Mathematical model for HIV spreads control program with ART treatment
|
|
- Χαρίτων Δαγκλής
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Journal of Physics: Conference Series PAPER OPEN ACCESS Mathematical model for HIV spreads control program with ART treatment To cite this article: Maimunah and Dipo Aldila 208 J. Phys.: Conf. Ser View the article online for updates and enhancements. Related content - A Mathematical Model Of Dengue- Chikungunya Co-Infection In A Closed Population Dipo Aldila and Maya Ria Agustin - Application of optimal control strategies to HIV-malaria co-infection dynamics Fatmawati, Windarto and Lathifah Hanif - Mathematical modeling of zika virus disease with nonlinear incidence and optimal control Naba Kumar Goswami, Akhil Kumar Srivastav, Mini Ghosh et al. This content was downloaded from IP address on 25/08/208 at 02:09
2 IOP Conf. Series: Journal of Physics: Conf. Series (208) doi :0.088/ /974//02035 Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by Ltd
3 IOP Conf. Series: Journal of Physics: Conf. Series (208) doi :0.088/ /974//
4 IOP Conf. Series: Journal of Physics: Conf. Series (208) doi :0.088/ /974//02035 (x (t)) (x 2 (t)) (x 3 (t)) (x 4 (t)) (x 5 (t)) (x 6 (t)) (x 7 (t)) x A (µ) (x 7 ) δ δ > µ β a x 2 β c x 3, x 4, x 5 x 6 β s (x 7 ) β a > β c > β s x 2 x 3 u (x 4 ) (x 4 ) (x 5 ) ξ 4 (x 4 ) (x 5 ) (x 6 ) ρ c (x 6 ) r c r c (x 3 ) x 7 3
5 IOP Conf. Series: Journal of Physics: Conf. Series (208) doi :0.088/ /974//02035 dx dx 2 dx 3 dx 4 dx 5 dx 6 dx 7 = A β ax x 2 β cx (θ h x 4 θ l x 5 x 3 x 6 ) β sx x 7 µx = β ax x 2 β cx (θ h x 4 θ l x 5 x 3 x 6 ) β sx x 7 γ a x 2 µx 2 = γ a x 2 ( r c ) γ b x 6 ux 3 γ c x 3 µx 3 = µx 4 ux 3 x 4 ξ 4 x 5 ξ 5 = µx 5 ρ c x 5 x 4 ξ 4 x 5 ξ 5 = ρ c x 5 ( r c ) γ b x 6 r c γ b x 6 µx 6 = r c γ b x 6 δx 7 µ x 7 γ c x 3, x i (t = 0) = x i0 i =, 2,..., 7 4
6 IOP Conf. Series: Journal of Physics: Conf. Series (208) doi :0.088/ /974//02035 human A β a β c β s θ h β a x 4 θ l β a x 5 γ a x 2 x 3 γ b x 4 x 5 γ c r c ρ c x 5 u ξ 4 ξ 5 µ δ time u = 0 (x 4, x 5, x 6 ) dx dx 2 dx 3 dx 7 = A β ax x 2 β cx x 3 β sx x 7 µx = β ax x 2 β cx x 3 β sx x 7 γ a x 2 µx 2 = µ x 3 γ a x 2 γ c x 3 = µ x 7 δ x 7 γ c x 3, x 0, x 20, x 30 x 70 { DF E = x = A } µ, x 2 = 0, x 3 = 0, x 7 = 0. 5
7 IOP Conf. Series: Journal of Physics: Conf. Series (208) doi :0.088/ /974//02035 EE = {x = x, x 2 = x 2, x 3 = x 3, x 7 = x 7 }. x = A R 0 µ x 2 = µ Nx(µγc)(µδ)(R 0 ) k x 3 = γa,µ Nx(µδ)(R 0 ) k 2 x 7 = γaγcµ Nx(R 0 ) k 3 k = δ µ β a δ β a γ c δ β c γ a µ 2 β a µ β a γ c µ β c γ a β s γ a γ c k 2 = δ µ β a δ β a γ c δ β c γ a µ 2 β a µ β a γ c µ β c γ a β s γ a γ c k 3 = δ µ β a δ β a γ c δ β c γ a µ 2 β a µ β a γ c µ β c γ a β s γ a γ c R 0 = A(δ µ βaδ βaγcδ βcγaµ2 β aµ β aγ cµ β cγ aβ sγ aγ c) µ (µγ a)(µγ c)(δµ) EE (x i > 0) R 0 = A ( δ µ β a δ β a γ c δ β c γ a µ 2 β a µ β a γ c µ β c γ a β s γ a γ c ) µ (µ γ a ) (µ γ c ) (δ µ) >. DF E J = µ βaa µ βca µ βsa µ 0 β aa µ γ a µ β ca µ β sa µ 0 γ a µ γ c γ c δ µ J. λ 4 h 0 λ 3 h λ 2 h 2 λ h 3 h 4 = 0. h 0 = h = δµ 4µ 2 µ γ a µ γ c Aβ a µ 6
8 International Conference on Mathematics: Pure, Applied and Computation IOP Conf. Series: Journal of Physics: Conf. Series 974 (208) doi:0.088/ /974// ( 3δµ2 Nx δµnx γa δµnx γc 6µ3 Nx 3µ2 Nx γa 3µ2 Nx γc µnx µnx γa γc Aδβa 3Aµβa Aβa γc Aβc γa ) ( 4 h3 = 4µ Nx 3Nx (δ γa γc ) µ3 (((2δ 2γc ) γa 2δγc ) Nx 3Aβa ) µ2 µnx (δnx γa γc 2A (βc γa βa (δ γc ))) µ A ((δβc βs γc ) γa δβa γc )) ( 4 h4 = µ Nx Nx (δ γa γc ) µ3 (((δ γc ) γa δγc ) Nx Aβa ) µ2 Nx (δnx γa γc A (βc γa βa (δ γc ))) µ ((δβc βs γc ) γa δβa γc ) A). h2 = Using the Routh-Hurwitz criterion [2], all eigenvalues of J will be negative if and only if : { h > 0, h3 > 0, h4 > 0 (8) h h2 h3 > h4 Next, the basic reproduction number of system 2 will be analyzed. Basic reproduction number is define as the expected number of secondary cases caused by one primary case in a closed population during one infection period [0]. The illustration of basic reproduction number R0 when it is larger than one, smaller than one, or equal to one is given in Figure 2. There are some Figure 2. Interpretation of disease spread using R0. method to calculate the basic reproduction number, such as using next-generation matrix [0], graph theory [], etc. In this article, next-generation matrix approach will be implemented to calculate the basic reproduction number of system 2. Using the next-generation matrix approach implemented to system 2, the basic reproduction number as the spectral radius of the respected next-generation matrix is given by : ( ) A δ µ βa δ βa γc δ βc γa µ2 βa µ βa γc µ βc γa βs γa γc R0 =. (9) µ Nx (µ γa ) (µ γc ) (δ µ) 000 Let us define the parameters value for system 2 as follows : A = , µ = , Nx = , βa = 000, βc = 0.75βa, βs = 0.5βa, γa = 5 365, γc = With this parameters value, 7
9 IOP Conf. Series: Journal of Physics: Conf. Series (208) doi :0.088/ /974//02035 R 0 x = , x 2 = , x 3 = , x 7 = β a, β c, β s, γ a, γ c δ x 2, x 3 x 7 J = J γ a x x γ a, γ c, β a, β c, β s δ J γ a { DF E = x = A } µ, x 2 = 0, x 3 = 0, x 4 = 0, x 5 = 0, x 6 = 0, x 7 = 0. λ 7 a 0 λ 6 a λ 5 a 2 λ 4 a 3 λ 3 a 4 λ 2 a 5 λ a 6 a 7 = 0, a 0 =, a = Q µ, a 2 = Q 2 µ, a 3 = Q 3 µ, a 4 = Q 4 µ, a 5 = Q 5 µ, a 6 = Q 6 µ, a 7 = Q 7 Q = µ (γ a γ b γ c u 7 µ δ ξ 4 ξ 5 ρ c) Aβ a Q 2 = 2µ 3 6 (γ a γ b γ c u δ ξ 4 ξ 5 ρ c) µ 2 (( γ b γ c u δ ξ 4 ξ 5 ρ c) γ a ( γ c u δ ξ 4 ξ 5 ρ c) γ b ( γ c u ξ 4 ξ 5 ρ c) δ ( ξ 4 ξ 5 ρ c) γ µ c ( u ξ 4 ) ρ c u (ξ 4 ξ 5 )) 6Aβ a A (β cγ a β a (γ b γ c u δ ξ 4 ξ 5 ρ c)) Q 3 = 35µ 5 20 (γ a γ b γ c u δ ξ 4 ξ 5 ρ c) µ 4 (( 0γ a 0γ c 0u 0δ 0ξ 4 0ξ 5 0ρ c) γ b ( 0γ c 0u 0δ 0ξ 4 0ξ 5 0ρ c) γ a ( 0γ c 0u 0ξ 4 0ξ 5 0ρ c) δ µ3 ( 0γ c 0u 0ξ 4 ) ρ c 0 (ξ 4 ξ 5 ) (γ c u)) 20Aβ a 8
10 IOP Conf. Series: Journal of Physics: Conf. Series (208) doi :0.088/ /974//02035 ((( 4γ c 4u 4δ 4ξ 4 4ξ 5 4ρ c) γ a ( 4γ c 4u 4ξ 4 4ξ 5 4ρ c) δ ( 4γ c 4u 4ξ 4 ) ρ c 4 (ξ 4 ξ 5 ) (γ c u)) γ b (( 4γ c 4u 4ξ 4 4ξ 5 4ρ c) δ ( 4γ c 4u 4ξ 4 ) ρ c 4 (ξ 4 ξ 5 ) (γ c u)) γ a (( 4γ c 4u 4ξ 4 ) ρ c 4 (ξ 4 ξ 5 ) (γ c u)) δ 4ξ 4 ρ c (γ c u)) N µ2 x 0 (β aγ b β cγ a β a (γ c u δ ξ 4 ξ 5 ρ c)) A (((( γ c u ξ 4 ξ 5 ρ c) δ ( γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) γ a (( γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) δ ξ 4 ρ c (ur c γ c)) γ b ((( γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) δ ξ 4 ρ c (γ c u)) γ a δξ 4 ρ c (γ c u)) 4 ((β cγ a β a (γ c u δ ξ 4 ξ 5 ρ c)) γ b (uβ cθ h δβ c β cρ c β cξ 4 β cξ 5 β sγ c) γ µ a ((γ c u ξ 4 ξ 5 ρ c) δ (γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) β a) A ((uβ cθ h δβ c β cρ c β cξ 4 β cξ 5 β sγ c) γ a ((γ c u ξ 4 ξ 5 ρ c) δ (γ c u ξ 4 ) ρ c A (ξ 4 ξ 5 ) (γ c u)) β a) γ b (β c (uθ h ρ c ξ 4 ξ 5 ) δ (uβ cθ h β cξ 4 β sγ c) ρ c (uβ cθ l β sγ c) ξ 4 ξ 5 (uβ cθ h β sγ c)) γ a β a (((γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) δ ξ 4 ρ c (γ c u)) Q 4 = 35 µ 5 20 (γ a γ b γ c u δ ξ 4 ξ 5 ρ c) µ 4 ( 0 δ u 0 δ γ a 0 δ γ b 0 δ γ c 0 δ ρ c 0 δ ξ 4 0 δ ξ 5 0 un xγ a 0 uγ b 0 uρ c 0 uξ 4 µ 3 0 uξ 5 0 γ aγ b 0 γ aγ c 0 γ aρ c 0 γ aξ 4 0 γ aξ 5 0 γ b γ c 0 γ b ρ c 0 γ b ξ 4 0 γ b ξ 5 0 N xγ cρ c 0 γ cξ 4 0 γ cξ 5 0 ρ cξ 4 20 Aβ a) ( 4 δ uγ a 4 δ uγ b 4 δ uρ c 4 δ uξ 4 4 δ uξ 5 4 δ γ aγ b 4 δ γ aγ c 4 δ γ aρ c 4 δ γ aξ 4 4 δ γ aξ 5 4 δ γ b γ c 4 δ γ b ρ c 4 δ γ b ξ 4 4 δ γ b ξ 5 4 δ γ cρ c 4 δ γ cξ 4 4 δ γ cξ 5 4 δ N xρ cξ 4 4 uγ aγ b 4 uγ aρ c 4 uγ aξ 4 4 uγ aξ 5 4 uγ b ρ c µ 2 4 uγ b ξ 4 4 uγ b ξ 5 4 uρ cξ 4 4 γ aγ b γ c 4 γ aγ b ρ c 4 γ aγ b ξ 4 4 γ aγ b ξ 5 4 γ aγ cρ c 4 γ aγ cξ 4 4 γ aγ cξ 5 4 γ aρ cξ 4 4 γ b γ cρ c 4 γ b γ cξ 4 4 γ b γ cξ 5 4 γ b ρ cξ 4 4 γ cρ cξ 4 0 Aδ β a 0 Auβ a 0 Aβ aγ b 0 Aβ aγ c 0 Aβ aρ c 0 Aβ aξ 4 0 Aβ aξ 5 0 Aβ cγ a) ( uγ b r cρ cξ 4 4 Auβ cγ aθ h δ uγ aγ b δ uγ aρ c δ uγ aξ 4 δ un xγ aξ 5 δ uγ b ρ c δ uγ b ξ 4 δ uγ b ξ 5 δ uρ cξ 4 δ γ aγ b γ c δ γ aγ b ρ c δ γ aγ b ξ 4 δ γ aγ b ξ 5 δ γ aγ cρ c δ γ aγ cξ 4 δ γ aγ cξ 5 δ γ aρ cξ 4 δ γ b γ cρ c δ γ b γ cξ 4 δ γ b γ cξ 5 δ γ b ρ cξ 4 δ γ cρ cξ 4 uγ aγ b ρ c uγ aγ b ξ 4 uγ aγ b ξ 5 uγ aρ cξ 4 γ aγ b γ cρ c γ aγ b γ cξ 4 γ aγ b γ cξ 5 γ aγ b ρ cξ 4 µ γ aγ cρ cξ 4 γ b γ cρ cξ 4 4 Aδ uβ a 4 Aδ β aγ b 4 Aδ β aγ c 4 Aδ β aρ c 4 Aδ β aξ 4 4 Aδ β aξ 5 4 Aδ β cγ a 4 Auβ aγ b 4 Auβ aρ c 4 Auβ aξ 4 4 Auβ aξ 5 4 Aβ aγ b γ c 4 Aβ aγ b ρ c 4 Aβ aγ b ξ 4 4 Aβ aγ b ξ 5 4 Aβ aγ cρ c 4 Aβ aγ cξ 4 4 Aβ aγ cξ 5 4 Aβ aρ cξ 4 4 Aβ cγ aγ b 4 Aβ cγ aρ c 4 Aβ cγ aξ 4 4 Aβ cγ aξ 5 4 Aβ sγ aγ c) (δ uβ cγ aθ h uβ cγ aγ b θ h uβ cγ aρ cθ h uβ cγ aθ h ξ 5 uβ cγ aθ l ξ 4 δ uβ aγ b δ uβ aρ c δ uβ aξ 4 δ uβ aξ 5 δ β aγ b γ c δ β aγ b ρ c δ β aγ b ξ 4 δ β aγ b ξ 5 δ β aγ cρ c δ β aγ cξ 4 δ β aγ cξ 5 δ β aρ cξ 4 δ β cγ aγ b A δ β cγ aρ c δ β cγ aξ 4 δ β cγ aξ 5 uβ aγ b ρ c uβ aγ b ξ 4 uβ aγ b ξ 5 uβ aρ cξ 4 β aγ b γ cρ c β aγ b γ cξ 4 β aγ b γ cξ 5 β aγ b ρ cξ 4 β aγ cρ cξ 4 β cγ aγ b ρ c β cγ aγ b ξ 4 β cγ aγ b ξ 5 β cγ aρ cξ 4 β sγ aγ b γ c β sγ aγ cρ c β sγ aγ cξ 4 β sγ aγ cξ 5 ) Q 5 = 2µ 6 5 (γ a γ b γ c u δ ξ 4 ξ 5 ρ c) µ 5 (( 0γ a 0γ c 0u 0δ 0ξ 4 0ξ 5 0ρ c) γ b ( 0γ c 0u 0δ 0ξ 4 0ξ 5 0ρ c) γ a ( 0γ c 0u 0ξ 4 0ξ 5 0ρ c) δ µ4 ( 0γ c 0u 0ξ 4 ) ρ c 0 (ξ 4 ξ 5 ) (γ c u)) 5Aβ a ((( 6γ c 6u 6δ 6ξ 4 6ξ 5 6ρ c) γ a ( 6γ c 6u 6ξ 4 6ξ 5 6ρ c) δ ( 6γ c 6u 6ξ 4 ) ρ c 6 (ξ 4 ξ 5 ) (γ c u)) γ b (( 6γ c 6u 6ξ 4 6ξ 5 6ρ c) δ ( 6γ c 6u 6ξ 4 ) ρ c µ 3 6 (ξ 4 ξ 5 ) (γ c u)) γ a (( 6γ c 6u 6ξ 4 ) ρ c 6 (ξ 4 ξ 5 ) (γ c u)) δ 6ξ 4 ρ c (γ c u)) N x 0 (β aγ b β cγ a β a (γ c u δ ξ 4 ξ 5 ρ c)) A (((( 3γ c 3u 3ξ 4 3ξ 5 3ρ c) δ ( 3γ c 3u 3ξ 4 ) ρ c 3 (ξ 4 ξ 5 ) (γ c u)) γ a (( 3γ c 3u 3ξ 4 ) ρ c 3 (ξ 4 ξ 5 ) (γ c u)) δ 3ξ 4 ρ c (ur c γ c)) γ b ((( 3γ c 3u 3ξ 4 ) ρ c 3 (ξ 4 ξ 5 ) (γ c u)) δ 3ξ 4 ρ c (γ c u)) γ a 3δξ 4 ρ c (γ c u)) 6 ((β cγ a β a (γ c u δ ξ 4 ξ 5 ρ c)) γ b (uβ cθ h δβ c β cρ c β cξ 4 β cξ 5 β sγ c) γ µ2 a ((γ c u ξ 4 ξ 5 ρ c) δ (γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) β a) A ((((( γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) δ ξ 4 ρ c (ur c γ c)) γ a δξ 4 ρ c (ur c γ c)) γ b γ aδξ 4 ρ c (γ c u)) 3 (((uβ cθ h δβ c β cρ c β cξ 4 β cξ 5 β sγ c) γ a ((γ c u ξ 4 ξ 5 ρ c) δ (γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) β a) γ b (β c (uθ h ρ c ξ 4 ξ 5 ) δ (uβ cθ h β cξ 4 β sγ c) ρ c (uβ cθ l β sγ c) ξ µ 4 ξ 5 (uβ cθ h β sγ c)) γ a β a (((γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) δ ξ 4 ρ c (γ c u))) A (((β c (uθ h ρ c ξ 4 ξ 5 ) δ (uβ cθ h β cξ 4 β sγ c) ρ c (uβ cθ l β sγ c) ξ 4 A ξ 5 (uβ cθ h β sγ c)) γ a β a (((γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) δ ξ 4 ρ c (ur c γ c))) γ b (((uθ h ξ 4 ) ρ c u (θ h ξ 5 θ l ξ 4 )) β cδ ξ 4 ρ c (uβ c β sγ c)) γ a β aδξ 4 ρ c (γ c u)) Q 6 = 7µ 7 6 (γ a γ b γ c u δ ξ 4 ξ 5 ρ c) µ 6 (( 5γ a 5γ c 5u 5δ 5ξ 4 5ξ 5 5ρ c) γ b ( 5γ c 5u 5δ 5ξ 4 5ξ 5 5ρ c) γ a ( 5γ c 5u 5ξ 4 5ξ 5 5ρ c) δ µ5 ( 5γ c 5u 5ξ 4 ) ρ c 5 (ξ 4 ξ 5 ) (γ c u)) 6Aβ a 9
11 IOP Conf. Series: Journal of Physics: Conf. Series (208) doi :0.088/ /974//02035 ((( 4γ c 4u 4δ 4ξ 4 4ξ 5 4ρ c) γ a ( 4γ c 4u 4ξ 4 4ξ 5 4ρ c) δ ( 4γ c 4u 4ξ 4 ) ρ c 4 (ξ 4 ξ 5 ) (γ c u)) γ b (( 4γ c 4u 4ξ 4 4ξ 5 4ρ c) δ (4γ c 4u 4ξ 4 ) ρ c 4 (ξ 4 ξ 5 ) (γ c u)) γ a (( 4γ c 4u 4ξ 4 ) ρ c 4 (ξ 4 ξ 5 ) (γ c u)) δ 4ξ 4 ρ c (γ c u)) 5 (β aγ b β µ4 cγ a β a (γ c u δ ξ 4 ξ 5 ρ c)) A (((( 3γ c 3u 3ξ 4 3ξ 5 3ρ c) δ ( 3γ c 3u 3ξ 4 ) ρ c 3 (ξ 4 ξ 5 ) (γ c u)) γ a (( 3γ c 3u 3ξ 4 ) ρ c 3 (ξ 4 ξ 5 ) (γ c u)) δ 3ξ 4 ρ c (ur c γ c)) γ b ((( 3γ c 3u 3ξ 4 ) ρ c 3 (ξ 4 ξ 5 ) (γ c u)) δ 3ξ 4 ρ c (γ c u)) γ a µ 3 3δξ 4 ρ c (γ c u)) 4 ((β cγ a β a (γ c u δ ξ 4 ξ 5 ρ c)) γ b (uβ cθ h δβ c β cρ c β cξ 4 β cξ 5 β sγ c) γ a ((γ c u ξ 4 ξ 5 ρ c) δ (γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) β a) A ((((( 2γ c 2u 2ξ 4 ) ρ c 2 (ξ 4 ξ 5 ) (γ c u)) δ 2ξ 4 ρ c (ur c γ c)) γ a 2δξ 4 ρ c (ur c γ c)) γ b 2γ aδξ 4 ρ c (γ c u)) 3 (((uβ cθ h δβ c β cρ c β cξ 4 β cξ 5 β sγ c) γ a ((γ c u ξ 4 ξ 5 ρ c) δ (γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) β a) γ b µ 2 (β c (uθ h ρ c ξ 4 ξ 5 ) δ (uβ cθ h β cξ 4 β sγ c) ρ c (uβ cθ l β sγ c) ξ 4 ξ 5 (uβ cθ h β sγ c)) γ a β a (((γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) δ ξ 4 ρ c (γ c u))) A γ aγ b δξ 4 ρ c (ur c γ c) 2A (((β c (uθ h ρ c ξ 4 ξ 5 ) δ (uβ cθ h β cξ 4 β sγ c) ρ c (uβ cθ l β sγ c) ξ 4 ξ 5 (uβ cθ h β sγ c)) γ a β a (((γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) δ ξ 4 ρ c (ur c γ c))) γ b µ (((uθ h ξ 4 ) ρ c u (θ h ξ 5 θ l ξ 4 )) β cδ ξ 4 ρ c (uβ c β sγ c)) γ a β aδξ 4 ρ c (γ c u)) ( ) ((((uθh ξ A 4 ) ρ c u (θ h ξ 5 θ l ξ 4 )) β cδ β sξ 4 ρ c (ur c γ c)) γ a β aδξ 4 ρ c (ur c γ c)) γ b β cγ auδξ 4 ρ c Q 7 = µ 7 (γ a γ b γ c u δ ξ 4 ξ 5 ρ c) µ 6 ( ) (( γ a γ c u δ ξ 4 ξ 5 ρ c) γ b ( γ c u δ ξ 4 ξ 5 ρ c) γ a µ 5 ( γ c u ξ 4 ξ 5 ρ c) δ ( γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) Aβ a ((( γ c u δ ξ 4 ξ 5 ρ c) γ a ( γ c u ξ 4 ξ 5 ρ c) δ ( γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) γ b (( γ c u ξ 4 ξ 5 ρ c) δ ( γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) γ a (( γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) δ ξ 4 ρ c (γ c u)) N µ4 x (β aγ b β cγ a β a (γ c u δ ξ 4 ξ 5 ρ c)) A (((( γ c u ξ 4 ξ 5 ρ c) δ ( γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) γ a (( γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) δ ξ 4 ρ c (ur c γ c)) γ b ((( γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) δ ξ 4 ρ c (γ c u)) γ a µ 3 δξ 4 ρ c (γ c u)) ((β cγ a β a (γ c u δ ξ 4 ξ 5 ρ c)) γ b (uβ cθ h δβ c β cρ c β cξ 4 β cξ 5 β sγ c) γ a ((γ c u ξ 4 ξ 5 ρ c) δ (γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) β a) A ((((( γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) δ ξ 4 ρ c (ur c γ c)) γ a δξ 4 ρ c (ur c γ c)) γ b γ aδξ 4 ρ c (γ c u)) (((uβ cθ h δβ c β cρ c β cξ 4 β cξ 5 β sγ c) γ a ((γ c u ξ 4 ξ 5 ρ c) δ (γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) β a) γ b (β c (uθ h ρ c ξ 4 ξ 5 ) δ (uβ cθ h β cξ 4 β sγ c) ρ c (uβ cθ l β sγ c) ξ µ2 4 ξ 5 (uβ cθ h β sγ c)) γ a β a (((γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) δ ξ 4 ρ c (γ c u))) A γ aγ b δξ 4 ρ c (ur c γ c) A (((β c (uθ h ρ c ξ 4 ξ 5 ) δ (uβ cθ h β cξ 4 β sγ c) ρ c (uβ cθ l β sγ c) ξ 4 ξ 5 (uβ cθ h β sγ c)) γ a β a (((γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) δ ξ 4 ρ c (ur c γ c))) γ b µ (((uθ h ξ 4 ) ρ c u (θ h ξ 5 θ l ξ 4 )) β cδ ξ 4 ρ c (uβ c β sγ c)) γ a β aδξ 4 ρ c (γ c u)) ( ) ((((uθh ξ A 4 ) ρ c u (θ h ξ 5 θ l ξ 4 )) β cδ β sξ 4 ρ c (ur c γ c)) γ a. β aδξ 4 ρ c (ur c γ c)) γ b β cγ auδξ 4 ρ c a 0, a, a 2, a 3, a 4, a 5, a 6, a 7 > 0 b = a a 2 a 0 a 3 a > 0, b 2 = a a 4 a 0 a 5 a c = b a 3 a b 2 b > 0, c 2 = b a 5 a b 3 b d = c b 2 b c 2 c > 0, d 2 = a 6 > 0 e = d c 2 c d 2 d > 0 f = a 6 > 0 > 0, b 3 = a 6 > 0 0
12 IOP Conf. Series: Journal of Physics: Conf. Series (208) doi :0.088/ /974//02035 R 0 M = γ a µ M 2 = u γ c µ M γ a M ( r c ) γ b 0 0 u M H = 3 ξ ξ 4 M ρ c M γ c 0 0 r c γ b M 6, M 3 = µ ξ 4 M 4 = µ ρ c ξ 5 M 5 = ( r c ) γ b r c γ b µ M 6 = δ µ V = β ax β cx β cx θ h β cx θ l β cx β sx = T R 0 = A (P P 2 P 3 P 4 ) µ M M 6 P 5, P = um 4 M 5 M 6 β c γ a θ h um 5 M 6 β c γ a θ l ξ 4 um 6 β a γ b r c ρ c ξ 4
13 IOP Conf. Series: Journal of Physics: Conf. Series (208) doi :0.088/ /974//02035 P 2 = uβ s γ a γ b r c ρ c ξ 4 um 6 β a γ b ρ c ξ 4 um 6 β c γ a ρ c ξ 4 P 3 = M 2 M 3 M 4 M 5 M 6 β a M 2 M 5 M 6 β a ξ 4 ξ 5 M 3 M 4 M 5 M 6 β c γ a P 4 = M 3 M 4 M 5 β s γ a γ c M 5 M 6 β c γ a ξ 4 ξ 5 M 5 β s γ a γ c ξ 4 ξ 5 P 5 = uγ b r c ρ c ξ 4 uγ b ρ c ξ 4 M 2 M 3 M 4 M 5 M 2 M 5 ξ 5 ξ 4 = [ ] T R 0 u r c A = 000/(65 365) β a = β c = β s = γ a = /(5 365) γ c = /(3 365) δ = 0 µ = /(65 365) = 000 ξ 4 = 0.75/365 ξ 5 = 0.25/365 θ h = θ l = 2 ρ c = 0./365 γ b = 0.5/365, R 0 R 0 (f(u, r c )) u r c R 0 R 0 u r c R 0 5.5, (u) R 0 (r c ) R 0 (u) A = 000/(65 365) β a = β c = β s = γ a = /(5 365) γ c = /(3 365) δ = 0 µ = /(65 365) = 000 ξ 4 = 0.75/365 ξ 5 = 0.25/365 θ h = θ l = 2 r c = 0 ρ c = 0./365 γ b = 0.5/365 u =
14 IOP Conf. Series: Journal of Physics: Conf. Series (208) doi :0.088/ /974//02035 u = 0 u 3
15 IOP Conf. Series: Journal of Physics: Conf. Series (208) doi :0.088/ /974//
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
encouraged to use the Version of Record that, when published, will replace this version. The most /BCJ BIOCHEMICAL JOURNAL
Biochemical Journal: this is an Accepted Manuscript, not the final Version of Record. You are encouraged to use the Version of Record that, when published, will replace this version. The most up-to-date
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
MathCity.org Merging man and maths
MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)
An Inventory of Continuous Distributions
Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
The ε-pseudospectrum of a Matrix
The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems
5. Choice under Uncertainty
5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation
Generating Set of the Complete Semigroups of Binary Relations
Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze
The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions.
Luevorasirikul, Kanokrat (2007) Body image and weight management: young people, internet advertisements and pharmacists. PhD thesis, University of Nottingham. Access from the University of Nottingham repository:
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Commutative Monoids in Intuitionistic Fuzzy Sets
Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Capacitors - Capacitance, Charge and Potential Difference
Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Μηχανική Μάθηση Hypothesis Testing
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
A summation formula ramified with hypergeometric function and involving recurrence relation
South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin
Ψηφιακή ανάπτυξη. Course Unit #1 : Κατανοώντας τις βασικές σύγχρονες ψηφιακές αρχές Thematic Unit #1 : Τεχνολογίες Web και CMS
Ψηφιακή ανάπτυξη Course Unit #1 : Κατανοώντας τις βασικές σύγχρονες ψηφιακές αρχές Thematic Unit #1 : Τεχνολογίες Web και CMS Learning Objective : SEO και Analytics Fabio Calefato Department of Computer
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ342: Βάσεις Δεδομένων Χειμερινό Εξάμηνο 2013 Φροντιστήριο 10 ΛΥΣΕΙΣ Επερωτήσεις SQL Άσκηση 1 Για το ακόλουθο σχήμα Suppliers(sid, sname, address) Parts(pid, pname,
Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns
Depth versus Rigidity in the Design of International Trade Agreements Leslie Johns Supplemental Appendix September 3, 202 Alternative Punishment Mechanisms The one-period utility functions of the home
ΦΩΤΟΓΡΑΜΜΕΤΡΙΚΕΣ ΚΑΙ ΤΗΛΕΠΙΣΚΟΠΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΜΕΛΕΤΗ ΘΕΜΑΤΩΝ ΔΑΣΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ
AΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΙΔΙΚΕΥΣΗΣ ΠΡΟΣΤΑΣΙΑ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΒΙΩΣΙΜΗ ΑΝΑΠΤΥΞΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΦΩΤΟΓΡΑΜΜΕΤΡΙΚΕΣ
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1
Chapter 7: Exercises 1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 35+n:30 n a 35+n:20 n 0 0.068727 11.395336 10 0.097101 7.351745 25
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
ΕΦΑΡΜΟΓΗ ΕΥΤΕΡΟΒΑΘΜΙΑ ΕΠΕΞΕΡΓΑΣΜΕΝΩΝ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ ΣΕ ΦΥΣΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΛΙΝΗΣ ΚΑΛΑΜΙΩΝ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΚΡΗΤΗΣ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΦΑΡΜΟΓΗ ΕΥΤΕΡΟΒΑΘΜΙΑ ΕΠΕΞΕΡΓΑΣΜΕΝΩΝ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ ΣΕ ΦΥΣΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΛΙΝΗΣ ΚΑΛΑΜΙΩΝ ΕΠΙΜΕΛΕΙΑ: ΑΡΜΕΝΑΚΑΣ ΜΑΡΙΝΟΣ ΧΑΝΙΑ
Longitudinal Changes in Component Processes of Working Memory
This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. Research Article: New Research Cognition and Behavior Longitudinal Changes in Component Processes
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Démographie spatiale/spatial Demography
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Démographie spatiale/spatial Demography Session 1: Introduction to spatial demography Basic concepts Michail Agorastakis Department of Planning & Regional Development Άδειες Χρήσης
EE101: Resonance in RLC circuits
EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
General 2 2 PT -Symmetric Matrices and Jordan Blocks 1
General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,
encouraged to use the Version of Record that, when published, will replace this version. The most /BCJ
Biochemical Journal: this is an Accepted Manuscript, not the final Version of Record. You are encouraged to use the Version of Record that, when published, will replace this version. The most up-to-date
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS
MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL
Liner Shipping Hub Network Design in a Competitive Environment
Downloaded from orbit.dtu.dk on: Oct 01, 2016 Liner Shipping Hub Network Design in a Competitive Environment Gelareh, Shahin; Nickel, Stefan; Pisinger, David Publication date: 2010 Document Version Publisher's
A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics
A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 9η: Basics of Game Theory Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 9η: Basics of Game Theory Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Course Outline Part II: Mathematical Tools Firms - Basics of Industrial
Instruction Execution Times
1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables
Potential Dividers. 46 minutes. 46 marks. Page 1 of 11
Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
IIT JEE (2013) (Trigonomtery 1) Solutions
L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games
Additional Results for the Pareto/NBD Model
Additional Results for the Pareto/NBD Model Peter S. Fader www.petefader.com Bruce G. S. Hardie www.brucehardie.com January 24 Abstract This note derives expressions for i) the raw moments of the posterior
Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer
Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer Naomi Morota Newman M Key Words woman diagnosed with breast cancer, rehabilitation nursing care program, the
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
On a four-dimensional hyperbolic manifold with finite volume
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Άσκηση αυτοαξιολόγησης 4 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών CS-593 Game Theory 1. For the game depicted below, find the mixed strategy
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΑΥΤΟΜΑΤΙΣΜΟΥ / ΥΝΑΜΙΚΗΣ & ΘΕΩΡΙΑΣ ΜΗΧΑΝΩΝ ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Προσωπική Aνάπτυξη. Ενότητα 2: Διαπραγμάτευση. Juan Carlos Martínez Director of Projects Development Department
Προσωπική Aνάπτυξη Ενότητα 2: Διαπραγμάτευση Juan Carlos Martínez Director of Projects Development Department Unit Scope Σε αυτή την ενότητα θα μελετήσουμε τα βασικά των καταστάσεων διαπραγμάτευσης winwin,
ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω
0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +
ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα
ΣΔΥΝΟΛΟΓΙΚΟ ΔΚΠΑΙΓΔΤΣΙΚΟ ΙΓΡΤΜΑ ΘΔΑΛΟΝΙΚΗ ΥΟΛΗ ΣΔΥΝΟΛΟΓΙΑ ΣΡΟΦΙΜΩΝ & ΓΙΑΣΡΟΦΗ ΣΜΗΜΑ ΣΔΥΝΟΛΟΓΙΑ ΣΡΟΦΙΜΩΝ ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή Αζαλαζηάδνπ Βαξβάξα
Supplementary Materials: A Preliminary Link between Hydroxylated Metabolites of Polychlorinated Biphenyls and Free Thyroxin in Humans
S1 of S11 Supplementary Materials: A Preliminary Link between Hydroxylated Metabolites of Polychlorinated Biphenyls and Free Thyroxin in Humans Eveline Dirinck, Alin C. Dirtu, Govindan Malarvannan, Adrian
Statistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
Finite difference method for 2-D heat equation
Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ Πτυχιακή εργασία ΓΝΩΣΕΙΣ ΚΑΙ ΣΤΑΣΕΙΣ ΝΟΣΗΛΕΥΤΩΝ ΠΡΟΣ ΤΟΥΣ ΦΟΡΕΙΣ ΜΕ ΣΥΝΔΡΟΜΟ ΕΠΙΚΤΗΤΗΣ ΑΝΟΣΟΑΝΕΠΑΡΚΕΙΑΣ (AIDS) Αλέξης Δημήτρη Α.Φ.Τ: 20085675385 Λεμεσός
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
( ) 2 and compare to M.
Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8
Περισσότερα+για+τις+στροφές+
ΤεχνολογικόEκπαιδευτικόΊδρυμαKρήτης Ρομποτική «Τοπικήπαραμετροποίησηπινάκωνστροφής,γωνίεςEuler, πίνακαςστροφήςγύρωαπόισοδύναμοάξονα» Δρ.ΦασουλάςΓιάννης 1 Περισσότεραγιατιςστροφές ΗστροφήενόςΣΣμπορείνααντιστοιχηθείσεένα
This is a repository copy of Persistent poverty and children's cognitive development: Evidence from the UK Millennium Cohort Study.
This is a repository copy of Persistent poverty and children's cognitive development: Evidence from the UK Millennium Cohort Study. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/43513/
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
UMI Number: All rights reserved
UMI Number: 3408360 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send