Generalized Jacobi polynomials/functions and their applications

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Generalized Jacobi polynomials/functions and their applications"

Transcript

1 Applied uerical Matheatics ) Geeralized Jacobi polyoials/fuctios ad their applicatios Be-Yu Guo a,,jieshe b,,2, Li-Lia Wag c,3 a Departet of Matheatics, Shaghai oral Uiversity, Shaghai, , PR Chia b Departet of Matheatics, Purdue Uiversity, West Lafayette, I 47907, USA c Divisio of Matheatical Scieces, School of Physical ad Matheatical Scieces, ayag Techological Uiversity TU), 63737, Sigapore Available olie 26 April 2008 Abstract We itroduce a faily of geeralized Jacobi polyoials/fuctios with idexes α, β R which are utually orthogoal with respect to the correspodig Jacobi weights ad which iherit selected iportat properties of the classical Jacobi polyoials. We establish their basic approxiatio properties i suitably weighted Sobolev spaces. As a exaple of their applicatios, we show that the geeralized Jacobi polyoials/fuctios, with idexes correspodig to the uber of hoogeeous boudary coditios i a give partial differetial equatio, are the atural basis fuctios for the spectral approxiatio of this partial differetial equatio. Moreover, the use of geeralized Jacobi polyoials/fuctios leads to uch siplified aalysis, ore precise error estiates ad well coditioed algoriths IMACS. Published by Elsevier B.V. All rights reserved. MSC: 6535; 6522; 65F05; 35J05 Keywords: Jacobi polyoials; Spectral approxiatio; Error estiate; High-order differetial equatios. Itroductio The classical Jacobi polyoials have bee used extesively i atheatical aalysis ad practical applicatios cf. [35,2,36,3]). I particular, the Legedre ad Chebyshev polyoials have played a iportat role i spectral ethods for partial differetial equatios cf. [20,3,9,2,22] ad the refereces therei). Recetly, there have bee reewed iterests i usig the Jacobi polyoials i spectral approxiatios, especially for probles with degeerated or sigular coefficiets. For istace, Berardi ad Maday [9] cosidered spectral approxiatios usig the ultra-spherical polyoials i weighted Sobolev spaces. Guo [23,2,24] developed Jacobi approxiatios i certai Hilbert spaces with their applicatios to sigular differetial equatios ad soe probles o ifiite itervals. * Correspodig author. E-ail addresses: she@ath.purdue.edu J. She), lilia@tu.edu.sg L.-L. Wag). The wor of this author is supported partially by SF of Chia, , SF of Shaghai. 04JC4062, The Fud of Chiese Educatio Miistry , The Shaghai Leadig Acadeic Disciplie Project. T040, ad the Fud for E-istitutes of Shaghai Uiversities. E The wor of this author is partially supported by FS grat DMS The wor of this author is partially supported by the Startup Grat of TU, Sigapore MOE grat T207B2202, ad Sigapore RF2007IDM- IDM /$ IMACS. Published by Elsevier B.V. All rights reserved. doi:0.06/j.apu

2 02 B.-Y. Guo et al. / Applied uerical Matheatics ) The Jacobi approxiatios were also used to obtai optial error estiates for p-versio of fiite eleet ethods cf. [3,4]). Recetly, She [33] itroduced a efficiet spectral dual-petrov Galeri ethod for third ad higher odd-order differetial equatios, ad poited out that the basis fuctios used i [33], which are copact cobiatios of Legedre polyoials, ca be viewed as geeralized Jacobi polyoials with egative iteger idexes, ad their use ot oly siplified the uerical aalysis for the spectral approxiatios of higher odd-order differetial equatios, but also led to very efficiet uerical algoriths. More precisely, the resultig liear systes are well coditioed, ad sparse for probles with costat coefficiets. I fact, the basis fuctios used i [32], which are copact cobiatios of Legedre polyoials, ca also be viewed as geeralized Jacobi polyoials with idexes α, β. Furtherore, the special cases with α, β) =, 0),, ) have also bee studied i [6,2,24]. Hece, istead of developig approxiatio results for each particular pair of idexes, it would be very useful to carry out a systeatic study o Jacobi polyoials with idexes α, β which ca the be directly applied to other applicatios. I [25], we defied the geeralized Jacobi polyoials with idexes beig egative itegers, ad preseted soe approxiatio results ad applicatios. However, i ay situatios, it is helpful to defie ad use geeralized Jacobi polyoials with arbitrary o-iteger idexes. For exaple, whe developig ad aalyzig Chebyshev spectral ethods for boudary value probles, it becoes coveiet to use geeralized Jacobi polyoials with idexes /2, /2 l) cf. [34]). Aother exaple is the study of differetial equatios with sigular coefficiets of the for x) α + x) β. The ai purpose of this paper is to geeralize the defiitio of the Jacobi polyoials to arbitrary idexes α, β R, ad to establish their fudaetal approxiatio results, which iclude, as special cases, those aouced i [25] but ot proved due to the page liitatio of [25] as a coferece proceedig paper. The ai criteria that we use to defie the geeralized Jacobi polyoials/fuctios are: i) they are utually orthogoal with respect to the Jacobi weight, ad ii) they iherit soe iportat properties to be specified later) of the classical Jacobi polyoials which are essetial for spectral approxiatios. As a exaple of applicatios, we cosider approxiatios of high-order differetial equatios with suitable boudary coditios. Matheatical odelig of soe physical systes ofte leads to high-order differetial equatios. For exaple, high eve-order differetial equatios ofte appear i astrophysics, structural echaics ad geophysics see, e.g., [,]); high odd-order differetial equatios, such as third-order Korteweg de-vries KdV) ad fifth-order KdV-type equatios, are routiely used i o-liear wave ad o-liear optics theory see, e.g., [37,28,0,6,30]). While it is usually cubersoe to desig a accurate ad stable uerical algoriths usig fiite differece/fiite eleet ethods due to the ay boudary coditios ivolved or usig a spectral-collocatio ethod for which special quadratures ivolvig derivatives at the ed poits have to be developed cf. [7,27,29]) or fictitious poits have to be itroduced [8], the spectral approxiatios usig geeralized Jacobi polyoials/fuctios lead to straightforward ad well-coditioed ipleetatios, ad ca be aalyzed with a uified approach leadig to ore precise error estiates. This paper is orgaized as follows. I the ext sectio, we defie the geeralized Jacobi polyoials/fuctios ad aalyze the approxiatio properties of the orthogoal projectio i suitably weighted Sobolev spaces. The geeralized Jacobi polyoials/fuctios ad their approxiatio results are used i Sectio 3 to costruct ad aalyze spectral-galeri ethod for soe high-order odel equatios. Soe cocludig rears are give i the fial sectio. 2. Geeralized Jacobi polyoials/fuctios I this sectio, we defie the geeralized Jacobi polyoials/fuctios GJP/Fs), ad ivestigate their basic properties. We first itroduce soe otatios. Let ωx) be a weight fuctio i I :=, ). Oe usually requires that ω L I). However, we shall aily cocer with the cases ω L I). We shall use the weighted Sobolev spaces Hω r I) r = 0,, 2,...), whose ier products, ors ad sei-ors are deoted by, ) r,ω, r,ω ad r,ω,respectively. For real r>0, we defie the space Hω r I) by space iterpolatio. I particular, the or ad ier product

3 B.-Y. Guo et al. / Applied uerical Matheatics ) of L 2 ω I) = H ω 0I) are deoted by ω ad, ) ω, respectively. To accout for hoogeeous boudary coditios, we defie H0,ω I) = { v Hω I): v±) = xv±) = = x v±) = 0 }, =, 2,..., where x = d,. The subscript ω will be oitted fro the otatios i case of ω. dx We deote by R ad the sets of all real ubers ad o-egative itegers, respectively. For ay, let P be the set of all algebraic polyoials of degree. We deote by c a geeric positive costat idepedet of ay fuctio ad, ad use the expressio A B to ea that there exists a geeric positive costat c such that A cb. We recall that the classical Jacobi polyoials J x) 0) are defied by x) α + x) β J x) = ) d { x) +α 2! dx + x) +β}, x I. 2.) Let ω x) = x) α + x) β be the Jacobi weight fuctio. For α, β >, the Jacobi polyoials are utually orthogoal i L 2 I), i.e., ω I J x)j x)ω x) dx = γ δ,, 2.2) where δ, is the Kroecer fuctio, ad γ 2 α+β+ Ɣ + α + )Ɣ + β + ) = 2 + α + β + )Ɣ + )Ɣ + α + β + ). 2.3) The restrictio α, β > was iposed to esure that ω L I). Soe other properties of the Jacobi polyoials to be used i this paper are listed i Appedix A. I fact, Szegö etioed i [35] that oe ca defie the Jacobi polyoial with idexes α or β, based o the Rodrigues forula 2.), which is a polyoial of degree, except for + α + β + = 0, 0 l a reductio of the degree i this case). However, the so defied Jacobi polyoials do ot satisfy soe iportat properties which hold for α, β >, e.g., they are ot utually orthogoal i L 2 for all α, β. Hece, they are ot quite suitable ω for uerical coputatios. We shall defie below geeralized Jacobi polyoials/fuctios which iherit selected iportat properties of classical Jacobi polyoials) that play essetial roles i a spectral approxiatio. 2.. Defiitio of the GJP/Fs For otatioal coveiece, we itroduce the followig separable idex sets i R 2 : ℵ = { α, β): α, β }, ℵ 2 = { α, β): α,β > }, ℵ 3 = { α, β): α>,β }, ℵ 4 = { α, β): α, β > }. For ay α, β R, we defie { α, α, ˆα := 0, α>, { α, α, ᾱ := α, α > 2.4) liewise for ˆβ ad β). Throughout the paper, ˆα, ˆβ ad ᾱ, β are always defied fro α, β as above. The sybol [α] represets the largest iteger α, ad let 0 := 0 := [ ˆα]+[ˆβ], := := ) The GJP/Fs are defied by j x) = ω ˆα, ˆβ x)j ᾱ, β x), α, β R, 0,x I. 2.6) We ephasize that {j } are oly defied for 0. This fact is iplicitly assued hereafter.

4 04 B.-Y. Guo et al. / Applied uerical Matheatics ) We ca rewrite 2.6) i a ore explicit fro: x) = j x) α + x) β J α, β x), α, β) ℵ, = [ α] [ β], x) α J x), α, β) ℵ 2, = [ α], + x) β J α, β x), α, β) ℵ 3, = [ β], J x), α, β) ℵ 4. We see that the GJP/Fs are geerated fro the classical Jacobi polyoials. I fact, as etioed i Szegö [35], it is also possible to use the Rodrigues forula 2.) to defie the Jacobi polyoial J with idexes α or β. A particular case is ) ) ) + β x l J l,β x) = J l,β l x), l. 2.8) l l 2 However, there are very few discussios i [35] about the properties of the so-defied Jacobi polyoials with idexes α or β Basic properties of the GJP/Fs The GJP/Fs have the followig properties: The GJP/F j x) is a polyoial of degree if i) α, β) ℵ 4, or ii) α ad β are egative itegers. I these cases, it coicides, apart fro a costat, with the defiitio i Szegö [35]. Uder the coditio ii), x = x) resp. ˆβ). Hece, the GJP/Fs are suitable as base fuctios to approxiate solutios of high-order differetial equatios with a correspodig set of hoogeeous boudary coditios see Sectio 3 below). We fid fro 2.2), 2.6) ad 2.7) that the GJP/Fs are utually L 2 I)-orthogoal, i.e., ω resp. x = ) is the zero of ultiplicity of ˆα for the polyoial j I j x)j x)ω x) dx = η δ,, with η = γ ᾱ, β. 2.9) Here, we used the fact ᾱ = 2 ˆα + α ad β = 2 ˆβ + β. ote that polyoials of the for x) + x) l J x) with α, β > ) have bee frequetly used as basis fuctios to ipose boudary coditios, but they do ot satisfy the orthogoality relatio 2.9). We ca also view {j, l } as the orthogoalizatio of { x) + x) l J } i L 2. ω They satisfy the Stur Liouville equatio see Appedix B.):, l where x x) α+ + x) β+ x j λ = + ) α β), ) ℵ, α + β + ) αβ + ), α, β) ℵ 2, + α β + ) βα + ), α, β) ℵ 3, + α + β + ), α, β) ℵ 4, ad = 0 = [ˆα] [ˆβ] 0. The defiitio 2.7) esures that ω α+,β+ x)j x) x j sides of 2.0) ad itegratig by parts, we derive fro 2.9) that I x j x) xj We ifer fro A.3) see Appedix A) ad 2.6) that 2.7) x) ) + λ x)α + x) β j x) = 0, 2.0) x) 0as x. So ultiplyig j 2.) o both x)ω α+,β+ x) dx = λ η δ,. 2.2) j x) = ) j β,α x), x I. 2.3)

5 B.-Y. Guo et al. / Applied uerical Matheatics ) We ext study the derivative relatios of the GJP/Fs. Let us recall that for α, β >, x j x) = x J x) = α+,β+ + α + β + )j 2 x),. 2.4) Ufortuately, the GJP/Fs do ot satisfy a siilar derivative recurrece relatio for all α, β R. evertheless, soe useful derivative recurrece relatios ca be derived. Lea 2.. If oe of the followig coditios holds the i) 2; ii) α=, β 2; iii) α 2, β= ; iv) α= β =, 2.5) x j x) = 2 [ α] [ β]+ ) j α+,β+ x). 2.6) O the other had, if oe of the followig coditios holds the i) α 2, β> ; ii) α=, β>, 2.7) x j x) = [ α] α ) j α+,β+ x). 2.8) Siilarly, if oe of the followig coditios holds the i)α>, β 2; ii)α>, β=, 2.9) x j x) = [ β] β ) j α+,β+ x). 2.20) The proof of this lea is give i Appedix B.2. Applyig the forulas i Lea 2. repeatedly, we obtai the followig geeral derivative recurrece relatios: Lea 2.2. Let,l, ad,l,. We have i) If β>, the x j,β x) = D,,,β j +,β+ x), ax, ), 2.2) where D,β, = ) i=0 i),, ) Ɣ + + β + ) 2 Ɣ + β + ) i), >. i=0 2.22) ii) If α>, the x j α, x) = ) μ D,,,α α+, + x), ax, ), 2.23) where μ = for ad μ = for >. iii) If l, the x j, l x) = E,,,l j +, l+ x), ax + l,), 2.24)

6 06 B.-Y. Guo et al. / Applied uerical Matheatics ) where E,l, = 2) l + i), l, i= l ) 2 l l + i) i= ) l i=0 l ) Ɣ + l + ) 2 l l + i) Ɣ l + ) i= ) l i), l <, ) l i=0 ) l i), l <. 2.25) iv) If l, the x j, l x) = ) μ E,, l, j +, l+ x), 2.26) where μ = 0,,l for the cases l, < l ad <l, respectively. The proof of this lea is give i Appedix B Approxiatio properties of the GJP/Fs We shall aalyze below the approxiatio properties of geeralized Jacobi orthogoal projectios, which are useful i the error aalysis of spectral-galeri ethods. Sice {j } fors a coplete orthogoal syste i L 2 I), we defie ω Q := spa{ j 0,j } 0 +,...,j, 2.27) ad cosider the orthogoal projectio π : L2 I) Q ω defied by u π u, v )ω = 0, v Q. 2.28) We shall estiate the projectio errors i two differet ways. The first approach is based o the Stur Liouville equatio 2.0). The secod oe is based o the derivative relatios give i Lea 2.2. We start with the Stur Liouville operator defied by A φx):= x) α + x) β { x x) α+ + x) β+ x φx) }. 2.29) We recall that j x) are the eigefuctios of the Stur Liouville operator A with the correspodig eigevalues λ cf. 2.0)), ad defie the followig Sobolev-type spaces associated with the Stur Liouville operator: D A r ) { = u: u L 2 ω I) ad A q u L2 ω I), 0 q r }, r, D A r+/2 ) { ) = u: u D A r ad x A r u L2 ω α+,β+ I) }, r, 2.30) equipped with the ors u DA r ) = A r u ω, Usig the idetity A j u DA r ) = where û u DA r+/2 ) = =0 λ u r+/2 DA ) = x A r u ω α+,β+. = λ j repeatedly, we fid fro 2.9) ad 2.2) that for r, λ =0 ) 2rη û ) 2r+η ) /2 2, û ) /2 2, 2.3) = η ) u, j ) ω. For real r>0, we defie the space DA r ) by space iterpolatio as i [5].

7 B.-Y. Guo et al. / Applied uerical Matheatics ) Before we preset oe of our ai results, we ae the followig observatio: For ay v DA ),ifα resp. β ), the vx) 0asx resp. x ), ad by the defiitio of j,wehave ) α, β α β + α + β)x J x) + x 2 ) x J α, β x), if α, β ; ω α+,β+ x) x j + x) x) = β+{ αj x) + x) x J x) }, if α,β > ; x) α+{ βj α, β x) + + x) x J α, β x) }, if α>,β ; x) α+ + x) β+ x J x), if α, β >, where = 0 0. Thus, for ay v DA ),wehave ω α+,β+ x)vx) x j x) 0, as x, α, β) R ) Usig the idetity A j v,j )ω = λ = λ j ) v,a j agai ad itegratig by parts, we fid that for ay v DA ), )ω = λ ) A v,j ) ω. 2.33) Theore 2.. For ay u DA r/2 ), r ad 0 μ r, π u u μ/2 DA ) μ r u r/2 DA ). 2.34) Proof. The proof follows a siilar procedure used for the classical Jacobi projectios cf. [4,9,23]). We first cosider eve itegers, i.e., r = 2q for q = 0,,... We derive fro 2.3) that for μ, π u u 2 DA μ/2 ) = = =+ =+ λ λ Usig repeatedly the idetities A j u, j )ω = λ Hece, by 2.9) ad 2.), π u u 2 DA μ/2 ) = ) q A q =+ λ μ 2q + u, j λ =+ ) μη ) μ η = λ ) û ) 2 ) ) u, j 2 ω. 2.35) j ad the relatio 2.33), we derive that ω. 2.36) ) μ η η ) ) u, j 2 ω ) q ) A 2 u, j ω 2μ 2q) A q u 2 ω 2μ r) u 2 DA r/2 ). ext, we cosider odd itegers, i.e., r = 2q + forq = 0,,... We observe fro 2.0), 2.32) ad 2.36) that u, j )ω = λ ) q q A u, j )ω = λ ) q q x A u), x j ) ω α+,β+. Therefore, by 2.) ad 2.2), π u u 2 DA μ/2 ) = =+ λ μ 2q + λ ) μ η =+ λ ) ) u, j 2 ω ) ) η q x A u), x j ) 2 ω α+,β+

8 08 B.-Y. Guo et al. / Applied uerical Matheatics ) μ 2q ) =+ λ ) ) η q x A u), x j ) 2 ω α+,β+ 2μ 2q ) q x A u) 2 ω α+,β+ 2μ r) u 2 DA r/2 ). Fially the desired result with real μ follows fro the previous results ad space iterpolatio. Theore 2. provides a geeral approxiatio result for all α, β R. However, the ors used i Theore 2. are expressed by the frequecies of u i ters of j, whose relatio to the derivatives of u is ot straightforward. ext, we derive soe approxiatio results which are expressed i ters of derivatives of u. We itroduce the space B r ω I) := { u: u is easurable o I ad u r,ω < }, r, 2.37) equipped with the or ad sei-or r ) /2 u B r = ω x u 2 ω α+,β+, =0 u B r ω = r x u ω α+r,β+r. For real r>0, we defie the space H r ω I) by space iterpolatio as i [5]. Theore 2.2. Let,l ad,l. If oe of the followig coditios holds: i) α=, β > ; ii)α>, β= l; iii) α=, β = l, 2.38) the for ay u B r I), r,r ad 0 μ r, ω π u u B μ ω μ r r x u ω α+r,β+r. 2.39) Proof. We first prove 2.39) with i). I this case, π,β ux) ux) = I =+ û j,β x), with û = As a cosequece of 2.9) ad 2.2) 2.22), we have the orthogoality: x j,β x) x j,β Thas to 2.4), we deduce fro 2.40) that for μ, where x μ,β π u u ) 2 ω +μ,β+μ = C,β,μ,r = ax > { D,β,β u, j ) ω,β j,β. 2.40) 2 ω,β x)ω +,β+ x) dx = D,,β ) 2η +,β+ δ,. 2.4) =+ C,β μ,) 2 η +μ,β+μ μ D,β r, ) 2 η +r,β+r r D,β μ,,μ,r =+ }. ) 2û2 η +μ,β+μ μ D,β r, ) 2û2 η +r,β+r r C,β,μ,r We ow estiate the upper boud of C,β,μ,r. By usig the Stirlig forula cf. [5]), Ɣs + ) = 2πss s e s + Os /5 ) ), s, x r u 2 ω +r,β+r,

9 B.-Y. Guo et al. / Applied uerical Matheatics ) we derive fro 2.3), 2.9) ad 2.22) that for give ᾱ, β,,μ,γ, γ ᾱ, β, η +μ,β+μ μ η +r,β+r r, Dμ,,β Dr,,β μ r,. The above facts lead to C,μ,r 2μ 2r. This copletes the proof of 2.39) with i). The other two cases ca be proved siilarly. Rear 2.. The results for the classical Jacobi polyoials with α, β > were proved i [26]. The sae results for μ = 0orα = β were also give i [9,3], respectively. The results for the case α = ad β = l were aouced without proof) i [25]. 3. Applicatios A iportat applicatio of GJP/Fs is that they for atural basis fuctios for spectral-galeri approxiatios of differetial equatios. For exaple, oe ca verify see Appedix B) that j, x) = j 2, x) = j, 2 x) = j 2, 2 x) = 2 ) L 2 x) L x) ), 3.) 2 2 2) L 3 x) L 2x) L x) ) 2 L x), 3.2) 2 2) L 3 x) L 2x) L x) 2 3 ) 2 L x), 3.3) 4 2) 3) 22 3) L 4 x) 2 3)2 5) 2 L 2x) ) 2 L x), 3.4) where L x) is the Legedre polyoial of -th degree. The GJP/Fs i 3.) ad 3.4) were used i [32] as basis fuctios to approxiate the solutios of secod- ad forth-order equatios with hoogeeous Dirichlet boudary coditios, while the GJP/Fs i 3.2) ad 3.3) were used as basis fuctios for the test ad trial spaces i the dual- Petrov Galeri ethod for third-order differetial equatios i [33]. A ai advatage of usig the GJP/Fs as basis fuctios is that the GJP/Fs satisfy all give boudary coditios of the uderlyig proble. Hece, there is o eed to costruct special quadratures ivolvig derivatives at ed-poits as i a collocatio approach [7,27,29]. for third-order equatios ad i [7] for fourth-order equatios. The spectral approxiatios usig GJP/Fs lead to well-coditioed, sparse for probles with costat or polyoial coefficiets cf. [32,33]), systes that ca be efficietly ipleeted. Moreover, usig the GJP/Fs siplifies theoretical aalysis, ad leads to ore precise error estiates as deostrated below. 3.. Spectral-Galeri ethods for high order equatios We cosider the followig 2-th order liear equatio: 2 L 2 u := ) b 0 u 2) + b 2 u ) = f, i I,, =0 u ) ±) = 0, 0, where {b j } 0 j 2 ad f are give, ad we assue b 0 > 0. We itroduce the biliear for associated with 3.5): a u, v) = b 0 x u, x v) + ) b x u, x v) + ) b 2 x u, x v ) + +b 2 u, v), u, v H I). 3.6) As usual, we assue that the biliear for is cotiuous ad elliptic i H0 I), i.e., 3.5)

10 020 B.-Y. Guo et al. / Applied uerical Matheatics ) a u, v) C 0 u v, u, v H0 I), 3.7a) a u, u) C u 2, u H 0 I) 3.7b) where C 0 ad C are two positive costats depedig oly o b j, 0 j 2. The variatioal forulatio for 3.5) is: Give f H I), fid u H0 I) such that a u, v) = f, v), v H0 I), 3.8) ad the correspodig spectral-galeri approxiatio is: Give f C I), fid u V := P H0 I) such that a u,v ) = f, v ), v V, 3.9) where, ) is the ier product associated to the Legedre Gauss Lobatto quadrature. The well-posedess of 3.8) ad 3.9) is esured by 3.7a) 3.7b) Error estiates Let us deote π = π,. We ote iediately that x π u u ), x v ) = ) π u u, 2 x v ) = ) π u u, ω, x 2 v ) ω, = 0, v V, 3.0) which is a cosequece of 2.28) ad the fact ω, x 2v V. I other words, π is siultaeously orthogoal projectors associated with, ) ω, ad x, x ). For siplicity, we assue that {b j } are costats, ad let u ad u be respectively the solutios of 3.8) ad 3.9). The, we have the followig result: Theore 3.. Assuig u H0 I) Br ω, I) ad f x 2 ) B ρ I),, r, ρ with r, ρ, ω the for 0 μ, we have 0,0 u u μ μ r r x u ω r,r + ρ ρ x f x 2 ) ) ω ρ,ρ. 3.) Proof. We deote ê = π u u ad e = u u = u π u) +ê. We first prove 3.) for μ =. We derive fro 3.8) ad 3.9) that ) a ê,v ) = a π u u, v + f, v ) f, v ), v V. 3.2) By usig the Hardy iequality cf., for exaple, Sectio A.4 i [3]), it is easy to show that v 2 x 2 ) 2 dx x v) 2 x 2 ) 2+2 dx x v ) 2 dx, v H 0 I). 3.3) I I For v V,letf = f x 2 ) ad ṽ = v x 2 ), the by usig the properties of the Legedre Gauss Lobatto quadrature cf. [3]) ad 3.3), f, v ) f, v ) = f,ṽ ) f,ṽ ) = f π 0 f,ṽ ) I f π 0 f,ṽ ) f π 0 f + I f π 0 f ) ṽ f π 0 f + f I f ) x v C f π 0 f 2 + f I f 2) + C 2 v ) We recall fro Theore 4.0 i [26] ad Theore 2.2 with α, β) = 0, 0) that f π 0 f + f I f ρ x ρ f ω ρ,ρ. 3.5) Thas to 3.0), the first ter ivolvig the derivative of the highest order vaishes i the expressio of a π u u, v ). Moreover, we have fro 2.39) with coditio iii) that for certai suitable sall ε>0, 0, l +,+ l 2 ad,l, I

11 B.-Y. Guo et al. / Applied uerical Matheatics ) x π u u ), x l v ) x π u u ) ω +, + x l v ω, r r x u ω r,r v l ε v 2 l + c 4ε 2 2r x r u 2 ω r,r. 3.6) Taig v =ê i 3.2) ad 3.6), we derive fro 3.6), 3.7b), 3.4) ad 3.5 that C 2 ê 2 ε ê 2 + ) 2 2r r x u 2 ω r,r + 2ρ ρ x f 2 ω ρ,ρ =0 ε ê r 2 x r u 2 ω r,r + 2ρ x ρ f ω ρ,ρ. 3.7) Thus, ê r r x u ω r,r + ρ ρ x f ω ρ,ρ. 3.8) O the other had, we have fro 2.39) with coditio iii) that π u u π u u B r ω, x u ω r,r. So 3.) follows fro the triagle iequality, 3.8) ad the above estiate. We ow tur to the case μ = 0. For give g L 2 I), we cosider the auxiliary proble: Fid w H0 I) such that a z, w) = g, z), z H0 I). 3.9) We ow fro 3.7a) ad 3.7b) that 3.9) has a uique solutio with the regularity w 2 g. 3.20) Fro 3.8) ad 3.9), a u u,v ) = f, v ) f, v ), v V. 3.2) Taig z = u u i 3.9), we fid fro Theore 2.2, 3.7a), 3.), 3.20) 3.2) ad 3.4) that u u,g)= a u u,w)= a u u,w π w) + f,π w) f,π w) u u π w w + f π 0 f + I f π 0 f ) x π w r x r u ω r,r x 2 w ω, + ρ x ρ f ω ρ,ρ w r r x u ω r,r + ρ ρ x f ω ρ,ρ) g. Cosequetly, u u = sup g L 2 I) g 0 u u,g) g r u ω r,r + ρ x ρ f ω ρ,ρ. This iplies the result with μ = 0. For 0 <μ<,letθ = μ. Clearly 0 <θ<. Sice H I) is cotiuously ebedded ad dese i L 2 I),we ca defie the iterpolatio space [H I), L 2 I)] θ as i [5]. Ideed, as is show i Theore.6 of [9] see also [22]), [H I), L 2 I)] θ = H θ) I) = H μ I). Therefore, by the Gagliardo ireberg iequality ad the previous results, u u μ u u θ u u θ μ r u r,ω, + ρ x ρ f ω ρ,ρ. This eds the proof. Rear 3.. Usig the GJP/F approxiatio ot oly greatly siplifies the error aalysis, but also leads to ore precise error estiates. For istace, if we use the H0 -orthogoal projectio results i [8] ad [22], the the best error estiate will be u u r u r + ρ f ρ, 0 r. 3.22)

12 022 B.-Y. Guo et al. / Applied uerical Matheatics ) Therefore, the result 3.) is uch sharper tha 3.22) for probles with sigularities at the edpoits. As a exaple, let ux) = x) γ vx), v C I), γ >, x I, 3.23) 2γ + ε be a solutio of 3.5). It ca be easily checed that u H γ +/2 ε I) Bω, I) ε >0) ad f H γ 2+/2 ε I), f x 2 ) 2γ )+ ε B I) ε>0). Hece, Theore 3. with μ = iplies that ω 0,0 u u 2γ +2 +ε, 3.24) while the usual aalysis cf. Berardi ad Maday [7]) oly leads to u u 3 γ +2+/2+ε. 3.25) 3.3. Matrix for of 3.9) I view of the hoogeeous boudary coditios satisfied by j,,wehave V = spa { j, 2,j, 2+,...,j, }. Usig the facts that ω, x 2j, l V l ad j, is orthogoal to V l if >l, we fid that x j,, x j, ) l = ) j,, x 2 j, ) l = j,,ω, x 2 j, ) l ω, = ) By syetry, the sae is true if <l. Hece, lettig φ x) = c, j, with a suitable c,, we ca have x φ, x φ ) l = δl. Hece, by settig f = f, φ ), f = f 2,f 2+,...,f ) T, u = û l φ l, u = û 2, û 2+,...,û ) T, l=2 a l = a φ l,φ ), A = a l ) 2,l, the atrix syste associated with 3.9) becoes Au = f. 3.27) Thas to 3.7a) 3.7b), we have C 0 u 2 l 2 = C 0 u 2 a u,u ) = Au, u) l 2 C u 2 = C u 2 l 2, 3.28) which iplies that coda) C /C 0 ad is idepedet of. It ca be easily show that A is a sparse atrix with badwidth 2 +. The sae arguet as above shows that 3.28) is still valid for probles with variable coefficiets as log as 3.7a) 3.7b) are satisfied. Therefore, eve though A becoes full for probles with variable coefficiets but the product of A with a vector x ca be coputed efficietly without the explicit owledge of the etries of A so the associated liear syste ca still be solved efficietly with a suitable iterative ethod such as the Cojugate Gradiet ethod. The geeralized Jacobi polyoials/fuctios were also successfully used for uerical solutios of partial differetial equatios of odd orders cf. [25,34]).

13 B.-Y. Guo et al. / Applied uerical Matheatics ) Fig.. The axiu poitwise error arer ) ad the L 2 -error arer ) agaist various i sei-log scale for Exaple. 4. uerical results We preset soe uerical exaples to illustrate the perforace of the proposed spectral ethods usig geeralized Jacobi polyoials as basis fuctios. As a exaple, we cosider the sixth-order equatios, which are ow to arise i astrophysics [,]. I the coputatios, we use the spectral-galeri schee 3.9) with = 3 ad the } as the basis fuctios. We first cosider a exaple discussed i [7], where the uerical solutios are obtaied by a Sic-Galeri ethod. geeralized Jacobi polyoials {J 3, 3 Exaple. Cosider u 6) x) ux) = fx), x, ), 4.) with boudary coditios for u±), u ±), u ±) ad fx)such that the exact solutio is ux) = x)e x. I Fig., we plot the axiu poitwise error ad the L 2 -error agaist various. It is clear that the errors decay expoetially fast, cosistet with the results i Theore 3. sice both the solutio u ad the fuctio f are aalytic. ote that with the sae coputatioal cost, say, = 6, the Sic-ethod i [7] oly achieves a accuracy O0 4 ), see Table 4.3 i [7], while our ethod is uch ore accurate. Exaple 2. We cosider 4.) with boudary coditios for u±), u ±), u ±) ad fx) such that the exact solutio is ux) = + x) γ e x, x, ). Whe γ is ot a iteger, the solutio has a fiite regularity ad it ca be easily checed that cf. Rear 3.) 2γ 2 ε u B I), f x 2 ) 3 2γ 5 ε B I) ε>0). Hece, Theore 3. with = 3 ad μ = 3 iplies that ω 3, 3 ε 2γ +5 u u 3 ε>0). ω 0,0 We plot i Fig. 2 the H 3 -error agaist various with γ = 3., 3.5, 3.8, 4.2. ote that for these values of γ, f is ot eve i L 2 I). The approxiate slopes of these lies are respectively.9, 2.0, 2.65 ad These covergece rates are very close to the predicted covergece rate of 2γ 5 i 4.2). 4.2)

14 024 B.-Y. Guo et al. / Applied uerical Matheatics ) Fig. 2. H 3 -errors agaist various i log log scale for Exaple 2 with several γ. 5. Cocludig rears We itroduced i this paper a faily of geeralized Jacobi polyoials/fuctios with idexes α, β R based o the priciple that they are utually orthogoal with respect to the correspodig Jacobi weights ad that they iherit selected iportat properties of the classical Jacobi polyoials. We established two sets of approxiatio results by usig the Stur Liouville operator ad the derivative recurrece relatios. A iportat applicatio of GJP/Fs is to serve as basis fuctios for spectral approxiatios of differetial equatios with suitable boudary coditios which are autoatically satisfied by correspodig GJP/Fs. This is especially coveiet for high-order differetial equatios. Ulie i a collocatio ethod for which special quadratures ivolvig derivatives at the ed poits eed to be developed, the ipleetatios usig GJP/Fs are siple ad straightforward. Moreover, the use of geeralized Jacobi polyoials/fuctios leads to uch siplified aalysis, ore precise error estiates ad well coditioed algoriths. Appedix A. Properties of the classical Jacobi polyoials The classical Jacobi polyoials are the eigefuctios of the Stur Liouville proble: x x) α+ + x) β+ x J x) ) + μ x)α + x) β J x) = 0, 0, A.) with the correspodig eigevalues μ = + α + β + ). A alterative for of A.) is see [35]) x 2 ) x 2 Y + [ α β + α + β 2)x ] x Y + + ) + α + β)y = 0 A.2) where Y x) = ω x)j x) ad ω x) = x) α + x) β. The classical Jacobi polyoials with idexes α, β > satisfy the followig recurrece relatios see Szegö [35], Asey [2] ad Raiville [3]): J J x) = ) J β,α x); x) = J J x) = + α + β x)j α+,β x) = A.3) x) J α,β x), α, β > 0, ; A.4) [ + β)j x) + + α)j α,β x) ], >0; A.5) α + β + 2 [ + α + )J x) + )J + x)] ; A.6)

15 + x)j + x) = B.-Y. Guo et al. / Applied uerical Matheatics ) α + β + 2 [ + β + )J x) + + )J + x)] ; A.7) x J x) = α+,β+ + α + β + )J 2 x), ; A.8) ω x)j xj x) = a J x) = ) )! 2! x) + b J where a,b,c are costats see [35] for their expressios). Appedix B. Soe proofs B.. The proof of 2.0) d { ω α+,β+ dx x)j α+,β+ x) }, 0; A.9) x) + c J + x), A.0) We first cosider the case α, β) ℵ. Taig Y x) = ω α, β x)j α, β x 2 ) 2 x j x) + [ β α) α + β + 2)x ] x j x) + λ j x) = 0. x) = j x) i A.2), we fid that Multiplyig ω x) o both sides of the above equatio, we ca rewrite the resultig equatio as 2.0) with λ = + ) α β). that ext, let α, β) ℵ 2. By the defiitio 2.7), we have J x x) α+ + x) β+ x x) α j which ca be siplified to x 2 ) 2 x j x) = x) α j x). We plug it ito A.) to get x) )) + μ + x) β j x) = 0, x) + [ β α) α + β + 2)x ] x j x) + μ αβ + ) ) j x) = 0. Multiplyig ω x) o both sides of the above equatio, we ca get the resultig equatio 2.0) with α, β) ℵ 2. We ca prove the case α, β) ℵ 3 siilarly. Fially 2.0) with α, β) ℵ 4 is a direct cosequece of A.) ad 2.7). B.2. The proof of Lea 2. We first prove 2.6). For α, β 2, let = [ α] [ β] 0, ad by A.9) ad 2.7), j α+,β+ x) 2.7) = x) α + x) β J α, β + x) A.9) = 2 + ) x x) α + x) β J α, β x) ) 2.7) = 2 [ α] [ β]+) xj x). B.) This leads to 2.6) for the case i) of the coditio 2.5). I fact, B.) also holds for α = ad β 2, which, alog with 2.7) the cases,β) ℵ ad 0,β + ) ℵ 3 ), leads to j 0,β+ x) = + x) β J 0, β + x) = 2 + ) x ω, β x)j, β x) ) = 2 + ) xj,β x), = [ β] 0. B.2) Hece, 2.6) holds for the case ii) of the coditio 2.5). Siilarly, we ca prove the case: α 2 ad β =, while taig α = β = i B.) gives 2.6) for the case iv) of the coditio 2.5). We ow tur to the proof of 2.8). If α 2 ad β>, the, usig A.6), A.8) ad 2.7) with = [ α], yields that for 0,

16 026 B.-Y. Guo et al. / Applied uerical Matheatics ) x j x) 2.7) = x x) α J x) ) = x) α αj x) + x) x J x) ) A.8) = x) α αj x) + 2 α + β + ) x)j α+,β+ x) A.6) = x) α αj x) + α + β + α)j + 2 α + β + x) J + x) )). Usig A.4) gives J + x) = J x) J α,β+ x), ad pluggig it ito the above forula leads to { x j x) = x) α αj x) + α + β + α)j 2 α + β + x) α)j α,β+ x) J + x) )} = x) α { Thas to A.5), we have α + β + )J + Cosequetly, 2 α + β + α) α + β + ) 2 α + β + + β + )J x) α + β + )J + x) ) } J α,β+ x) x) = + β + )J x j x) = x) α α) 2 α + β + J α,β+ = α) x) α J α,β+ x) 2.7) = [ α] α ) j α+,β+ x).. x) + α)j α,β+ x). x) α) α + β + ) 2 α + β + ) ) J α,β+ x) Hece, 2.8) holds for the case i) of coditio 2.7). ote that the above procedure is also valid for α = ad β>, aely, x j,β x) = J 0,β+ x) = j 0,β+ x),. Here, we used the defiitio 2.7) with 0,β+ ) ℵ 4 ) to derive the last idetity. This iplies 2.8) for the case ii) of coditio 2.7). Fially, 2.20) ca be verified by usig the property 2.3) ad 2.8). B.3. The proof of Lea 2.2 We first prove 2.2). If, the we ow fro the coditio 2.7) that the derivative relatio 2.8) is valid for α = ad β>, ad usig it iductively leads to the desired result 2.2) i case of. ext, thas to A.8), we derive that for a,b >, x p Jq a,b Ɣq + p + a + b + ) x) = 2 p Ɣq + a + b + ) J a+p,b+p q p x), q p, p,q. B.3) Thus, for >, we deduce fro 2.8) with = ad the above forula that

17 B.-Y. Guo et al. / Applied uerical Matheatics ) x j,β x) = x x j,β x) 2.2) = ) i) 2.7) i=0 ) ) = ) i) B.3) i=0 ) = ) i) 2.7) = D,β i=0, j +,β+ x). x x j 0,β+ x) J 0,β+ x) Ɣ + + β + ) 2 Ɣ + β + ) J,β+ x) We used the defiitio 2.7) with +, β + ) ℵ 4 to derive the last idetity. The result 2.23) follows fro 2.3) ad 2.2) 2.22). We ow tur to the proof of 2.24). For the first case: l, we ca derive the result by usig 2.6) iductively. For the secod case: l<, we use the above result with = l,l < ad 2.2) with l l, to deduce that ) x j, l l x) = x l x l j, l x) = 2) l l + i) i= = 2) l l i= l + i) = E,l, j +, l+ x). ) l ) l i=0 l x j +l,0 l x) ) l i) j +, l x) We ca prove the result with l< i the sae aer. Fially, the result 2.26) follows fro 2.25) ad 2.3). B.4. Derivatio of 3.) 3.4) Let α, β < ad = [ α] [ β]. By the defiitio 2.7) ad A.6), A.7), j α,β x) = j x) = 2 2 α β 2 2 α β Hece, taig α = β = 0 leads to [ α)j x) j x) ], [ α)j x) + j x) ]. B.4) j,0 x) = L x) L x), j 0, x) = L x) + L x). B.5) ext, we verify fro A.6), A.7) that for a,b >, where x 2 )J a+,b+ A a,b = x) = A a,b J a,b x) + Ba,b J a,b 4 + a) + b) 2 + a + b)2 + a + b + ), Ba,b = x) + C a,b J a,b + x), B.6) 4a b) 2 + a + b)2 + a + b + 2), C a,b 4 + ) = 2 + a + b + )2 + a + b + 2). B.7) Taig a = α, b = β ad =, we derive fro B.6), B.7) ad the defiitio 2.7) that j α,β + x) = A α, β j x) + B α, β j x) + C α, β j + x). B.8)

18 028 B.-Y. Guo et al. / Applied uerical Matheatics ) Thus, we have j, + x) = 2 L x) L + x) ), B.9) 2 + which iplies 3.). Siilarly, taig α, β) =, 0), 0, ),, ) i B.8), ad usig B.5) ad/or B.9), we derive 3.2) 3.4). Refereces [] R. Agarwal, Boudary Value Probles for Higher Ordiary Differetial Equatios, World Scietific, Sigapore, 986. [2] R. Asey, Orthogoal Polyoials ad Special Fuctios, Society for Idustrial ad Applied Matheatics, Philadelphia, PA, 975. [3] I. Babuša, B. Guo, Optial estiates for lower ad upper bouds of approxiatio errors i the p-versio of the fiite eleet ethod i two diesios, uer. Math. 85 2) 2000) [4] I. Babuša, B. Guo, Direct ad iverse approxiatio theores for the p-versio of the fiite eleet ethod i the fraewor of weighted Besov spaces. I. Approxiability of fuctios i the weighted Besov spaces, SIAM J. uer. Aal. 39 5) 200/2002) electroic). [5] J. Bergh, J. Löfströ, Iterpolatio Spaces, A Itroductio, Spriger-Verlag, Berli, 976. [6] C. Berardi, M. Dauge, Y. Maday, Spectral Methods for Axisyetric Doais, Gauthier-Villars, Éditios Scietifiques et Médicales Elsevier, Paris, 999. [7] C. Berardi, Y. Maday, Approxiatios Spectrales de Problèes aux Liites Elliptiques, Spriger-Verlag, Paris, 992. [8] C. Berardi, Y. Maday, Basic results o spectral ethods. R94022, Uiv. Pierre et Marie Curie, Paris, 994. [9] C. Berardi, Y. Maday, Spectral ethod, Part 2, i: P.G. Ciarlet, L.L. Lios Eds.), Hadboo of uerical Aalysis, vol. 5, orth-hollad, Asterda, The etherlads, 997. [0] J.L. Boa, V.A. Dougalis, O.A. Karaashia, Coservative, high-order uerical schees for the geeralized KdV-type equatio, Philos. Tras. Roy. Soc. Lod. Ser. A ) [] A. Boutayeb, E. Twizell, uerical ethods for the solutio of special sixth-order boudary value probles, It. J. Coput. Math ) [2] J.P. Boyd, Chebyshev ad Fourier Spectral Methods, secod ed., Dover Publicatios Ic., Mieola, Y, 200. [3] C. Cauto, M.Y. Hussaii, A. Quarteroi, T.A. Zag, Spectral Methods: Fudaetals i Sigle Doais, Spriger-Verlag, Heidelberg, [4] C. Cauto, A. Quarteroi, Approxiatio results for orthogoal polyoials i Sobolev spaces, Math. Cop ) [5] R. Courat, D. Hilbert, Methods of Matheatical Physics. Volue, Itersciece Publishers, ew Yor, 953. [6] B. Dey, A. Khare, C.. Kuar, Statioary solitos of the fifth order KdV-type equatios ad their stability, Phys. Lett. A ) [7] M. El-Gael, J.R. Cao, A.I. Zayed, Sic Galeri ethod for solvig liear sixth-order boudary value probles, Math. Cop ) 9. [8] B. Forberg, A pseudospectral fictitious poit ethod for high order iitial-boudary value probles, SIAM J. Sci. Coput. 28 5) 2006) electroic). [9] D. Fuaro, Polyoial Approxiatios of Differetial Equatios, Spriger-Verlag, Berli, 992. [20] D. Gottlieb, S.A. Orszag, uerical Aalysis of Spectral Methods: Theory ad Applicatios, SIAM-CBMS, Philadelphia, 977. [2] B. Guo, Gegebauer approxiatio ad its applicatios to differetial equatios o the whole lie, J. Math. Aal. Appl ) [22] B. Guo, Spectral Methods ad their Applicatios, World Scietific Publishig Co. Ic., River Edge, J, 998. [23] B. Guo, Jacobi approxiatios i certai Hilbert spaces ad their applicatios to sigular differetial equatios, J. Math. Aal. Appl ) [24] B. Guo, Jacobi spectral approxiatio ad its applicatios to differetial equatios o the half lie, J. Coput. Math ) [25] B. Guo, J. She, L.-L. Wag, Optial spectral-galeri ethods usig geeralized Jacobi polyoials, J. Sci. Cop ) [26] B. Guo, L. Wag, Jacobi approxiatios ad Jacobi Gauss-type iterpolatios i ouiforly weighted Sobolev spaces, J. Approx. Theory ) 4. [27] W.Z. Huag, D.M. Sloa, The pseudospectral ethod for third-order differetial equatios, SIAM J. uer. Aal. 29 6) 992) [28] S. Kicheassay, P.J. Olver, Existece ad oexistece of solitary wave solutios to higher-order odel evolutio equatios, SIAM J. Math. Aal. 23 5) 992) [29] W.J. Merryfield, B. Shizgal, Properties of collocatio third-derivative operators, J. Coput. Phys. 05 ) 993) [30] E.J. Pares, Z. Zhu, B.R. Duffy, H.C. Huag, Sech-polyoial travellig solitary-wave solutios of odd-order geeralized KdV-type equatios, Phys. Lett. A ) [3] E.D. Raiville, Special Fuctios, Macilla, ew Yor, 960. [32] J. She, Efficiet spectral-galeri ethod I. direct solvers for secod- ad fourth-order equatios by usig Legedre polyoials, SIAM J. Sci. Coput ) [33] J. She, A ew dual-petrov Galeri ethod for third ad higher odd-order differetial equatios: applicatio to the KDV equatio, SIAM J. uer. Aal ) [34] J. She, L.-L. Wag, Legedre ad Chebyshev dual-petrov Galeri ethods for hyperbolic equatios, Coput. Methods Appl. Mech. Egrg ) 2007) [35] G. Szegö, Orthogoal Polyoials, fourth ed., Aer. Math. Soc. Collog. Publ., vol. 23, Aer. Math. Soc., Providece, RI, 975. [36] A.F. Tia, Theory of Approxiatio of Fuctios of a Real Variable, Pergao, Oxford, 963. [37].J. Zabusy, C.J. Galvi, Shallow water waves, the Korteveg de-vries equatio ad solitos, J. Fluid Mech )

A study on generalized absolute summability factors for a triangular matrix

A study on generalized absolute summability factors for a triangular matrix Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Certain Sequences Involving Product of k-bessel Function

Certain Sequences Involving Product of k-bessel Function It. J. Appl. Coput. Math 018 4:101 https://doi.org/10.1007/s40819-018-053-8 ORIGINAL PAPER Certai Sequeces Ivolvig Product of k-bessel Fuctio M. Chad 1 P. Agarwal Z. Haouch 3 Spriger Idia Private Ltd.

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University) Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize

Διαβάστε περισσότερα

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

On Certain Subclass of λ-bazilevič Functions of Type α + iµ Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad

Διαβάστε περισσότερα

Gauss Radau formulae for Jacobi and Laguerre weight functions

Gauss Radau formulae for Jacobi and Laguerre weight functions Mathematics ad Computers i Simulatio 54 () 43 41 Gauss Radau formulae for Jacobi ad Laguerre weight fuctios Walter Gautschi Departmet of Computer Scieces, Purdue Uiversity, West Lafayette, IN 4797-1398,

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

On Inclusion Relation of Absolute Summability

On Inclusion Relation of Absolute Summability It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

ESTIMATES FOR WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS

ESTIMATES FOR WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS ESTIMATES FO WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS V F Babeo a S A Sector Let ψ D be orthogoal Daubechies wavelets that have zero oets a let W { } = f L ( ): ( i ) f ˆ( ) N We rove that li

Διαβάστε περισσότερα

Presentation of complex number in Cartesian and polar coordinate system

Presentation of complex number in Cartesian and polar coordinate system 1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

Degenerate Perturbation Theory

Degenerate Perturbation Theory R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The

Διαβάστε περισσότερα

The Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?

Διαβάστε περισσότερα

Bessel function for complex variable

Bessel function for complex variable Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {

Διαβάστε περισσότερα

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator

Διαβάστε περισσότερα

Homework 4.1 Solutions Math 5110/6830

Homework 4.1 Solutions Math 5110/6830 Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits

Διαβάστε περισσότερα

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators Tamsui Oxford Joural of Mathematical Scieces 20(2) (2004) 175-186 Aletheia Uiversity A New Class of Aalytic -Valet Fuctios with Negative Coefficiets ad Fractioal Calculus Oerators S. P. Goyal Deartmet

Διαβάστε περισσότερα

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue Queueig Aalysis Outlie M/M/ Queue (ifiite buffer M/M//N (fiite buffer M/M// (Erlag s B forula M/M/ (Erlag s C forula Networks of M/M/ Queues M/G/ Priority Queue M/M/ M: Markovia/Meoryless Arrival process

Διαβάστε περισσότερα

α β

α β 6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m

Διαβάστε περισσότερα

1. Matrix Algebra and Linear Economic Models

1. Matrix Algebra and Linear Economic Models Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:

Διαβάστε περισσότερα

A Decomposition Algorithm for the Solution of Fractional Quadratic Riccati Differential Equations with Caputo Derivatives

A Decomposition Algorithm for the Solution of Fractional Quadratic Riccati Differential Equations with Caputo Derivatives America Joural of Computatioal ad Applied Mathematics 01, (3): 83-91 DOI: 10.593/j.ajcam.01003.03 A Decompositio Algorithm for the Solutio of Fractioal Quadratic Riccati Differetial Equatios with Caputo

Διαβάστε περισσότερα

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction Supplemetal Material: Scalig Up Sparse Support Vector Machies by Simultaeous Feature ad Sample Reductio Weizhog Zhag * 2 Bi Hog * 3 Wei Liu 2 Jiepig Ye 3 Deg Cai Xiaofei He Jie Wag 3 State Key Lab of CAD&CG,

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.

Διαβάστε περισσότερα

Research Article Finite-Step Relaxed Hybrid Steepest-Descent Methods for Variational Inequalities

Research Article Finite-Step Relaxed Hybrid Steepest-Descent Methods for Variational Inequalities Hidawi Publishig Corporatio Joural of Iequalities ad Applicatios Volume 2008, Article ID 598632, 13 pages doi:10.1155/2008/598632 Research Article Fiite-Step Relaxed Hybrid Steepest-Descet Methods for

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods DOI: 545/mjis764 Biet Type Formula For The Sequece of Tetraacci Numbers by Alterate Methods GAUTAMS HATHIWALA AND DEVBHADRA V SHAH CK Pithawala College of Eigeerig & Techology, Surat Departmet of Mathematics,

Διαβάστε περισσότερα

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ. Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces

Διαβάστε περισσότερα

The Neutrix Product of the Distributions r. x λ

The Neutrix Product of the Distributions r. x λ ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece

Διαβάστε περισσότερα

EN40: Dynamics and Vibrations

EN40: Dynamics and Vibrations EN40: Dyamics a Vibratios School of Egieerig Brow Uiversity Solutios to Differetial Equatios of Motio for Vibratig Systems Here, we summarize the solutios to the most importat ifferetial equatios of motio

Διαβάστε περισσότερα

ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1

ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1 Bulleti of the Trasilvaia Uiversity of Braşov Vol 5) - 00 Series III: Mathematics, Iformatics, Physics, -4 ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY Gabriel STAN Abstract A extesio ad a refiemet

Διαβάστε περισσότερα

CE 530 Molecular Simulation

CE 530 Molecular Simulation C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μαθηματικά Ικανές και αναγκαίες συνθήκες Έστω δυο προτάσεις Α και Β «Α είναι αναγκαία συνθήκη για την Β» «Α είναι ικανή συνθήκη για την Β» Α is ecessary for

Διαβάστε περισσότερα

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values Factorial Notatios Traditioal ame Factorial Traditioal otatio Mathematica StadardForm otatio Factorial Specific values Specialized values 06.0.0.000.0 k ; k 06.0.0.000.0 ; 06.0.0.000.0 p q q p q p k q

Διαβάστε περισσότερα

Adaptive Covariance Estimation with model selection

Adaptive Covariance Estimation with model selection Adaptive Covariace Estimatio with model selectio Rolado Biscay, Hélèe Lescorel ad Jea-Michel Loubes arxiv:03007v [mathst Mar 0 Abstract We provide i this paper a fully adaptive pealized procedure to select

Διαβάστε περισσότερα

B.A. (PROGRAMME) 1 YEAR

B.A. (PROGRAMME) 1 YEAR Graduate Course B.A. (PROGRAMME) YEAR ALGEBRA AND CALCULUS (PART-A : ALGEBRA) CONTENTS Lesso Lesso Lesso Lesso Lesso Lesso : Complex Numbers : De Moivre s Theorem : Applicatios of De Moivre s Theorem 4

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Digital Signal Processing: A Computer-Based Approach

Digital Signal Processing: A Computer-Based Approach SOLUTIOS AUAL to accopay Digital Sigal Processig: A Coputer-Based Approac Tird Editio Sait K itra Prepared by Cowdary Adsuilli, Jo Berger, arco Carli, Hsi-Ha Ho, Raeev Gadi, Ci Kaye Ko, Luca Luccese, ad

Διαβάστε περισσότερα

Data Dependence of New Iterative Schemes

Data Dependence of New Iterative Schemes Mathematics Volume : 4 Issue : 6 Jue 4 ISSN - 49-555X Data Depedece of New Iterative Schemes KEYWORDS CR Iteratio Data Depedece New Multistep Iteratio Quasi Cotractive * Aarti Kadia Assistat Professor

Διαβάστε περισσότερα

CERTAIN PROPERTIES FOR ANALYTIC FUNCTIONS DEFINED BY A GENERALISED DERIVATIVE OPERATOR

CERTAIN PROPERTIES FOR ANALYTIC FUNCTIONS DEFINED BY A GENERALISED DERIVATIVE OPERATOR Journal of Quality Measureent and Analysis Jurnal Penguuran Kualiti dan Analisis JQMA 8(2) 202, 37-44 CERTAIN PROPERTIES FOR ANALYTIC FUNCTIONS DEFINED BY A GENERALISED DERIVATIVE OPERATOR (Sifat Tertentu

Διαβάστε περισσότερα

HermiteHGeneral. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

HermiteHGeneral. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation HermiteHGeeral Notatios Traditioal ame Hermite fuctio Traditioal otatio H Mathematica StadardForm otatio HermiteH, Primary defiitio 07.0.0.000.0 H F ; ; F ; 3 ; Specific values Specialied values For fixed

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Inertial Navigation Mechanization and Error Equations

Inertial Navigation Mechanization and Error Equations Iertial Navigatio Mechaizatio ad Error Equatios 1 Navigatio i Earth-cetered coordiates Coordiate systems: i iertial coordiate system; ECI. e earth fixed coordiate system; ECEF. avigatio coordiate system;

Διαβάστε περισσότερα

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95 r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN 78-7763 COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Dr Neetu Vishwakarma a Dr M S Chauha Sagar Istitute of

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Lecture 3: Asymptotic Normality of M-estimators

Lecture 3: Asymptotic Normality of M-estimators Lecture 3: Asymptotic Istructor: Departmet of Ecoomics Staford Uiversity Prepared by Webo Zhou, Remi Uiversity Refereces Takeshi Amemiya, 1985, Advaced Ecoometrics, Harvard Uiversity Press Newey ad McFadde,

Διαβάστε περισσότερα

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,. 2010 4 26 2 Pure and Applied Matheatics Apr. 2010 Vol.26 No.2 Randić 1, 2 (1., 352100; 2., 361005) G Randić 0 R α (G) = v V (G) d(v)α, d(v) G v,α. R α,, R α. ; Randić ; O157.5 A 1008-5513(2010)02-0339-06

Διαβάστε περισσότερα

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose

Διαβάστε περισσότερα

Steady-state Analysis of the GI/M/1 Queue with Multiple Vacations and Set-up Time

Steady-state Analysis of the GI/M/1 Queue with Multiple Vacations and Set-up Time Moder Applied Sciece September 8 Steady-state Aalysis of the GI/M/ Queue with Multiple Vacatios ad Set-up Time Guohui Zhao College of Sciece Yasha Uiersity Qihuagdao 664 Chia E-mail: zhaoguohui8@6com Xixi

Διαβάστε περισσότερα

arxiv: v1 [math.nt] 17 Sep 2016

arxiv: v1 [math.nt] 17 Sep 2016 arxiv:609.057v [math.nt] 7 Sep 06 Covolutio idetities for Tetraacci umbers Ruse Li School of Mathematics ad Statistics Wuha Uiversity Wuha 43007 Chia limajiashe@whu.edu.c Abstract We give covolutio idetities

Διαβάστε περισσότερα

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function Fourier Series Periodic uctio A uctio is sid to hve period T i, T where T is ve costt. The ;est vlue o T> is clled the period o. Eg:- Cosider we kow tht, si si si si si... Etc > si hs the periods,,6,..

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

LAD Estimation for Time Series Models With Finite and Infinite Variance

LAD Estimation for Time Series Models With Finite and Infinite Variance LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

The partial derivatives of their Kullback-Leibler divergence are given by

The partial derivatives of their Kullback-Leibler divergence are given by 1 Gradiet of Kullbac-Leibler divergece Let λ ad λ be two sets of atural paraeters of a expoetial faily, that is, qβ; λ = hβ exp λ tβ aλ. 1 The partial derivatives of their Kullbac-Leibler divergece are

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Degenerate Solutions of the Nonlinear Self-Dual Network Equation

Degenerate Solutions of the Nonlinear Self-Dual Network Equation Commu Theor Phys 7 (09 8 Vol 7 o Jauary 09 Degeerate Solutios of the oliear Self-Dual etwork Equatio Yig-Yag Qiu ( 邱迎阳 Jig-Sog He ( 贺劲松 ad Mao-Hua Li ( 李茂华 Departmet of Mathematics igbo Uiversity igbo

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

arxiv: v1 [math.sp] 29 Jun 2016

arxiv: v1 [math.sp] 29 Jun 2016 INVERSE NODAL PROBLEMS FOR DIRAC-TYPE INTEGRO-DIFFERENTIAL OPERATORS arxiv:606.08985v [math.sp] 29 Ju 206 BAKI KESKIN AND A. SINAN OZKAN Abstract. The iverse odal problem for Dirac differetial operator

Διαβάστε περισσότερα

B.A. (PROGRAMME) 1 YEAR

B.A. (PROGRAMME) 1 YEAR Graduate Course B.A. (PROGRAMME) YEAR ALGEBRA AND CALCULUS (PART-A : ALGEBRA) CONTENTS Lesso Lesso Lesso Lesso Lesso Lesso : Complex Numbers : De Moivre s Theorem : Applicatios of De Moivre s Theorem 4

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Experiental Copetition: 14 July 011 Proble Page 1 of. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Ένα μικρό σωματίδιο μάζας (μπάλα) βρίσκεται σε σταθερή απόσταση z από το πάνω μέρος ενός

Διαβάστε περισσότερα

SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES

SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES Hcettepe Jourl of Mthemtics d Sttistics Volume 4 4 013, 331 338 SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES Nuretti IRMAK, Murt ALP Received 14 : 06 : 01 : Accepted 18 : 0 : 013 Keywords:

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION Revision D

DERIVATION OF MILES EQUATION Revision D By Tom Irvie Email: tomirvie@aol.com July, DERIVATION OF MILES EQUATION Revisio D Itroductio The obective is to derive Miles equatio. This equatio gives the overall respose of a sigle-degree-of-freedom

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Palestine Journal of Mathematics Vol. 2(1) (2013), Palestine Polytechnic University-PPU 2013

Palestine Journal of Mathematics Vol. 2(1) (2013), Palestine Polytechnic University-PPU 2013 Palestine Journal of Matheatics Vol. ( (03, 86 99 Palestine Polytechnic University-PPU 03 On Subclasses of Multivalent Functions Defined by a Multiplier Operator Involving the Koatu Integral Operator Ajad

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

An extension of a multidimensional Hilbert-type inequality

An extension of a multidimensional Hilbert-type inequality Zhog ad Yag Joural of Ieualities ad Alicatios 27 27:78 DOI.86/s366-7-355-6 R E S E A R C H Oe Access A extesio of a ultidiesioal Hilbert-tye ieuality Jiahua Zhog ad Bicheg Yag * * Corresodece: bcyag@gdei.edu.c

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

The Equivalence Theorem in Optimal Design

The Equivalence Theorem in Optimal Design he Equivalece heorem i Optimal Desig Raier Schwabe & homas Schmelter, Otto vo Guericke Uiversity agdeburg Bayer Scherig Pharma, Berli rschwabe@ovgu.de PODE 007 ay 4, 007 Outlie Prologue: Simple eamples.

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

K. Hausdorff K K O X = SDA. symbolic data analysis SDA SDA. Vol. 16 No. 3 Mar JOURNAL OF MANAGEMENT SCIENCES IN CHINA

K. Hausdorff K K O X = SDA. symbolic data analysis SDA SDA. Vol. 16 No. 3 Mar JOURNAL OF MANAGEMENT SCIENCES IN CHINA 16 3 013 3 JOURNAL OF MANAGEMENT SCIENCES IN CHINA Vol 16 No 3 Mar 013 1 K 30007 K Hausdorff K K K O1 4 A 1007-9807 013 03-001 - 08 0 3 X = 5 36 K SDA 1 symbolic data aalysis SDA 3 5 SDA 1 011-06 - 15

Διαβάστε περισσότερα