Advanced Statistics. Chen, L.-A. Distribution of order statistics: Review : Let X 1,..., X k be random variables with joint p.d.f f(x 1,...

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Advanced Statistics. Chen, L.-A. Distribution of order statistics: Review : Let X 1,..., X k be random variables with joint p.d.f f(x 1,..."

Transcript

1 Avace Statistics Che, L.-A. Distributio of orer statistics: Review : Let X,..., X k be raom variables with joit p..f f(x,..., x k a Y h (X,..., X k, Y h (X,..., X k,..., Y k h k (X,..., X k be - trasformatio with iverse fuctios x w (y,..., y k, x w (y,..., y k,..., x k w k (y,..., y k. The the joit p..f of Y,..., Y k is f Y,...,Y k (y,..., y k f(w (y,..., y k,..., w k (y,..., y k J with Jacobia w w y y k J.. w w y y k Orer statistics are ot - trasformatios. Suppose that we have raom variables X, X.Orer statistics are Y mi{x, X }, Y max{x, X } If Y,..., Y k are ot - trasformatios, we may partitio the space R k ito Y. Y k sets A,..., A m such that A j B is a - trasformatio. There are jacobias J,..., J m such that the the joit p..f of Y,..., Y k is m y f Y,...,Y k (y,..., y k f(x,..., x J j,. B j y k Let X,..., X be a raom sample from a cotiuous istributio with p..f f(x, a < x < b. We cosier orer statistics Y mi{x,..., X },..., Y max{x,..., X } that satisfies Y Y Y. We call Y i the ith orer statistic of raom sample X,..., X. Thm. The joit p..f of Y,..., Y is {!f(y f(y f Y,...,Y (y,..., y f(y if a < y < y < < y < b 0 otherwise.

2 Proof. We cosier case 3 oly. We have X, X, X 3 f(x, a < x < b, the joit p..f of X, X, X 3 is f(x, x, x 3 f(x f(x f(x 3, a < x i < b, i,, 3. X The space of X is X 3 X A { X : a < x i < b, i,, 3} X 3 Cosier the partitios: X A { X : a < x < x < x 3 < b}, x y, x y, x 3 y 3 X 3 X A { X : a < x < x < x 3 < b}, x y, x y, x 3 y 3 X 3 X A 3 { X : a < x < x 3 < x < b}, x y, x y 3, x 3 y X 3 X A 4 { X : a < x < x 3 < x < b}, x y 3, x y, x 3 y X 3 X A 5 { X : a < x 3 < x < x < b}, x y, x y 3, x 3 y X 3 X A 6 { X : a < x 3 < x < x < b}, x y 3, x y, x 3 y X 3 Each set A j forms a - trasformatio, i.e. Y Y Y 3 A j { y y y 3 : a < y < y < y 3 < b}

3 Jacobias: 0 0 J , J , J J , J , J 6 The joit p..f of Y, Y, Y 3 is , f Y,Y,Y 3 (y, y, y 3 f(y f(y f(y 3 + f(y f(y f(y 3 + f(y f(y 3 f(y + f(y 3 f(y f(y + f(y f(y 3 f(y + f(y 3 f(y f(y 6f(y f(y f(y 3 3!f(y f(y f(y 3 Let Y,..., Y be the orer statistics for a raom sample X,..., X from a cotiuous istributio with p..f f(x, a < x < b. The the joit p..f of Y,..., Y k is f Y,...,Y (y,..., y!f(y f(y f(y, a < y < y < < y < b Note: If a < x < b, the { b f(xx F y (x b y F (b F (y F (y y f(xx F a (x y a F (y F (a F (y where F is the.f. of X. Thm. (a The margial p..f of Y is (b The margial p..f of Y is (c The margial p..f of Y j is f Yj (y j f Y (y ( F (y f(y, a < y < b f Y (y (F (y f(y, a < y < b! (j!( j! (F (y j j ( F (y j j f(y j, a < y j < b 3

4 ( For j < k, the joit p..f of Y j a Y k is f Yj,Y k (y j, y k! (j!(k j!( k! (F (y j j (F (y k F (y j k j ( F (y k k f(y j f(y k, a < y j < y k < b Proof. Margial p..f of Y is f Y (y!!!! b b y b b y b b y b b y b y y y y b y f(y f(y f(y y y b y f(y f(y f(y! ( F (y y y b y 3 f(y f(y f(y! ( F (y y y b y 4 f(y f(y f(y 3 3! ( F (y 3 3 y 3 y! f(y f(y y (! ( F (y y! (! f(y ( F (y ( F (y f(y Margial p..f of Y is f Y (y!!! y a y a y a y3 a y3 a y4 a y a f(y f(y f(y y y f(y f(y F (y y y f(y 3 f(y! (F (y 3 y 3 y y! f(y f(y a (! (F (y y!f(y (! (F (y (F (y f(y 4

5 Margial p..f of Y j is b b b yj y f Yj (y j! f(y f(y y y j y y j+ y j y y a a!f(y j (j! (F (y j j ( j! ( F (y j j! (j!( j! (F (y j j ( F (y j j f(y j, a < y j < b Joit p..f of Y j a Y k is yj y yk yk b b b f Yj,Y k (y j, y k! f(y f(y a a y j y k y k y y y y y k+ y k y j+ y y j! (j!(k j!( k! (F (y j j (F (y k F (y j k j ( F (y k k f(y j f(y k, where a < y j < y k < b t-istributio { Z N(0, V χ (r iep. We say that T Z V r Wat the p..f of T. has a t-istributio with.f. r a eote T t(r. Proof. The joit p..f of Z a V is f Z,V (z, v π e z Cosier the trasformatio T ( z A { v ( t For u Γ( r v r r e v, z R, v > 0 Z V r, U V. T ( U t : < z <, v > 0} B { : < t <, u > 0} u B, we have v u, z ut r,uique solutio implies a - trasformatio. Iverse fuctio v u, z ut 5 r.

6 Jacobia is J z t v t z u v u The joit p..f of T a U is ut u f T,U (t, u f Z,V (, u r r u r u t r 0 u r e u r t π Γ( r r The p..f of T is f T (t u r e u u r πγ( r e r u(+ t r u r+, < t <, u > 0 r πγ( r r r ( Let H U( + T 0 r, u πγ( r r r 0 r+ Γ( r+ u r+ e u(+ t r u h + t r h r+ ( + t r+ r, u h + t r h e πγ( r r r ( + t r+ r 0 Γ( r+ πrγ( r ( + t, < t < r+ r + t r Γ( r+ r+ h h r+ e h h X Gamma(α, β if f(x Γ(αβ α xα e x β, x > 0 If β, we let α r, the X χ (r. If X χ (r, the f(x Γ( r x r r e x, x > 0 We ee several covergece theorem for use i costructig C.I. Thm. (a Cetral Limit Theorem ( CLT If X,..., X is a raom sample with mea µ a variace σ <, the X µ σ/ N(0, 6

7 (b Weak Law of Large Numbers ( WLLN If X,..., X are raom variables with mea µ a variace σ <, the X P µ Thm. If Y P P a, the g(y g(a for ay cotiuous fuctio g. Thm. Slutsky s theorem P If X X a Y a, the Cocept of C.I. : X ± Y X Y X Y X ± a ax X, if a 0. a (asuppose that P (X A 0.9. If we observe X may times with x,..., x of large, the there are about umber 0.9 obs. x is such that x i A. (b If (t (X,..., X, t (X,..., X is a 90% C.I. for θ,the we have about umber 0.9 obs.(t, t such that θ (t, t whe we observe (t, t may times (sayig times. Note: (a The ormal approximatio by CLT ca be applie o ay istributio f(x, θ, ormal or ot, whe is large ( 30 (b Why covergece i istributio? If X N(0,,the P (a X b F X (b F X (a F Z (b F Z (a P (a Z b Approximate C.I.: ( Let X,..., X be a raom sample from f(x with mea µ a variace σ, where f ca be ormal or ot. The X µ s/ X µ σ/ σ s N(0, I N(0, by Slutsky s theorem. 7

8 We have Here, (X z α µ. α P ( z α Z z α P ( z α X µ s/ z α P (X z α s, X + z α s µ X + z α s s is a approximate 00( α% C.I. for ( Let Y b(, p. If X,..., X are Beroulli(p, the Y X i. Let ˆp Y. We have The ˆp p ˆp( ˆp We have ˆp p Here, (ˆp z α C.I. for p. ˆp Y ˆp p p( p p( p X i X X p p( p p( p ˆp( ˆp P p by WLLN. N(0, by CLT. α P ( z α Z z α P ( z α ˆp p P (ˆp z α ˆp( ˆp ˆp( ˆp, ˆp + z α N(0, I N(0, by Slutsky s theorem. p ˆp + z α ˆp( ˆp z α ˆp( ˆp ˆp( ˆp is a approximate 00( α% Example: Y b(, p. 00, y 0. Wat a 95.4% for p. z 0.03 A 95.4% C.I for p is approximately as ( 0 z , 0 + z (0.,

9 C.I. for σ or σ: Let X,..., X be a raom sample from N(µ, σ where µ a σ are ukow. We have Let χ α The ( s a χ α Here, ( ( s χ α α P ( C.I for µ : σ χ (, where s, ( s (X i X satisfy α P (χ ( χ α P (χ ( χ. α α P (χ α P (χ α ( s P ( χ α χ ( χ α ( s χ σ α σ ( s χ α is a approximate 00( α% C.I. for σ. χ α ( s σ sice all is positive. χ α ( s χ α (a X,..., X N(µ, σ0 where σ0 is kow. Pivotal quatity: Z X µ σ 0 N(0, (b X,..., X N(µ, σ Pivotal quatity: T X µ s t( (c X,..., X f(x with mea µ, is large ( 30. Pivotal quatity: X µ s N(0, C.I. for σ : X,..., X N(µ, σ Pivotal quatity: ( s χ (. σ Cofiece Iterval for Differece of Meas : Case I : { X,..., X N(µ x, σx iep. a σx, σ Y,..., Y m N(µ y, σy y are kow. 9

10 { X N(µ x, σ x Y N(µ y, σ y m iepeet So, X Y N(µ x µ y, σ x + σ y m Z (X Y (µ x µ y N(0, σ x + σ y m α P ( z α Z z α P ( z α (X Y (µ x µ y σ x + σ y m z α P (X Y z α A 00( α% C.I. for µ x µ y is σ (X Y z α x + σ y, X Y + z σ α x m + σ y m σ x + σ y σ m µ x µ y X Y + z α x + σ y m X,..., X f(x, θ Q h(x,..., X, θ is a pivotal quatity if it has a istributio free of parameter θ a, b s.t. α P θ (a Q b, θ We wat a pivotal quatity with α P (a Q b P (t (x,..., x θ t (x,..., x Case II : Variaces are ukow but they are equal. { X,..., X N(µ x, σ iep. a σ is ukow. Y,..., Y m N(µ y, σ X N(µ x, σ ( s x χ ( σ Y N(µ y, σ iep. where m (m s y χ (m σ { X Y N(µx µ y, σ ( + m ( s x +(m s y σ χ ( + m 0 s x s y m iep. (X i X m (Y i Y

11 The T (X Y (µ x µ y σ + m ( s x +(m s y σ (+m (X Y (µ x µ y ( s x +(m s y +m + m t( + m We have α P ( t α T z α P ( t α P (X Y t α X Y + t α (X Y (µ x µ y ( s x + (m s y + m ( s x + (m s y + m A 00( α% C.I. for µ x µ y is ( s (X Y t x+(m s y α +, X Y + t α +m m ( s x +(m s y +m + m + m µ x µ y + m t α ( s x+(m s y + +m m Example: 0, m 7, X 4., Y 3.4, ( s x 490, (m s y 4, t 0.05 (5.753 A 90% C.I. for µ x µ y is ( ( 5.6, , Chapter Testig Hypothesis Let X,..., X be a raom sample from f(x, θ where θ is ukow. Def. A statistical hypothesis is a cojecture about ukow parameter θ. If it specifies a sigle value for θ, it is calle a simple hypothesis, otherwise, it is a composite hypothesis. Example : H : θ θ 0 is a simple hypothesis. H : θ θ 0, H : θ θ 0, H : θ θ θ are all composite hypothesis. There are two hypothesis, oe calle the ull hypothesis a oe calle the alterative hypothesis.

12 Def. The ull hypothesis, eote by H 0, is a hypothesis that we will reject it oly if the ata reveal strogly that it is ot true. The alterative hypothesis, eote by H, is the hypothesis alterative to the ull hypothesis. We ofte wat to see if a ew prouct (rug, maufacturig process a fertilizer is fuctioig better tha the ol prouct. The hypothesis H 0 a H are both cocerig the quatity of ew prouct as H 0 : the ew prouct is ot better tha the ol prouct. vs. H : the ew prouct is better tha the ol prouct. Oce the hypotheses are set, we ee to o experimet o the ew prouct to geerate a raom sample to efie a test for hypotheses. Def. A test is a rule eciig whether to reject or ot to reject the ull hypothesis. Usually, a test specifies a subset C of the sample space of the raom sample X,..., X that we reject H 0 if the observatio (x,..., x falls i C a o ot reject H 0 if (x,..., x oes ot fall i C. This subset C is calle the critical regio or the rejectio regio. For ay test, there are two possible errors that may occur: Type I error : H 0 is true but we reject H 0. Type II error : H is true but we o ot reject H 0. Def. The power fuctio π c (θ of critical regio C is the probability of rejectig H 0 whe θ is true. Let X,..., X be a raom sample a we cosier a test with critical regio C. The power fuctio is π c (θ P (reject H 0 : θ is true P ( X. X C : θ is true Example : X score of a test N(θ, 00. The past experiece iicates θ 75. Wat to test hypothesis H 0 : θ 75 vs. H : θ > 75 sol : Let X,..., X 5 be a raom sample from N(θ, 00 a we cosier critical regio C {X : X > 75} { X. X 5 : 5 5 X i > 75}.

13 The power fuctio is π C (θ P (X > 75 : θ P ( X θ > 75 θ P (Z > 75 θ P (Z 75 θ where X N(θ, 00 N(θ, 4. 5 π C (75 0.5, π C ( , π C ( If we choose critical regio C {X : X > 78}. Power fuctio is π C (θ P (X > 78 : θ P (Z 78 θ π C ( Def. The size of a test with critical regio C is the maximum of the probability of type I error, i.e. sizemax θ H 0 π c (θ The rule for choosig critical regio is fixig a sigificace level α a fi the test amog class of tests with size α that miimize the probability of type II error. (Usually we let α 0.0 or 0.05 Def. Cosier simple hypothesis H 0 : θ θ 0 vs. H : θ θ. We say that the test with critical regio C is a most powerful (MP test of sigificace level α if, for every set A with P ((X,..., X A : H 0 α, the followigs hol: (a P ((X,..., X C : H 0 π c (θ 0 α (b P ((X,..., X C : H P ((X,..., X A : H, i.e. π c (θ π A (θ We also call C the MP critical regio of sigificace level α. Let X,..., X be a raom sample from a istributio with p..f f(x, θ Joit p..f : f(x,..., x, θ f(x i, θ fuctio of x,..., x Likelihoo fuctio: L(θ, x,..., x f(x i, θ fuctio of θ The likelihoo fuctio is L(θ, x,..., x f(x i, θ 3

14 A ratio of two likelihoo as L(θ 0, x,..., x L(θ, x,..., x is calle the likelihoo ratio. We will erive the MP test through this likelihoo ratio. Thm. Neyma-Pearso Theorem Cosier the simple hypothesis H 0 : θ θ 0 vs. H : θ θ. Let C be the critical regio with k > 0 such that (a L(θ 0, x,..., x L(θ, x,..., x (b L(θ 0, x,..., x L(θ, x,..., x k, for k, for x. x x. x C / C (cα P ((X,..., X C : H 0 α The C is the MP critical regio of sigificace level α. Proof. Note that, for ay set B, P ((X,..., X B : θ sayig B C L(θ 0 f(x,..., x, θx x L(θ, x,..., x x x L(θ Let A be a critical regio with L(θ A 0 α. We wat to show that L(θ C L(θ A Now L(θ L(θ L(θ + L(θ ( C A C A C A c L(θ L(θ C A c A C c A C L(θ + L(θ A C c 4

15 C For For x. x x. x C, L(θ 0 L(θ k L(θ k L(θ 0 C c, L(θ 0 L(θ k L(θ k L(θ 0 L(θ L(θ L(θ 0 L(θ 0 A k C A k c A C c k C A [ L(θ 0 + L(θ 0 ( L(θ 0 + c C A A C c k [ L(θ 0 L(θ 0 ] 0 c A A C L(θ 0 ] Note: MP critical regio is C { x. x : L(θ 0, x,..., x L(θ, x,..., x k} s.t. α P ((X,..., X C : θ θ 0 P ( L(θ 0, x,..., x L(θ, x,..., x k : θ θ 0 You ee to kow istributio of L(θ 0, x,..., x L(θ, x,..., x With Neyma-Pearso theorem, a test with critical regio C { x. x : L(θ 0, x,..., x L(θ, x,..., x k} s.t. α P ( L(θ 0, x,..., x L(θ, x,..., x k : θ θ 0 is a MP test with sigificace level α. Ufortuately, the istributio of L(θ 0, x,..., x is geerally ukow a the costat k is ot available. L(θ, x,..., x Suppose that, for givig k, there exists c such that L(θ 0, x,..., x L(θ, x,..., x k iff either u(x,..., x c or u(x,..., x c 5

16 a we kow the istributio of u(x,..., X, the the test with critical regio C { x. x : u(x,..., x c} s.t. α P (u(x,..., X c : θ θ 0 is a MP test with sigificace level α. Example: X,..., X N(θ, Cosier simple hypothesis H 0 : θ 0 vs. H : θ Wat the MP test with sigificace level α. sol: Likelihoo fuctio is L(θ, x,..., x e (x i θ (π e π (π e [ L(θ 0, x,..., x L(θ, x,..., x (π e MP critical regio is C {x c}. s.t. x i θ x i +θ ] (π e [ (x i θ e [ x i θ 0 x i +θ0 ] x i + x i θ x i +θ ] k x i + l k x i l k x ( l k c α P (type I error P (reject H 0 : H 0 P (X c : θ 0 P ( X 0 c 0 : θ 0 P (Z c 6

17 c z α c z α The MP critical regio with sigificace level α is C {x zα } Example : X,..., X Poisso(λ H 0 : λ 0 vs. H : λ sol: The likelihoo fuctio is L(λ, x,..., x L(λ 0, x,..., x L(λ, x,..., x 0 x i e 9 k λ x i e λ ( x i l 0 9 l k x i! 0 x ie 0 x i! x ie x i! λ x i e λ x i! 0 x i e 9 k x i (l k + 9 c l 0 The MP critical regio with sigificace level α is C { x i c} where c satisfies α P (Y x i c : λ 0 c (0 y e 0 y0 y! Hypothesis H 0 : θ θ 0 vs. H : θ θ is equivalet to the hypothesis H 0 : X f(x, θ 0 vs. H : X f(x, θ The we ca solve MP critical regio for hypothesis H 0 H : X f (x : X f (x vs. Example: X,..., X with p..f f(x, where f is ukow. Cosier hypothesis { e x 0,,, H 0 : X f (x x! 0 elsewhere. { ( vs. H : X f (x x x 0,,, 0 elsewhere. 7

18 sol: L(f (x, x,..., x L(f (x, x,..., x e x i! ( x i x i e xi! x i e k x i! ( x i l l( x i! c The MP critical regio is C {( x i l l( x i! c} where c satisfies α P (( x i l l( x i! c : f f (x Cosier testig the hypothesis H 0 : θ θ 0 vs. the composite hypothesis H : θ {θ, θ }. Cosierig sigificace level α, we ca costruct two MP critical regios with sigificace level α for simple hypothesis as follows: Hypothesis MP critical regio with sigificace level α H 0 : θ θ 0 vs. H : θ θ C H 0 : θ θ 0 vs. H : θ θ C If C C, we call C C C the uiformly most powerful (UMP critical regio with sigificace level α for simple hypothesis H 0 : θ θ 0 vs. composite hypothesis H : θ {θ, θ }. Suppose that C C, we say that the UMP test or UMP critical regio oes t exists. Def. A test with critical regio C is calle a UMP test with sigificace level α for testig simple hypothesis H 0 : θ θ 0 vs. composite hypothesis H : θ Θ, if, for θ Θ, C is MP critical regio with sigificace level α for H 0 : θ θ 0 vs. H : θ θ Usually UMP test exists for the followig hypothesis: (ah 0 : θ θ 0 vs. H : θ > θ 0 (Oe sie hypothesis 8

19 (bh 0 : θ θ 0 vs. H : θ < θ 0 (Oe sie hypothesis Usually UMP test oes t exist for hypothesis H 0 : θ θ 0 vs. H : θ θ 0 (Two sie hypothesis Example: X,..., X N(µ,, H 0 : µ 0 vs. H : µ > 0. Let µ > 0. Cosier simple hypothesis H 0 : µ 0 vs. H : µ µ. sol: By Nayma-Pearso theorem, L(µ 0, x,..., x L(µ µ, x,..., x π e x i π e (x i µ e µ xi + µ k µ x i + µ l k µ e x i e [ x i µ x i +µ ] x i l k µ where µ < 0 for µ > 0 x i (l k µ µ x c uer H 0 α P ( x c : H 0 P (Z c c z α MP critical regio for H 0 : µ 0 vs. H : µ µ is C { x z α } This hols for every µ µ. Hece C { x z α } is UMP critical regio with sigificace level α for H 0 : µ 0 vs. H : µ > 0. Example: X,..., X N(0, σ, H 0 : σ vs. H : σ <. Let θ <. Cosier simple hypothesis H 0 : σ vs. H : σ θ. 9

20 sol: L(σ, x,..., x L(σ θ, x,..., x π e x i πθ e x i θ e x i x i θ e θ θ e ( θ x i k ( θ x i l(θ k where ( θ > 0 for θ < x i ( l(θ k c θ Xi H 0 χ ( MP critical regio for hypothesis H 0 : σ vs. H : σ θ with sigificace level α is C { x i χ α(} This hols for every σ θ <. Hece C is the UMP critical regio for hypothesis H 0 : σ vs. H : σ <. Example: X,..., X Poisso(λ. Hypothesis H 0 : λ vs. H : λ. Show that UMP test with sigificace level α oes t exist. You ee to fi λ a λ such that MP tests for H 0 : λ vs. H : λ λ a H 0 : λ vs. H : λ λ are ifferet. sol: Let λ 0. Cosier hypothesis H 0 : λ vs. H : λ λ 0. The likelihoo fuctio is L(λ, x,..., x λ x i e λ x i! λ x i e λ x i! 0

21 By Neyma-Pearso theorem, L(λ, x,..., x L(λ λ 0, x,..., x λ e xi 0 e λ 0 x i λ0 ke λ 0 x i l λ 0 l(ke λ 0 x i ( l λ 0 l(ke λ 0 k If λ 0 >, the l λ 0 < 0. x i l λ 0 l(ke λ 0 k MP critical regio for H 0 : λ vs. H : λ λ 0 is C { x i k } s.t. α P ( X i k : λ If λ 0 <, the l λ 0 < 0. x i l λ 0 l(ke λ 0 k MP critical regio for H 0 : λ vs. H : λ λ 0 is C { x i k } s.t. α P ( X i k : λ C C UMP test oes t exist. There are several types of hypothesis that we ee to treat them i ifferet ways: A : H 0 : θ θ 0 vs.h : θ θ (simple hypothesis the MP test always exists by Neyma-Pearso theorem. A : H 0 : θ θ 0 vs.h : θ > θ 0 or H 0 : θ θ 0 vs.h : θ < θ 0 the UMP test exists for some istributio. A3 : H 0 : θ θ 0 vs.h : θ θ 0 the UMP test geeral oes t exist.

22 A4 : Suppose that we have composite hypothesis H 0 : θ θ 0 vs. H : θ > θ 0 or H 0 : θ θ 0 vs. H : θ < θ 0 (Oe sie test the UMP test exists for some special istributios. A5 : Geeral hypothesis H 0 : θ Θ 0 vs. H : θ / Θ 0 If there is o UMP test, we will cosier likelihoo ratio test. We ow cosier UMP tests for oe sie hypothesis: A test with critical regio C has power fuctio. π c (θ P ((X,..., X C : θ is true If the hypothesis is H 0 : θ Θ 0 vs. H : θ / Θ 0, the size of the test is sup θ Θ 0 π c (θ Def. Cosier composite hypothesis H 0 : θ Θ 0 vs. H : θ / Θ 0. A test with critical regio C is calle a UMP test with sigificace level α if it satisfies (a sup θ Θ 0 π c (θ α. (b Ay critical regio C with size α satisfies π c (θ π c (θ, θ / Θ 0. Deote L(θ, x,..., x the likelihoo fuctio of a raom sample X,..., X from p..f f(x, θ. Def. A family of esities {f(x, θ : θ Θ} is sai to have a mootoe likelihoo ratios if, for θ < θ, there exists a statistic T t(x,..., X such that the likelihoo ratio L(θ, x,..., x L(θ, x,..., x h(t is either oicreasig or oecreasig i T. If X with a istributio has a mootoe likelihoo ratio a hypothesis is oe sie, the it has UMP test. Iea of UMP test:

23 L(θ L(θ h(t i T i T Larger T θ (small is more reliable. Smaller T θ (large is more reliable. If H : θ < θ 0, c {T t 0 } If H : θ > θ 0, c {T t 0 } Larger T θ (large is more reliable. Smaller T θ (small is more reliable. If H : θ < θ 0, c {T t 0 } If H : θ > θ 0, c {T t 0 } We will say that the test followig this rule is UMP test if mootoe likelihoo ratio exists. Note: Whe there is mootoe likelihoo ratio (MLR, the UMP test has mootoe power fuctio. If H 0 : θ θ 0, π c (θ is. If H 0 : θ θ 0, π c (θ is. Thm. Suppose that the family of esities has a MLR i a statistic T t(x,..., X, (acosier hypothesis H 0 : θ θ 0 vs. H : θ > θ 0 (oe sie hypothesis If the LR L(θ h(t is oecreasig i T, the the UMP critical regio L(θ with sigificace level α is C {T t 0 } s.t. α sup θ θ 0 P (T t 0 : θ P (T t 0 : θ 0 If the LR L(θ h(t is oicreasig i T, the the UMP critical regio L(θ sigificace level α is C {T t 0 } s.t. α sup θ θ 0 P (T t 0 : θ P (T t 0 : θ 0 (b Cosier hypothesis H 0 : θ θ 0 vs. H : θ < θ 0 If the LR L(θ h(t is oecreasig i T, the the UMP critical regio L(θ with sigificace level α is C {T t 0 } s.t. α sup θ θ 0 P (T t 0 : θ P (T t 0 : θ 0 If the LR L(θ h(t is oicreasig i T, the the UMP critical regio L(θ with sigificace level α is C {T t 0 } s.t. α sup θ θ 0 P (T t 0 : θ P (T t 0 : θ 0 3

24 Example: X,..., X U(0, θ, θ > 0. H 0 : θ θ 0 vs. H : θ > θ 0 sol: f(x, θ I(0 < x < θ. The likelihoo fuctio is θ L(θ, x,..., x θ I(0 < x i < θ θ I(0 < x i < θ θ I(0 < y < θ where Y max{x,..., X } Let θ < θ. The LR is L(θ, x,..., x L(θ, x,..., x I(0 < y (θ < θ The UMP critical regio is C {y c} s.t. α P (Y c : θ 0 The p..f of Y is (θ I(0 < y (θ < θ θ I(0 < y < θ I(0 < y < θ f Y (y (F (y f(y ( y θ y θ y θ, 0 < y < θ α P (Y c : θ 0 θ0 c y y c θ0 θ0 c θ 0 ( α The UMP critical regio with sigificace level α is C {y θ 0 ( α } Example: X,..., X N(µ,.H 0 : µ 0 vs. H : µ < 0. Wat the UMP test. sol: Let µ < µ. L(µ, x,..., x L(µ, x,..., x (π (π e (x i µ e (x i µ e [ x i µ x i +µ ] e [ x i µ x i +µ ] e [(µ µ x i +(µ µ ], i x i The UMP critical regio is C { x i c} s.t. α P ( X i c : µ 0 P ( X i c : µ 0 P (Z c 4

25 c z α c z α. So, the UMP critical regio sigificace level α is C { x i z α } {x zα } X,..., X N(µ, σ 0 where σ 0 is kow. Hypotheses UMP critical regio H 0 : µ µ 0 vs. H : µ > µ 0 x µ 0 σ 0 / z α H 0 : µ µ 0 vs. H : µ < µ 0 x µ 0 σ 0 / z α Likelihoo Ratio Test: Let X,..., X be a raom sample from p..f f(x, θ, θ Θ. Deote by L(θ, x,..., x as the likelihoo fuctio of X,..., X. So L(θ, x,..., x f(x i, θ If we have hypothesis H 0 : θ Θ 0 vs. H : θ / Θ 0, cosier two maximum likelihoo as max L(θ, x,..., x a max L(θ, x,..., x L(ˆθ θ Θ 0 θ Θ mle, x,..., x where ˆθ mle is the m.l.e. of θ. Obviously, max θ Θ 0 L(θ, x,..., x max θ Θ L(θ, x,..., x If θ Θ 0 is true, they must be very close. If θ Θ 0 is ot true, they are o loger close. Def. The geeralize likelihoo ratio is λ λ(x,..., x max L(θ, x,..., x θ Θ 0 max L(θ, x,..., x θ Θ max L(θ, x,..., x θ Θ 0 L(ˆθ mle, x,..., x The likelihoo ratio test for testig hypothesis H 0 : θ Θ 0 vs. H : θ / Θ 0 is rejectig H 0 if λ λ 0 where λ 0 satisfies α sup θ Θ 0 P (λ(x,..., X λ 0 : θ Note: The power fuctio P (λ(x,..., X λ 0 : θ is ot geerally mootoe, 5

26 but it ofte is. H 0 : θ θ 0 vs. H : θ θ MP test exists by Neyma-Pearso Theorem. H 0 : θ θ 0 vs. H : θ > θ 0 or H 0 : θ θ 0 vs. H : θ < θ 0 UMP test ofte exists by Neyma-Pearso Theorem. H 0 : θ θ 0 vs. H : θ > θ 0 or H 0 : θ θ 0 vs. H : θ < θ 0 Oe sie hypothesis + MLR UMP test exists. Critical regio of likelihoo ratio test is C {λ λ(x,..., x s.t. α sup θ Θ 0 P (λ(x,..., X λ 0 : θ max L(θ, x,..., x θ Θ 0 max L(θ, x,..., x λ 0} θ Θ I may cases, there is a statistic T t(x,..., X such that λ(x,..., x λ 0 if a oly if t(x,..., x k a the C {t(x,..., x k} Example: X,..., X with p..f f(x, θ θe θx, x > 0, θ > 0 H 0 : θ θ 0 vs. H : θ > θ 0 sol: L(θ, x,..., x θe θx i θ e θ l L(θ, x,..., x l θ θ l L(θ θ m.l.e ˆθ θ x i 0 x x i x i x i So, max θ Θ L(θ, x,..., x L(ˆθ, x,..., x ( x e Sice L(θ, x,..., x achieves maximum at θ x { So, max L(θ, x,..., x max θ e θ xi ( θ θ 0 θ θ 0 θ0 e θ 0 x e xi if θ 0 > x if θ 0 < x 6

27 So, λ λ(x,..., x max L(θ 0<θ θ 0 max L(θ θ>0 { if θ0 > x θ0 e θ 0 xi (θ ( x e 0 x e (θ 0x if θ 0 < x { if x > θ 0 (θ 0 x e (θ 0x if x θ 0 i x The critical regio of LRT is C {x c} s.t. α P (X c : θ 0 χ α θ 0 c c χ α θ 0 α P (X c : θ 0 P ( P ( θ 0 X i X i c : θ 0 c θ 0 : θ 0 P (χ ( θ 0 c Example: X,..., X N(θ,, H 0 : θ 0 vs. H : θ 0. This is o UMP test for this hypothesis. We wat LRT. sol: L(θ, x,..., x e (x i θ (π e π Likelihoo ratio λ l L(θ, x,..., x θ 0 m.l.e. ˆθ x (x i θ max L(θ, x,..., x θ0 max L(θ, x,..., x L(0, x,..., x L(ˆθ, x θ R,..., x e [ x i x i +x x i x ] e x λ 0 x l λ 0 x c 0 x c e x i e (xi x X H 0 N(0, X X H 0 N(0, 7

28 α P ( x c : θ 0 P ( Z c P ( Z c P ( Z c α c z α The critical regio with sigificace level α for LRT is C {x : x z α } Example: X,..., X N(θ, θ, < θ <, θ > 0 H 0 : θ 0 vs. H : θ 0. i.e.h 0 : θ 0, θ > 0 vs. H : θ 0, θ > 0. 8

29 sol: L(θ, θ, x,..., x (π θ e (xi θ max L(θ, θ, x,..., x max L(0, θ, x,..., x max θ 0,θ >0 θ >0 θ >0 (π θ l L(0, θ, x,..., x l π x l θ i θ l L(0, θ, x,..., x x + i 0 θ θ ˆθ x i θ max θ 0,θ >0 L(θ, θ, x,..., x L(0, θ e x i θ x i, x,..., x (π ( x i e (xi θ max L(θ, θ, x,..., x max θ R,θ >0 θ R,θ >0 (π θ e θ l L(θ, θ, x,..., x l π l θ (xi θ θ l L(θ, θ, x,..., x (xi θ 0 θ θ ˆθ x l L(x, θ, x,..., x + (xi x θ θ θ ˆθ max L(θ, θ, x,..., x (π ( θ R,θ >0 max L(θ, θ, x,..., x θ 0,θ >0 λ max L(θ, θ, x,..., x θ R,θ >0 (xi x l x i l λ 0 (xi x x i (xi x x i x ( s > ( c 0 x s > c t α (xi x e ( x i e ( (xi x e (xi x (xi x + x e l λ 0 + x (xi x x ( s x ( s > c 0 (xi x (xi x ( x λ0 i 9

30 α P ( x s > c : θ 0 P ( T > c, c t α The critical regio with sigificace level α for LRT is F-istributio: C { x s > t α } Def. A raom variable F is sai to have F-istributio with egrees of freeom (r, r if there are iepeet chi-square r.v.s χ (r a χ (r such that χ (r r F χ (r, F > 0 r We eote by F f(r, r We eote f α (r, r with P (F f α (r, r α. I the table we ca fi f α (r, r with α 0.95, 0.975, 0.99 oly. How ca we fi f α (r, r with α 0.05, 0.05, 0.0? Thm. f α (r, r f α (r,r Proof. If F f(r, r, the there exists χ (r a χ (r, iepeet, χ (r r with F χ (r, the χ (r F r χ (r f(r, r r r Let F f(r, r. We wat f α (r, r with α 0.05, 0.05, 0.0. α P (F f α (r, r P ( F f α (r, r P (f α(r, r P (f α (r, r f α (r, r α P (f α (r, r f α (r, r f α (r, r f α(r, r f α (r, r f α (r, r f α (r, r 30

31 Ratio of Variaces σ x σ y { ( s x σx (m s y σy C.I. for σ x : σy Let a,b satisfy So, { or σ y : σx X,..., X N(µ x, σx Y,..., Y m N(µ y, σy χ ( iep. where χ (m F (m s y σ y (m ( s x σ x ( σ xs y σys x α P (f(m, a a α a iep. s x s y m f(m, f α (, m, b f α (x i x m (y i y P (f(m, b (m, α P (f α (m, F f α (m, P ( P ( f α f α xs y σ (, m σys x sx σ x (, m s y σy Hece, a 00( α% C.I. for σ x σ y ( f α is: Hypothesis Testig for Equal Variace: Cosier the hypothesis H 0 : σx σy vs. H : σx σy or H 0 : σ x vs. H σy : σ x σy f α (m, f α (m, s x sx, f α (, m (m, s x s y s y s y 3

32 Sice F σ x s y σ ys x α P (σ xs y σ ys x a α P (σ xs y σ ys x We have α P ( s y s x f(m,, we have f α (m, P (s y s x f α (m, P (s y s x f α sy or (, m The a critical regio with sigificace level α for H 0 is C { s y s x f α sy or (, m What is this test? A UMP test or LRT? We will show that it is a LRT. Likelihoo Ratio Test for Ratio of variaces: { X,..., X N(µ, σ Y,..., Y m N(µ, σ s x s x f α (, m : H 0 f α (m, : H 0 f α (m, : H 0 f α (m, } iep. Θ {(µ, µ, σ, σ : µ, µ R, σ, σ > 0} Hypothesis H 0 : σ σ( σ vs. H σ : σ σ Θ 0 {(µ, µ, σ, σ : µ, µ R, σ σ > 0} Likelihoo fuctio is the joit p..f of X,..., X a Y,..., Y m which is L(µ, µ, σ, σ (π +m The likelihoo ratio is λ l L(µ, µ, σ, σ + m Uer H 0 : l L(µ, µ, σ σ σ + m (x i µ m (y i µ e σ sup L(µ, µ, σ, σ µ,µ R,σ σ sup L(µ, µ, σ, σ µ,µ R,σ,σ >0 σ (σ (σ m m l(π l(σ m (x i µ (y i µ l(σ l(π + m 3 σ σ l(σ m σ [ (x i µ + (y i µ ]

33 l L(µ x, µ y, σ σ σ σ l L µ σ (xi µ 0 ˆµ x l L µ σ (yi µ 0 ˆµ y ˆσ + m [ (x i x + sup L(µ, µ, σ σ σ (π +m Θ 0 We wat sup L(µ, µ, σ, σ Θ + m + m σ σ [ (x 4 i x + (y i y ] 0 ( m (y i y ] m + m [ (x i x + L(µ, µ, σ, σ µ 0 ˆµ x, L( ˆµ, µ, σ, σ σ L(µ, µ, σ, σ µ 0 ˆµ y, L(µ, ˆµ, σ, σ σ 0 ˆσ 0 ˆσ m (y i y ] +m e +m (x i x m (y i y sup L(µ, µ, σ, σ (π +m ( Θ Likelihoo ratio: λ (x i x ( m m ( + m +m ( (x i x + m (y i y +m m m ( (x i x ( m (y i y m (y i y m e +m λ 0 ( ( ( + (x i x ( m (y i y m (x i x + m m (y i y (x i x (y i y +m ( + (x i x m m (y i y λ λ 33

34 F ( + x ( + 0 as x or x 0 m x m (y i y c or c (x i x m (Y i Y (m (X i X ( The LR test with sigificace level α is f α (m, or f α (m, F m (Y i Y (m (X i X ( f α (m, or f α (m, Testig for Hypothesis of Equal Meas: { X,..., X N(µ, σ Y,..., Y m N(µ, σ iep. H 0 : µ µ vs. H : µ µ ( Suppose that it is kow that σ σ σ. We have { X,..., X N(µ, σ iep. Y,..., Y m N(µ, σ T X N(µ, σ ( s x χ ( σ Y N(µ, σ iep. where m (m s y χ (m σ { X Y N(µ µ, σ ( + m X Y (µ µ σ + m ( s x +(m s y σ (+m ( s x+(m s y σ χ ( + m X Y ( s x +(m s y (+m 34 s x s y m + m (x i x m (y i y iep. t( + m

35 A Reject H 0 if T T X Y ( s x +(m s y (+m X Y ( s x +(m s y σ (+m + m + m H 0 t( + m > t α ( + m ( Suppose that we o t kow if σ σ is true. Two step to test H 0 : (i Test H 0 : σ σ Reject H 0 if F m (y i y (m (x i x ( f α (m, or f α (m, (ii If we accept H 0, we test H 0 : µ µ by rejectig H 0 if X Y T > t α ( + m ( s x +(m s y +m + m (iii If we reject H 0, we ca o othig. Hypothesis Testig for p: Y b(, p. Wat to test hypothesis H 0 : p p 0 vs. H : p p 0 Let Y,..., Y Beroulli(p The Y vy i b(, p ˆp Y ˆp p p( p Y i ˆp p ˆp( ˆp Uer H 0, Y i P p by WLLN. p p( p p( p ˆp( ˆp ˆp p 0 ˆp( ˆp N(0, by CLT. ˆp p p( p N(0, α P ( Z z α P ( ˆp p 0 ˆp( ˆp N(0, N(0, by Slutsky s theorem z α : H 0 35

36 The, a approximate test with sigificace level α is rejectig H 0 if z α or z α ˆp p 0 ˆp( ˆp Table of approximate tests for p. Hypothesis H 0 : p p 0 vs. H : p p 0 ˆp p 0 ˆp( ˆp H 0 : p p 0 vs. H : p > p 0 ˆp p 0 H 0 : p p 0 vs. H : p < p 0 ˆp p 0 Critical regio z α or z α ˆp( ˆp ˆp( ˆp Hypothesis for ifferece of p s: { X b(, p Y b(m, p z α z α iep. Wat to test hypothesis H 0 : p p vs. H : p p. Let ˆp X, ˆp Y. We have, by CLT. m N(0, { or Sice ˆp ˆp p p ( p ˆp p p ( p m N(0, ˆp ˆp N(p p, p ( p ( ˆp ˆp (p p p ( p + p ( p m P P p, ˆp p, we have We further have Sice α P ( ( ˆp ˆp (p p the rule for testig H 0 is rejectig H 0 if ˆp ( ˆp + ˆp ( ˆp m ˆp ˆp ˆp ( ˆp + ˆp ( ˆp m ˆp ˆp ˆp ˆp p ˆ ( pˆ + pˆ ( pˆ m ˆp ( ˆp + ˆp ( ˆp m ˆp N(p, p ( p ˆp N(p, p ( p m iep. z α or z α 36 + p ( p m N(0, N(0, H 0 N(0, z α or z α : H 0

37 Bivariate Normal Distributio: Note: (a S: Sample space, P: Probability set fuctio Raom variable X : S R, P (X A P ({w S : X(w A} If there exists f 0, such that { f(x, iscrete X P (X A x A f(xx,, cotiuous X the we call f the p..f of r.v. X. The p..f f satisfies f(x 0 a f(xx A (bfor each fuctio f, f(x 0 a f(xx, there exists a r.v. X such that f is the p..f r.v. X. O the other ha, if f(x, y satisfies f(x, y 0 a f(x, yxy,there exists r.v. s X a Y such that f(x, y is joit p..f of X, Y Cosier the fuctio f(x, y πσ σ ρ e for some µ, µ R, σ, σ > 0, < ρ < ρ [ (x µ σ ρ (x µ (y µ + (y µ σ σ σ ], < x <, < y < We wat to o the followigs: (a Show that f(x, yxy. There exists X a Y such that f(x, y is the joit p..f of X, Y. We call f the bivariate ormal istributio. (b Fi margial p..f s of X a Y. (c Fi coitioal mea E(Y X x a variace Var(Y X x. This is the basis for liear regressio. Now, f(x, y 0 for x, y R To show f beig a joit p..f ees to show that f(x, yxy. 37

38 We wat to show that f(x, yxy ( f(x, yyx f(x, yy πσ σ ρ e (x µ σ πσ e (x µ σ πσ e ρ [ (x µ σ ρ (x µ (y µ + (y µ σ σ σ σ (y (µ+ρ σ (x µ σ e ( ρ y πσ ρ ] y f(x, yxy e (x µ σ x πσ f(x, y is a joit p..f of two r.v. s X a Y. We have show that a bivariate ormal istributio has p..f f(x, y πσ σ ρ e a it may be writte as ρ [ (x µ σ ρ (x µ (y µ + (y µ σ σ σ ], < x <, < y < f(x, y e (x µ σ πσ πσ ρ σ (y (µ+ρ σ (x µ σ e ( ρ We ow erive the margial p..f s. The margial p..f of X is f X (x f(x, yy e (x µ σ πσ e (x µ σ, x R πσ πσ ρ σ (y (µ+ρ σ (x µ σ e ( ρ y The X N(µ, σ We ca also show that Y N(µ, σ Coitioal istributio : The istributio of Y give X x is calle the coitioal istributio. The coitioal mea is E(Y x a coitioal variace Var(Y x E[(Y 38

39 E(Y x x]. The coitioal p..f of Y give X x is f Y x (y f(x, y f X (x πσ e (x µ (y (µ +ρ σ σ (x µ σ πσ ρ e σ ( ρ πσ e (x µ σ σ (y (µ+ρ σ (x µ σ e ( ρ, y R πσ ρ A So, Y x N(µ + ρ σ σ (x µ, σ ( ρ X y N(µ + ρ σ σ (y µ, σ ( ρ Y x µ + ρ σ σ (x µ + ɛ, ɛ N(0, σ ( ρ µ ρ σ µ + ρ σ x + ɛ σ σ β 0 + β x + ɛ, ɛ N(0, σ This is the liear regressio moel. We have observatios ( x ( y,..., x y, the the liear regressio moel is y i β 0 + β x i + ɛ i, i,..., where ɛ,..., ɛ are N(0, σ The ( problem i liear regressio is that we have a sequece of raom vectors X ( Y,..., X ( Y with observatios x ( y,..., x y a picture. But we believe that the observatios obey the followig liear regressio moel. y i β 0 + β x i + ɛ i, i,..., where ɛ,..., ɛ are raom variables with mea 0 a variace σ The aim i liear regressio aalysis is to ifluece (estimatio a hypothesis testig the parameter β 0, β. If we kow β 0 a β, the the preictio of a future y 0 where x is x 0 is ŷ 0 β 0 + β x 0 39

40 Chi-square Test(Gooess of Fit Test I evelopig of C.I. for θ a hypothesis testig, most methos are erive assumig that raom sample X,..., X is raw from ormal istributio. A importat questio is: how o you kow that it is really raw from ormal istributio? So, we may try to test the followig hypothesis: H 0 : X,..., X N(µ, σ This is a gooess of fit problem that ca be solve be chi-square test by Karl Pearso (Father of Pearso by Neyma-Pearso Theorem We first cosier the hypothesis H 0 : X,..., X f 0 (x where f 0 is kow p..f. Let A,..., A k be a partitio (mutually exclusive sets for space of X. Defie P j P (x A j H 0 f 0 (xx, j,..., k A j k P j j Let N j eotes the umber of X,..., X fallig i set A j, j,..., k. k So, N j. We have the followig theorem. j Thm. Let Q k k j (N j P j P j k j (pratical # theoretical # theoretical # i A j We have Q k χ (k if H 0 is true. Proof. We cosier k oly. Q (N P P + (N P P (N P (N P ( + P ( P (N P P ( P N P ( P ( P χ ( as + (( N ( P P ( P 40

41 N (# of X,..., X fallig A H 0 b(, P N P P ( P N(0, by CLT Def. The Pearso s chi-square test for hypothesis H 0 : X,..., X f 0 (x is rejectig H 0 if Q k χ α(k, where α P (χ (k χ α(k Note: P (Q k χ α(k : H 0 P (χ (k χ α(k α Example: Meelia theory: Shape a color of a pea ought to be groupe ito four groups with probabilities as follows: Groups probabilities obs Rou a yellow P 9 N 6 35 Rou a gree P 3 N 6 08 Agular a yellow P 3 3 N Agular a gree P 4 N With sample 556(x,..., x 556, the umbers groupe are isplayig above. We wat to test hypothesis at sigificace level α 0.05 H 0 : P 9 6, P 3 6, P 3 3 6, P 4 6. Q 4 4 (N j P j j P j 9 ( ( ( χ 0.05(3 7.8 > Q 4 We o ot reject H 0 a coclue that Meelia s theorem is correct. How ca we test the hypothesis H 0 : X,..., X f(x, θ,..., θ p 4 (

42 where f is kow p..f but θ,..., θ p are ukow? Let A,..., A be a partitio of space of X a ˆθ,..., ˆθ p be mle s of θ,..., θ p. Defie ˆP j f(x, ˆθ,..., ˆθ p x, j,..., k A j Agai, we eote ˆN j the # of X,..., X fallig i A j. So, Thm. Let We have Q k Q k k ( ˆN j ˆP j j ˆP j χ (k p if H 0 is true. k j ˆN j Def. The chi-square test for H 0 : X f(x, θ,..., θ p is rejectig H 0 if Q k χ α(k p Example: X,..., X f(x, θ. Cosier hypothesis H 0 : X N(µ, σ. sol: mle s ˆµ x, ˆσ (x i x Let A (, a, A (a, a,..., A k (a k, partitio of space of N(x, s.defie.. ˆP P N(x,s (X a P N(x,s ( X x s ˆP P N(x,s (a X a P N(x,s ( a x s P (Z a x s P (Z a x s a x s ˆP j P N(x,s (a j X a j P (Z a j x s ˆP k P N(x,s (X a k P (Z a k x s Q k k ( ˆN j ˆP j j Reject H 0 if Q k χ (k 3 ˆP j 4 P (Z a x s X x s χ (k 3 a x s P (Z a j x s

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Theorem 8 Let φ be the most powerful size α test of H

Theorem 8 Let φ be the most powerful size α test of H Testing composite hypotheses Θ = Θ 0 Θ c 0 H 0 : θ Θ 0 H 1 : θ Θ c 0 Definition 16 A test φ is a uniformly most powerful (UMP) level α test for H 0 vs. H 1 if φ has level α and for any other level α test

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

LAD Estimation for Time Series Models With Finite and Infinite Variance

LAD Estimation for Time Series Models With Finite and Infinite Variance LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite

Διαβάστε περισσότερα

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95 r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95

Διαβάστε περισσότερα

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y

Διαβάστε περισσότερα

Exam Statistics 6 th September 2017 Solution

Exam Statistics 6 th September 2017 Solution Exam Statstcs 6 th September 17 Soluto Maura Mezzett Exercse 1 Let (X 1,..., X be a raom sample of... raom varables. Let f θ (x be the esty fucto. Let ˆθ be the MLE of θ, θ be the true parameter, L(θ be

Διαβάστε περισσότερα

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m

Διαβάστε περισσότερα

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University) Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize

Διαβάστε περισσότερα

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator

Διαβάστε περισσότερα

STAT 330(Winter ) Mathematical Statistics

STAT 330(Winter ) Mathematical Statistics Sprig 3 TABLE OF CONTENTS STAT 33Witer 3-35 Mathematical Statistics Prof. M. Molkaraie Uiversity of Waterloo L A TEXer: W. KONG http://wwkog.github.io Last Revisio: April 3, 4 Table of Cotets Review. Probability

Διαβάστε περισσότερα

STAT200C: Hypothesis Testing

STAT200C: Hypothesis Testing STAT200C: Hypothesis Testing Zhaoxia Yu Spring 2017 Some Definitions A hypothesis is a statement about a population parameter. The two complementary hypotheses in a hypothesis testing are the null hypothesis

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

6. MAXIMUM LIKELIHOOD ESTIMATION

6. MAXIMUM LIKELIHOOD ESTIMATION 6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ

Διαβάστε περισσότερα

557: MATHEMATICAL STATISTICS II RESULTS FROM CLASSICAL HYPOTHESIS TESTING

557: MATHEMATICAL STATISTICS II RESULTS FROM CLASSICAL HYPOTHESIS TESTING Most Powerful Tests 557: MATHEMATICAL STATISTICS II RESULTS FROM CLASSICAL HYPOTHESIS TESTING To construct and assess the quality of a statistical test, we consider the power function β(θ). Consider a

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample

Διαβάστε περισσότερα

557: MATHEMATICAL STATISTICS II HYPOTHESIS TESTING

557: MATHEMATICAL STATISTICS II HYPOTHESIS TESTING 557: MATHEMATICAL STATISTICS II HYPOTHESIS TESTING A statistical hypothesis test is a decision rule that takes as an input observed sample data and returns an action relating to two mutually exclusive

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN 78-7763 COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Dr Neetu Vishwakarma a Dr M S Chauha Sagar Istitute of

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

Outline. Detection Theory. Background. Background (Cont.)

Outline. Detection Theory. Background. Background (Cont.) Outlie etectio heory Chapter7. etermiistic Sigals with Ukow Parameters afiseh S. Mazloum ov. 3th Backgroud Importace of sigal iformatio Ukow amplitude Ukow arrival time Siusoidal detectio Classical liear

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Exercise 2: The form of the generalized likelihood ratio

Exercise 2: The form of the generalized likelihood ratio Stats 2 Winter 28 Homework 9: Solutions Due Friday, March 6 Exercise 2: The form of the generalized likelihood ratio We want to test H : θ Θ against H : θ Θ, and compare the two following rules of rejection:

Διαβάστε περισσότερα

Probability theory STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN15/MASM23 TABLE OF FORMULÆ. Basic probability theory

Probability theory STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN15/MASM23 TABLE OF FORMULÆ. Basic probability theory Lud Istitute of Techology Cetre for Mathematical Scieces Mathematical Statistics STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN5/MASM3 Probability theory Basic probability theory TABLE OF FORMULÆ

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Homework 4.1 Solutions Math 5110/6830

Homework 4.1 Solutions Math 5110/6830 Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

1. Matrix Algebra and Linear Economic Models

1. Matrix Algebra and Linear Economic Models Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ. Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces

Διαβάστε περισσότερα

Tired Waiting in Queues? Then get in line now to learn more about Queuing!

Tired Waiting in Queues? Then get in line now to learn more about Queuing! Tired Waitig i Queues? The get i lie ow to lear more about Queuig! Some Begiig Notatio Let = the umber of objects i the system s = the umber of servers = mea arrival rate (arrivals per uit of time with

Διαβάστε περισσότερα

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose

Διαβάστε περισσότερα

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μαθηματικά Ικανές και αναγκαίες συνθήκες Έστω δυο προτάσεις Α και Β «Α είναι αναγκαία συνθήκη για την Β» «Α είναι ικανή συνθήκη για την Β» Α is ecessary for

Διαβάστε περισσότερα

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions An Introduction to Signal Detection Estimation - Second Edition Chapter II: Selected Solutions H V Poor Princeton University March 16, 5 Exercise : The likelihood ratio is given by L(y) (y +1), y 1 a With

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

true value θ. Fisher information is meaningful for families of distribution which are regular: W (x) f(x θ)dx

true value θ. Fisher information is meaningful for families of distribution which are regular: W (x) f(x θ)dx Fisher Iformatio April 6, 26 Debdeep Pati Fisher Iformatio Assume X fx θ pdf or pmf with θ Θ R. Defie I X θ E θ [ θ log fx θ 2 ] where θ log fx θ is the derivative of the log-likelihood fuctio evaluated

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Three Classical Tests; Wald, LM(Score), and LR tests

Three Classical Tests; Wald, LM(Score), and LR tests Eco 60 Three Classical Tests; Wald, MScore, ad R tests Suppose that we have the desity l y; θ of a model with the ull hypothesis of the form H 0 ; θ θ 0. et θ be the lo-likelihood fuctio of the model ad

Διαβάστε περισσότερα

The Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

On Inclusion Relation of Absolute Summability

On Inclusion Relation of Absolute Summability It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example: (B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

Statistics & Research methods. Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science

Statistics & Research methods. Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science Statistics & Research methods Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science 30 25 1,65 20 1,66 15 10 5 1,67 1,68 Κανονική 0 Height 1,69 Καμπύλη Κανονική Διακύμανση & Ζ-scores

Διαβάστε περισσότερα

Chapter 3: Ordinal Numbers

Chapter 3: Ordinal Numbers Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Bessel function for complex variable

Bessel function for complex variable Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Degenerate Perturbation Theory

Degenerate Perturbation Theory R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

Parameter Estimation Fitting Probability Distributions Bayesian Approach

Parameter Estimation Fitting Probability Distributions Bayesian Approach Parameter Estimatio Fittig Probability Distributios Bayesia Approach MIT 18.443 Dr. Kempthore Sprig 2015 1 MIT 18.443 Parameter EstimatioFittig Probability DistributiosBayesia Ap Outlie Bayesia Approach

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

FORMULAS FOR STATISTICS 1

FORMULAS FOR STATISTICS 1 FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

The Equivalence Theorem in Optimal Design

The Equivalence Theorem in Optimal Design he Equivalece heorem i Optimal Desig Raier Schwabe & homas Schmelter, Otto vo Guericke Uiversity agdeburg Bayer Scherig Pharma, Berli rschwabe@ovgu.de PODE 007 ay 4, 007 Outlie Prologue: Simple eamples.

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Biostatistics for Health Sciences Review Sheet

Biostatistics for Health Sciences Review Sheet Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue Queueig Aalysis Outlie M/M/ Queue (ifiite buffer M/M//N (fiite buffer M/M// (Erlag s B forula M/M/ (Erlag s C forula Networks of M/M/ Queues M/G/ Priority Queue M/M/ M: Markovia/Meoryless Arrival process

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα