3 η δεκάδα θεµάτων επανάληψης

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "3 η δεκάδα θεµάτων επανάληψης"

Transcript

1 1 η δεκάδ θεµάτων επνάληψης 1. Ν ποδείξετε ότι το εµβδόν κάθε τριγώνου δίνετι πό τον τύπο Ε τρ, όπου τ η ηµιπερίµετρος του τριγώνου κι ρ η κτίν του εγγεγρµµένου κύκλου Ν χρκτηρίσετε τις πρκάτω προτάσεις σωστές (Σ) ή λνθσµένες (Λ) ) Το εµβδόν κάθε τριγώνου δίνετι πό τον τύπο Ε 1 βσυνɵ β) ν δύο τρίγων έχουν ίσ ύψη τότε ο λόγος των εµβδών τους είνι ίσος µε τον λόγο των ντιστοίχων βάσεων γ) ι την διάµεσο µ ισχύει µ β + γ δ) Το εµβδόν ενός τρπεζίου µε βάσεις, β κι ύψος υ δίνετι πό τον τύπο ( + β)υ Ε i Στον πρκάτω πίνκ ν κάνετε τις σωστές ντιστοιχίσεις Στήλη. Εµβδόν κύκλου κτίνς R β. Εµβδόν κυκλικού τοµέ µ ο κι κτίνς R Στήλη 1. πr µ ο 180. πr γ. Μήκος κύκλου κτίνς R. πr ο. πr µ ο 60 ο Επειδή οι πλευρές του τριγώνου εφάπτοντι του εγγεγρµµένου κύκλου στ Κ, Λ, Ρ οι κτίνες στ σηµεί επφής Κ Ο Λ είνι κάθετες στις πλευρές οπότε έχουµε Ρ

2 () (Ο) + (Ο) + (Ο) 1 ΟΚ + 1 ΟΡ 1 ΟΛ 1 γ ρ + 1 ρ 1 β ρ 1 ( + β + γ) ρ τρ Λ, β Σ, γ Λ, δ Σ i, β, γ

3 . ίνετι τρίγωνο µε, 1 κι ɵ 0 ο Ν ποδείξετε ότι 7 κι ν δείξετε ότι το τρίγωνο είνι µβλυγώνιο Ν υπολογίσετε το εµβδόν του τριγώνου i Ν υπολογίσετε την διάµεσο µ γ κι την προβολή υτής στην πλευρά πό τον νόµο των συνηµιτόνων στο τρίγωνο έχουµε + συν ɵ Τώρ φού 7 άρ 7. ( ) 1 κι είνι Μ > + οπότε θ είνι >90 ο συνεπώς το τρίγωνο είνι µβλυγώνιο () 1 ηµɵ 1 1 i τετργωνικές µονάδες µ γ + β γ άρ µ γ ν Μ είνι η προβολή της διµέσου Μ στην τότε πό το δεύτερο θεώρηµ διµέσων έχουµε Μ Μ Μ

4 . ίνετι κύκλος ( Ο, R) κι σηµείο ώστε Ο R 1. πό το φέρνουµε τέµνουσ Ε του κύκλου έτσι ώστε Ε. Ν υπολογίσετε συνρτήσει του R ) Την δύνµη του ως προς τον κύκλο β) Την χορδή Ε Ν βρείτε τον λόγο των εµβδών ( Ο ) ( ΟΕ) i Ν υπολογίσετε το συν A ) Η δύνµη του σηµείου ως προς τον κύκλο (Ο, R) είνι ίση µε ( Ο, R) Ο R 1R R 1R β) νωρίζουµε ότι Ε Ο R οπότε ( + Ε) 1R Ε 1 Ο Ε(Ε) 1 R Ε R Επειδή στ τρίγων Ο κι ΕΟ έχουµε ο ισχύει ( Ο) ( ΟΕ ) Ο Ο Ε Ε Ε Ε i πό τον νόµο των συνηµιτόνων στο τρίγωνο ΟΕ έχουµε ότι ΕΟ Ε + Ο Ε Ο συν A R 18R + 1R R R 1 συν A συν A 5 6 6

5 5. ίνετι κύκλος (Ο, R) κι µί διάµετρος του. Η µεσοκάθετος της κτίνς Ο τέµνει τον κύκλο στ κι Ν ποδείξετε ότι R Ν υπολογίσετε συνρτήσει του R το εµβδόν του τετρπλεύρου i Ν υπολογίσετε συνρτήσει του R το εµβδόν του κυκλικού τµήµτος µε χορδή την το οποίο περιέχετι µέσ στην γωνί Επειδή η είνι µεσοκάθετος στη κτίν Ο,πό το ορθογώνιο τρίγωνο ΚΟ έχουµε Κ Ο ΟΚ 1 1 φ Κ Ο R R R R R άρ Κ R Επειδή δε κι Ο µεσοκάθετος της θ είνι Κ R φού οι διγώνιες του τετρπλεύρου είνι κάθετες το εµβδό υτού είνι ίσο µε () i R R R τετργωνικές µονάδες Στο ορθογώνιο τρίγωνο ΟΚ είνι ΟΚ Ο Ο άρ 1 0 ο οπότε Ο 1 60 ο κι συνεπώς φ ɵ 10 ο Το εµβδόν Ε του γρµµοσκισµένου κυκλικού τµήµτος προκύπτει ν πό το εµβδό του κυκλικού τοµέ (Ο ) φιρέσουµε το εµβδόν του τριγώνου Ο οπότε Ε Ε ( Ο Ε ) Ο πr R ηµ10 ο ( πr R ) τετργωνικές µονάδες

6 6 5. Ν ποδείξετε ότι το εµβδόν ενός τριγώνου είνι ίσο µε το ηµιγινόµενο µις του πλευράς επί το ντίστοιχο ύψος Ν χρκτηρίσετε τις πρκάτω προτάσεις σωστές (Σ) ή λνθσµένες (Λ) ) Το εµβδόν ενός ρόµβου είνι ίσο µε το γινόµενο µι του πλευράς επί το ντίστοιχο σε υτή ύψος β) ν µί γωνί ενός τριγώνου είνι ίση µε µί γωνί ενός άλλου τριγώνου τότε ο λόγος των εµβδών των δύο τριγώνων είνι ίσος µε το τετράγωνο του λόγου οµοιότητς των δύο τριγώνων γ) Η γωνί ενός κνονικού ν-γώνου είνι φ ν 180 ο 60 ν δ) Το εµβδόν ενός τετργώνου πλευράς είνι ίσο µε i Στον πρκάτω πίνκ ν κάνετε τις σωστές ντιστοιχίσεις Στήλη : Κνονικό πολύγωνο Στήλη Πλευρά λ ν. Κνονικό εξάγωνο 1. R β. Ισόπλευρο τρίγωνο. R. Τετράγωνο. R. R 5. R Έστω το τρίγωνο. πό το φέρνω πράλληλη στην κι πό το πράλληλη στην όπως φίνετι στο διπλνό σχήµ οι οποίες τέµνοντι στο. Τότε Κ Το είνι πρλληλόγρµµο κι ν Κ το εµβδό υτού είνι ίσο µε : () Κ (1)

7 7 Επειδή όµως θ είνι κι () () οπότε η (1) γίνετι () Κ () 1 Κ δηλδή () 1 υ Σ, β Λ, γ Σ, δ Λ i 5, β, γ 1

8 8 6. ίνετι τετράγωνο πλευράς ίσης µε cm. Με διµέτρους κι γράφουµε κύκλους που εφάπτοντι στο Μ, όπως φίνετι κι στο διπλνό σχήµ Ν υπολογίσετε Το εµβδόν του τριγώνου ΜΚ, όπου Κ το µέσο της Την περίµετρο κι το εµβδόν του µικτογράµµου τριγώνου Μ ( γκρίζ περιοχή) Επειδή οι κύκλοι εφάπτοντι εξωτερικά στο Μ η διάκεντρος ΛΚ διέρχετι πό το Μ φού Λ // Κ κι 90 ο το ΚΛ είνι ορθογώνιο οπότε ΜΚ Κ Εποµένως (ΜΚ) 1 ΚΜ Κ 1 cm. Η περίµετρος Ρ του µικτογράµµου τριγώνου Μ είνι ίση µε Ρ + l AM + l M Όµως ΛΚ κι l AM πrµ π 90 ο ο ο 180 ο 180 Ρ ( + π ) cm π l άρ M Το εµβδόν του µικτογράµµου τριγώνου Μ ( γκρίζ περιοχή) είνι ίσο µε το εµβδό του ορθογωνίου ΚΛ µείον το εµβδό των δύο ίσων κυκλικών τοµέων Κ Μ κι Λ Μ άρ Ε ζητούµενο (ΚΛ) ( Κ Μ ) Λ Μ Κ πr µ ΚΛ ο 60 ο π 90 (8 π) cm ο 60

9 9 7. Σε τρίγωνο µε πλευρές, β, γ ισχύει β + γ Ν ποδείξετε ότι : ι την διάµεσο µ ισχύει > 90 ο µ β i Η προβολή Μ της διµέσου στην πλευρά β είνι ίση µε Μ β νωρίζουµε ότι µ β + γ κι λόγω της υπόθεσης µ β + β φού β + γ θ είνι β β + γ > β + γ δηλδή > β + γ i οπότε > 90 ο πό το δεύτερο θεώρηµ των διµέσων κι επειδή > γ έχουµε γ βμ όµως πό την υπόθεση έχουµε β + γ άρ β + γ γ β Μ Μ β

10 10 8. Τετράγωνο πλευράς είνι εγγεγρµµένο σε κύκλο (Ο, R). Έστω Ε έν σηµείο της, τέτοιο ώστε Ε κι Ζ το σηµείο τοµής της προέκτσης της Ε µε τον κύκλο Ν εκφράσετε το ευθύγρµµο τµήµ Ε ως συνάρτηση της πλευράς του τετργώνου Ν ποδείξετε ότι ΕΖ 6 i Ν βρείτε ως συνάρτηση του το εµβδόν του κυκλικού τµήµτος που περιέχετι στην κυρτή γωνί ΟΖ Ε Ε Ε πό το πυθγόρειο θεώρηµ στο ορθογώνιο τρίγωνο Ε έχουµε Ε + Ε + άρ Ε οπότε πό το θεώρηµ των τεµνόµενων χορδών έχουµε Ε Ε Ε ΕΖ ( i ) ΕΖ ΕΖ 6 Πρτηρούµε ότι στο ορθογώνιο τρίγωνο Ε έχουµε Ε κι Ε Ε άρ Ε οπότε 1 0 ο συνεπώς Ζ 60 ο οπότε φού 90 ο θ είνι Ζ 0 ο Ζ Ε φ Ο 1 Το εµβδόν Ε του ζητούµενου κυκλικού τµήµτος προκύπτει ν πό το εµβδό του κυκλικού τοµέ Ο Ζ φιρέσουµε το εµβδόν του τριγώνου ΟΖ οπότε ο πr µ Ε 1 ο 60 R ηµ0 ο ο πr 0 1 πr ο 60 R 1 1 R Όµως R εποµένως R οπότε Ε ( π ) τετργωνικές µονάδες 8

11 11 9. ίνετι ορθογώνιο τρίγωνο του οποίου οι κάθετες πλευρές έχουν µήκη R κι R.ράφουµε τους κύκλους (, R) κι (, R ) Ν υπολογίσετε : Την πλευρά συνρτήσει του R κι ν εξηγήσετε γιτί οι κύκλοι τέµνοντι Τις γωνίες κι ɵ του τριγώνου i ν είνι το δεύτερο κοινό σηµείο των κύκλων ν υπολογίσετε το εµβδόν του τετρπλεύρου συνρτήσει του R iν) Το εµβδό του κοινού µέρους των δύο κύκλων συνρτήσει του R πό το πυθγόρειο στο έχουµε R R + Θ Η R + R R άρ R Επίσης γι την διφορά ρ ρ 1 κι το άθροισµ ρ + ρ 1 των δύο κτίνων έχουµε ότι ρ ρ 1 R R κι ρ + ρ 1 R + R Επειδή η διάκεντρος R προφνώς ικνοποιεί την σχέση R R < R < R + R δηλδή ρ ρ 1 < < ρ + ρ 1 οι κύκλοι τέµνοντι Στο ορθογώνιο τρίγωνο έχουµε R κι R δηλδή i συνεπώς η γωνί ɵ του τριγώνου είνι 0 ο οπότε η θ είνι 60 ο Στο τρίγωνο είνι 10 ο εποµένως η χορδή του κύκλου (, R) θ είνι ίση µε την πλευρά του ισοπλεύρου τριγώνου που είνι εγγεγρµµένο σε υτόν άρ λ R Επειδή οι διγώνιες του είνι κάθετες το εµβδόν Ε υτού είνι ίσο µε Ε iν) R R R τετργωνικές µονάδες Το κοινό µέρος των δύο κύκλων είνι ο µηνίσκος ΘΗ ο οποίος έχει εµβδόν ίσο µε το άθροισµ των εµβδών των δύο κυκλικών τµηµάτων Θ κι Η

12 1 Το εµβδόν του κυκλικού τµήµτος Θ προκύπτει ν πό το εµβδό του κυκλικού τοµέ Θ φιρέσουµε το εµβδόν του τριγώνου οπότε Ε Θ Ε Θ Ε Οµοίως Ε Η π(r ) Ε Η Ε 1 (R ) ηµ60 ο ( πr R ) τετργωνικές µονάδες Εποµένως πr R ηµ10 ο ( πr R ) τετργωνικές µονάδες Ε ζητούµενο πr R + πr R 5πR 6 R τετργωνικές µονάδες

13 1 0. ίνετι κνονικό πολύγωνο εγγεγρµµένο σε κύκλο κτίνς R. ν η γωνί του πολυγώνου είνι φ ν 150 ο, ν βρείτε Τον ριθµό των πλευρών του πολυγώνου Την κεντρική γωνί του πολυγώνου i Το εµβδόν του πολυγώνου συνρτήσει του R iν) Το εµβδόν της περιοχής που περικλείετι µετξύ του κύκλου κι του πολυγώνου συνρτήσει του R ν ν είνι το πλήθος των πλευρών του πολυγώνου τότε πό τον τύπο φ ν 180 ο 60 ν έχουµε 150 ο 180 ο 60 ν ν 1 Η κεντρική γωνί ω ν είνι ίση µε ω ν i Φέρνοντς τις κτίνες του δωδεκγώνου 60 ν υτό χωρίζετι σε 1 ίσ µετξύ τους τρίγων εποµένως το εµβδόν του δωδεκάγωνου είνι ίσο µε : Ε 1 1 Ε Ο 1 1 R ηµ0 ο iν) ο O R τετργωνικές µονάδες 0 ο Το εµβδόν της περιοχής που περικλείετι πό τον κύκλο κι το πολύγωνο είνι ίσο µε Ε ζητούµενο Ε( Ο,R ) Ε 1 πr R τετργωνικές µονάδες

Άλλοι τύποι για το εµβαδόν τριγώνου και λόγος εµβαδών

Άλλοι τύποι για το εµβαδόν τριγώνου και λόγος εµβαδών 0. 0.5 Άλλοι τύποι γι το εµβδόν τριγώνου κι λόγος εµβδών ΘΕΩΡΙ. Ε= τ( τ )( τ β)( τ γ ) Ε = τ ρ Ε = β γ R Ε = β γ ηµ = γ ηµ = β ηµ ηµ = β ηµ = γ ηµ = R. ν δύο τρίγων έχουν ίσες βάσεις, τότε ο λόγος των

Διαβάστε περισσότερα

Μετρικές σχέσεις στο ορθογώνιο τρίγωνο. γ Αν δίνονται δύο οποιαδήποτε από τα τµήµατα του σχήµατος, µπορούµε να υπολογίζουµε τα υπόλοιπα.

Μετρικές σχέσεις στο ορθογώνιο τρίγωνο. γ Αν δίνονται δύο οποιαδήποτε από τα τµήµατα του σχήµατος, µπορούµε να υπολογίζουµε τα υπόλοιπα. 1 9.1 9. Μετρικές σχέσεις στο ορθογώνιο τρίγωνο ΘΕΩΡΙ 1. προβολή του στην ε προβολή του στην ε προβολή του στην ε ε. Τρίγωνο ορθογώνιο στο κι ύψος. Τότε = = = = β + γ κι ντίστροφ = 1 υ = 1 β + 1 γ ν δίνοντι

Διαβάστε περισσότερα

Θέµατα Γεωµετρίας Γενικής Παιδείας Β Λυκείου 2000

Θέµατα Γεωµετρίας Γενικής Παιδείας Β Λυκείου 2000 Ζήτηµ 1ο Θέµτ Γεωµετρίς Γενικής Πιδείς Β Λυκείου 000 Α.1. Σε κάθε τρίγωνο ΑΒΓ µε διάµεσο ΑΜ ν ποδείξετε ότι το άθροισµ των τετργώνων δύο πλευρών του ισούτι µε το διπλάσιο του τετργώνου της διµέσου που

Διαβάστε περισσότερα

Θέµατα Γεωµετρίας Γενικής Παιδείας Β Λυκείου 2000

Θέµατα Γεωµετρίας Γενικής Παιδείας Β Λυκείου 2000 Θέµτ Γεωµετρίς Γενικής Πιδείς Β Λυκείου 000 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµ 1ο Α.1. Σε κάθε τρίγωνο ΑΒΓ µε διάµεσο ΑΜ ν ποδείξετε ότι το άθροισµ των τετργώνων δύο πλευρών του ισούτι µε το διπλάσιο του τετργώνου της διµέσου

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου AΣΚΗΣΕΙΣ ΣΤΙΣ ΙΣΟΤΗΤΕΣ ΤΡΙΓΩΝΩΝ

Μαθηματικά Γ Γυμνασίου AΣΚΗΣΕΙΣ ΣΤΙΣ ΙΣΟΤΗΤΕΣ ΤΡΙΓΩΝΩΝ ε ω μ ε τ ρ ί AΣΚΗΣΕΙΣ ΣΤΙΣ ΙΣΟΤΗΤΕΣ ΤΡΙΩΝΩΝ 1. Σε ισοσκελές τρίγωνο ΑΒ (ΑΒ=Α) προεκτείνουμε τη βάση Β κτά ίσ τμήμτ Β=Ε. Ν δείξετε ότι το τρίγωνο ΑΕ είνι ισοσκελές. 2. Ν κτσκευάσετε σε ισοσκελές τρίγωνο

Διαβάστε περισσότερα

Άλλοι τύποι για το εµβαδόν τριγώνου Λόγος εµβαδών οµοίων τριγώνων - πολυγώνων

Άλλοι τύποι για το εµβαδόν τριγώνου Λόγος εµβαδών οµοίων τριγώνων - πολυγώνων 8 Άλλοι τύποι γι το εµβδόν τριγώνου Λόγος εµβδών οµοίων τριγώνων - πολυγώνων Α ΑΠΑΡΑΙΤΗΤΣ ΓΝΩΣΙΣ ΘΩΡΙΑΣ Άλλοι τύποι γι το εµβδόν τριγώνου Με τη βοήθει του βσικού τύπου γι το εµβδόν τριγώνου, µε µήκη πλευρών,

Διαβάστε περισσότερα

i) ΑΒ 2 + ΑΓ 2 = 2ΑΜ 2 + 2ΒΜ 2 ii) ΑΒ 2 + ΑΓ 2 = 2ΑΜ 2 + 2Α 2 iii) ΑΒ 2 + ΑΓ 2 = 2ΒΓ Μ iν) ΑΒ 2 ΑΓ 2 = 2ΑΜ 2 + 2ΒΜ 2 = 2ΑΜ 2 2 = 2ΑΜ 2 + 2ΒΜ 2

i) ΑΒ 2 + ΑΓ 2 = 2ΑΜ 2 + 2ΒΜ 2 ii) ΑΒ 2 + ΑΓ 2 = 2ΑΜ 2 + 2Α 2 iii) ΑΒ 2 + ΑΓ 2 = 2ΒΓ Μ iν) ΑΒ 2 ΑΓ 2 = 2ΑΜ 2 + 2ΒΜ 2 = 2ΑΜ 2 2 = 2ΑΜ 2 + 2ΒΜ 2 1 9.5 9.6 σκήσεις σχολικού βιβλίου σελίδς 198 199 Ερωτήσεις κτνόησης 1. Στο πρκάτω σχήµ η Μ είνι διάµεσος κι ύψος. Ποι πό τις πρκάτω σχέσεις είνι σωστή. ιτιολογήστε την πάντηση σς. A i) Μ Μ ii) Μ iii)

Διαβάστε περισσότερα

Θέµα 7 ο. Τρίγωνο ΑΒΓ είναι ισοσκελές (ΑΒ = ΑΓ). Φέρνουµε Ε // ΒΓ ( ΒΓ, Ε ΑΓ). Να δειχθεί ότι: ΒΕ 2 = ΕΓ Ε

Θέµα 7 ο. Τρίγωνο ΑΒΓ είναι ισοσκελές (ΑΒ = ΑΓ). Φέρνουµε Ε // ΒΓ ( ΒΓ, Ε ΑΓ). Να δειχθεί ότι: ΒΕ 2 = ΕΓ Ε 0 ΓΕΝΙΚΕΣ Θέµ ο Τρίγωνο ΑΒΓ είνι ισοσκελές (ΑΒ = ΑΓ). Φέρνουµε Ε // ΒΓ ( ΒΓ, Ε ΑΓ). Ν δειχθεί ότι: ΒΕ = ΕΓ Ε Θέµ ο Στη διγώνιο Β τετργώνου ΑΒΓ πίρνουµε τυχίο σηµείο Ο. Ν δειχθεί ότι: Γ - ΓΟ = Ο Ο Θέµ ο

Διαβάστε περισσότερα

5 η δεκάδα θεµάτων επανάληψης

5 η δεκάδα θεµάτων επανάληψης 1 5 η δεκάδα θεµάτων επανάληψης 1. Σε κύκλο (Ο, R) προεκτείνουµε µία διάµετρο του εκατέρωθεν των και και στις προεκτάσεις παίρνουµε τµήµατα = = R. Έστω ΕΜ τέµνουσα του κύκλου τέτοια ώστε Μ = R 7 Να αποδείξετε

Διαβάστε περισσότερα

2 η δεκάδα θεµάτων επανάληψης

2 η δεκάδα θεµάτων επανάληψης 1 η δεκάδα θεµάτων επανάληψης 11. Σε κάθε τρίγωνο να αποδείξετε ότι το τετράγωνο µιας πλευράς που βρίσκεται απέναντι από οξεία γωνία, ισούται µε το άθροισµα των τετραγώνων των δύο άλλων πλευρών ελαττωµένο

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Β ΓΕΛ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ -ΚΕΦΑΛΑΙΑ:7 ο -8 ο -9 ο -10 ο. 2_19005 ΘΕΜΑ Β (7 ο -9 ο )

ΓΕΩΜΕΤΡΙΑ Β ΓΕΛ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ -ΚΕΦΑΛΑΙΑ:7 ο -8 ο -9 ο -10 ο. 2_19005 ΘΕΜΑ Β (7 ο -9 ο ) 0 05 ΓΕΩΜΕΤΡΙΑ Β ΓΕΛ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ -ΚΕΦΑΛΑΙΑ:7 ο -8 ο -9 ο -0 ο _9005 ΘΕΜΑ Β (7 ο -9 ο ) Σε τρίγωνο ΑΒΓ η διχοτόµος της γωνίς Αˆ τέµνει την πλευρά ΒΓ σε σηµείο, τέτοιο ώστε Β 3 =

Διαβάστε περισσότερα

9.7. Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις κατανόησης. Στα παρακάτω σχήµατα να υπολογιστούν οι τιµές των x και ψ.

9.7. Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις κατανόησης. Στα παρακάτω σχήµατα να υπολογιστούν οι τιµές των x και ψ. 1 9.7 σκήσεις σχολικού βιβλίου σελίδς 03 0 ρωτήσεις κτνόησης 1. Στ πρκάτω σχήµτ ν υπολογιστούν οι τιµές των x κι ψ. () O x Ρ 3 Θ x 6 Κ Τ Ν Σ O 1 ψ Λ (β) Ζ O (γ) Στο σχήµ () Στο σχήµ (β) Στο σχήµ (γ) Ρ.

Διαβάστε περισσότερα

Γ ε ω μ ε τ ρ ι α. Β Λ υ κ ε ι ο υ

Γ ε ω μ ε τ ρ ι α. Β Λ υ κ ε ι ο υ ε ω μ ε τ ρ ι Λ υ κ ε ι ο υ Ε π ι μ ε λ ε ι : Τ κ η ς Τ σ κ λ κ ο ς ε ω μ ε τ ρ ι Λ υ κ ε ι ο υ ε ω μ ε τ ρ ι Λ υ κ ε ι ο υ νλογιες Ομοιοτητ Μετρικες Σχεσεις Εμβδ Μετρηση Κυκλου Με πολυ μερκι ι τους κλους

Διαβάστε περισσότερα

τριγώνου ΑΒΓ είναι κυκλώστε το γράµµα της σωστής απάντησης και αιτιολογήστε την απάντηση σας. Με βάση την τριγωνική ανισότητα για

τριγώνου ΑΒΓ είναι κυκλώστε το γράµµα της σωστής απάντησης και αιτιολογήστε την απάντηση σας. Με βάση την τριγωνική ανισότητα για 3.0 3. σκήσεις σχολικού βιβλίου σελίδς 57-58 Ερωτήσεις Κτνόησης. Χρκτηρίστε ( Σ ) σωστή ή λάθος ( ) κάθε µί πό τις επόµενες προτάσεις i) Η εξωτερική γωνί ˆ εξ τριγώνου είνι µεγλύτερη πό την ˆ ii) Η εξωτερική

Διαβάστε περισσότερα

Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις Κατανόησης

Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις Κατανόησης 4. -4.5 σκήσεις σχολικού βιβλίου σελίδς 8 83 ρωτήσεις Κτνόησης. i) Πώς ονοµάζοντι οι γωνίες κι β του πρκάτω σχήµτος κι τι σχέση έχουν µετξύ τους; ii) Tι ισχύει γι τις γωνίες γ κι δ ; ε δ ε ε ε γ β ε πάντηση

Διαβάστε περισσότερα

2.1 ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ

2.1 ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ ΜΕΡΟΣ Α. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ 7. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ ΟΡΙΣΜΟΣ Ονομάζουμε τετργωνική ρίζ ενός θετικού ριθμού τον θετικό ριθμό (ΣΥΜΒΟΛΙΣΜΟΣ: ) που ότν υψωθεί στο τετράγωνο μς δίνει

Διαβάστε περισσότερα

Μ' ένα καλά µελετηµένο κτύπηµα, σκότωσε τον κύκλο, την εφαπτόµενη

Μ' ένα καλά µελετηµένο κτύπηµα, σκότωσε τον κύκλο, την εφαπτόµενη 255 ΕΡΩΤΗΣΕΙΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣΣ Α! ΤΑΞΗΣΣ Ο Ρωµίος που µχίρωσσε ε τον Αρχιµήδη Μ' έν κλά µελετηµένο κτύπηµ, σκότωσε τον κύκλο, την εφπτόµενη κι το σηµείο τοµής στο άπειρο. "'Επί ποινή" διµελισµού εξόρισε

Διαβάστε περισσότερα

Παρουσίαση 1 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΤΡΙΓΩΝΑ

Παρουσίαση 1 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΤΡΙΓΩΝΑ Προυσίση ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΤΡΙΓΩΝΑ Προυσίση. Μετρικές σχέσεις στ τρίγων Α Μετρικές σχέσεις σε ορθογώνιο τρίγωνο Α Προβολή σηµείου σε ευθεί Ορθή προβολή Α ονοµάζετι το ίχνος της κάθετης που φέρνουµε

Διαβάστε περισσότερα

3 η δεκάδα θεµάτων επανάληψης

3 η δεκάδα θεµάτων επανάληψης 3 η δεκάδα θεµάτων επανάληψης. ίνεται το ισοσκελές τραπέζιο µε ɵ = = 45 ο. Έστω Ε, Ζ τα µέσα των και αντίστοιχα και Η. πό το Z φέρνουµε παράλληλη στην που τέµνει την στο Θ. Να δείξετε ότι Το τετράπλευρο

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 2015

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 2015 ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕ ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 015 Θέμ 1 ο Α) Ν διτυπώσετε τ κριτήρι γι ν είνι δύο τρίγων όμοι Β) Ν διτυπώσετε κι ν ποδείξετε το ο θεώρημ διμέσων Γ) Ν

Διαβάστε περισσότερα

Γ. κινηθούµε 3 µονάδες κάτω και 4 µονάδες δεξιά. κινηθούµε 3 µονάδες κάτω και 4 µονάδες αριστερά Ε. κινηθούµε 3 µονάδες δεξιά και 4 µονάδες πάνω

Γ. κινηθούµε 3 µονάδες κάτω και 4 µονάδες δεξιά. κινηθούµε 3 µονάδες κάτω και 4 µονάδες αριστερά Ε. κινηθούµε 3 µονάδες δεξιά και 4 µονάδες πάνω Ερωτήσεις πολλπλής επιλογής 1. ** Αν η εξίσωση µε δύο γνώστους f (, ) = 0 (1) είνι εξίσωση µις γρµµής C, τότε Α. οι συντετγµένες µόνο µερικών σηµείων της C επληθεύουν την (1) Β. οι συντετγµένες των σηµείων

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ

ΘΕΜΑΤΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Επιμέλεια: ιώργος Ράπτης ΘΕΤ ΣΤΗΝ ΕΩΕΤΡΙ ΛΥΚΕΙΟΥ ΘΕ 1 ο. Να αποδείξετε ότι το εμβαδό τραπεζίου με βάσεις 1, και ύψος υ δίνεται από τον τύπο: ( 1+ ) υ Ε= ονάδες 1 B. ν φν, λν και αν είναι: η γωνία, η πλευρά

Διαβάστε περισσότερα

Β ΛΥΚΕΙΟΥ Μετρικές σχέσεις Εμβαδά

Β ΛΥΚΕΙΟΥ Μετρικές σχέσεις Εμβαδά Β ΛΥΚΕΙΟΥ Μετρικές σχέσεις Εμβδά ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β. Κορτίκη Β. Κουτσογούλ Μ. Ρούσσ Γ. Ευθυμίου Μ. Ζφείρη ΕΜΕ Πράρτημ Τρικάλων ΑΣΚΗΣΗ η i. Ν υπολογιστούν οι πλευρές, β, γ του ορθογωνίου τριγώνου ΑΒΓ

Διαβάστε περισσότερα

Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις Κατανόησης. Αντιστοιχίστε κάθε µέγεθος της στήλης Α µε την τιµή του στην στήλη Β

Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις Κατανόησης. Αντιστοιχίστε κάθε µέγεθος της στήλης Α µε την τιµή του στην στήλη Β 1 11.6 11.8 σκήσεις σχολικού βιβλίου σελίδας 50 51 Ερωτήσεις Κατανόησης 1. ντιστοιχίστε κάθε µέγεθος της στήλης µε την τιµή του στην στήλη Στήλη Στήλη Εµβαδόν κυκλικού δίσκου ακτίνας Εµβαδόν κυκλικού τοµέα

Διαβάστε περισσότερα

2. ** Να βρείτε την εξίσωση του κύκλου που διέρχεται από το σηµείο (1, 0) και εφάπτεται στις ευθείες 3x + y + 6 = 0 και 3x + y - 12 = 0.

2. ** Να βρείτε την εξίσωση του κύκλου που διέρχεται από το σηµείο (1, 0) και εφάπτεται στις ευθείες 3x + y + 6 = 0 και 3x + y - 12 = 0. Ερωτήσεις νάπτυξης 1. ** Ν ρεθεί η εξίσωση του κύκλου σε κθεµιά πό τις πρκάτω περιπτώσεις: ) έχει κέντρο την ρχή των ξόνων κι κτίν ) έχει κέντρο το σηµείο (3, - 1) κι κτίν 5 γ) έχει κέντρο το σηµείο (-,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΣΚΗΣΕΙΣ Πηγή: KEE

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΣΚΗΣΕΙΣ Πηγή: KEE 1. Ν ρεθεί η εξίσωση του κύκλου σε κθεµιά πό τις πρκάτω περιπτώσεις: ) έχει κέντρο την ρχή των ξόνων κι κτίν ) έχει κέντρο το σηµείο (3, - 1) κι κτίν 5 γ) έχει κέντρο το σηµείο (-, 1) κι διέρχετι πό το

Διαβάστε περισσότερα

ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ ( ) = +. ( ) ( ) ( ) ( ) ( ) x x ( ) ( ) ΙΑΜΑΝΤΟΠΟΥΛΟΣ ΘΥΜΙΟΣ 1

ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ ( ) = +. ( ) ( ) ( ) ( ) ( ) x x ( ) ( ) ΙΑΜΑΝΤΟΠΟΥΛΟΣ ΘΥΜΙΟΣ 1 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ Υπενθυµίζουµε ότι ν στ σηµεί Α, Β ενός άξον ντιστοιχίζοντι οι πργµτικοί ριθµοί, ντίστοιχ τότε: ( ΑΒ) = Β Α Α Β Σχετικά µε την πόστση δύο σηµείων στο κρτεσινό

Διαβάστε περισσότερα

ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ

ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ όγος δύο ευθυγράµµων τµηµάτων ΑΒ κι Γ ονοµάζετι ο θετικός ριθµός λ γι τον οποίο ΑΒ ισχύει : AB = λ Γ = λ. Γ Μέτρο ενός ευθυγράµµου τµήµτος είνι ο λόγος του προς έν άλλο ευθύγρµµο

Διαβάστε περισσότερα

ύο θεµελιώδεις ισοδυναµίες. 2. Ιδιότητες αναλογιών. 3. Πρόβληµα Σηµείο Μ διαιρεί εσωτερικά τµήµα ΑΒ = α σε λόγο λ. Να υπολογιστούν τα

ύο θεµελιώδεις ισοδυναµίες. 2. Ιδιότητες αναλογιών. 3. Πρόβληµα Σηµείο Μ διαιρεί εσωτερικά τµήµα ΑΒ = α σε λόγο λ. Να υπολογιστούν τα 1 7.1 7.7 ΘΩΡΙ 1. ύο θεµελιώδεις ισοδυνµίες ν, β 0 ευθ.τµήµτ κι x > 0 τότε = β x β = x = xβ = xβ 2. Ιδιότητες νλογιών β = γ δ δ = βγ (γινόµενο άκρων = γινόµενο µέσων) β = γ δ γ = β δ (ενλλγή των µέσων)

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β. β γ α β. α γ β δ. Μαρτάκης Μάρτης Μαθηµατικός του 1 ου ΓΕΛ Ρόδου 1. Προηγούµενες και απαραίτητες γνώσεις

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β. β γ α β. α γ β δ. Μαρτάκης Μάρτης Μαθηµατικός του 1 ου ΓΕΛ Ρόδου 1. Προηγούµενες και απαραίτητες γνώσεις Μαρτάκης Μάρτης Μαθηµατικός του 1 ου ΓΕΛ Ρόδου 1 ΓΕΩΜΕΤΡΙ ΤΗΣ Β Προηγούµενες και απαραίτητες γνώσεις 1. σε ορθογώνιο τρίγωνο µε 30 ο, η απέναντι 30 ο κάθετη είναι το µισό της υποτείνουσας και αντίστροφα.

Διαβάστε περισσότερα

Ορισµοί. Ένα τετράπλευρο λέγεται εγγεγραµµένο σε κύκλο, αν οι κορυφές του είναι σηµεία του κύκλου.

Ορισµοί. Ένα τετράπλευρο λέγεται εγγεγραµµένο σε κύκλο, αν οι κορυφές του είναι σηµεία του κύκλου. 6.5 6.6 ΘΩΡΙ. Ορισµοί Ένα τετράπλευρο λέγεται εγγεγραµµένο σε κύκλο, αν οι κορυφές του είναι σηµεία του κύκλου. Ένα τετράπλευρο λέγεται εγγράψιµο σε κύκλο, όταν µπορεί να γραφεί κύκλος που να διέρχεται

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος ) Πυθαγόρειο ενικό Λύκειο Σάμου ΕΠΝΛΗΨΗ ΕΩΜΕΤΡΙΣ ΛΥΚΕΙΟΥ ( α μέρος ) Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό

Διαβάστε περισσότερα

1 η εκάδα θεµάτων επανάληψης

1 η εκάδα θεµάτων επανάληψης η εκάδα θεµάτων επανάληψης. ίνεται ορθογώνιο τρίγωνο µε υποτείνουσα την και ɵ = 30 ο. Έστω διάµεσος του και, Ζ, Η τα µέσα των, και αντίστοιχα. Στην προέκταση του Ζ παίρνουµε τµήµα ΖΚ= Ζ. Να δείξετε ότι

Διαβάστε περισσότερα

Βασικά γεωμετρικά σχήματα- Μέτρηση γωνίας μέτρηση μήκους - κατασκευές ΑΣΚΗΣΕΙΣ

Βασικά γεωμετρικά σχήματα- Μέτρηση γωνίας μέτρηση μήκους - κατασκευές ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙ: Κεφάλιο 1 ο σικά γεωμετρικά σχήμτ- Μέτρηση γωνίς μέτρηση μήκους - κτσκευές ΣΚΗΣΕΙΣ 1. Πάνω στο ευθύγρμμο τμήμ = 6cm, ν πάρετε έν σημείο Γ, τέτοιο ώστε Γ = 2cm κι έν σημείο Δ, τέτοιο ώστε Δ =

Διαβάστε περισσότερα

Σχεδίαση µε τη χρήση Η/Υ

Σχεδίαση µε τη χρήση Η/Υ Σχεδίση µε τη χρήση Η/Υ Κ Ε Φ Λ Ι 1 Γ Ε Ω Μ Ε Τ Ρ Ι Κ Ε Σ Κ Τ Σ Κ Ε Υ Ε Σ Ρ Λ Ε Ω Ν Ι Σ Ν Θ Π Υ Λ Σ, Ε Π Ι Κ Υ Ρ Σ Κ Θ Η Γ Η Τ Η Σ Τ Μ Η Μ Ι Ι Κ Η Σ Η Σ Κ Ι Ι Χ Ε Ι Ρ Ι Σ Η Σ Ε Ρ Γ Ω Ν Τ Ε Ι Λ Ρ Ι Σ Σ

Διαβάστε περισσότερα

4 η εκάδα θεµάτων επανάληψης

4 η εκάδα θεµάτων επανάληψης 4 η εκάδα θεµάτων επανάληψης 3. ίνεται τετράγωνο µε κέντρο Ο και το µέσο του. Η τέµνει την στο. είξτε ότι = Το τρίγωνο είναι ορθογώνιο και ισοσκελές i Ο = 4 Τα ορθογώνια τρίγωνα και έχουν = και = άρα είναι

Διαβάστε περισσότερα

Συνηµίτονο µιας οξείας γωνίας ορθογωνίου τριγώνου λέγεται:

Συνηµίτονο µιας οξείας γωνίας ορθογωνίου τριγώνου λέγεται: Λόγος ευθυγράµµων τµηµάτων Ότν θέλουµε ν συγκρίνουµε δύο ευθύγρµµ τµήµτ, υπολογίζουµε τη διάφορ ή το λόγο των µηκών τους. Στην περίπτωση του λόγου υπολογίζουµε πόσες Φορές το έν τµήµ είνι µεγλύτερο πό

Διαβάστε περισσότερα

Ενότητα Να βρεθούν οι ευθείες οι οποίες διέρχονται από το σημείο Α(1,2) και απέχει από το σημείο Β(3,1) απόσταση d=2.

Ενότητα Να βρεθούν οι ευθείες οι οποίες διέρχονται από το σημείο Α(1,2) και απέχει από το σημείο Β(3,1) απόσταση d=2. Ευθεί Ενότητ 7. Απόστση σημείου πό ευθεί Εμβδόν τριγώνου Εφρμογές 7.1 Ν βρεθεί η πόστση: i) του σημείου Μ(1,3) πό την ευθεί (ε) με εξίσωση 3x-4y- 11=0, ii) του σημείου Ρ(,-3) πό την (η) με εξίσωση 5x+1y-=0.

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΗ: Παρουσίασα τις αποδείξεις κάπως αναλυτικά ώστε να γίνουν πιο κατανοητές.εσείς μπορείτε να τις παρουσιάσετε πιο λιτά.

ΣΗΜΕΙΩΣΗ: Παρουσίασα τις αποδείξεις κάπως αναλυτικά ώστε να γίνουν πιο κατανοητές.εσείς μπορείτε να τις παρουσιάσετε πιο λιτά. ΣΗΜΕΙΩΣΗ: Προυσίσ τις ποδείξεις κάπως νλυτικά ώστε ν γίνουν πιο κτνοητές.εσείς μπορείτε ν τις προυσιάσετε πιο λιτά. Δίνετι τυχόν ορθογώνιο τρίγωνο ΑΒΓ( ˆΑ=1 =1 ορθή) κι Δ η προβολή της κορυφής Α στην υποτείνουσ.ν

Διαβάστε περισσότερα

1.2 ΛΟΓΟΣ ΕΥΘΥΓΡΑΜΜΩΝ ΤΜΗΜΑΤΩΝ

1.2 ΛΟΓΟΣ ΕΥΘΥΓΡΑΜΜΩΝ ΤΜΗΜΑΤΩΝ 1 1. ΛΟΟΣ ΥΘΥΡΜΜΩΝ ΤΜΗΜΤΩΝ ΘΩΡΙ 1. Παραλληλία και ισότητα ν τρεις τουλάχιστον παράλληλες ορίζουν ίσα ευθύγραµµα τµήµατα σε µία ευθεία τότε θα ορίζουν ίσα ευθύγραµµα τµήµατα και σε οποιαδήποτε άλλη ευθεία

Διαβάστε περισσότερα

Ορισμός: Άρα ένα σημείο Μ του επιπέδου είναι σημείο της έλλειψης, αν και μόνο αν 2. Εξίσωση έλλειψης με Εστίες στον άξονα χ χ και κέντρο την αρχή Ο

Ορισμός: Άρα ένα σημείο Μ του επιπέδου είναι σημείο της έλλειψης, αν και μόνο αν 2. Εξίσωση έλλειψης με Εστίες στον άξονα χ χ και κέντρο την αρχή Ο Μθημτικά Β Κτ/νσης ΕΛΛΕΙΨΗ Ορισμός: Έλλειψη με εστίες Ε κι Ε λέγετι ο γεωμ τόπος των σημείων του επιπέδου των οποίων το άθροισμ των ποστάσεων πό τ Ε κι Ε είνι στθερό κι μεγλύτερο του ΕΈ Το στθερό υτό άθροισμ

Διαβάστε περισσότερα

Ερωτήσεις ανάπτυξης. 1. Τα σηµεία Β και Γ είναι σηµεία του επιπέδου p, η ΒΓ είναι ευθεία του p. Η ΒΓ τέµνει την ΑΜ στον

Ερωτήσεις ανάπτυξης. 1. Τα σηµεία Β και Γ είναι σηµεία του επιπέδου p, η ΒΓ είναι ευθεία του p. Η ΒΓ τέµνει την ΑΜ στον Ερωτήσεις ανάπτυξης 1. Τα σηµεία και είναι σηµεία του επιπέδου, η είναι ευθεία του. Η τέµνει την Μ στον Μ Ν Ν. Το Ν σαν σηµείο της ανήκει στο, άρα και το Μ σαν σηµείο της Ν ανήκει στο. B. Έστω ε µια ευθεία

Διαβάστε περισσότερα

έλλειψη µε εστίες Ε (- γ, 0), Ε (γ, 0) και σταθερό άθροισµα 2α. 2. * Η εξίσωση

έλλειψη µε εστίες Ε (- γ, 0), Ε (γ, 0) και σταθερό άθροισµα 2α. 2. * Η εξίσωση Γ. ΕΛΛΕΙΨΗ Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. * Η εξίσωση x + y = µε = γ πριστάνει έλλειψη µε εστίες Ε (- γ, 0), Ε (γ, 0) κι στθερό άθροισµ.. * Η εξίσωση x + y = µε = γ πριστάνει έλλειψη µε εστίες

Διαβάστε περισσότερα

Γενικές ασκήσεις σελίδας

Γενικές ασκήσεις σελίδας Γενικές σκσεις σελίδς 9 3. ίνετι η εξίσωση + λ 0 (), όπου λ R. Ν ποδείξετε ότι γι κάθε τιµ του λ, η () πριστάνει κύκλο, του οποίου ζητείτι ν ρεθεί το κέντρο κι η κτίν. (ii) Ν ποδείξετε ότι όλοι οι κύκλοι

Διαβάστε περισσότερα

4 η εκάδα θεµάτων επανάληψης

4 η εκάδα θεµάτων επανάληψης 4 η εκάδα θεµάτων επανάληψης 3. ίνεται τετράγωνο µε κέντρο Ο και Μ το µέσο του. Η Μ τέµνει την στο. είξτε ότι = Το τρίγωνο είναι ορθογώνιο και ισοσκελές i ΟΜ = 4 Τα ορθογώνια τρίγωνα Μ και Μ έχουν Μ =

Διαβάστε περισσότερα

3.6 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ

3.6 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ 1 3.6 ΕΜΝ ΚΥΚΛΙΚΥ ΤΜΕ ΘΕΩΡΙ 1. Εµβαδόν κυκλικού τοµέα γωνίας µ ο : Ε = πρ. µ, όπου ρ η ακτίνα του κύκλου και π ο γνωστός αριθµός. Εµβαδόν κυκλικού τοµέα γωνίας α rad: Ε = 1 αρ, όπου ρ η ακτίνα του κύκλου

Διαβάστε περισσότερα

3. ** Στο επίπεδο δίνονται τα µη µηδενικά διανύσµατα α r,β r και γ r, τα οποία ανά δυο είναι µη συγγραµµικά. Να βρείτε το άθροισµά τους αν το διάνυσµα

3. ** Στο επίπεδο δίνονται τα µη µηδενικά διανύσµατα α r,β r και γ r, τα οποία ανά δυο είναι µη συγγραµµικά. Να βρείτε το άθροισµά τους αν το διάνυσµα Ερωτήσεις νάπτυξης 1 * Ν κτσκευάσετε το άθροισµ των δινυσµάτων + + 3 όπου 2 * ι ποιες τιµές του πρµτικού ριθµού λ ισχύει ( λ ) < 5 0 ; 3 ** Στο επίπεδο δίνοντι τ µη µηδενικά δινύσµτ, κι, τ οποί νά δυο

Διαβάστε περισσότερα

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 9 Έλλειψη Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισµός Έλλειψη ονοµάζετι ο γεωµετρικός τόπος των σηµείων του επιπέδου, των οποίων το άθροισµ των ποστάσεων πό δύο στθερά σηµεί Ε κι Ε είνι στθερό κι µεγλύτερο

Διαβάστε περισσότερα

2.3 ΜΕΤΑΒΟΛΕΣ ΗΜΙΤΟΝΟΥ ΣΥΝΗΜΙΤΟΝΟΥ

2.3 ΜΕΤΑΒΟΛΕΣ ΗΜΙΤΟΝΟΥ ΣΥΝΗΜΙΤΟΝΟΥ 1.3 ΜΕΤΟΛΕΣ ΗΜΙΤΟΝΟΥ ΣΥΝΗΜΙΤΟΝΟΥ ΚΙ ΕΦΠΤΟΜΕΝΗΣ ΘΕΩΡΙ 1. Μετβολή του ηµιτόνου : Ότν µί οξεί ωνί υξάνετι, υξάνετι κι το ηµίτονο της. ηλδή ν ω > φ τότε ηµω > ηµφ. Μετβολή του συνηµιτόνου : Ότν µί οξεί ωνί

Διαβάστε περισσότερα

Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ

Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ ΚΥΠΡΙΑΝΟΣ ΕΥΑΓΓΕΛΟΣ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Το τετράγωνο μιας κάθετης πλευράς είναι ίσο με την υποτείνουσα επί την προβολή της πλευράς στην υποτείνουσα. ΑΒ 2 = ΒΓ ΑΔ ή ΑΓ 2 = ΒΓ ΓΔ Σε κάθε

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ η ΜΟΡΦΗ ΑΣΚΗΣΕΩΝ: Μς ζητούν ν βρούμε την εξίσωση ενός κύκλου Ν βρεθεί η εξίσωση του κύκλου που έχει κέντρο το σημείο: Κ (3, 3) κι τέμνει πό την ευθεί

Διαβάστε περισσότερα

1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ

1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ 1 1.4 ΠΥΘΑΟΡΕΙΟ ΘΕΩΡΗΜΑ ΘΕΩΡΙΑ 1. Πυθαγόρειο θεώρηµα : Σε κάθε ορθογώνιο τρίγωνο το τετράγωνο της υποτείνουσας είναι ίσο µε το άθροισµα των τετραγώνων των καθέτων πλευρών. γ α α = β + γ β. Αντίστροφο Πυθαγορείου

Διαβάστε περισσότερα

2 η εκάδα θεµάτων επανάληψης

2 η εκάδα θεµάτων επανάληψης η εκάδα θεµάτων επανάληψης. Έστω τρίγωνο µε + Ένα πρόχειρο σχήµα είναι το διπλανό

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999 Θέµτ Μθηµτικών Θετικής Κτεύθυνσης Β Λυκείου 999 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµ ο Α. Έστω a, ) κι, ) δύο δινύσµτ του κρτεσινού επιπέδου Ο. ) Ν εκφράσετε χωρίς πόδειξη) το εσωτερικό γινόµενο των δινυσµάτων a κι συνρτήσει

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΠΝΠΤΙΣ ΣΣΙΣ > 90. 1. ίνεται ισοσκελές τρίγωνο µε = και 0 πό την κορυφή φέρνουµε τις ηµιευθείες x κάθετη στην πλευρά και y κάθετη στην πλευρά που τέµνουν την στα σηµεία και αντίστοιχα. Να αποδείξετε α)

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 6 Α) Αν η συνάρτηση f είνι πργωγίσιµη σε έν σηµείο του πεδίου ορισµού της, ν γρφεί η εξίσωση της εφπτοµένης της γρφ πρ/σης της f στο σηµείο A(,f ( )) Α)

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο : Έστω z, z C με (z ) = κι (z ) = Αν f() ( z )( z )( z )( z ) = κι f(i ) = 64 8i, τότε ν ποδείξετε ότι: ) f( i )

Διαβάστε περισσότερα

Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις κατανόησης

Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις κατανόησης 0. 0.3 σκήσεις σχολικού βιβλίου σελίδας 7 8 Ερωτήσεις κατανόησης. Να γράψετε τους τύπους υπολογισµού του εµβαδού Τετραγώνου Ορθογωνίου i Παραλληλογράµµου iν) Τριγώνου ν) Τραπεζίου πάντηση Ε = α Ε = α β

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο)

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 6 Α) Αν η συνάρτηση f είνι πργωγίσιµη σε έν σηµείο του πεδίου ορισµού της, ν γρφεί η εξίσωση της εφπτοµένης της γρφ πρ/σης της f στο σηµείο A(,f ( )) Α) Ν ποδείξετε ότι ν µι συνάρτηση f

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΓ ΓΔ

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΓ ΓΔ ΠΥΘΟΡΕΙΟ ΘΕΩΡΗΜ Στο διπλνό ορθοώνιο τρίωνο, έχουμε φέρει πλά το ύψος που κτλήει στην υποτείνουσ. Είνι προφνές ότι, με υτό τον τρόπο, το μεάλο ορθοώνιο τρίωνο χωρίστηκε σε δύο μικρότερ ορθοώνι, τ κι. Σε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α 1 ΣΚΗΣΙΣ ΠΝΛΗΨΗΣ 3 η Κ 1. Στο διπλανό σχήµα το τετράπλευρο παριστάνει µία τετράγωνη πλατεία και τα τετράπλευρα ΚΛΘ και ΗΜΡΖ παριστάνουν δύο κήπους. Η πλευρά του είναι 30m και η απόσταση των ΚΛ και ΡΜ είναι

Διαβάστε περισσότερα

1. Οµόλογες πλευρές : Στα όµοια τρίγωνα οι οµόλογες πλευρές βρίσκονται απέναντι από τις ίσες γωνίες και αντίστροφα.

1. Οµόλογες πλευρές : Στα όµοια τρίγωνα οι οµόλογες πλευρές βρίσκονται απέναντι από τις ίσες γωνίες και αντίστροφα. 1 1.5. ΟΜΟΙ ΤΡΙΩΝ ΘΩΡΙ 1. Όµοια τρίγωνα : ια τα όµοια τρίγωνα ισχύουν όλα όσα αναφέραµε στα όµοια πολύγωνα. 2. ποκλειστικά για τα τρίγωνα : ύο τρίγωνα είναι όµοια όταν έχουν δύο γωνίες ίσες ΣΧΟΛΙ 1. Οµόλογες

Διαβάστε περισσότερα

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1 ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.6 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΕΜΒΑΔΟΥ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.7 ΕΜΒΑΔΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ ΚΑΙ ΚΥΚΛΙΚΟΥ ΤΜΗΜΑΤΟΣ 11.8 ΤΕΤΡΑΓΩΝΙΣΜΟΣ ΚΥΚΛΟΥ ΘΕΩΡΙΑ 1 (Εμβαδόν κυκλικού δίσκου) Θεωρούμε

Διαβάστε περισσότερα

1.1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Κύρια στοιχεία τριγώνου : Είναι οι πλευρές του και οι γωνίες του. 2. Είδη τριγώνων από την άποψη των γωνιών : A

1.1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Κύρια στοιχεία τριγώνου : Είναι οι πλευρές του και οι γωνίες του. 2. Είδη τριγώνων από την άποψη των γωνιών : A 1 1.1 ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ ΘΕΩΡΙ 1. Κύρια στοιχεία τριγώνου : Είναι οι πλευρές του και οι γωνίες του 2. Είδη τριγώνων από την άποψη των γωνιών : A Οξυγώνιο τρίγωνο, όλες οι γωνίες οξείες B A µβλυγώνιο τρίγωνο,

Διαβάστε περισσότερα

Αν ο λόγος των καθέτων πλευρών ενός ορθογωνίου τριγώνου είναι 4, τότε ο λόγος των προβολών τους στην υποτείνουσα είναι α.2 β.4 γ. 16 δ.

Αν ο λόγος των καθέτων πλευρών ενός ορθογωνίου τριγώνου είναι 4, τότε ο λόγος των προβολών τους στην υποτείνουσα είναι α.2 β.4 γ. 16 δ. 1 9.1 9. σκήσεις σχολικού ιλίου σελίδς 185-186 ρωτήσεις κτνόησης 1. Έν ορθοώνιο τρίωνο ( ˆ ο 90 ) έχει 6 κι 8. Ποιο είνι το µήκος της διµέσου Μ ; + 6 + 6 100 10 κι Μ 5. ν ο λόος των κθέτων πλευρών ενός

Διαβάστε περισσότερα

Καλή Επιτυχία!!! ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

Καλή Επιτυχία!!! ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αµυραδάκη 0, Νίκαια (10-4903576) ΝΟΕΜΒΡΙΟΣ 011 ΘΕΜΑ 1 Ο Να αποδείξετε ότι, σε ένα ορθογώνιο τρίγωνο, το τετράγωνο µιας κάθετης πλευράς του ισούται µε το γινόµενο της υποτείνουσας επί την προβολή της στην

Διαβάστε περισσότερα

Λ υ μ ε ν ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1

Λ υ μ ε ν ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1 υ μ ε ν ε ς σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1 Προεκτεινουµε τις πλευρες και παραλληλογραμμου κατα τμηματα = και = αντιστοιχως. Να αποδειξετε οτι τα σημεια, και ειναι συνευθειακα. = παραλληλογραμμο

Διαβάστε περισσότερα

1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ

1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ Ερωτήσεις ανάπτυξης 1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: i. Το ύψος ΑΗ ii. Το ύψος ΒΚ. ** Σε ένα τετράγωνο ΑΒΓ ισχύει ΑΒ + ΑΓ = +. Να υπολογίσετε:

Διαβάστε περισσότερα

ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΒΟΛΗ -- ΕΛΛΕΙΨΗ -- ΥΠΕΡΒΟΛΗ

ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΒΟΛΗ -- ΕΛΛΕΙΨΗ -- ΥΠΕΡΒΟΛΗ ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΒΟΛΗ -- ΕΛΛΕΙΨΗ -- ΥΠΕΡΒΟΛΗ II.ΠΑΡΑΒΟΛΗ ΕΛΛΕΙΨΗ - ΥΠΕΡΒΟΛΗ Α. ΘΕΩΡΙΑ ΜΕΘΟ ΟΛΟΓΙΑ 1. Εύρεση Εξίσωσης Προλής

Διαβάστε περισσότερα

ENA ΣΧΗΜΑ ΜΕ ΕΝΔΙΑΦΕΡΟΥΣΕΣ ΠΡΟΕΚΤΑΣΕΙΣ. Κόσυβας Γιώργος. 1ο Πειραματικό Γυμνάσιο Αθηνών

ENA ΣΧΗΜΑ ΜΕ ΕΝΔΙΑΦΕΡΟΥΣΕΣ ΠΡΟΕΚΤΑΣΕΙΣ. Κόσυβας Γιώργος. 1ο Πειραματικό Γυμνάσιο Αθηνών Σ ENA ΣΧΗΜ ΜΕ ΕΝΙΦΕΡΟΥΣΕΣ ΠΡΟΕΚΤΣΕΙΣ Κόσυβς ιώργος ο Πειρμτικό υμνάσιο θηνών ε υτή την εργσί προυσιάζοντι ορισμένες ξιοσημείωτες πρτηρήσεις πάνω σε έν πλούσιο σχήμ, το οποίο επιτρέπει ποικίλες προσεγγίσεις

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Γεωμετρία - Τάξη Α

Γενικό Ενιαίο Λύκειο Γεωμετρία - Τάξη Α ενικό νιαίο Λύκειο εωμετρία - Τάξη 61 Θέματα εξετάσεων περιόδου Μαΐου-Ιουνίου στην εωμετρία Τάξη! Λυκείου ενικό νιαίο Λύκειο εωμετρία - Τάξη 6. Να αποδείξετε ότι διάμεσος τραπεζίου είναι παράλληλη προς

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ..7 Μέρος Β του σχολικού ιλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. Ν ρεθεί το εμδόν του χωρίου Ω που περικλείετι πό τη γρφική πράστση

Διαβάστε περισσότερα

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ 1 Ο. ΘΕΜΑ 2 Ο : Δίνεται ΑΒΓ ισοσκελές (ΑΒ=ΑΓ) τρίγωνο.αν ΒΔ και ΓΕ οι διχοτόμοι των γωνιών Β και

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ 1 Ο. ΘΕΜΑ 2 Ο : Δίνεται ΑΒΓ ισοσκελές (ΑΒ=ΑΓ) τρίγωνο.αν ΒΔ και ΓΕ οι διχοτόμοι των γωνιών Β και ΔΙΩΝΙΣΜ 1 Ο ΘΕΜ 1 Ο : ) Να αποδείξετε ότι : Το ευθύγραμμο τμήμα που ενώνει τα μέσα τα των δύο πλευρών τριγώνου είναι παράλληλο προς την τρίτη πλευρά και ίση με το μισό της.(13 μονάδες) ) Να χαρακτηρίσετε

Διαβάστε περισσότερα

ν ν = α 0 α β = ( ) β α = α ( α β)( α β)

ν ν = α 0 α β = ( ) β α = α ( α β)( α β) Γ ΓΥΜΝΑΣΙΟΥ ν 0 ν = 1 = β β ν 1= ν µ = ν + µ ν ν µ 1 µ = ν = ν ( ν ) µ ν ν = ν µ β = β ( β) ν = ν βν ν > 0 τότε 2 = β = β β = β Ιδιότητες υνάµεων ν > β τότε + γ > β+ γ. ν > β κι γ > δ τότε + γ > β+ δ.

Διαβάστε περισσότερα

(1) (2) A ΑE Α = AΒ (ΑΒΕ) (Α Ε)

(1) (2) A ΑE Α = AΒ (ΑΒΕ) (Α Ε) 9. Τα τρίγωνα και έχουν κοινή γωνία, άρα: () () A E AB A E A (1) Όµοια τα τρίγωνα και, άρα: () () A E AB A A () E Όµως από το θεώρηµα του Θαλή: A A () ( // ) () () πό (1), (), () έχουµε. () () Άρα () ()

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων

Διαβάστε περισσότερα

Απέναντι πλευρές παράλληλες

Απέναντι πλευρές παράλληλες 5. 5.5 ΘΩΡΙ. Παραλληλόγραµµο πέναντι πλευρές παράλληλες. Ιδιότητες παραλληλογράµµου πέναντι πλευρές ίσες πέναντι γωνίες ίσες Οι διαγώνιοι διχοτοµούνται Το σηµείο τοµής των διαγωνίων είναι κέντρο συµµετρίας

Διαβάστε περισσότερα

Δηλαδή, α ν = α α α α ν παράγοντες. Για δυνάμεις, με εκθέτες γενικά ακέραιους αριθμούς, ισχύουν οι επόμενες ιδιότητες. μ+ν. μ ν. α = μ ν. ν ν.

Δηλαδή, α ν = α α α α ν παράγοντες. Για δυνάμεις, με εκθέτες γενικά ακέραιους αριθμούς, ισχύουν οι επόμενες ιδιότητες. μ+ν. μ ν. α = μ ν. ν ν. 367 ΡΩΤΗΣΙΣ ΘΩΡΙΣ ΠΟ ΤΗΝ ΥΛΗ ΤΗΣ! ΤΞΗΣ 368 ΡΩΤΗΣΙΙΣ ΘΩΡΙΙΣ ΠΟ ΤΗΝ ΥΛΗ ΤΗΣ!! ΤΞΗΣ 1. Τι ονομάζετε δύνμη ν ; Ονομάζετι δύνμη ν με άση τον ριθμό κι εκθέτη το φυσικό ν > 1, το γινόμενο πό ν πράγοντες ίσους

Διαβάστε περισσότερα

Ερωτήσεις ανάπτυξης. β) Το Ε ΑΒΓ = 3Ε ΒΟΓ = 3 ΒΓ ΟΗ = = 2. Η κεντρική γωνία ω του κανονικού ν-γώνου δίδεται από τον τύπο:

Ερωτήσεις ανάπτυξης. β) Το Ε ΑΒΓ = 3Ε ΒΟΓ = 3 ΒΓ ΟΗ = = 2. Η κεντρική γωνία ω του κανονικού ν-γώνου δίδεται από τον τύπο: ρωτήσεις ανάπτυξης. α) πό το ορθογώνιο τρίγωνο, έχουµε: - () λλά R, R, αφού η γωνία 0. () γίνεται: (R) - R R - R R Άρα R cm H πλευρά α του ισοπλεύρου τριγώνου είναι α 6 cm. β) Το 6 7 cm. B A H O. κεντρική

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Θέµ ο Α) Ν χρκτηρίσετε τις πρκάτω ερωτήσεις ως σωστές (Σ) ή άθος (Λ): I) Αν ( γ) //γ, τότε ( γ) // II) Αν γ, τότε γ III) Το συµµετρικό του σηµείου Μ (,5) ως

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό

Διαβάστε περισσότερα

5.10 5.11. 2 η ιδιότητα της διαµέσου. 4. Ορισµός Ισοσκελές τραπέζιο λέγεται το τραπέζιο του οποίου οι µη παράλληλες πλευρές είναι ίσες.

5.10 5.11. 2 η ιδιότητα της διαµέσου. 4. Ορισµός Ισοσκελές τραπέζιο λέγεται το τραπέζιο του οποίου οι µη παράλληλες πλευρές είναι ίσες. 5.0 5. ΘΕΩΡΙ. Ορισµοί Τραπέζιο λέγεται το τετράπλευρο που έχει µόνο δύο πλευρές παράλληλες. άσεις τραπεζίου λέγονται οι παράλληλες πλευρές του. Ύψος τραπεζίου λέγεται η απόσταση των βάσεων. ιάµεσος τραπεζίου

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ

ΜΑΘΗΜΑ ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΜΑΘΗΜΑ 6. ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ Θεωρί Μέθοδος Ασκήσεις ΘΕΩΡΙΑ. Ορισµός. Έστω συνάρτηση y f( πργωγίσιµη στο. Ρυθµός µετβολής του y ως προς στο σηµείο λέγετι η πράγωγος f ( κι Ρυθµός µετβολής του y ως προς λέγετι

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5) θ) (5 + ) + 5 = (...).(...) ι) + (5 ) 5 = (...).(...) (Μονάδες 7) Θέμ ο ) Ν πργοντοποιήσετε την πράστση 5 0 (Μονάδες ) β) Ν λύσετε την εξίσωση 7 = (0 + ) (Μονάδες,5) Θέμ ο Ν πργοντοποιήσετε τις πρστάσεις

Διαβάστε περισσότερα

τετραγωνικό εκατοστόµετρο 1 cm 2 1 10000 m2 =

τετραγωνικό εκατοστόµετρο 1 cm 2 1 10000 m2 = 3.5 ΜΟΝΑ ΕΣ ΜΕΤΡΗΣΗΣ ΘΕΩΡΙΑ. Μονάδες µέτρησης µήκους Βσική µονάδ το µέτρο. Συµβολίζετι m Υποδιιρέσεις του µέτρου : δεκτόµετρο dm = 0 m = 0, m Πολλπλάσιο του µέτρου : εκτοστόµετρο cm = 00 m = 0,0 m χιλιοστόµετρο

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου

Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου Θέµα 1 Α. Να υπολογίσετε την πλευρά λ και το απόστηµα α τετραγώνου εγγεγραµµένου σε κύκλο (Ο, R) συναρτήσει της ακτίνας R (10 Μονάδες) Β. Να χαρακτηρίσετε τις

Διαβάστε περισσότερα

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i.

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i. . Πολυώνυμ η Μορφή Ασκήσεων: Ασκήσεις στις βσικές έννοιες του πολυωνύμου. Ποιες πό τις πρκάτω πρστάσεις είνι πολυώνυμ του i. ii. iii. iv. v. vi. 5 Σύμφων με τον ορισμό πολυώνυμ του είνι οι πρστάσεις i,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΚΑΙ ΘΕΩΡΗΜΑΤΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΚΑΙ ΘΕΩΡΗΜΑΤΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΚΑΙ ΘΕΩΡΗΜΑΤΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ. Από τη κορυφή Β τριγώνου Γ φέρουµε ευθεί κάθετη στη διχοτόµο της Aεξ, η οποί τέµνει τη διχοτόµο υτή στο κι την προέκτση της ΓΑ στο Ε. Αν Μ µέσον της ΒΓ ν δειχθεί

Διαβάστε περισσότερα

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες. ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΑ ΓΙΑ ΤΟΝ ΔΙΑΓΩΝΙΣΜΟ «ΘΑΛΗΣ» ΤΑΞΗ Α ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ 1. Μεσοκάθετος ενός ευθύγραμμου τμήματος ΑΒ ονομάζεται η ευθεία που είναι κάθετη

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ. γ < ΟΑ + ΟΒ ΜΓ< ΟΜ + ΟΓ γ + ΜΓ < ΟΑ + ΟΒ + ΟΜ + ΟΓ γ + ΜΓ < (ΟΑ + ΟΓ) + (ΟΜ + ΟΒ) γ + ΜΓ < ΑΓ + ΜΒ γ + ΜΓ < β + ΜΒ

ΑΣΚΗΣΕΙΣ. γ < ΟΑ + ΟΒ ΜΓ< ΟΜ + ΟΓ γ + ΜΓ < ΟΑ + ΟΒ + ΟΜ + ΟΓ γ + ΜΓ < (ΟΑ + ΟΓ) + (ΟΜ + ΟΒ) γ + ΜΓ < ΑΓ + ΜΒ γ + ΜΓ < β + ΜΒ 3.0 3. ΘΕΩΡΙ. νισοτικές σχέσεις σε τρίωνο Κάθε εξωτερική ωνί τριώνου είνι µελύτερη πό τις πένντι εσωτερικές. πένντι πό άνισες πλευρές βρίσκοντι άνισες ωνίες κι ντίστροφ. Τριωνική νισότητ : β < < β + (υποτίθετι

Διαβάστε περισσότερα

5 η εκάδα θεµάτων επανάληψης

5 η εκάδα θεµάτων επανάληψης 5 η εκάδα θεµάτων επανάληψης 4. ίνεται παραλληλόγραµµο και έστω, Μ τα µέσα των και αντίστοιχα Οι προεκτάσεις των τµηµάτων Μ και τέµνονται στο Ζ. Να αποδείξετε ότι Τα τρίγωνα Μ και ΜΖ είναι ίσα i Το τετράπλευρο

Διαβάστε περισσότερα

Ασκήσεις για τις εξετάσεις Μάη Ιούνη στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ

Ασκήσεις για τις εξετάσεις Μάη Ιούνη στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ Ασκήσεις για τις εξετάσεις Μάη Ιούνη 014 στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ Άσκηση 1 η Δίνεται παραλληλόγραμμο ΑΒΓΔ και. Με διάμετρο τη διαγώνιο ΑΓ γράφουμε κύκλο με κέντρο Ο που τέμνει τη ΓΔ στο

Διαβάστε περισσότερα

, οπότε α γ. y x. y y άξονες. τα σημεία της υπερβολής C βρίσκονται έξω από την ταινία των ευθειών x α

, οπότε α γ. y x. y y άξονες. τα σημεία της υπερβολής C βρίσκονται έξω από την ταινία των ευθειών x α YΠΡΒΛΗ ρισμός: Υπερολή με εστίες κι λέγετι ο γεωμ. τόπος των σημείων του επιπέδου των οποίων η πόλυτη τιμή της διφοράς των ποστάσεων πό τ κι είνι στθερή κι μικρότερη του Έ. Τη στθερή υτή διφορά τη συμολίζουμε

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 08/04/10

ΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 08/04/10 ΥΣΙΣ ΙΑΩΝΙΣΜΑ ΩΜΤΡΙΑ Α ΥΚΙΟΥ ΘΜΑ ο 08/04/0 Α. Να αποδείξετε ότι η διάµεσος ορθογωνίου τριγώνου που φέρουµε από την κορυφή της ορθής γωνίας είναι ίση µε το µισό της υποτείνουσας. Θεωρία σχολικό βιβλίο σελ.09

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ ΜΕΡΟΣ ΚΕΦΛΙΟ 1 Ο ΕΩΜΕΤΡΙ 1.1 ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ 1. Ποια ονομάζονται κύρια και ποια δευτερεύοντα στοιχεία τριγώνων; Κύρια στοιχεία ενός τριγώνου ονομάζουμε τις πλευρές και τις γωνίες του. Δευτερεύοντα στοιχεία

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής - Τεχνολογικής κατεύθυνσης Γ Λυκείου

ΜΑΘΗΜΑΤΙΚΑ Θετικής - Τεχνολογικής κατεύθυνσης Γ Λυκείου ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΣΤΡΙΤΣΙΟΥ ΕΠΙΜΕΛΕΙΑ: Κωνστντόπουλος Κων/νος Μθημτικός ΜSc ΜΑΘΗΜΑΤΙΚΑ Θετικής - Τεχνολογικής κτεύθυνσης Γ Λυκείου ΑΠΑΝΤΗΣΕΙΣ -ΥΠΟΔΕΙΞΕΙΣ ΤΟΥ ου ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΘΕΜΑ Α Α. (i) Βλέπε σχολικό

Διαβάστε περισσότερα

9.4. Ασκήσεις σχολικού βιβλίου σελίδας 194. Ερωτήσεις κατανόησης. Στο παρακάτω σχήµα να συµπληρώσετε τα κενά Λύση

9.4. Ασκήσεις σχολικού βιβλίου σελίδας 194. Ερωτήσεις κατανόησης. Στο παρακάτω σχήµα να συµπληρώσετε τα κενά Λύση 1 9.4 σκήσεις σχολικού βιβλίου σελίδς 194 Ερωτήσεις κτνόησης 1. Στο πρκάτω σχήµ ν συµπληρώσετε τ κενά Ε i) = + +. ii) = + +.Ε. Ν βρεθεί το είδος των ωνιών του τριώνου ότν i) β = + ii) = β iii) β = i) β

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» Η συνάρτηση f() =, 0 Υπερβολή Δύο ποσά λέγοντι ντιστρόφως νάλογ, εάν μετβάλλοντι με τέτοιο τρόπο, που ότν οι τιμές του ενός πολλπλσιάζοντι με ένν ριθμό, τότε κι οι ντίστοιχες τιμές του άλλου ν διιρούντι

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Γ! ΤΑΞΗΣ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Γ! ΤΑΞΗΣ 78 ΡΩΤΗΣΙΣ ΘΩΡΙΣ ΠΟ ΤΗΝ ΥΛΗ ΤΗΣ! ΤΞΗΣ 1. Τι ονοµάζετε δύνµη ν ; Ονοµάζετι δύνµη ν µε άση τον ριθµό κι εκθέτη το φυσικό ν > 1, το γινό- µενο πό ν πράγοντες ίσους µε. Ορίζουµε κόµ ότι: 1 0 1 µε 0 - ν. Ποιες

Διαβάστε περισσότερα