ΑΛΓΕΒΡΑ KAI ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ( ) ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΑΛΓΕΒΡΑ KAI ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ( ) ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ"

Transcript

1

2 ΑΛΓΕΒΡΑ KAI ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ (011-01) ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ

3 ΣΤΟΙΧΕΙΑ ΕΠΑΝΕΚ ΟΣΗΣ Η επνέκδοση του πρόντος βιβλίου πργμτοποιήθηκε πό το Ινστιτούτο Τεχνολογίς Υπολογιστών & Εκδόσεων «Διόφντος» μέσω ψηφικής μκέτς, η οποί δημιουργήθηκε με χρημτοδότηση πό το ΕΣΠΑ / ΕΠ «Εκπίδευση & Διά Βίου Μάθηση» / Πράξη «ΣΤΗΡΙΖΩ». Οι λλγές που ενσωμτώθηκν στην προύσ επνέκδοση έγινν με βάση τις διορθώσεις του Πιδγωγικού Ινστιτούτου.

4 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ (011-01) ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ Η συγγρφή κι η επιμέλει του βιβλίου πργμτοποιήθηκε υπό την ιγίδ του Πιδγωγικού Ινστιτούτου ΙΝΣΤΙΤΟΥΤΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΕΚΔΟΣΕΩΝ «ΔΙΟΦΑΝΤΟΣ»

5

6 ΚΕΦΑΛΑΙΟ 1 ΠΙΘΑΝΟΤΗΤΕΣ 1.1. Δειγμτικός χώρος Ενδεχόμεν Α ΟΜΑΔΑΣ 1. Έστω, μ, κ τ ποτελέσμτ η μπάλ ν είνι άσπρη, μύρη κι κόκκινη ντιστοίχως. Έχουμε: i) 1η εξγωγή η εξγωγή Αποτέλεσμ (, ) μ (, μ) κ (, κ) (μ, ) μ μ (μ, μ) κ (μ, κ) (κ, ) κ μ (κ, μ) κ (κ, κ) Ω = {(, ), (, μ), (, κ), (μ, ), (μ, μ), (μ, κ), (κ, ), (κ, μ), (κ, κ)} ii) {(κ, ), (κ, μ), (κ, κ)} iii) {(, ), (μ, μ), (κ, κ)}.. i) 1η εξγωγή η εξγωγή Αποτέλεσμ κ (, μ) μ (, κ) (μ, ) μ κ (μ, κ) (κ, ) κ μ (κ, μ) Ω = {(, μ), (, κ), (μ, ), (μ, κ), (κ, ), (κ, μ)} ii) {(κ, ), (κ, μ)} iii) Ø.

7 6 ΚΕΦΑΛΑΙΟ 1: πιθνοτητεσ 3. i) Ω = {(Κύπρος, εροπλάνο), (Μκεδονί, υτοκίνητο), (Μκεδονί, τρένο), (Μκεδονί, εροπλάνο)}. ii) Α = {(Κύπρος, εροπλάνο), (Μκεδονί, εροπλάνο)}. 4. i) Αν συμβολίσουμε κθεμί πό τις επιλογές με το ρχικό της γράμμ, έχουμε το πρκάτω δεντροδιάγρμμ: Κύριο πιάτο Συνοδευτικό Γλυκό Αποτέλεσμ π (κ, μ, π) μ τ (κ, μ, τ) ζ (κ, μ, ζ) π (κ, ρ, π) κ ρ τ (κ, ρ, τ) ζ (κ, ρ, ζ) π (κ, χ, π) χ τ (κ, χ, τ) ζ (κ, χ, ζ) π (φ, μ, π) μ τ (φ, μ, τ) ζ (φ, μ, ζ) π (φ, ρ, π) φ ρ τ (φ, ρ, τ) ζ (φ, ρ, ζ) π (φ, χ, π) χ τ (φ, χ, τ) ζ (φ, χ, ζ) Το σύνολο που έχει ως στοιχεί τις 18 τριάδες της στήλης "ποτέλεσμ" ποτελεί το δειγμτικό χώρο του πειράμτος: ii) Α = {(κ, μ, π), (κ, ρ, π), (κ, χ, π), (φ, μ, π), (φ, ρ, π), (φ, χ, π)} iii) Β = {(κ, μ, π), (κ, μ, τ), (κ, μ, ζ), (κ, ρ, π), (κ, ρ, π), (κ, ρ, ζ), (κ, χ, π), (κ, χ, τ), (κ, χ, ζ)} iv) A Β = {(κ, μ, π), (κ, ρ, π), (κ, χ, π)} v) Γ = {(κ, ρ, π), (κ, ρ, τ), (κ, ρ, ζ), (φ, ρ, π), (φ, ρ, τ), (φ, ρ, ζ)} ( A Β) Γ = {(κ, ρ, π)}. 5. i) Ω = {(0, ), (0, β), (0, γ), (0, δ), (1, ), (1, β), (1, γ), (1, δ)} ii) Α = {(0, γ), (0, δ)} iii) Β = {(0, ), (0, β), (1, ), (1, β)} iv) Γ = {(1, ), (1, β), (1, γ), (1, δ)}. 6. i) Α = {3}, Β = {, 4, 6}, A Β = Ø, άρ τ Α κι Β είνι συμβίβστ. ii) Επειδή υπάρχουν κι Έλληνες κθολικοί, υτό σημίνει ότι A Β Ø, δηλδή τ Α κι Β δεν είνι συμβίβστ.

8 1.1. Δειγμτικός χώρος - Ενδεχόμεν 7 iii) Επειδή υπάρχουν γυνίκες άνω των 30, που ν είνι 30 χρόνι πντρεμένες, υτό σημίνει ότι A Β Ø. iv) A Β = Ø, άρ τ Α κι Β είνι συμβίβστ ο πιδί ο πιδί 3 ο πιδί Αποτέλεσμ κ κ κ κ κ κκ κ κ κκ κ κκ κ κ κκκ Ω = {, κ, κ, κκ, κ, κκ, κκ, κκκ}. Β ΟΜΑΔΑΣ 1. 1ο πιχνίδι ο πιχνίδι 3ο πιχνίδι Αποτέλεσμ β β β β ββ β ββ β β ββ Ω = {, β, ββ, β, ββ, ββ}.. Τ ποτελέσμτ της ρίψης δύο ζριών φίνοντι στον πρκάτω πίνκ διπλής εισόδου. η ρίψη 1η ρίψη (1, 1) (1, ) (1, 3) (1, 4) (1, 5) (1, 6) (, 1) (, ) (, 3) (, 4) (, 5) (, 6) 3 (3, 1) (3, ) (3, 3) (3, 4) (3, 5) (3, 6) 4 (4, 1) (4, ) (4, 3) (4, 4) (4, 5) (4, 6) 5 (5, 1) (5, ) (5, 3) (5, 4) (5, 5) (5, 6) 6 (6, 1) (6, ) (6, 3) (6, 4) (6, 5) (6, 6)

9 8 ΚΕΦΑΛΑΙΟ 1: πιθνοτητεσ Άρ Α = {(, 1), (3, 1), (3, ), (4, 1), (4, ), (4, 3), (5, 1), (5, ), (5, 3), (5, 4), (6, 1), (6, ), (6, 3), (6, 4), (6, 5)}. Β = {(1, 1), (1, 3), (1, 5), (, ), (, 4), (, 6), (3, 1), (3, 3), (3, 5), (4, ), (4, 4), (4, 6), (5, 1), (5, 3), (5, 5), (6, ), (6, 4), (6, 6)}. Γ = {(1, 1), (1, ), (1, 3), (1, 4), (, 1), (, ), (3, 1), (4, 1)}. A Β = {(3, 1), (4, ), (5, 1), (5, 3), (6, ), (6, 4)}. A Γ = {(, 1), (3, 1), (4, 1)}. ( A Β) Γ = {(3, 1)}. 1.. Έννοι της πιθνότητς Α ΟΜΑΔΑΣ 4 1. i) Η τράπουλ έχει 4 πεντάρι κι επομένως η ζητούμενη πιθνότητ είνι ίση με 5 = ii) Το ενδεχόμενο είνι το ντίθετο του ενδεχομένου του προηγούμενου ερωτήμτος. Άρ η 4 48 ζητούμενη πιθνότητ είνι ίση με 1 = = Αν Γ το ποτέλεσμ «γράμμτ» κι Κ το ποτέλεσμ «κεφλή», ο δειγμτικός χώρος του πειράμτος είνι Ω = {ΚΓ, ΓΚ, ΚΚ, ΓΓ} κι υπάρχει μι ευνοϊκή περίπτωση, η ΓΓ. Άρ η ζητούμενη πιθνότητ είνι Το κουτί έχει συνολικά = 40 μπάλες. i) Οι μύρες μπάλες είνι 15. Άρ η πιθνότητ ν είνι η μπάλ μύρη ii) Υπάρχουν 10 άσπρες κι 15 μύρες μπάλες. Άρ η ζητούμενη πιθνότητ είνι ίση με = iii) Το ν μην είνι η μπάλ ούτε κόκκινη ούτε πράσινη, σημίνει ότι μπορεί ν είνι άσπρη ή μύρη. Άρ η ζητούμενη πιθνότητ είνι ίση με = Η τάξη έχει συνολικά = 30 μθητές. Γι ν έχει η οικογένει ενός μθητή 3 πιδιά, πρέπει ο μθητής υτός ν έχει δηλώσει ότι έχει δέλφι. Επειδή 9 μθητές

10 1.. Έννοι της πιθνότητς 9 δήλωσν ότι έχουν δέλφι, η ζητούμενη πιθνότητ είνι Έχουμε Ω = {10, 11, 1, 13, 14, 15, 16, 17, 18, 19, 0}, Α = {1, 15, 18} κι Β = {1, 16, 0}. Επομένως i) ( )= P Α. ii) Έχουμε P( Β ) =, άρ P( Β ) = 1 = Αν Λ, Π κι Ν είνι τ ενδεχόμεν ν κερδίσουν ο Λευτέρης, ο Πύλος κι ο Νίκος ντιστοίχως, τότε P( Λ ) =, P( Π ) = κι P( Ν ) = Επειδή τ ενδεχόμεν είνι συμβίβστ έχουμε: i) P( Λ Π ) = P( Λ) + P( Π ) = + =, δηλδή 50% ii) P( Λ Ν ) = 1 P( Λ Ν ) = 1 P( Λ) P( Ν ) = 1 =, δηλδή 30%. 7. Έχουμε διδοχικά P( Α) + P( Β) P( Α Β) = P( Α Β) P( Α Β) = P( Α Β ) = + = + = Έχουμε διδοχικά P( Α) + P( Β) P( Α Β) = P( Α Β) P( Β ) = 3 6 P ( Β ) = + = + = = Έχουμε διδοχικά P( Α) + P( Β) P( Α Β) = P( Α Β) P( Α) 0, = 0,6 P( Α) = 0,8 P( Α ) = 0,4.

11 10 ΚΕΦΑΛΑΙΟ 1: πιθνοτητεσ 10. Έχουμε διδοχικά P( Α Β) = P( Α) + P( Β) P( Α Β) 11. Έχουμε 1 1 = = = + = = P( Α Β) P( Α) + P( Β) P( Α) + P( Β) P( Α Β) P( Α) + P( Β) 0 P( Α Β ) που ισχύει. 1. Έστω Α το ενδεχόμενο ν έχει κάρτ D κι Β το ενδεχόμενο ν έχει κάρτ V Έχουμε P( Α ) =, P( Β ) =, P( Α Β ) =. Επομένως P( Α Β) = P( Α) + P( Β) P( Α Β) 13. Έστω Α το ενδεχόμενο ν έχει υπέρτση κι Β το ενδεχόμενο ν έχει στεφνιί νόσο. Έχουμε 10 6 P( Α ) =, P( Β ) = κι P( Α Β ) = ) Έχουμε P( Α Β) = P( Α) + P( Β) P( Α Β) = + =, δηλδή 14% = + =, δηλδή 65% β) Το ενδεχόμενο ν έχει το άτομο μόνο μι σθένει είνι το ( Α Β) ( Β Α ). Τ ενδεχόμεν ( Α Β ) κι ( Β Α ) είνι συμβίβστ. Επομένως ( Α Β Β Α ) P( ) ( ) = PA ( B) + PB ( A) = P( Α) P( Α Β) + P( Β) P( Α Β) = P( Α) + P( Β) + P( Α Β) = + =, δηλδή 1%

12 1.. Έννοι της πιθνότητς Έστω Α το ενδεχόμενο ν μθίνει γγλικά κι Β το ενδεχόμενο ν μθίνει γλλικά. Έχουμε 80 P( Α ) =, P( Β ) = κι P( Α Β ) =. 100 Άρ P( ) ( Α Β) = 1 P( Α Β) = 1 P( Α) P( Β) + P( Α Β) = 1 + =, δηλδή 10% β ΟΜΑΔΑΣ 1. i) P( Α Β) = P( Α) + P( Β) P( Α Β) =κ + λ μ ii) P( ( Α Β) )= 1 P( Α Β) = 1 κ λ + μ iii) ( ) P ( Α Β) ( Β Α) = P( Α Β) + P( Β Α) = P( Α) P( Α Β) + P( Β) P( Α Β) = P( Α) + P( Β) P( Α Β) = κ + λ μ.. Αν Α κι Β τ ενδεχόμεν ν μην έχει έν νοικοκυριό τηλεόρση κι Βίντεο ντιστοίχως, θ είνι P( Α ) = κι P( Β ) = κι P( Α Β ) = Επομένως η ζητούμενη πιθνότητ θ είνι: ( ) P ( Α Β) = 1 P( Α Β) = 1 [ P( Α) + P( Β) P( Α Β)] = 1 + = 1 =, δηλδή 55% Έχουμε διδοχικά P( Α) 3 = P( Α ) 4 P( Α) 3 = 1 P( Α) 4 4 P( Α) = 3 3 PA ( ) 7 P( Α ) = 3, P( Α )= 3, P( Α ) = 1 P( Α ) =

13 1 ΚΕΦΑΛΑΙΟ 1: πιθνοτητεσ 4. Αν P( Α )= x, τότε P( Α ) = 1 x, όπου 0< x < 1. Έχουμε P( Α) P( Α ) x 1 x 1 x+ x 4 x(1 x) 1 x+ x 4x 4x + 4x 4x Έχουμε Α Β Α (x 1) 0 που ισχύει. P( Α Β) P( Α) Έχουμε P( Α Β) 1 ( Α Β ) 0,6 (1) P( Α) + P( Β) P( Α Β) 1 06, + 07, PA ( B) 1 πό τις (1) κι () προκύπτει ότι: 0,6 + 0,7 1 P( Α Β) 0,3 P( Α Β ) () 0,3 P( Α Β ) 0,6. 6. P( Β) P( Α ) P( Α Β) P( Β) 1 + P( Α) P( Α Β) P( Β) + P( Α) P( Α Β) 1 P( Α Β ) 1 που ισχύει.

14 ΚΕΦΑΛΑΙΟ ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ.1. Οι πράξεις κι οι ιδιότητές τους Α ΟΜΑΔΑΣ 1. Έχουμε i) ii) Γι x = 010 κι Α = 1 9 = 1. 1 y = έχουμε x y = 1 οπότε 010 x 1 x : x y x y (xy) 3 7. Έχουμε ( ) Α= = = = y xy y Γι x = 0,4 κι y =,5 είνι xy = 1 οπότε Α = ( 1) 10 = i) ii) = ( )( ) = 000 = = (100 1)( ) = = = iii) (7, 3) (4, 3) (7, 3 + 4, 3)(7, 3 4, 3) 11, 46 3 = = = 3 11,46 11,46 11,46 4. i) Έχουμε ( +β) ( β ) = + β+β ( β+β ) ii) Σύμφων με το ερώτημ (i): = + β + β + β β = 4β = 4 =

15 14 ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 5. i) Έχουμε ( 1)( + 1) = ( 1) = + 1 = 1 ii) Αν εφρμόσουμε το ερώτημ (i) γι = 1,365 η τιμή που προκύπτει γι την πράστση είνι Έστω v κι v + 1 δύο διδοχικοί φυσικοί ριθμοί: Τότε έχουμε ( ν+ 1) ν = ( ν+ 1 ν)( ν+ 1 +ν ) = ( ν+ 1) +ν 7. Ισχύει ν ν+ 1 ν+ ν ν + + = (1 + + ) = 7 β ΟΜΑΔΑΣ 1. Αν πργοντοποιήσουμε ριθμητή κι προνομστή Έχουμε 3 + ( + 1) ( 1) i) = = = 1 ( 1) 1 ii) = = = ( 1) ( 1) ( 1)( ) 1 ( 1)( 1) ( 1)( 1) 1. Έχουμε ( + 1) i) = 3 3 ( + 1) ( + 1) ( 1) ( + 1) = = ( 1) ( + 1) ii) ( 1)( 1) = = ( 1)( 1) 3. Έχουμε 1 1 y + x xy i) (x + y) + = (x + y) = (x + y) = (xy) = x y x y xy x + y

16 .1. Οι πράξεις κι οι ιδιότητές τους 15 ii) x y x y x y x y 1 1 x y x y x y x y x y = = x y x y x y 1 1 x y x + y 1 x + y xy xy = = = x y y x x y x+ y x y xy x + y x (x + y)(x xy + y ) x xy + y 4. Έχουμε : y : = x y x y (x y)(x+ y) x y 3 3 x xy + y x y = = 1 x y x xy + y 5. i) τρόπος: Με γενίκευση της ιδιότητς 1iv) των νλογιών (βλ. εφρμογή 1, σελ. 6) έχουμε β γ +β+γ = = = = 1, β γ β+γ+ οπότε = β = γ. β τρόπος: Θέτουμε β γ = = = β γ k, οπότε έχουμε = kβ, β= kγ κι γ= k (1) Αν, τώρ, προσθέσουμε κτά μέλη τις ισότητες (1), βρίσκουμε +β+γ= k( +β+γ ) οπότε έχουμε k = 1 (φού + β + γ 0, διότι τ, β, γ είνι μήκη πλευρών τριγώνου). Έτσι, πό τις ισότητες (1) προκύπτει ότι = β = γ κι άρ το τρίγωνο είνι ισόπλευρο. γ τρόπος: Η συγκεκριμένη άσκηση μπορεί ν ποδειχθεί, μετά τη διδσκλί της 1.3, ως εξής: Πολλπλσιάζουμε κτά μέλη τις ισότητες (1), οπότε έχουμε βγ = k 3 (βγ) κι, επειδή βγ 0, θ είνι k 3 = 1 κι άρ k = 1. Έτσι, πό τις ισότητες (1) προκύπτει ότι = β = γ. Σχόλιο: Ο συγκεκριμένος τρόπος μπορεί ν εφρμοσθεί κι ότν τ, β, γ είνι οποιοιδήποτε πργμτικοί ριθμοί, διφορετικοί του μηδενός, ενώ γι τους δύο πρώτους τρόπους πιτείτι στην περίπτωση υτή ν ποδειχτεί ότι + β + γ 0.

17 16 ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ii) τρόπος: Έχουμε β = β γ (1) κι β = γ (), οπότε, ν προσθέτουμε κτά μέλη τις ισότητες (1) κι () προκύπτει ότι β=β 3= 3β =β Έτσι, πό την ισότητ (1) βρίσκουμε ότι κι β = γ. Άρ = β = γ οπότε το τρίγωνο είνι ισόπλευρο. β τρόπος: Θέτουμε β = β γ = γ = k, οπότε έχουμε β = k, β γ = k κι γ = k () Αν τώρ προσθέσουμε κτά μέλη τις ισότητες (), βρίσκουμε ότι k = 0, οπότε, λόγω των ισοτήτων υτών, είνι = β = γ κι άρ το τρίγωνο είνι ισόπλευρο. 6. Αν x κι y είνι οι διστάσεις του ορθογωνίου, τότε θ ισχύει L = x + y κι Ε = xy οπότε, λόγω της υπόθεσης, θ έχουμε x + y = 4 κι xy = κι άρ Λόγω της (1), η () γράφετι ισοδύνμ: y = x (1) κι xy = () x( x) = x x = x x + = 0 (x ) = 0 x = 0 x = Έτσι πό την (1) έχουμε ότι κι y = κι άρ το ορθογώνιο είνι τετράγωνο. 7. Θ εργσθούμε με τη μέθοδο της πγωγής σε άτοπο. i) Ας υποθέσουμε ότι + β = γ. Τότε θ είνι β = γ (ως διφορά ρητών), που είνι άτοπο. ii) Ας υποθέσουμε ότι β = γ. Τότε θ είνι β = γ άτοπο. (ως πηλίκο ρητών), που είνι.. Διάτξη πργμτικών ριθμών Α ΟΜΑΔΑΣ 1. i) Είνι ii) Είνι ( 3) 0 που ισχύει. ( +β ) ( +β) + β +β + β + β β β 0 + β β 0 ( β) 0, που ισχύει.

18 .. Διάτξη πργμτικών ριθμών 17. Έχουμε +β β 0 Η ισότητ ισχύει γι = 1 κι β = 0. ( 1) +β 0 που ισχύει. 3. i) Ισχύει ii) Έχουμε (x ) + (y+ 1) = 0 x = 0 κι y + 1 = 0 x = κι y = 1. x + y x + 4y + 5 = 0 x x + 1+ y + 4y + 4 = 0 4. i) Προσθέτουμε κτά μέλη τις νισότητες οπότε έχουμε δηλδή 9,8 < x + y < 10. ii) Από τη δεύτερη νισότητ προκύπτει (x 1) + (y + ) = 0 x 1= 0 κι y + = 0 x = 1 κι y =. 4,5 < x < 4,6 κι 5,3 < y < 5,4 4,5 + 5,3 < x + y < 4,6 + 5,4 5,4 < y < 5,3 κι προσθέτουμε κτά μέλη με την 4,5 < x < 4,6 οπότε έχουμε 4,5 5, 4 < x y < 4,6 5,3 0,9 < x y < 0,7. iii) Ισχύει 5,3 < y < 5,4 οπότε > > < < 5,3 y 5, 4 5, 4 y 5,3 κι άρ x 46 4,5 < x < 4,6 < < 5, 4 y 5,3 54 y 53 iv) Επειδή τ μέλη των νισοτήτων είνι θετικοί ριθμοί μπορούμε ν υψώσουμε στο τετράγωνο, οπότε έχουμε προσθέτουμε κτά μέλη οπότε (4,5) < x < (4,6) 0, 5 < x < 1,16 κι (5,3) < y < (5, 4) 8,09 < y < 9,16 0, 5 + 8,09 < x + y < 1,16 + 9,16 48,34 < x + y < 50,3.

19 18 ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 5. Γι το x έχουμε: Γι το y έχουμε: i) Η περίμετρος τότε γίνετι + 0,< x + 0,< 3+ 0,,< x + 0,< 3,, (1) 3 0,1 < y 0,1 < 5 0,1,9 < y 0,1 < 4,9, () Π= (x + 0, ) + (y 0,1) = (x + y + 0,1) Προσθέτοντς τις (1) κι () έχουμε 5,1 < x + y + 0,1 < 8,1 οπότε ii) Το εμβδόν του ορθογωνίου γίνετι 5,1 < (x + y + 0,1) < 8,1 10, <Π < 16,. Ε= (x + 0, )(y 0,1) Πολλπλσιάζουμε τις (1) κι () κτά μέλη οπότε έχουμε 6. Επειδή (1 + )(1 +β ) > 0 έχουμε,,9 < (x + 0, )(y 0,1) < 3, 4,9 6,38 < E < 15,68. β β < (1 + )(1 +β ) < (1 + )(1 +β) 1+ 1+β 1+ 1+β (1 +β ) <β (1 +) + β < β + β < β, που ισχύει. 7. Ισχύει 5 x < 0 οπότε κτά την πλοποίησή του η νισότητ λλάζει φορά. Έτσι το σωστό είνι x(5 x) > (5 + x)(5 x) x < 5+ x 0 < 5, που ισχύει. β ΟΜΑΔΑΣ 1. i) Επειδή οι, β, γ είνι θετικοί, έχουμε +γ > ( + γ) β > ( β + γ) β + βγ > β + γ β+γ β ii) Ομοίως βγ>γ β> < 1, που ισχύει. β +γ < ( + γ) β < ( β + γ) β + βγ < β + γ β+γ β

20 .3. Απόλυτη τιμή πργμτικού ριθμού 19 βγ<γ β< > 1, που ισχύει. β. Ισχύει + β > 1+ β + β β 1> 0 3. Έχουμε τις ισοδυνμίες (1 β) (1 β ) > 0 ( 1)(1 β ) > 0, που ισχύει, φού > 1 κι β < β +β + +β +β β β β ( ) 4 ( ) 4 ( ) 4 4. i) ii) + β + β β β β 0 ( β) 0, που ισχύει. + β + β 0 + β + β 0 + β+β + +β 0 +β ( ) 0 β + β 0 β + β 0 + +β, που ισχύει. β+β + +β 0 β ( ) 0 + +β, που ισχύει..3. Απόλυτη τιμή πργμτικού ριθμού Α ΟΜΑΔΑΣ 1. i) π 3 =π 3, φού π > 3. ii) π 4 = 4 π, φού π < 4. iii) 3 π + 4 π =π 3+ 4 π= 1. iv) 3 3 = ( 3 ) ( 3 ) = 0. Είνι x 3 = x 3, φού x > 3 κι x 4 = 4 x, φού x < 4 οπότε x 3 + x 4 = x 3+ 4 x = i) Αν x < 3, τότε ισχύει κι x < 4, οπότε x 3 < 0 κι 4 x > 0. Άρ είνι x 3 4 x = (3 x) (4 x) = 3 x 4 + x = 1. ii) Αν x > 4, τότε είνι κι x > 3, οπότε x 4 > 0 κι x 3 > 0. Άρ έχουμε x 3 4 x = x 3 + (4 x) = 1. β β 4. Είνι = = 1. β β

21 0 ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ x y 5. Αν x > 0 κι y > 0, τότε Α= 1 1 x + y = + = x y Αν x > 0 κι y < 0, τότε Α= x y = = x y Αν x < 0 κι y < 0, τότε Α= = 1 1= x y x y Αν x < 0 κι y > 0, τότε Α= + = 1+ 1= 0. x y 6. i) Ισχύει d(,37, D) 0,005 (1) 7. ii) Ισχύει (1),37 D 0,005,37 0,005 D,37 + 0,005,365 D,375. Απόλυτη τιμή Απόστση Διάστημ ή ένωση διστημάτων x 4 d(x, 4) [, 6] x+ 3 < 4 d(x, 3) < 4 ( 7, 1) x 4 > d(x, 4) > (,) (6, + ) x+ 3 4 d(x, 3) 4 (, 7] [1, + ) Απόλυτη τιμή Απόστση Διάστημ ή ένωση διστημάτων x 5 < 1 d(x,5) < 1 (4, 6) x+ 1 > d(x, 1) > (, 3) (1, + ) x 5 1 d(x,5) 1 (,4] [6, + ) x+ 1 d(x, 1) [ 3, 1] Απόλυτη τιμή Απόστση Διάστημ ή ένωση διστημάτων x < d(x,0) < (, ) x+ 3 d(x, ) 3 [ 5, 1] x d(x,0) (, ] [, + ) x+ > 3 d(x, ) > 3 (, 5) (1, + )

22 .3 Απόλυτη τιμή πργμτικού ριθμού 1 β ΟΜΑΔΑΣ 1. Με τη βοήθει της τριγωνικής νισότητς έχουμε β = ( γ ) + ( γ β) γ + γ β.. Αν > β τότε β > 0 κι άρ β = β οπότε έχουμε: +β+ β +β+ β i) = = = κι ii) +β β +β +β β = = = β. 3. Επειδή x 0 κι y 0, έχουμε: x + y 0 Γι ν ισχύει η ισότητ πρέπει x = 0 κι y = 0, δηλδή x = 0 κι y = 0. Διφορετικά ισχύει η νισότητ. Επομένως: i) x + y = 0 x = 0 κι y = 0. ii) x + y > 0 x 0 ή y 0. β β 4. i) Από 0 < < β προκύπτει ότι < 1 κι > 1. Είνι δηλδή < 1 < β β. β ii) Αρκεί ν δείξουμε ότι 1 < 1 ή, ισοδύνμ, ότι 1 β < 1. β β Επειδή β > 0 η νισότητ υτή γράφετι ισοδύνμ β β β < β β β < β β β 0< β + β 5. Είνι x < 0,1 1,9 < x <,1 (1) κι y 4 < 0, 3,8 < y < 4, () ( β ) > 0, που ισχύει φού β.

23 ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ i) Η περίμετρος Ρ 1 του τριγώνου είνι Ρ 1 = x + y. Από την νισότητ () προκύπτει ότι Προσθέτοντς κτά μέλη τις (1) κι (3), έχουμε: 1,9 + 7,6 < x + y <,1 + 8, 4 9,5 < P1 < 10,5. 7,6 < y < 8, 4 (3) ii) Η περίμετρος Ρ του σχήμτος είνι ίση με την περίμετρο του ορθογωνίου ΑΒΓΔ, οπότε είνι Ρ = 4x + y. Από την νισότητ (1) προκύπτει ότι Προσθέτοντς κτά μέλη τις (4) κι (3), έχουμε: 7,6 < 4x < 8,4 (4) 7,6 + 7,6 < 4x + y < 8, 4 + 8, 4 15, < P < 16,8. iii) Η περίμετρος L του κύκλου είνι L = πx. Από την (1) προκύπτει π 1,9 < π x < π,1 3,8π< L < 4, π..4. Ρίζες πργμτικών ριθμών ΟΜΑΔΑΣ 1. i) 100 = 10, = 10 = 10, = 10 = 10, = 10 = 10. ii) iii) 4 = =, = =, = =, ,01 = =, 3 0,001 = 3 =, = = ,0001 = =, 5 0,00001 = 5 = i) ii) iii) iv) ( π 4) = π 4 = 4 π. ( 0) = 0 = 0. (x 1) = x 1. x x = Έχουμε ( 5) + ( 3 5) = = = 1.

24 .4 Ρίζες πργμτικών ριθμών 3 4. ( x 5 x+ 3)( x 5 + x+ 3) = ( x 5) ( x+ 3) = (x 5) (x + 3) = x 5 x 3= 8, με την προϋπόθεση ότι x 5 0 κι x + 3 0, δηλδή γι x i) ( 8 18)( ) = ( 4 9 )( ) = ( 3 )( ) = ( )( 7 ) = 7( ) = 14. ii) ( )( 63 3 ) = ( )( ) = ( )( ) = ( )( ) = ( 3 7 ) ( 4 ) = = 63 3 = i) + = ( )( + ) ( ) = = =. ii) 3 3 ( )( ) = ( ) = 3 5 = 9 5 = 4 = 4 = 8 =. 7. i) 1ος τρόπος: 3 3 ü = = = =. ος τρόπος: 3 1/3 4/3 = = ii) 1ος τρόπος: 1/ 1/ ( ) ( ) 4/3 /3 /3 1/3 3 = = = = = = = = = = = =.

25 4 ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ii) ος τρόπος: ( ) 1/5 5 /3 5 = = 5/3 = 5/3 = 1/3 = i) ii) = 3 3 = 3 = 3 = 3 = 3 3 = = = = = = =. iii) 5 = 5 = 5 5 = i) = = 3 = ii) Με νάλυση του 16 σε πρώτους πράγοντες βρίσκουμε 16 = οπότε έχουμε = = = = 3 = 3 = Αν πολλπλσιάσουμε κάθε κλάσμ με τη συζυγή πράστση του προνομστή του έχουμε: i) ii) iii) 45 ( 3 ) 45 ( 3 ) 45 ( 3 ) ( )( ) 8( 7 + 5) = = 4( 7 + 5) = = = = ( 7 + 6)( 7 + 6) ( 7 6) = = = =

ΑΛΓΕΒΡΑ KAI ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ( ) ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ

ΑΛΓΕΒΡΑ KAI ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ( ) ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΑΛΓΕΒΡΑ KAI ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ (011-01) ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΣΤΟΙΧΕΙΑ ΕΠΑΝΕΚ ΟΣΗΣ Η επνέκδοση του πρόντος βιβλίου πργμτοποιήθηκε πό το Ινστιτούτο Τεχνολογίς Υπολογιστών & Εκδόσεων «Διόφντος»

Διαβάστε περισσότερα

Άλγεβρα και στοιχεία πιθανοτήτων

Άλγεβρα και στοιχεία πιθανοτήτων ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ Άλγεβρα και στοιχεία πιθανοτήτων ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σ. Ανδρεαδάκης Β. Κατσαργύρης Σ. Παπασταυρίδης Γ.

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5) θ) (5 + ) + 5 = (...).(...) ι) + (5 ) 5 = (...).(...) (Μονάδες 7) Θέμ ο ) Ν πργοντοποιήσετε την πράστση 5 0 (Μονάδες ) β) Ν λύσετε την εξίσωση 7 = (0 + ) (Μονάδες,5) Θέμ ο Ν πργοντοποιήσετε τις πρστάσεις

Διαβάστε περισσότερα

3.1. Ασκήσεις σχ. βιβλίου σελίδας 144 146 Α ΟΜΑ ΑΣ

3.1. Ασκήσεις σχ. βιβλίου σελίδας 144 146 Α ΟΜΑ ΑΣ 1 3.1 σκήσεις σχ. ιλίου σελίδς 144 146 Ο Σ 1. Έν κουτί έχει τρεις µπάλες, µι άσπρη, µι µύρη κι µι κόκκινη. άνουµε το εξής πείρµ : πίρνουµε πό το κουτί µι µπάλ, κτγράφουµε το χρώµ της κι την ξνάζουµε στο

Διαβάστε περισσότερα

1 και β = 0,001 να υπολογίσετε την παράσταση: 2 3(2α 3β) 4[ 3α + 2(α + 2β 1)]

1 και β = 0,001 να υπολογίσετε την παράσταση: 2 3(2α 3β) 4[ 3α + 2(α + 2β 1)] Γι ποιες τιμές του ορίζοντι οι πρστάσεις ; δ 9 7 ε Ν υπολογιστούν οι πρκάτω πρστάσεις : Α = 7 Ν γίνουν οι πράξεις: Β = 7 γ στ [ ( ) ( ) ] [ ( ) ] [ ( ) ] [ ( ) ] Αν = 9 0 8 κι = 0,00 ν υπολογίσετε την

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5) θ) x (5 + 3)x + 5 3 = (...).(...) ι) x + (5 3)x 5 3 = (...).(...) (Μονάδες 7) Θέμ ο ) Ν πργοντοποιήσετε την πράστση 3 0x (Μονάδες 3) β) Ν λύσετε την εξίσωση 7x 3 = (10x + x 3 ) (Μονάδες 3,5) Θέμ 3ο Ν πργοντοποιήσετε

Διαβάστε περισσότερα

αριθμών Ιδιότητες της διάταξης

αριθμών Ιδιότητες της διάταξης Ανισότητες Διάτξη πργμτικών ριθμών Ιδιότητες της διάτξης Διάτξη (σύγκριση) δύο ριθμών. Πώς μπορούμε ν συγκρίνουμε δύο ριθμούς κι ; Απάντηση Ο ριθμός είνι μεγλύτερος του (συμολικά > ), ότν η διφορά είνι

Διαβάστε περισσότερα

Τ Ο Λ Ε Ξ Ι Λ Ο Γ Ι Ο Τ Η Σ Λ Ο Γ Ι Κ Η Σ

Τ Ο Λ Ε Ξ Ι Λ Ο Γ Ι Ο Τ Η Σ Λ Ο Γ Ι Κ Η Σ Τ Ο Λ Ε Ξ Ι Λ Ο Γ Ι Ο Τ Η Σ Λ Ο Γ Ι Κ Η Σ Εισγωγή: Όπως στη κθημερινή μς ζωή, γι ν συνεννοηθούμε χρησιμοποιούμε προτάσεις, έτσι κι στ Μθημτικά χρησιμοποιούμε «Μθημτικές» προτάσεις. Γι πράδειγμ στη κθημερινή

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Γ ΓΥΜΝΑΣΙΟΥ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. Ν κάνετε ένν άξον Ο κι ν τοποθετήσετε πάνω σ υτόν τους ριθμούς: 0,, -, π, -π,,, Ν υπολογίσετε τις πόλυτες τιμές των πρπάνω ριθμών γ Ν υπολογίσετε

Διαβάστε περισσότερα

Η θεωρία στα μαθηματικά της

Η θεωρία στα μαθηματικά της Η θεωρί στ μθημτικά της Γ γυμνσίου ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Γ ΤΑΞΗΣ ((ΑΛΓΕΒΡΑ)) ο ΚΕΦΑΛΑΙΙΟ 1 Αλγγεεριικέέςς Πρσττάσεειιςς Α. 1. 1 1. Τι ονομάζετε δύνμη ν με άση τον πργμτικό κι εκθέτη το φυσικό

Διαβάστε περισσότερα

Μέρος Α - Kεφάλαιο 7ο - Θετικοί και Αρνητικοί Αριθμοί Α.7.8. Δυνάμεις ρητών αριθμών με εκθέτη φυσικό

Μέρος Α - Kεφάλαιο 7ο - Θετικοί και Αρνητικοί Αριθμοί Α.7.8. Δυνάμεις ρητών αριθμών με εκθέτη φυσικό Μέρος Α - Kεφάλιο 7ο - Θετικοί κι Αρνητικοί Αριθμοί - 37 - Α.7.8. Δυνάμεις ρητών ριθμών με εκθέτη φυσικό ΔΡΑΣΤΗΡΙΟΤΗΤΑ Ένς υπολογιστής μολύνθηκε πό κάποιο ιό, ο οποίος είχε την ιδιότητ ν κτστρέφει τ ηλεκτρονικά

Διαβάστε περισσότερα

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i.

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i. . Πολυώνυμ η Μορφή Ασκήσεων: Ασκήσεις στις βσικές έννοιες του πολυωνύμου. Ποιες πό τις πρκάτω πρστάσεις είνι πολυώνυμ του i. ii. iii. iv. v. vi. 5 Σύμφων με τον ορισμό πολυώνυμ του είνι οι πρστάσεις i,

Διαβάστε περισσότερα

Ε Π Α Ν Α Λ Η Ψ Η. 1. Τα σύνολα των αριθµών: 2. Η Απόλυτη τιµή ενός πραγµατικού αριθµού α είναι ίση µε την µε την απόστασή του από το

Ε Π Α Ν Α Λ Η Ψ Η. 1. Τα σύνολα των αριθµών: 2. Η Απόλυτη τιµή ενός πραγµατικού αριθµού α είναι ίση µε την µε την απόστασή του από το Ε Π Α Ν Α Λ Η Ψ Η Σελ.. Τ σύνολ των ριθµών:. Ν: οι Φυσικοί ριθµοί Ν = {0,,,, 4,.. } β. Ζ: οι Ακέριοι ριθµοί Ζ = {. -, -, -, 0 +, +, +,. } γ. Q: οι Ρητοί ριθµοί Q = / Ζ κι β Ζ µε β 0 β δ. Q : οι Άρρητοι

Διαβάστε περισσότερα

2.1 ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ

2.1 ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ ΜΕΡΟΣ Α. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ 7. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ ΟΡΙΣΜΟΣ Ονομάζουμε τετργωνική ρίζ ενός θετικού ριθμού τον θετικό ριθμό (ΣΥΜΒΟΛΙΣΜΟΣ: ) που ότν υψωθεί στο τετράγωνο μς δίνει

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 1 ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 1. ) Πότε µι συνάρτηση µε Πεδίο ορισµού το Α ονοµάζετι περιοδική; β) Ποιο είνι το πεδίο ορισµού κι η περίοδος των συνρτήσεων ηµx, συνx, εφx κι σφx;. Περιοδική ονοµάζετι

Διαβάστε περισσότερα

1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ

1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ 5 ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονί συνάρτησης Οι έννοιες γνησίως ύξουσ συνάρτηση, γνησίως φθίνουσ συνάρτηση είνι γνωστές πό προηγούμενη τάξη Συγκεκριμέν,

Διαβάστε περισσότερα

Α λ γ ε β ρ α Α Λ υ κ ε ι ο υ Α λ γ ε β ρ α A Λ υ κ ε ι ο υ

Α λ γ ε β ρ α Α Λ υ κ ε ι ο υ Α λ γ ε β ρ α A Λ υ κ ε ι ο υ Κ Κ ι ι τ τ ο ο Λ Λ υ υ σ σ ρ ρ ι ι............ Α Α λ λ λ λ ι ι ω ς ς!!!!!! Α λ γ ε ρ Α Λ υ κ ε ι ο υ Α λ γ ε ρ A Λ υ κ ε ι ο υ Ε π ι μ ε λ ε ι Τ κ η ς Τ σ κ λ κ ο ς w w w. d r m a t h s 5 8. b l o g s

Διαβάστε περισσότερα

Γ. Ε. ΛΥΚΕΙΟ 2008 ΑΛΓΕΒΡΑ ΤΑΞΗ Β

Γ. Ε. ΛΥΚΕΙΟ 2008 ΑΛΓΕΒΡΑ ΤΑΞΗ Β Γ. Ε. ΛΥΚΕΙΟ 008 81 Γ. Ε. ΛΥΚΕΙΟ 008 8 Α. Ν ποδείξετε ότι ν συν( + β) 0, συν 0 κι συνβ 0 ισχύει: εφ + εφβ εφ( + β) = 1 εφ εφβ Β. Ν χρκτηρίσετε με Σ(σωστό) ή Λ(λάθος)κάθε μι πό τις πρκάτω προτάσεις:. Αν

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f( x ), ( ) σύνολο Α ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ g x είνι δύο πρστάσεις µις µετλητής x πού πίρνει τιµές στο Ανίσωση µε ένν άγνωστο λέγετι κάθε σχέση της µορφής f( x) g( x) f( x) g( x)

Διαβάστε περισσότερα

ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΡΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Δυνάμεις με ρητό ή άρρητο εκθέτη.

ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΡΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Δυνάμεις με ρητό ή άρρητο εκθέτη. ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΡΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ Δυνάμεις με ρητό ή άρρητο εκέτη. Με την οήει των ορίων κι των δυνάμεων με ρητό εκέτη ορίζετι κι η δύνμη, με > 0 κι. Ισχύουν κι σε υτή την περίπτωση

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ 1. Ν χρκτηρίσετε τις πρκάτω προτάσεις με Σωστό ( Σ ) ή Λάθος ( Λ ) i. ( - ) =- ii. ( 1- ) =1- iii. Αν χ < 1 τότε χ -χ + 1 = χ - 1 iv. Ισχύει: χ = Û χ = v.

Διαβάστε περισσότερα

α β γ δ β γ α α α α α α Α = α α α = α α + α α α α α α α α α D Α

α β γ δ β γ α α α α α α Α = α α α = α α + α α α α α α α α α D Α ΟΡΙΖΟΥΣΕΣ β Έστω πίνκς Α Χ = γ δ Σε κάθε τετργωνικό πίνκα ντιστοιχίζοµε ένν πργµτικό ριθµό τον οποίο ονοµάζοµε ορίζουσ του πίνκ κι ορίζετι ως β Α = = δ β γ Η έννοι της ορίζουσς είνι νγκί προκειµένου ν

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ. είναι ακέραιος.

ΕΦΑΡΜΟΓΕΣ. είναι ακέραιος. ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ ΕΦΑΡΜΟΓΕΣ Αν ο είνι κέριος κι ο ( ) είνι κέριος ΑΠΟΔΕΙΞΗ Επειδή τ δυντά υπόλοιπ του με τον είνι 0,,, ο κέριος έχει μί πό τις μορφές κ ή κ, κ Z Αν κ, κ Z ) κ (κ ) κ(9κ

Διαβάστε περισσότερα

1. Κάθε πολυώνυµο που µετά από αναγωγή οµοίων όρων και διάταξη κατά τις φθίνουσες

1. Κάθε πολυώνυµο που µετά από αναγωγή οµοίων όρων και διάταξη κατά τις φθίνουσες Εξίσωση ο υ βθµού Σελ. 8 Ορισµοί - πρτηρήσεις. Κάθε πολυώνυµο που µετά πό νγωγή οµοίων όρων κι διάτξη κτά τις φθίνουσες δυνάµεις του έχει πάρει την µορφή βγ όπου,β,γ πργµτικοί ριθµοί κι λέγετι τριώνυµο

Διαβάστε περισσότερα

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto.

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto. 1 Τ πρκάτω είνι τ κυριότερ θεωρήμτ κι ορισμοί πό το σχολικό βιβλίο κολουθούμεν πό δικά μς σχόλι. 1 ο ΠΡΩΤΟ 2 Συνρτήσεις Γνησίως μονότονη συνάρτηση Μι γνησίως ύξουσ ή γνησίως φθίνουσ συνάρτηση λέμε ότι

Διαβάστε περισσότερα

Α. ΕΠΊΛΥΣΗ ΕΞΙΣΩΣΕΩΝ 2 ου ΒΑΘΜΟΥ ΜΕ ΤΗ ΧΡΗΣΗ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗΣ

Α. ΕΠΊΛΥΣΗ ΕΞΙΣΩΣΕΩΝ 2 ου ΒΑΘΜΟΥ ΜΕ ΤΗ ΧΡΗΣΗ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗΣ ΜΑΘΗΜΑ 13 Κεφάλιο o : Αλγερικές Πρστάσεις Υποενότητ.: Εξισώσεις ου Βθµού ( γ, ). Θεµτικές Ενότητες: 1. Επίλυση εξισώσεων ου θµού µε τη οήθει της πργοντοποίησης.. Επίλυση εξισώσεων ου θµού µε τη οήθει τύπου.

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Γενικής Παιδείας Γ Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Γενικής Παιδείας Γ Λυκείου Επνληπτικό Διγώνισμ Μθημτικών Γενικής Πιδείς Γ Λυκείου Θέμ A Α. Ν ποδείξετε ότι η πράγωγος της συνάρτησης f(x)=x ισούτι με x, δηλδή(x ) =x. (6 μονάδες) A. Ν δώσετε τον ορισμό:. του ξιωμτικού ορισμού της

Διαβάστε περισσότερα

Επαναληπτικές Έννοιες

Επαναληπτικές Έννοιες Επιμέλει: Ροκίδης Μιχάλης Μθημτικός M.Sc ) ΣΥΝΟΛΑ 0,,,, Φυσικοί,,,0,,, Ακέριοι,, 0 Ρητοί \ Άρρητοι Πργμτικοί ) ΔΥΝΑΜΕΙΣ Ορισμοί Επνληπτικές Έννοιες, ν 0. ν, ν, ν, ν πράγοντες.., 0 Ιδιότητες Κοινής Βάσης

Διαβάστε περισσότερα

1. Δίνεται το τριώνυμο f x 2x 2 2 λ

1. Δίνεται το τριώνυμο f x 2x 2 2 λ 0 Επνληπτικές Ασκήσεις Άλγεβρς Α Λυκείου 0 Επνληπτικές Ασκήσεις Άλγεβρς Α Λυκείου Δίνετι το τριώνυμο λ 5 λ 5, όπου λ Ν ποδείξετε ότι η δικρίνουσ του τριωνύμου ισούτι με Δ 4λ 5λ 3 β Ν βρείτε γι ποιες τιμές

Διαβάστε περισσότερα

Πραγματικοί αριθμοί Οι πράξεις & οι ιδιότητες τους

Πραγματικοί αριθμοί Οι πράξεις & οι ιδιότητες τους 0 Πργμτικοί ριθμοί Οι πράξεις & οι ιιότητες τους Βρέντζου Τίν Φυσικός Μετπτυχικός τίτλος ΜEd: «Σπουές στην εκπίευση» 0 1 Πργμτικοί ριθμοί : Αποτελούντι πό τους ρητούς ριθμούς κι τους άρρητους ριθμούς.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ. Σύνολο τιμών της f λέμε το σύνολο που έχει για στοιχεία του τις τιμές της f σε όλα τα.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ. Σύνολο τιμών της f λέμε το σύνολο που έχει για στοιχεία του τις τιμές της f σε όλα τα. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ Β Γενικό μέρος των συνρτήσεων Τι λέμε σύνολο τιμών μις συνάρτησης με πεδίο ορισμού το σύνολο A ; Σύνολο τιμών της λέμε το σύνολο που έχει γι στοιχεί του τις τιμές

Διαβάστε περισσότερα

1.2 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ

1.2 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ . ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ Ασκήσεις σχ. βιβλίου σελίδας 7 9 Α ΟΜΑΔΑΣ. Από μία τράπουλα με 5 φύλλα παίρνουμε ένα στην τύχη. Να βρείτε τις πιθανότητες των ενδεχομένων : i) Το φύλλο είναι 5 ii) Το φύλλο δεν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΑΠΟ ΤΟ 1 Ο ΚΕΦΑΛΑΙΟ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΑΠΟ ΤΟ 1 Ο ΚΕΦΑΛΑΙΟ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΑΠΟ ΤΟ Ο ΚΕΦΑΛΑΙΟ Μονώ νυμ - Πολυώ νυμ Λέμε λγερική πράστση κάθε πράστση που περιέχει μετλητές. π.χ., +, 5, ( + ), +. Λέμε ριθμητική τιμή ( ή πλά τιμή )

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙ ΑΛΓΕΒΡΑΣ ΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΑΣΚΗΣΕΙΣ Α. ΣΩΣΤΟ - ΛΑΘΟΣ

ΕΡΓΑΣΤΗΡΙ ΑΛΓΕΒΡΑΣ ΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΑΣΚΗΣΕΙΣ Α. ΣΩΣΤΟ - ΛΑΘΟΣ ΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΑΣΚΗΣΕΙΣ Α. ΣΩΣΤΟ - ΛΑΘΟΣ. Ν χρκτηρίσετε κθεµιά πό τις πρκάτω προτάσεις ως Σωστή (Σ) ή Λάθος (Λ).. Αν 0 κι > 0 τότε + > 0. Αν > > 0 τότε ² - ² > 0 γ. Αν τότε > 0 δ. Αν = τότε

Διαβάστε περισσότερα

η οποία ονομάζεται εκθετική συνάρτηση με βάση α. Αν α 1, τότε έχουμε τη σταθερή συνάρτηση f x 1.

η οποία ονομάζεται εκθετική συνάρτηση με βάση α. Αν α 1, τότε έχουμε τη σταθερή συνάρτηση f x 1. Εκθετική συνάρτηση Αν θετικός πργμτικός ριθμός, σε κάθε ντιστοιχεί η δύνμη. Έτσι ορίζετι η συνάρτηση : f : με f, 0 η οποί ονομάζετι εκθετική συνάρτηση με βάση. Αν, τότε έχουμε τη στθερή συνάρτηση f. Ας

Διαβάστε περισσότερα

ΑΝΑΛΟΓΙΕΣ ΑΣΚΗΣΕΙΣ. α) του αριθμού των αγοριών προς τον αριθμό των κοριτσιών:... β) του αριθμού των κοριτσιών προς τον αριθμό των αγοριών:...

ΑΝΑΛΟΓΙΕΣ ΑΣΚΗΣΕΙΣ. α) του αριθμού των αγοριών προς τον αριθμό των κοριτσιών:... β) του αριθμού των κοριτσιών προς τον αριθμό των αγοριών:... ΑΝΑΛΟΓΙΕΣ Μι νθοδέσμη έχει 5 λευκά κι 15 κόκκιν γρύφλλ. Τι μπορούμε ν πρτηρήσουμε; ότι τ κόκκιν είνι κτά δέκ περισσότερ πό τ λευκά, λλά κι ότι τ κόκκιν γρύφλλ είνι τρεις φορές περισσότερ πό τ λευκά Η μέτρηση

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισµα Μαθηµατικών Γ Λυκείου ΕΠΑΛ

Επαναληπτικό Διαγώνισµα Μαθηµατικών Γ Λυκείου ΕΠΑΛ ΘΕΜΑ Α Επνληπτικό Διγώνισµ Μθηµτικών Γ Λυκείου ΕΠΑΛ Α. Ν δώσετε τον ορισµό της συχνότητς κι της σχετικής συχνότητς µις πρτήρησης x i. (7 Μονάδες) Α. Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» Η συνάρτηση f() =, 0 Υπερβολή Δύο ποσά λέγοντι ντιστρόφως νάλογ, εάν μετβάλλοντι με τέτοιο τρόπο, που ότν οι τιμές του ενός πολλπλσιάζοντι με ένν ριθμό, τότε κι οι ντίστοιχες τιμές του άλλου ν διιρούντι

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ η ΜΟΡΦΗ ΑΣΚΗΣΕΩΝ: Μς ζητούν ν βρούμε την εξίσωση ενός κύκλου Ν βρεθεί η εξίσωση του κύκλου που έχει κέντρο το σημείο: Κ (3, 3) κι τέμνει πό την ευθεί

Διαβάστε περισσότερα

ΣΑΜΑΡΑΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΚΩΣΤΑΚΗΣ ΛΑΜΠΡΟΣ

ΣΑΜΑΡΑΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΚΩΣΤΑΚΗΣ ΛΑΜΠΡΟΣ Ρίζες πργμτικώ ριθμώ Τετργωική ρίζ πργμτικού ριθμού Ορισμός: Η τετργωική ρίζ εός μη ρητικού ριθμού είι ο μη ρητικός ριθμός β που ότ υψωθεί στο τετράγωο μς δίει το, δηλδή: = β β =,, β Πρτήρηση: Η ορίζετι

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 A ΦΑΣΗ. Ηµεροµηνία: Σάββατο 7 Ιανουαρίου 2017 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 A ΦΑΣΗ. Ηµεροµηνία: Σάββατο 7 Ιανουαρίου 2017 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 07 Ε_3.ΜλΑ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: A ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Ηµεροµηνί: Σάββτο 7 Ινουρίου 07 ιάρκει Εξέτσης: ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Ν συµπληρώσετε τους τύπους: i. ii....,... =...,... β

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΥΝΕΧΕΙΑ ΕΠΙΜΕΛΕΙΑ: ΧΡΑΣ ΓΙΑΝΝΗΣ ΚΕΝΤΡΙΚΟ Ν. ΣΜΥΡΝΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΥΝΕΧΕΙΑ ΕΠΙΜΕΛΕΙΑ: ΧΡΑΣ ΓΙΑΝΝΗΣ ΚΕΝΤΡΙΚΟ Ν. ΣΜΥΡΝΗΣ Φ4 ΣΥΝΕΧΕΙΑ ΕΠΙΜΕΛΕΙΑ: ΧΡΑΣ ΓΙΑΝΝΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΛΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΥ ΚΕΝΤΡΙΚ 3ο ΓΕΝΙΚ ΛΥΚΕΙ Ν. ΣΜΥΡΝΗΣ ΘΕΩΡΙΑ ΣΩΣΤ-ΛΑΘΣ ΠΛΛΑΠΛΗΣ ΕΠΙΛΓΗΣ ΣΥΜΠΛΗΡΩΣΗΣ ΚΕΝΥ ΠΑΡΑΤΗΡΗΣΕΙΣ ΑΣΚΗΣΕΙΣ Α &

Διαβάστε περισσότερα

Τάξη Β Θετική και Τεχνολογική Κατεύθυνση Ερωτήσεις Θεωρίας και απαντήσεις από το σχολικό βιβλίο Καθηγητής: Ν.Σ. Μαυρογιάννης

Τάξη Β Θετική και Τεχνολογική Κατεύθυνση Ερωτήσεις Θεωρίας και απαντήσεις από το σχολικό βιβλίο Καθηγητής: Ν.Σ. Μαυρογιάννης Τάξη Β Θετική κι Τεχνολογική Κτεύθυνση Ερωτήσεις Θεωρίς κι πντήσεις πό το σχολικό ιλίο Κθηγητής: ΝΣ Μυρογιάννης Πότε δύο µη µηδενικά δινύσµτ AB κι Γ λέγοντι πράλληλ ή συγγρµµικά; Απάντηση: Ότν έχουν τον

Διαβάστε περισσότερα

ΑΚΟΛΟΥΘΙΕΣ 1. ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ. α,α,,α, ή συνοπτικά με. * n. α α λ, για κάθε. n και υπάρχει. (αντ. αn αn 1

ΑΚΟΛΟΥΘΙΕΣ 1. ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ. α,α,,α, ή συνοπτικά με. * n. α α λ, για κάθε. n και υπάρχει. (αντ. αn αn 1 ΑΚΟΛΟΥΘΙΕΣ ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ Ακολουθί στοιχείων ενός συνόλου Ε ονομάζετι κάθε πεικόνιση : Ε Στην πεικόνιση υτή η εικόν του θ σηιώνετι κι θ ονομάζετι γενικός ή -οστός όρος της κολουθίς Η κολουθί υτή θ σηιώνετι

Διαβάστε περισσότερα

Λύσεις 1 ης Εργασίας 1. Γράψτε και σχεδιάστε ποιοτικά στο ίδιο διάγραµµα καθένα από τα επόµενα

Λύσεις 1 ης Εργασίας 1. Γράψτε και σχεδιάστε ποιοτικά στο ίδιο διάγραµµα καθένα από τα επόµενα Λύσεις ης Εργσίς. Γράψτε κι σχεδιάστε ποιοτικά στο ίδιο διάγρµµ κθέν πό τ επόµεν v δινύσµτ στη µορφή x y : () Το διάνυσµ που συνδέει την ρχή του συστήµτος συντετγµένων µε το σηµείο Ρ(,-). () Το διάνυσµ

Διαβάστε περισσότερα

2.1 ΟΙ ΠΡΑΞΕΙΣ & ΟΙ Ι ΙΟΤΗΤΕΣ ΤΟΥΣ

2.1 ΟΙ ΠΡΑΞΕΙΣ & ΟΙ Ι ΙΟΤΗΤΕΣ ΤΟΥΣ 1.1 ΟΙ ΠΡΑΞΕΙΣ & ΟΙ Ι ΙΟΤΗΤΕΣ ΤΟΥΣ ΘΕΩΡΙΑ 1. Ιδιότητες των πράξεων ( β ι γ δ) + γ β + δ ( β ι γ δ) γ βδ β + γ β + γ Αν γ 0, τότε : β 0 0 ή β 0 β γ βγ. Ιδιότητες των δυνάµεων λ +λ β ( β ( ) λ λ ) λ β λ

Διαβάστε περισσότερα

Α. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ

Α. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ Κεφάλιο o : Πργµτικοί Αριθµοί ΜΑΘΗΜΑ 6 Υποενότητ.1: Τετργωνική Ρίζ Θετικού Αριθµού Θεµτικές Ενότητες: 1. Τετργωνική ρίζ θετικού ριθµού.. Ιδιότητες της τετργωνικής ρίζς. Α. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου II

Συστήματα Αυτομάτου Ελέγχου II ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώττο Εκπιδευτικό Ίδρυμ Πειριά Τεχνολογικού Τομέ Συστήμτ Αυτομάτου Ελέγχου II Ενότητ #3: Ευστάθει Συστημάτων - Αλγεβρικό Κριτήριο Routh Δημήτριος Δημογιννόπουλος Τμήμ Μηχνικών Αυτομτισμού

Διαβάστε περισσότερα

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ Το ορισμένο ολοκλήρωμ ή ολοκλήρωμ Riema μις πργμτικής συνάρτησης f με διάστημ ολοκλήρωσης το πεπερσμένο διάστημ [, ], υπάρχει ότν: η f είνι συνεχής στο διάστημ υτό, κθώς

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : Η ΣΥΝΑΡΤΗΣΗ F( = (d [Kεφ:.5 H Συνάρτηση F( = (d Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. lim e d. Ν υπολογίσετε το όριο: ( Έχουμε ( e d

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 1 ΜΑΡΤΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΒΙΟΛΟΓΙΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 1 ΜΑΡΤΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΒΙΟΛΟΓΙΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 1 ΜΑΡΤΙΟΥ 2015 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΒΙΟΛΟΓΙΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Ο Ν πντήσετε στις ερωτήσεις πολλπλής επιλογής: 1. Η νευπλοειδί είνι είδος μετάλλξης που οφείλετι:

Διαβάστε περισσότερα

τριγώνου ΑΒΓ είναι κυκλώστε το γράµµα της σωστής απάντησης και αιτιολογήστε την απάντηση σας. Με βάση την τριγωνική ανισότητα για

τριγώνου ΑΒΓ είναι κυκλώστε το γράµµα της σωστής απάντησης και αιτιολογήστε την απάντηση σας. Με βάση την τριγωνική ανισότητα για 3.0 3. σκήσεις σχολικού βιβλίου σελίδς 57-58 Ερωτήσεις Κτνόησης. Χρκτηρίστε ( Σ ) σωστή ή λάθος ( ) κάθε µί πό τις επόµενες προτάσεις i) Η εξωτερική γωνί ˆ εξ τριγώνου είνι µεγλύτερη πό την ˆ ii) Η εξωτερική

Διαβάστε περισσότερα

που έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση.

που έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση. . Εθύγρµµη κίνηση - - ο ΓΕΛ Πετρούπολης. Χρονική στιγμή t κι χρονική διάρκει Δt Χρονική στιγμή t είνι η μέτρηση το χρόνο κι δείχνει πότε σμβίνει έν γεγονός. Χρονική διάρκει Δt είνι η διφορά δύο χρονικών

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ στο ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ στο ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ στο ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ Ι. Σε κθεμιά πό τις πρκάτω περιπτώσεις ν κυκλώσετε το γράμμ Α, ν ο ισχυρισμός είνι ληθής κι το γράμμ Ψ, ν ο ισχυρισμός είνι ψευδής δικιολογώντς συγχρόνως την

Διαβάστε περισσότερα

Γ.3. Εξισώσεις 2ου βαθμού. Απαραίτητες γνώσεις Θεωρίας 3.3. Θεωρία 5. θεωρία 6.

Γ.3. Εξισώσεις 2ου βαθμού. Απαραίτητες γνώσεις Θεωρίας 3.3. Θεωρία 5. θεωρία 6. Γ.3 3.3 Εξισώσεις ου θμού Απρίτητες νώσεις Θεωρίς Θεωρί 5. Τι ονομάζουμε εξίσωση δευτέρου θμού (ή δευτεροάθμι εξίσωση) μ ένν άνωστο κι τι δικρινουσά της; Ονομάζουμε εξίσωση δευτέρου θμού μ ένν άνωστο κάθε

Διαβάστε περισσότερα

Β ΛΥΚΕΙΟΥ Μετρικές σχέσεις Εμβαδά

Β ΛΥΚΕΙΟΥ Μετρικές σχέσεις Εμβαδά Β ΛΥΚΕΙΟΥ Μετρικές σχέσεις Εμβδά ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β. Κορτίκη Β. Κουτσογούλ Μ. Ρούσσ Γ. Ευθυμίου Μ. Ζφείρη ΕΜΕ Πράρτημ Τρικάλων ΑΣΚΗΣΗ η i. Ν υπολογιστούν οι πλευρές, β, γ του ορθογωνίου τριγώνου ΑΒΓ

Διαβάστε περισσότερα

ΕΚΘΕΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ f (x)=α x,α>0 και α 1 λέγεται εκθετική συνάρτηση

ΕΚΘΕΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ f (x)=α x,α>0 και α 1 λέγεται εκθετική συνάρτηση ΔΥΝΑΜΕΙΣ ΜΕ ΕΚΘΕΤΗ ΡΗΤΟ - ΑΡΡΗΤΟ Αν >0, μ κέριος κι ν θετικός κέριος, τότε ορίζουμε: Επιπλέον, ν μ,ν θετικοί κέριοι, ορίζουμε: 0 =0. Πρδείγμτ: 4 4,, 5 5, 4 0 =0. Γενικότερ μπορούμε ν ορίσουμε δυνάμεις

Διαβάστε περισσότερα

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιμέλεια: Τομέας Μαθηματικών της Ώθησης

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιμέλεια: Τομέας Μαθηματικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 5 ρρ ΑΠΑΝΤΗΣΕΙΣ Επιμέλει: Τομές Μθημτικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 5 ευτέρ, 5 Μ ου 5 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α A. Έστω μι συνάρτηση, η οποί είνι ορισμένη σε έν κλειστό

Διαβάστε περισσότερα

3.3 ΕΞΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ

3.3 ΕΞΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ . ΕΞΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ ΘΕΩΡΙΑ. Η γενική µορφή της β βάθµις εξίσωσης + β + γ 0, 0. Οι λύσεις της β βάθµις εξίσωσης β 4γ Η εξίσωση + β + γ 0, 0 Ότν > 0 Έχει δύο ρίζες άνισες, τις, Ότν 0 Έχει µί διπλή ρίζ,

Διαβάστε περισσότερα

3 η δεκάδα θεµάτων επανάληψης

3 η δεκάδα θεµάτων επανάληψης 1 η δεκάδ θεµάτων επνάληψης 1. Ν ποδείξετε ότι το εµβδόν κάθε τριγώνου δίνετι πό τον τύπο Ε τρ, όπου τ η ηµιπερίµετρος του τριγώνου κι ρ η κτίν του εγγεγρµµένου κύκλου Ν χρκτηρίσετε τις πρκάτω προτάσεις

Διαβάστε περισσότερα

4.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ

4.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ - ΑΣΚΗΣΕΙΣ. ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ η ΜΟΡΦΗ ΑΣΚΗΣΕΩΝ: Μς ζητούν ν κάνουμε την μελέτη ή την γρφική πράστση μις συνάρτησης ΜΕΘΟΔΟΛΟΓΙΑ Ότν μς ζητούν κάνουμε την γρφική πράστση

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ..7 Μέρος Β του σχολικού ιλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. Ν ρεθεί το εμδόν του χωρίου Ω που περικλείετι πό τη γρφική πράστση

Διαβάστε περισσότερα

ΣΕΙΡΕΣ 1. ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ. n 1 2 n. Για τη σύγκλιση της σειράς διακρίνουμε τις παρακάτω περιπτώσεις: (i) Αν υπάρχει το lim σ n

ΣΕΙΡΕΣ 1. ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ. n 1 2 n. Για τη σύγκλιση της σειράς διακρίνουμε τις παρακάτω περιπτώσεις: (i) Αν υπάρχει το lim σ n ΣΕΙΡΕΣ Έστω. ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ μι κολουθί πργμτικών ριθμών. Η κολουθί ( σ ) με γενικό όρο: σ + + + i ονομάζετι κολουθί μερικών θροισμάτων της κολουθίς ( ), ή σειρά των ριθμών,,,, κι σημειώνετι με i + + +

Διαβάστε περισσότερα

Δηλαδή, α ν = α α α α ν παράγοντες. Για δυνάμεις, με εκθέτες γενικά ακέραιους αριθμούς, ισχύουν οι επόμενες ιδιότητες. μ+ν. μ ν. α = μ ν. ν ν.

Δηλαδή, α ν = α α α α ν παράγοντες. Για δυνάμεις, με εκθέτες γενικά ακέραιους αριθμούς, ισχύουν οι επόμενες ιδιότητες. μ+ν. μ ν. α = μ ν. ν ν. 367 ΡΩΤΗΣΙΣ ΘΩΡΙΣ ΠΟ ΤΗΝ ΥΛΗ ΤΗΣ! ΤΞΗΣ 368 ΡΩΤΗΣΙΙΣ ΘΩΡΙΙΣ ΠΟ ΤΗΝ ΥΛΗ ΤΗΣ!! ΤΞΗΣ 1. Τι ονομάζετε δύνμη ν ; Ονομάζετι δύνμη ν με άση τον ριθμό κι εκθέτη το φυσικό ν > 1, το γινόμενο πό ν πράγοντες ίσους

Διαβάστε περισσότερα

ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. Δίνετι η εκθετική συνάρτηση: f a Γι ποιες τιμές του η ) γνησίως ύξουσ; β) γνησίως φθίνουσ; ( ) είνι:. Δίνοντι οι

Διαβάστε περισσότερα

E f (x)dx f (x)dx E. 7 f (x)dx (3). 7 f (x)dx E E E E.

E f (x)dx f (x)dx E. 7 f (x)dx (3). 7 f (x)dx E E E E. ΘΕΜΑ Α Α i Σχολικό βιβλίο σελίδ 6 ii Σχολικό βιβλίο σελίδ 6 Α Σχολικό βιβλίο σελίδ 85 Α3 Ισχύει ότι 7 3 7 ()d ()d ()d () 3 Στο,3 είνι () οπότε το εμβδό του χωρίου Ω που ορίζετι πό την κι τις ευθείες, 3

Διαβάστε περισσότερα

Εργαστήριο Άλγεβρας Συμπληρωματικές Προτάσεις και Αποδείξεις στην Άλγεβρα της Α Λυκείου

Εργαστήριο Άλγεβρας Συμπληρωματικές Προτάσεις και Αποδείξεις στην Άλγεβρα της Α Λυκείου Συμπληρωμτικές Προτάσεις κι Αποδείξεις στη Άλγεβρ της Α Λυκείου Μπορεί πρχθεί κι διεμηθεί ελεύθερ ρκεί διτηρηθεί η μορφή του. Προλεγόμε Η διδσκλί ποδείξεω στη Άλγεβρ της Α Τάξης μπορεί υποβοηθηθεί ο δάσκλος

Διαβάστε περισσότερα

1.6 ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗ ΑΛΓΕΒΡΙΚΩΝ

1.6 ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗ ΑΛΓΕΒΡΙΚΩΝ 1 1.6 ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗ ΑΛΓΕΒΡΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΘΕΩΡΙΑ 1. Πργοντοποίηση : Είνι η διδικσί µε την οποί µί πράστση που είνι άθροισµ µεττρέπετι σε γινόµενο πργόντων 2. Χρησιµότητ : Απλοποιήσεις Εύρεση Ε.Κ.Π κι

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Οι ερωτήσεις Α Ψ του σχολικού βιβλίου [1]

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Οι ερωτήσεις Α Ψ του σχολικού βιβλίου [1] ΛΓΕΒΡ ΛΥΚΕΙΟΥ Οι ερωτήσεις του σχολικού βιβλίου [] Εισγωγικό Κεφάλιο. 9 3 Γι = - 3, η υπόθεση είνι ληθής, ενώ το συμπέρσμ ψευδές Το σύνολο λήθεις της υπόθεσης είνι το = 3, 3, ενώ του συμπεράσμτος είνι

Διαβάστε περισσότερα

3.2. Ασκήσεις σχ. βιβλίου σελίδας 154 156 Α ΟΜΑ ΑΣ

3.2. Ασκήσεις σχ. βιβλίου σελίδας 154 156 Α ΟΜΑ ΑΣ . Ασκήσεις σχ. βιβλίου σελίδας 54 56 Α ΟΜΑ ΑΣ. Από µία τράπουλα µε 5 φύλλα παίρνουµε ένα στην τύχη. Να βρείτε τις πιθανότητες των ενδεχοµένων : i) Το φύλλο είναι 5 ii) Το φύλλο δεν είναι 5 i) εχόµαστε

Διαβάστε περισσότερα

Άτομα μεταβλητή Χ μεταβλητή Y... Ν XN YN

Άτομα μεταβλητή Χ μεταβλητή Y... Ν XN YN Ν6_(6)_Σττιστική στη Φυσική Αγωγή 08_Πλινδρόμηση κι συσχέτιση Γούργουλης Βσίλειος Κθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Σε ορισμένες περιπτώσεις πιτείτι η νίχνευση της σχέσης μετξύ δύο ποσοτικών μετβλητών

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 79 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ 19 Ιανουαρίου 2019 Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 79 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ 19 Ιανουαρίου 2019 Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πνεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

Γιώργος Νάνος Φυσικός MSc ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΣΚΗΣΕΙΣ & ΠΡΟΒΛΗΜΑΤΑ. Άλγεβρα. Ενιαίου Λυκείου

Γιώργος Νάνος Φυσικός MSc ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΣΚΗΣΕΙΣ & ΠΡΟΒΛΗΜΑΤΑ. Άλγεβρα. Ενιαίου Λυκείου Φυσικός MSc ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΣΚΗΣΕΙΣ & ΠΡΟΒΛΗΜΑΤΑ Άλγεβρ Α Ενιίου Λυκείου Άλγεβρ Α Λυκείου Περιεχόμεν ΚΕΦΑΛΑΙΟ : Οι Πργμτικοί Αριθμοί Εξισώσεις ου Βθμού Διάτξη Η θεωρί με Ερωτήσεις Ασκήσεις & Προβλήμτ

Διαβάστε περισσότερα

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΘΕΩΡΙΑ

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΘΕΩΡΙΑ ΚΩΝΙΚΕΣ ΤΜΕΣ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Ποι είνι η εξίσωση του κύκλου με κέντρο το (0,0); ρ (0,0) M(,) C Έστω έν σύστημ συντετγμένων στο επίπεδο κι C ο κύκλος με κέντρο το σημείο (0,0) κι κτίν ρ. Γνωρίζουμε πό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής - Τεχνολογικής κατεύθυνσης Γ Λυκείου

ΜΑΘΗΜΑΤΙΚΑ Θετικής - Τεχνολογικής κατεύθυνσης Γ Λυκείου ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΣΤΡΙΤΣΙΟΥ ΕΠΙΜΕΛΕΙΑ: Κωνστντόπουλος Κων/νος Μθημτικός ΜSc ΜΑΘΗΜΑΤΙΚΑ Θετικής - Τεχνολογικής κτεύθυνσης Γ Λυκείου ΑΠΑΝΤΗΣΕΙΣ -ΥΠΟΔΕΙΞΕΙΣ ΤΟΥ ου ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΘΕΜΑ Α Α. (i) Βλέπε σχολικό

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 6 Α) Αν η συνάρτηση f είνι πργωγίσιµη σε έν σηµείο του πεδίου ορισµού της, ν γρφεί η εξίσωση της εφπτοµένης της γρφ πρ/σης της f στο σηµείο A(,f ( )) Α)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ (27 /5/ 2004)

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ (27 /5/ 2004) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ (7 /5/ 4) ΘΕΜΑ ο Α. Έστω μι συνάρτηση f ορισμένη σ' έν διάστημ Δ κι έν εσωτερικό σημείο του Δ. Αν η f προυσιάζει τοπικό κρόττο στο κι είνι πργωγίσιμη

Διαβάστε περισσότερα

Θεωρήματα, Προτάσεις, Εφαρμογές

Θεωρήματα, Προτάσεις, Εφαρμογές Θεωρήμτ, Προτάσεις, Εφρμογές Μιγδικοί Ιδιότητες συζυγών: Αν z i κι z γ δi είνι δυο μιγδικοί ριθμοί, τότε: Μέτρο: z z z z z z z z 3 z z z z 4 z z z z Αν z, z είνι μιγδικοί ριθμοί, τότε z z z z z z z z 3

Διαβάστε περισσότερα

Α) Να αποδείξετε ότι η νιοστή παράγωγος της συνάρτησης f µπορεί να πάρει. )e όπου α ν, β ν είναι συντελεστές

Α) Να αποδείξετε ότι η νιοστή παράγωγος της συνάρτησης f µπορεί να πάρει. )e όπου α ν, β ν είναι συντελεστές . ίνετι η συνάρτηση f() e. Α) Ν ποδείξετε ότι η νιοστή πράγωγος της συνάρτησης f µπορεί ν πάρει τη µορφή (ν) f () ( + ν + ν )e όπου ν ν είνι συντελεστές εξρτηµένοι πό το ν τους οποίους κι ν υπολογίσετε.

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΕΠΙΤΑΧΥΝΟΜΕΝΗ ΚΙΝΗΣΗ Α) Προβλήμτ ευθύγρμμης ομλά επιτχυνόμενης κίνησης. ) Απλής εφρμογής τύπων Ακολουθούμε τ εξής βήμτ: i) Συμβολίζουμε τ δεδομέν κι ζητούμεν με τ ντίστοιχ σύμβολ που θ χρησιμοποιούμε.

Διαβάστε περισσότερα

ν = 2, από τους οποίους όμως γνωρίζουμε μόνο 5, αυτούς που προκύπτουν για

ν = 2, από τους οποίους όμως γνωρίζουμε μόνο 5, αυτούς που προκύπτουν για 165 4.5 ΠΡΩΤΟΙ ΑΡΙΘΜΟΙ Εισγωγή Δύο πό τ σημντικότερ ποτελέσμτ σχετικά με τους πρώτους ριθμούς ήτν γνωστά ήδη πό την ρχιότητ. Το γεγονός ότι κάθε κέριος νλύετι με μονδικό τρόπο ως γινόμενο πρώτων εμφνίζετι

Διαβάστε περισσότερα

= ΑΓ, τότε τα σημεία Α, Β, Γ είναι συνευθειακά. Σ Λ 2. * Αν. = (- 2, 2) είναι παράλληλο με το

= ΑΓ, τότε τα σημεία Α, Β, Γ είναι συνευθειακά. Σ Λ 2. * Αν. = (- 2, 2) είναι παράλληλο με το Ερωτήσεις του τύπου «Σωστό-Λάθος» * Αν ΑΒ ΒΓ ΑΓ τότε τ σημεί Α Β Γ είνι συνευθεικά Σ Λ * Αν * Αν ΑΒ ΒΓ τότε ΓΔ 4 * Αν λ τότε // Σ Λ 5 * Αν ΑΒ ΒΑ τότε ΑΒ τότε ΑΔ Σ Λ Σ Λ Σ Λ 6 * Τ δινύσμτ ΑΒ κι ΟΑ - ΟΒ

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Μ. Τετάρτη 11 Απριλίου 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Μ. Τετάρτη 11 Απριλίου 2012 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνί: Μ. Τετάρτη Απριλίου ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α. Βλέπε Σχολικό Βιβλίο, σελίδ 7 την πόδειξη του Θεωρήµτος. Α. Βλέπε

Διαβάστε περισσότερα

1.1 Η ΕΝΝΟΙΑ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ 1.2 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΔΙΑΝΥΣΜΑΤΩΝ. . Άρα, το τετράπλευρο ΑΒΓΔ είναι παραλληλόγραμμο.

1.1 Η ΕΝΝΟΙΑ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ 1.2 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΔΙΑΝΥΣΜΑΤΩΝ. . Άρα, το τετράπλευρο ΑΒΓΔ είναι παραλληλόγραμμο. ΚΕΦΑΛΑΙΟ Η ΕΝΝΟΙΑ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΔΙΑΝΥΣΜΑΤΩΝ Γι ν μη μετινηθεί το σώμ χρειάζετι ν εφρμοστεί δύνμη B F F F F F5 Σ F F F 5 F F Β i Έχουμε διδοχιά: γ δ δ γ BA Άρ το τετράπευρο ΑΒΓΔ

Διαβάστε περισσότερα

ίνονται οι πραγµατικές συναρτήσεις f, g που έχουν πεδίο ορισµού το σύνολο

ίνονται οι πραγµατικές συναρτήσεις f, g που έχουν πεδίο ορισµού το σύνολο 996 ΘΕΜΑΤΑ. ίνοντι οι πργµτικές συνρτήσεις f, g που έχουν πεδίο ορισµού το σύνολο. Αν οι f κι g έχουν συνεχείς πρώτες πργώγους κι συνδέοντι µετξύ τους µε τις σχέσεις f = g, g = - f τότε ν ποδείξετε ότι:

Διαβάστε περισσότερα

1. Έςτω f:r R, ςυνεχήσ ςυνάρτηςη και α,b,c R. Αποδείξτε ότι

1. Έςτω f:r R, ςυνεχήσ ςυνάρτηςη και α,b,c R. Αποδείξτε ότι Έςτω :RR, ςυνεχήσ ςυνάρτηςη κι,,cr Αποδείξτε ότι ) d d β) d d γ) d c c d c c δ) d c c c d ε) d στ) d Απάντηση:, εάν η είνι περιττή d, εάν η είνι άρτι Πρόκειτι γι πολύ βσική άσκηση, που είνι εφρμογή της

Διαβάστε περισσότερα

Οδηγίες, στήριξη από ICT.:

Οδηγίες, στήριξη από ICT.: Τίτλος: Ώσμωση Θέμτ: Όσμωση, γρμμομόρι, συλλογή δεδομένων κι γρφική πράστση. Διάρκει: 120λεπτά Ηλικί: 14-16 Διφοροποίηση: Διφορετικά επίπεδ βοήθεις κι διφορετικές δρστηριότητες. Οδηγίες, στήριξη πό ICT.:

Διαβάστε περισσότερα

( ) = ( ) για κάθε. Θέμα Δ. x 2. Δίνονται οι συναρτήσεις f x

( ) = ( ) για κάθε. Θέμα Δ. x 2. Δίνονται οι συναρτήσεις f x ΔΙΑΓΩΝΙΣΜΑΤΑ Διγώνισμ Θέμ Α Α Ν ποδειχθεί ότι η συνάρτηση f = ln,, είνι πργωγίσιμη στο κι ισχύει f = Μονάδες 7 Α Πότε μί συνάρτηση f λέμε ότι είνι πργωγίσιμη σε έν σημείο του πεδίου ορισμού της; Α Πότε

Διαβάστε περισσότερα

Αφού είναι x α > 0, από την τελευταία προκύπτουν όλες οι προς απόδειξη ανισότητες.

Αφού είναι x α > 0, από την τελευταία προκύπτουν όλες οι προς απόδειξη ανισότητες. I Βσικά συμπεράσμτ Στις σκσεις που κολουθούν θ χρησιμοποισουμε τ επόμεν βσικά συμπεράσμτ Α, Β κι Γ: Α Έστω R κι :[,+)R συνάρτηση τέτοι, ώστε συνεχς στο [,+), πργωγίσιμη στο (,+) κι () = Ν ποδειχθεί ότι:

Διαβάστε περισσότερα

Η έννοια του διανύσματος

Η έννοια του διανύσματος Η έννοι του δινύσμτος Από τη γεωμετρί είμστε εξοικειωμένοι με την έννοι του ευθυγράμμου τμήμτος: δύο διφορετικά σημεί Α κι Β μις ευθείς (ε), ορίζουν το ευθύγρμμο τμήμ ΑΒ Έν ευθύγρμμο τμήμ λέγετι προσντολισμένο,

Διαβάστε περισσότερα

Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. α Rκαι. Rτότε

Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. α Rκαι. Rτότε Αλγεβρ Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΤΥΠΟΙ Ι ΙΟΤΗΤΕΣ ΥΝΑΜΕΩΝ I. ν... ν πράγοντες, ν, ν ν> ν Rκι ν Ν II. ν, ν µ, ν Ν µ ν ν µ, >, µ Ζ, µ ν ν Ν κι εάν Ορισµός : Αν > κι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Ομάδας Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας & Πληροφορικής Γ τάξης Ημερησίου Λυκείου για το σχ.

ΜΑΘΗΜΑΤΙΚΑ Ομάδας Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας & Πληροφορικής Γ τάξης Ημερησίου Λυκείου για το σχ. ΜΑΘΗΜΑΤΙΚΑ Ομάδς Προσντολισμού Θετικών Σπουδών κι Σπουδών Οικονομίς & Πληροφορικής Γ τάξης Ημερησίου Λυκείου γι το σχ έτος 7-8 Αγπητέ Μθητή, Αγπητή Μθήτρι Στις φετινές οδηγίες διδσκλίς κι διχείρισης της

Διαβάστε περισσότερα

Άλλοι τύποι για το εµβαδόν τριγώνου και λόγος εµβαδών

Άλλοι τύποι για το εµβαδόν τριγώνου και λόγος εµβαδών 0. 0.5 Άλλοι τύποι γι το εµβδόν τριγώνου κι λόγος εµβδών ΘΕΩΡΙ. Ε= τ( τ )( τ β)( τ γ ) Ε = τ ρ Ε = β γ R Ε = β γ ηµ = γ ηµ = β ηµ ηµ = β ηµ = γ ηµ = R. ν δύο τρίγων έχουν ίσες βάσεις, τότε ο λόγος των

Διαβάστε περισσότερα

ΣΥΝΘΗΚΕΣ ΑΝΤΙΣΤΡΟΦΗΣ ΕΝΟΣ ΠΙΝΑΚΑ

ΣΥΝΘΗΚΕΣ ΑΝΤΙΣΤΡΟΦΗΣ ΕΝΟΣ ΠΙΝΑΚΑ ΣΥΝΘΗΚΕΣ ΑΝΤΙΣΤΡΟΦΗΣ ΕΝΟΣ ΠΙΝΑΚΑ Ένς Πίνκς συντελεστών Α µπορεί ν έχει ντίστροφο δηλδή, µπορεί ν είνι «µηιδιάζων» µόνο εάν είνι τετργωνικός Η συνθήκη τετργωνικότητς είνι νγκί λλά όχι κι ικνή γι την ύπρξη

Διαβάστε περισσότερα

1995 ΘΕΜΑΤΑ ίνονται οι πραγµατικοί αριθµοί κ, λ µε κ < λ και η συνάρτηση f(x)= (x κ) 5 (x λ) 3 µε x. Να αποδείξετε ότι:, για κάθε x κ και x λ.

1995 ΘΕΜΑΤΑ ίνονται οι πραγµατικοί αριθµοί κ, λ µε κ < λ και η συνάρτηση f(x)= (x κ) 5 (x λ) 3 µε x. Να αποδείξετε ότι:, για κάθε x κ και x λ. 995 ΘΕΜΑΤΑ. ίνοντι οι πργµτικοί ριθµοί κ, λ µε κ < λ κι η συνάρτηση f() ( κ) 5 ( λ) µε. Ν ποδείξετε ότι: ) f () f() 5 κ, γι κάθε κ κι λ. λ ) Η συνάρτηση g() ln f() στρέφει τ κοίλ προς τ κάτω στο διάστηµ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o ΜΑΘΗΜΑΤΙΚΑ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 006 ΕΚΦΩΝΗΣΕΙΣ A Έστω µι συνάρτηση, η οποί είνι συνεχς σε έν διάστηµ Ν ποδείξετε ότι: Αν >0 σε κάθε εσωτερικό σηµείο του, τότε η είνι γνησίως

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4. α > α. Γνωρίζουµε ότι για κάθε x ( 0, + ) l οg x. Αυτό σηµαίνει ότι σε κάθε x ( 0, ) l οg x, εποµένως έχουµε τη συνάρτηση:

ΚΕΦΑΛΑΙΟ 4. α > α. Γνωρίζουµε ότι για κάθε x ( 0, + ) l οg x. Αυτό σηµαίνει ότι σε κάθε x ( 0, ) l οg x, εποµένως έχουµε τη συνάρτηση: Λυµέν Θέµτ κι Ασκήσεις κ.λ.π. ΚΕΦΑΛΑΙΟ 4 Επιµέλει: Σκουφά Σωτήρη Βούρβχη Κώστ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ Λογριθµική συνάρτηση >. Γνωρίζουµε ότι γι κάθε ( 0, + ) l οg. Αυτό σηµίνει ότι σε κάθε ( 0, ) Θεωρούµε

Διαβάστε περισσότερα

Καρτεσιανές Συντεταγµένες

Καρτεσιανές Συντεταγµένες Γρφική Πράστση Συνάρτησης Κρτεσινές Συντετγµένες Κρτεσινό σύστηµ συντετγµένων ή ορθογώνιο σύστηµ ξόνων O είνι έν σύστηµ δύο κθέτων ξόνων O κι O ( 0 0) µε κοινή ρχή το σηµείο O,. O Ορθοκνονικό σύστηµ ξόνων

Διαβάστε περισσότερα

ENA ΣΧΗΜΑ ΜΕ ΕΝΔΙΑΦΕΡΟΥΣΕΣ ΠΡΟΕΚΤΑΣΕΙΣ. Κόσυβας Γιώργος. 1ο Πειραματικό Γυμνάσιο Αθηνών

ENA ΣΧΗΜΑ ΜΕ ΕΝΔΙΑΦΕΡΟΥΣΕΣ ΠΡΟΕΚΤΑΣΕΙΣ. Κόσυβας Γιώργος. 1ο Πειραματικό Γυμνάσιο Αθηνών Σ ENA ΣΧΗΜ ΜΕ ΕΝΙΦΕΡΟΥΣΕΣ ΠΡΟΕΚΤΣΕΙΣ Κόσυβς ιώργος ο Πειρμτικό υμνάσιο θηνών ε υτή την εργσί προυσιάζοντι ορισμένες ξιοσημείωτες πρτηρήσεις πάνω σε έν πλούσιο σχήμ, το οποίο επιτρέπει ποικίλες προσεγγίσεις

Διαβάστε περισσότερα

α) Στο μιγαδικό επίπεδο οι εικόνες δύο συζυγών μιγαδικών είναι σημεία συμμετρικά ως προς τον πραγματικό άξονα

α) Στο μιγαδικό επίπεδο οι εικόνες δύο συζυγών μιγαδικών είναι σημεία συμμετρικά ως προς τον πραγματικό άξονα Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν Π Α Ν Ε Λ Λ Α Δ Ι Κ Ω Ν Ε Ξ Ε Τ Α Σ Ε Ω Ν ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ 8.5. ΘΕΜΑ Α A. Έστω μι συνάρτηση f η οποί είνι συνεχής σε έν διάστημ Δ.

Διαβάστε περισσότερα