνολο των µιγαδικών C η εξίσωση: z λz+λ = (). α) Να βρείτε τα λ R ώστε η () να µην έχει πραγµατικές ρίζες. β) Να λύσετε την () για λ=. Στη συνέχεια να βρείτε το µέτρο κάθε µιας από τις ρίζες z, z που βρήκατε. 7 γ) Να δείξετε ότι z + z =. δ) Αν η είναι συνάρτηση παραγωγίσιµη στο [, 4] και ισχύουν () = z + z, (4) = z + z, τότε να δείξετε ότι υπάρχει ένα τουλάχιστον ξ (, 4) τέτοιο ώστε (ξ)=-¼. 98. ίνεται η συνάρτηση ()= ln. α) Να µελετηθεί ως προς την κυρτότητα και τα σηµεία καµπής. β) Να βρείτε την εξίσωση της εφαπτοµένης στα σηµεία καµπής. γ) Να δείξετε ότι: i) ln για κάθε (, ]. ii) ln για κάθε χ [, + ). 99. ίνεται η συνάρτηση, συνεχής στο R και η συνάρτηση g που ορίζεται στο R και έχει τύπο: 4

25 Επαναληπτικές ασκήσεις που φιλοδοξούν να γίνουν θέµατα εξετάσεων +. g() = (t )dt + (t )dt α) Να δειχθεί ότι η g είναι παραγωγίσιµη στο R και να βρεθεί η g (). β) Αν η g παρουσιάζει ακρότατο στο χ = τότε να δείξετε ότι ()=(-). γ) Να δείξετε ότι υπάρχει ξ (, ), έτσι ώστε να ισχύει (ξ -)=(-ξ ).. ίνεται η συνάρτηση () = α) Να βρεθεί το πεδίο ορισµού της. β) Να βρεθεί η (χ) όπου ορίζεται. t dt t + t γ) Να µελετηθεί η ως προς τη µονοτονία. δ) Να λυθεί η εξίσωση ()=.. ίνεται η συνάρτηση, παραγωγίσιµη στο R µε () = και () =. e α) Να βρεθεί η. β) Να υπολογιστεί το εµβαδόν του χωρίου που περικλείεται από τις γραφικές παραστάσεις των συναρτήσεων και () g µε g() = τον άξονα ψ ψ και την ευθεία =.. Οι συναρτήσεις, g είναι παραγωγίσιµες στο R µε =g, g = και ισχύουν ()>, R και g(-)g() <, για. α) Μελετήστε τις, g ως προς τη µονοτονία και τα ακρότατα. β) Αποδείξτε ότι: g()>(), για >. γ) Μελετήστε τις, g ως προς την κυρτότητα. δ) Αποδείξτε ότι οι συναρτήσεις h()=e - (+g)() και φ()=e (-g)() είναι σταθερές. ε) Αν ()=, να βρείτε τους τύπους των,g.. Η συνάρτηση είναι δύο φορές παραγωγίσιµη στο R και ισχύουν: [ ()] ()=, ()=. α) Αποδείξτε ότι ()=e +c +c, όπου c, c σταθερές. β) Να βρείτε τον τύπο της. γ) Αποδείξτε ότι () = e, R. () () δ) Υπολογίστε το ολοκλήρωµα : I= d, >. e e + () () =, R και 5

e 1 1. Μια συνάρτηση f: R R έχει την ιδιότητα: (fof)(x)=2-x για κάθε χє R. Να δείξετε ότι: α) f(1)=1, β) η f αντιστρέφεται, γ) f x lim

e 1 1. Μια συνάρτηση f: R R έχει την ιδιότητα: (fof)(x)=2-x για κάθε χє R. Να δείξετε ότι: α) f(1)=1, β) η f αντιστρέφεται, γ) f x lim ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Μια συνάρτηση f: R R έχει την ιδιότητα: (fof)()=- για κάθε χє R. Να δείξετε ότι: α) f()=, β) η f αντιστρέφεται, γ) f - ()=-f(), є R., δ ) να λύσετε

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Ο Να εξετάσετε ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λανθασµένες.. Αν η συνάρτηση είναι συνεχής στο

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ο δείγμα ΘΕΜΑ ο Α. Έστω μία συνάρτηση f συνεχής σε ένα διάστημα α,β. Αν G είναι μία παράγουσα της f στο α,β τότε να αποδείξετε ότι

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 Ε_3.Μλ3ΘΤ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο A. Έστω µια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστηµα. Αν f () > σε κάθε εσωτερικό σηµείο του, τότε να αποδείξετε ότι η f είναι γνησίως

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6.

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6. ΜΙΓΑ ΙΚΟΙ 1 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 1 2 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 3 Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2 4 Για κάθε z C ισχύει z z 2 z 5 Για κάθε µιγαδικό z ισχύει:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [α,β]. Αν η f είναι συνεχής στο [α,β]

Διαβάστε περισσότερα

Για παραγγελίες των βιβλίων 2310610920

Για παραγγελίες των βιβλίων 2310610920 Για παραγγελίες των βιβλίων 369 Θέματα Προσομοίωσης Πανελλαδικών D.A.T. ΘΕΜΑ o ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 3 ΑΠΡΙΛΙΟΥ 8 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ II ΕΠΑΛ (ΟΜΑ Α Β ) ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α A Έστω f µια συνάρτηση ορισµένη σε ένα διάστηµα Αν F είναι µια παράγουσα της f στο, τότε να αποδείξετε ότι: όλες οι συναρτήσεις της µορφής G() F() + c, c

Διαβάστε περισσότερα

ΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ( 2001 2011 ) ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΕΙΣ Ο.Ε.Φ.Ε. ( 2003 2011 )

ΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ( 2001 2011 ) ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΕΙΣ Ο.Ε.Φ.Ε. ( 2003 2011 ) ΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ( & ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΕΙΣ Ο.Ε.Φ.Ε. ( Επιμέλεια Συρραφή Θεμάτων Ζαχαριάδης Λάζαρος - Μαθηματικός ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΑΠΟ ΕΩΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ

Διαβάστε περισσότερα

Θέματα. Α1. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του x,

Θέματα. Α1. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του x, Θέμα Α Θέματα Α. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του, στο οποίο όμως η f είναι συνεχής. Να αποδείξετε ότι αν η f() διατηρεί πρόσημο στο (, ) (, ), τότε

Διαβάστε περισσότερα

Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 2000-2015

Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 2000-2015 Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 000-05 Περιεχόµενα Θέµατα Επαναληπτικών 05............................................. 3 Θέµατα 05......................................................

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α A. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα. Αν F είναι μια παράγουσα της στο, τότε να αποδείξετε ότι:

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 3 ΙΟΥΝΙΟΥ 03 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 3ο : Δίνεται η συνάρτηση f :(,) R με f() η οποία για κάθε (,

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν Η f είναι συνεχής στο Δ και f = για κάθε εσωτερικό σημείο του Δ τότε να αποδείξετε

Διαβάστε περισσότερα

Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις

Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις γιατί συχνά, οι ιδέες επαναλαµβάνονται ΕΠΙΜΕΛΕΙΑ: ΠΑΠΠΑΣ ΑΘΑΝΑΣΙΟΣ Ο ΓΕΝ ΛΥΚΕΙΟ ΥΜΗΤΤΟΥ Σελίδα από 8 Επιµέλεια: Παππάς Αθανάσιος/o ΓΕΛ ΥΜΗΤΤΟΥ 00

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Μ. Τρίτη 3 Απριλίου 3 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Σχολικό βιβλίο,

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α. A1. Έστω μια συνάρτηση f παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο x

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α. A1. Έστω μια συνάρτηση f παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο x ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α A Έστω μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο, στο οποίο όμως η είναι συνεχής Να αποδείξετε ότι αν () 0 στο, ) και ()

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 4 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 4 ΘΕΜΑ ο : * Θεωρούμε τους μιγαδικούς αριθμούς της μορφής zi,

Διαβάστε περισσότερα

ΥΠΟΨΗΦΙΑ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ 2013

ΥΠΟΨΗΦΙΑ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ 2013 ΥΠΟΨΗΦΙΑ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ 3 Εισαγωγή Μέσα Μαΐου και ο πυρετός των Πανελλαδικών όλο και ανεβαίνει! Οι μαθητές ξεκοκαλίζουν τα βιβλία για να ανακαλύψουν δύσκολα θέματα διαφορετικά από αυτά που κυκλοφορούν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν η f είναι συνεχής στο Δ και f για κάθε εσωτερικό σημείο

Διαβάστε περισσότερα

Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ

Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ 33 Θ Ε Μ Α Τ Α με λύση Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ Επιμέλεια: Νίκος Λέντζος Καθηγητής Μαθηματικών Δ/θμιας Εκπαίδευσης Από το βιβλίο ΜΑΘΗΜΑΤΙΚΑ (έκδοση 4) Γ ΛΥΚΕΙΟΥ τεύχος Α Αναστάσιου Χ. Μπάρλα μα προσφορά του

Διαβάστε περισσότερα

για τις οποίες ισχύει ( )

για τις οποίες ισχύει ( ) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΜΗΤΑΛΑΣ ΓΙΑΝΝΗΣ, ΔΡΟΥΓΑΣ ΑΘΑΝΑΣΙΟΣ ΕΠΙΜΕΛΕΙΑ . Έστω οι συναρτήσεις f, g: για κάθε. α) Να αποδείξετε ότι η g είναι -. β) Να αποδείξετε ότι

Διαβάστε περισσότερα

23 2011 ΘΕΜΑ Α A1. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ και x 0 ένα εσωτερικό σημείο του Δ. Αν η f παρουσιάζει τοπικό ακρότατο στο x 0 και είναι παραγωγίσιμη στο σημείο αυτό, να αποδείξετε ότι:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 0 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 0 ΘΕΜΑ ο : Έστω, C με Re( ) και Re( ) Αν f() ( )( )( )( ) και

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (1 η σειρά)

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (1 η σειρά) 9 ΘΕΡΙΝΑ ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ( η σειρά) ΘΕΜΑ ο Α. Έστω η συνάρτηση f με f() ημ. Να αποδείξετε ότι η f είναι παραγωγίσιμη στο και ισχύει f () συν Β. Πότε μια συνάρτηση f λέμε

Διαβάστε περισσότερα

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( )

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( ) ΑΣΚΗΣΗ ίνονται οι µιγαδικοί αριθµοί z + 0i για τους οποίους ισχύει: z 4 =. z i. Να δείξετε ότι z =. ii. Αν επιπλέον ισχύει Re( z) Im( z) iii. = να υπολογίσετε τους παραπάνω µιγαδικούς αριθµούς. Για τους

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f () σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά)

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά) 3 1 0 011 ΘΕΡΙΝΑ ΤΜΗΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά) ΘΕΜΑ 1 Α. Έστω η συνάρτηση F()=f()+g(). Aν οι συναρτήσεις f, g είναι παραγωγίσιμες, να αποδείξετε ότι F

Διαβάστε περισσότερα

z-4 =2 z-1. 2z1 2z2 β) -4 w 4. ( ) x 1 3 x 2 e t dt, x 0

z-4 =2 z-1. 2z1 2z2 β) -4 w 4. ( ) x 1 3 x 2 e t dt, x 0 ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 5 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α. Έστω µια συνάρτηση f, η οποία είναι ορισµένη σε ένα κλειστό διάστηµα [α, β]. Αν η f είναι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Μαθηματικά Γενικής Παιδείας Γ.Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΣΚΗΣΕΙΣ ) Να βρείτε το πεδίο ορισμού των συναρτήσεων: ( ) 6+ 9, g ( ), h ( ) 5 +, k

Διαβάστε περισσότερα

13 Μονοτονία Ακρότατα συνάρτησης

13 Μονοτονία Ακρότατα συνάρτησης 3 Μονοτονία Ακρότατα συνάρτησης Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρημα Αν μια συνάρτηση f είναι συνεχής σ ένα διάστημα Δ, τότε: Αν f ( ) > 0για κάθε εσωτερικό του Δ, η f είναι γνησίως αύξουσα στο Δ. Αν

Διαβάστε περισσότερα

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1 ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 8 ΜΑΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ Α Α.

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν η f είναι συνεχής στο Δ και f ()= για κάθε εσωτερικό σημείο του Δ, τότε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 8 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία, σελ. 53, σχολικού βιβλίου. Α. Θεωρία, σελ. 9, σχολικού βιβλίου. Α3. Θεωρία, σελ. 58, σχολικού βιβλίου. Α4. α) Σ, β) Σ,

Διαβάστε περισσότερα

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ. i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( x )

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ. i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( x ) () Μονοτονία ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( ) και βρίσκω το πρόσηµό της ii) Αν προκύψει να είναι αύξουσα ή φθίνουσα,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014-2015 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014-2015 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 04-05 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ Θεωρούμε τους μιγαδικούς C για τους οποίους ισχύει: - = + Im() και τη συνάρτηση f : w f ( w), όπου w C, w - και f (w) = w ) Να

Διαβάστε περισσότερα

Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ

Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις ανάπτυξης. ** Να βρείτε τους πραγµατικούς αριθµούς x και y ώστε να ισχύουν οι ισότητες: α) x - + y = - + - y β) y + = 3 - ( + ) x γ) 4y - 3y - x = - 5x + 9 δ) (x

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 2007 ΕΚΦΩΝΗΣΕΙΣ. Α.3 Πότε η ευθεία y = l λέγεται οριζόντια ασύµπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 2007 ΕΚΦΩΝΗΣΕΙΣ. Α.3 Πότε η ευθεία y = l λέγεται οριζόντια ασύµπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3 ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 7 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Α.1 Αν z 1, z είναι µιγαδικοί αριθµοί, να αποδειχθεί ότι: z 1 z = z 1 z. Α. Πότε δύο συναρτήσεις f, g λέγονται ίσες; Μονάδες 4 Α.3 Πότε η ευθεία y

Διαβάστε περισσότερα

( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ Β. κ Θέµα 1 ο Α. Έστω η συνάρτηση f ορισµένη και συνεχής στο διάστηµα [ α,β ] µε f ( α) f ( β)

( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ Β. κ Θέµα 1 ο Α. Έστω η συνάρτηση f ορισµένη και συνεχής στο διάστηµα [ α,β ] µε f ( α) f ( β) Μαθηματικά Κατεύθυνσης Γ Λυκείου κ Θέµα 1 ο Α. Έστω η συνάρτηση ορισµένη και συνεχής στο διάστηµα [ α,β ] µε ( α) ( β). Να δειχτεί ότι για κάθε αριθµό η µεταξύ των ( α ) και ( β ) υπάρχει ένας τουάχιστον

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003 ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑ o A. Να αποδείξετε ότι, αν µία συνάρτηση f είναι παραγωγίσιµη σ ένα σηµείο x, τότε είναι και συνεχής στο σηµείο αυτό. Β. Τι

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ).

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ). 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1 ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ Α. Βλέπε σχολικό βιβλίο σελίδα 194, το θεώρηµα ενδιάµεσων τιµών. Β. Βλέπε τον ορισµό στη σελίδα 279 του σχολικού βιβλίου. Γ. Βλέπε

Διαβάστε περισσότερα

παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο με τεταγμένη 3 και διέρχεται από το σημείο

παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο με τεταγμένη 3 και διέρχεται από το σημείο ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ ΑΣΚΗΣΗ η (Κατσίποδας Δημήτρης) Δίνονται οι συναρτήσεις f() = με a, β R και g() = 5.Αν η γραφική παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 4 Λύσεις των θεμάτων Έκδοση η

Διαβάστε περισσότερα

[ ] [ ] ΘΕΜΑ 1o A. Για x x 0 έχουµε: παραγωγίσιµη στο χ 0 ) άρα η f είναι συνεχής στο χ 0.

[ ] [ ] ΘΕΜΑ 1o A. Για x x 0 έχουµε: παραγωγίσιµη στο χ 0 ) άρα η f είναι συνεχής στο χ 0. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 29 ΜΑΪΟΥ 23 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1o A. Για x x έχουµε: f (

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ ΙΟΥΝΙΟΥ 4 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

Μελέτη και γραφική παράσταση συνάρτησης

Μελέτη και γραφική παράσταση συνάρτησης 7 Μελέτη και γραφική παράσταση συνάρτησης Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η διαδικασία με την οποία προσδιορίζουμε τα ιδιαίτερα χαρακτηριστικά μιας συνάρτησης ονομάζεται μελέτη συνάρτησης Αυτή συνίσταται

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α ΟΙ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΑΠΟ ΤΟΥΣ ΚΑΘΗΓΗΤΕΣ κύριο ΦΟΥΝΤΟΥΛΑΚΗ ΜΑΝΩΛΗ κυρία ΦΟΥΝΤΟΥΛΑΚΗ ΑΓΓΕΛΙΚΗ του ΦΡΟΝΤΙΣΤΗΡΙΟΥ

Διαβάστε περισσότερα

Υψώνουμε την δοσμένη σχέση στο τετράγωνο οπότε

Υψώνουμε την δοσμένη σχέση στο τετράγωνο οπότε ΑΠΑNTHΣΕΙΣ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΘΕΜΑ A A Απόδειξη Σελ 53 Α Ορισμός Σελ 9 Α3 Ορισμός Σελ 58 Α4 α) Σ β) Σ γ) Λ δ) Λ ε) Λ ΘΕΜΑ Β Β 4 4 4 Άρα ο γεωμετρικός τόπος των εικόνων των μιγαδικών

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. σας προτείνουν για άλλη μια χρονιά, ένα ολοκληρωμένο

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. σας προτείνουν για άλλη μια χρονιά, ένα ολοκληρωμένο ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Αγαπητοί μαθητές και μαθήτριες, Τα σας προτείνουν για άλλη μια χρονιά, ένα ολοκληρωμένο επαναληπτικό υλικό στα Μαθηματικά Κατεύθυνσης της Γ Λυκείου,

Διαβάστε περισσότερα

Λύκειο Παραλιμνίου Σχολική Χρονιά 2013-2014 Γενικές ασκήσεις επανάληψης Γ κατ

Λύκειο Παραλιμνίου Σχολική Χρονιά 2013-2014 Γενικές ασκήσεις επανάληψης Γ κατ Λύκειο Παραλιμνίου Σχολική Χρονιά 1-14 Γενικές ασκήσεις επανάληψης Γ κατ 1. Να βρείτε την παράγωγο της συνάρτησης y = e ημ + ln. Να βρείτε την παράγωγο της συνάρτησης y = τοξημ( ) d y y = ημ θ. Να βρείτε

Διαβάστε περισσότερα

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΡΙΣΜΟΙ ΑΠΟΔΕΙΞΕΙΣ ΕΡΩΤΗΣΕΙΣ : ΣΩΣΤΟ ΛΑΘΟΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ : ΜΙΓΑΔΙΚΟΙ

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ «ΠΡΟΟΔΟΣ» ΚΥΡΙΑΚΗ 22 ΝΟΕΜΒΡΙΟΥ 2015 ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» Γ ΛΥΚΕΙΟΥ

ΦΡΟΝΤΙΣΤΗΡΙΑ «ΠΡΟΟΔΟΣ» ΚΥΡΙΑΚΗ 22 ΝΟΕΜΒΡΙΟΥ 2015 ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ «ΠΡΟΟΔΟΣ» ΚΥΡΙΑΚΗ ΝΟΕΜΒΡΙΟΥ 5 ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο A. Να δώσετε τον ορισμό της συνέχειας μιας συνάρτησης στο πεδίο ορισμού της. ( Μονάδες)

Διαβάστε περισσότερα

ÖÑÏÍÔÉÓÔÇÑÉÁ ÓÕÍÏËÏ ËÁÌÉÁ. ( i) ( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ( ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β ΘΕΜΑ Γ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ.

ÖÑÏÍÔÉÓÔÇÑÉÁ ÓÕÍÏËÏ ËÁÌÉÁ. ( i) ( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ( ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β ΘΕΜΑ Γ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β ΙΟΥΝΙΟΥ 4 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία σελ. 5 σχολικού βιβλίου. Α. Θεωρία σελ. 73 σχολικού βιβλίου. Α3. Θεωρία σελ. 5 σχολικού βιβλίου. Α4. α) Λ, β) Σ, γ) Σ,

Διαβάστε περισσότερα

1. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους. ii) f(x) = δ) f (x) = ζ) f (x) =

1. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους. ii) f(x) = δ) f (x) = ζ) f (x) = ΣΥΝΑΡΤΗΣΕΙΣ 9o ΓΕΛ ΠΕΡΙΣΤΕΡΙΟΥ Α ΠΕΔΙΟ ΟΡΙΣΜΟΥ Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους ι) () = 4 6 6 ii) () = iii) () = log ( ) iv) () = log ( log4(- )) v) vii) () 5 4 viii) () 5 log

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 04 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 04 ΘΕΜΑ ο : * Θεωρούμε τους μιγαδικούς αριθμούς της μορφής xxi,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ κατεύθυνσης Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ κατεύθυνσης Γ ΛΥΚΕΙΟΥ ΕΞΕΤΑΣΕΙΣ 0 ΜΑΘΗΜΑΤΙΚΑ κατεύθυνσης Γ ΛΥΚΕΙΟΥ θεματα Α-Β-Γ-Δ Βαγγέλης Α Νικολακάκης Μαθηματικός ΠΕΡΙΕΧΟΜΕΝΑ ENOTHTA ΘΕΜΑ ΣΕΛΙΔΕΣ 0 ΣΥΝΟΠΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ 3-4 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΘΕΜΑ Α) 5-7 ΑΣΚΗΣΕΙΣ (ΘΕΜΑ Β)

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ IOYNIOY 014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. Δευτέρα 25-5-2015 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ. Α4.) α) Λάθος, β) Σωστό, γ) Λάθος, δ) Σωστό, ε) Σωστό

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. Δευτέρα 25-5-2015 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ. Α4.) α) Λάθος, β) Σωστό, γ) Λάθος, δ) Σωστό, ε) Σωστό ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Δευτέρα 5-5-5 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΘΕΜΑ Α Α.) Θεωρία σελ. 94 Α.) Θεωρία σελ.88 Α3.) Θεωρία σελ. 59 Α4.) α) Λάθος, β) Σωστό, γ) Λάθος, δ) Σωστό, ε) Σωστό

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΜΑΘΗΜΑ 4. ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονία συνάρτησης Ακρότατα συνάρτησης Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Ορισµός Συνάρτηση f λέγεται γνησίως αύξουσα σε διάστηµα, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ. Δίνεται η συνάρτηση f (). Να βρείτε για ποιες τιμές του δεν ορίζεται η συνάρτηση f. Να βρείτε τον αριθμό f ( ). Να δείξετε ότι f () I. Δίνεται η εξίσωση με η οποία έχει ρίζες

Διαβάστε περισσότερα

II. Συναρτήσεις. math-gr

II. Συναρτήσεις. math-gr II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 25/5/2015 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ Α: ΘΕΜΑ Β:

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 25/5/2015 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ Α: ΘΕΜΑ Β: . Σχολικό βιβλίο σελ.9. Σχολικό βιβλίο σελ.88 3. Σχολικό βιβλίο σελ.5. α) Λ Β. β) Σ γ) Λ δ) Σ ε) Σ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 5/5/5 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ Α: ΘΕΜΑ Β: Έστω z=+yi. Κάνοντας πράξεις στη

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα

Τομέας Mαθηματικών "ρούλα μακρή"

Τομέας Mαθηματικών ρούλα μακρή Τομέας Mαθηματικών "ρούλα μακρή" ΑΠΑΝΤΗΣΕΙΣ Πρότυπου Εκπαιδευτικού Οργανισμού ρούλα μακρή ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 5 ΜΑΪΟΥ

Διαβάστε περισσότερα

ΝΙΚΟΣ ΤΑΣΟΣ. Θετικής-Τεχνολογικής Κατεύθυνσης

ΝΙΚΟΣ ΤΑΣΟΣ. Θετικής-Τεχνολογικής Κατεύθυνσης ΝΙΚΟΣ ΤΑΣΟΣ Mα θ η μ α τ ι κ ά Γ Λυ κ ε ί ο υ Θετικής-Τεχνολογικής Κατεύθυνσης Β Τό μ ο ς στον Αλέξη, το Σπύρο, τον Ηλία και το Λούη, στην παντοτινή φιλία Πρό λ ο γ ο ς Το βιβλίο αυτό έχει σκοπό και στόχο

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ . ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 4 α. Να βρείτε τον γεωμετρικό τόπο των εικόνων του. β. Αν Re ( ) 0, τότε: 4 i. Να αποδείξετε ότι ο μιγαδικός w = + είναι πραγματικός και ισχύει 4 w 4. ii. Να βρείτε τον

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων.

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων. Άσκηση Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων Μέρος ο i. Δίνεται η γνησίως μονότονη συνάρτηση f : A IR. Να αποδείξετε

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. D x D / h x D δηλαδή. ισχύει για x 1, e ln x 1 e. e ln x e ln x e ln x e ln x 1 e ln x 1 f x f x

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. D x D / h x D δηλαδή. ισχύει για x 1, e ln x 1 e. e ln x e ln x e ln x e ln x 1 e ln x 1 f x f x Λύση (ΘΕΜΑ ο ) Γ. Έστω οι συναρτήσεις : h ln με D 0, h f με D, h h h με 3 0, 0, ln h h D D / h D δηλαδή h3 h h ή D 0, h h h με 4 f,, h 3 D D / h D δηλαδή h4 h h ή D, Έτσι η εξίσωση h ln h f h 4 ισχύει

Διαβάστε περισσότερα

Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση

Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση 4 Μονοτονία - Ακρότατα - Αντίστροφη Συνάρτηση Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Μονοτονία συνάρτησης Μια συνάρτηση f λέγεται: Γνησίως αύξουσα σ' ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο δείγμα Α1 Αν α> με α 1 τότε για οποιουσδήποτε θ1, θ> να αποδείξετε ότι ισχύει: logα(θ1θ) = logαθ1 + logαθ Α Πότε ένα πολυώνυμο

Διαβάστε περισσότερα

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ. Mια συνάρτηση λέμε ότι είναι παραγωγίσιμη σε ένα σημείο του πεδίου ορισμού ( της, αν υπάρει το lim και είναι πραγματικός αριθμός. Το όριο αυτό λέγεται παράγωγος της στο και συμβολίζεται

Διαβάστε περισσότερα

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 1 ο -ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απο το Ψηφιακό Σχολείο του ΥΠΠΕΘ Επιμέλεια: Συντακτική Ομάδα mathpgr Συντονιστής:

Διαβάστε περισσότερα

1.4 ΕΦΑΡΜΟΓΕΣ ΤΩΝ ΠΑΡΑΓΩΓΩΝ

1.4 ΕΦΑΡΜΟΓΕΣ ΤΩΝ ΠΑΡΑΓΩΓΩΝ 1 1. ΕΦΑΡΜΟΓΕΣ ΤΩΝ ΠΑΡΑΓΩΓΩΝ ΘΕΩΡΙΑ 1. Θεώρηµα γνησίως αύξουσας Αν µία συνάρτηση είναι παραγωγίσιµη σ ένα διάστηµα και για κάθε εσωτερικό σηµείο του ισχύει f () > 0 τότε η f είναι γνησίως αύξουσα στο.

Διαβάστε περισσότερα

Ερωτήσεις ανάπτυξης. α) να βρείτε το σηµείο x 0. β) να αποδείξετε ότι η κλίση της εφαπτοµένης της

Ερωτήσεις ανάπτυξης. α) να βρείτε το σηµείο x 0. β) να αποδείξετε ότι η κλίση της εφαπτοµένης της Ερωτήσεις ανάπτυξης. ** Η συνάρτηση είναι παραγωγίσιµη στο R και η ευθεία (ε) είναι εφαπτοµένη της C στο σηµείο (0, (0)). Μετακινούµε τη C παράλληλα προς τους άξονες, όπως φαίνεται στο σχήµα, και ονοµάζουµε

Διαβάστε περισσότερα

f f x f x = x x x f x f x0 x

f f x f x = x x x f x f x0 x 1 Παράγωγος 1. για να βρω την παράγωγο της f σε διάστηµα χρησιµοποιώ βασικές παραγώγους και κανόνες παραγωγισης. για να βρω την παράγωγο σε σηµείο αλλαγής τύπου η σε άκρο διαστήµατος δουλεύω µε ορισµό

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

Απαντήσεις Εξεταζόμενη Ύλη: Μιγαδικοί Αριθμοί Όριο Συνέχεια Συνάρτησης Διαφορικός Λογισμός (μέχρι 2.7) 03/01/2014. Θέμα A. Θέμα Β

Απαντήσεις Εξεταζόμενη Ύλη: Μιγαδικοί Αριθμοί Όριο Συνέχεια Συνάρτησης Διαφορικός Λογισμός (μέχρι 2.7) 03/01/2014. Θέμα A. Θέμα Β Απαντήσεις Εξεταζόμενη Ύλη: Μιγαδικοί Αριθμοί Όριο Συνέχεια Συνάρτησης Διαφορικός Λογισμός (μέχρι.7 0/01/014 Θέμα A Α 1. Σχολικό βιβλίο σελίδα 5. Α. Σχολικό βιβλίο σελίδα 191. Α. Σχολικό βιβλίο σελίδα

Διαβάστε περισσότερα

z i z 1 z i z 1 z i z i z 2 z 1 z zi iz 1 z 2 z 1 i z z 2 z i 2vi 2 k v v k v k 0 v 0

z i z 1 z i z 1 z i z i z 2 z 1 z zi iz 1 z 2 z 1 i z z 2 z i 2vi 2 k v v k v k 0 v 0 ΕΚΠ. ΕΤΟΥΣ -4 Λύσεις Θέμα ο α) H f παραγωγίσιμη στο (,) ως άθροισμα παραγωγίσιμων συναρτήσεων με: f() για κάθε (,). Αφού η f είναι συνεχής στο (,) και f() για κάθε (,) είναι γνησίως αύξουσα στο (,) άρα

Διαβάστε περισσότερα

Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com.

Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com. Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com. A. Οι κανόνες De L Hospital και η αρχική συνάρτηση κάνουν πιο εύκολη τη λύση των προβλημάτων με το Θ. Rolle. B. Η αλγεβρική

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1.

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1. Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1.Δίνεται η συνάρτηση f()= 4 1 α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; β) Αν χ=, ποια είναι η τιμή της f; γ) Αν f()=1, ποια είναι

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α 1 1. α) Να γίνει γινόµενο το τριώνυµο λ -3λ+. β) Να βρεθεί το λ έτσι ώστε η εξίσωση λ(λχ-1)χ(3λ-)-λ i) να είναι αδύνατη ii) να είναι αόριστη iii) να έχει µία µόνο λύση

Διαβάστε περισσότερα

Σημαντικές παρατηρήσεις

Σημαντικές παρατηρήσεις ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Διαφορικός Λογισμός Σημαντικές παρατηρήσεις Φυλλάδιο Φυλλάδι555 5 ο ο Η έννοια της παραγώγου Να υπάρχει διάστημα της μορφής ή ή α,,β

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΙΓΑΔΙΚΩΝ

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΙΓΑΔΙΚΩΝ ΑΣΚΗΣΗ 1 Να αποδειχθεί ότι οι γεωμετρικές εικόνες των μιγαδικών ριζών της εξίσωσης (συν θ)z (4συνθ)z + (5 συν θ) = 0 με θ π, π κινούνται σε υπερβολή, της οποίας να ευρεθούν τα στοιχεί ΑΣΚΗΣΗ Στο μιγαδικό

Διαβάστε περισσότερα

Διαφορικός. Λογισμός

Διαφορικός. Λογισμός Διαφορικός Λογισμός Συλλογή 5 Ασκήσεων mathmatica - ΕΠΙΛΟΓΗ + ΕΠΙΛΥΣΗ ΑΣΚΗΣΕΩΝ ΣΥΛΛΟΓΗΣ: 9// 7// Πηγή Απαντήσεις Διαφορικός Λογισμός:- Μια συλλογή 5 ασκήσεων. Έλυσαν οι: XRIMAK Βασίλης Κακαβάς Γιάννης

Διαβάστε περισσότερα

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙ 3 ο : KΩΝΙΚΕΣ ΤΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΥ ( 3.) ΚΥΚΛΣ Γνωρίζουµε ότι ένας κύκλος (, ρ) είναι ο γεωµετρικός τόπος των σηµείων του επιπέδου τα οποία απέχουν µια ορισµένη απόσταση ρ από ένα

Διαβάστε περισσότερα

6.2 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ

6.2 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ 1 6. ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΙΑ 1. Οι συντεταγµένες σηµείου Ο Ο άξονας τετµηµένων άξονας τεταγµένων (ΟΚ) µε πρόσηµο = α, η τετµηµένη του Μ (ΟΛ) µε πρόσηµο = β, η τεταγµένη του Μ Το ζευγάρι (α,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ - ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ - ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ - ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Περιέχει: Όλη την ύλη της Γ Λυκείου, σύμφωνα με το αναλυτικό πρόγραμμα του Υπουργείου Παιδείας σε () ΒΙΒΛΙΟμαθήματα που το καθένα περιέχει: Α. Απαραίτητες

Διαβάστε περισσότερα

Μαθηματικά Κατεύθυνσης Γ Λυκείου. Για το Θέμα Α: Ορισμοί. Συλλογή Από. Πανελλήνιες Επαναληπτικές Ομογενών

Μαθηματικά Κατεύθυνσης Γ Λυκείου. Για το Θέμα Α: Ορισμοί. Συλλογή Από. Πανελλήνιες Επαναληπτικές Ομογενών Μαθηματικά Κατεύθυνσης Γ Λυκείου Για το Θέμα Α: Ορισμοί Συλλογή Από Πανελλήνιες Επαναληπτικές Ομογενών 2014.Π 1. Έστω µια συνάρτηση f συνεχής σε διάστηµα και παραγωγίσιµη στο εσωτερικό του. Πότε λέµε ότι

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Σχολικό έτος: 014-015 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων από το Ι.Ε.Π. Γ ε ν ι κ ή Ε π ι μ έ λ ε ι

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

Πανελλαδικές εξετάσεις Γ Τάξης Ημερήσιου Γενικού Λυκείου ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 27 Μαΐου 2013

Πανελλαδικές εξετάσεις Γ Τάξης Ημερήσιου Γενικού Λυκείου ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 27 Μαΐου 2013 Πανελλαδικές εξετάσεις Γ Τάξης Ημερήσιου Γενικού Λυκείου ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 7 Μαΐου 13 ΘΕΜΑ Α Α1. Σχολικό βιβλίο, σελ. 33-335 Α. Σχολικό βιβλίο, σελ. 6 Α3. Σχολικό βιβλίο,

Διαβάστε περισσότερα